1
|
Prieto C, Mossa-Basha M, Christodoulou A, Sheagren CD, Guo Y, Radjenovic A, Zhao X, Collins JD, Botnar RM, Wieben O. Highlights of the Society for Magnetic Resonance Angiography 2024 Conference. J Cardiovasc Magn Reson 2025:101878. [PMID: 40086635 DOI: 10.1016/j.jocmr.2025.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
The 36th Annual International Meeting of the Society for Magnetic Resonance Angiography (SMRA), held from November 12-15, 2024, in Santiago de Chile, marked a milestone as the first SMRA conference in Latin America. Themed "The Ever-Changing Landscape of MRA", the event highlighted the rapid advancements in magnetic resonance angiography (MRA), including cutting-edge developments in contrast-enhanced MRA, contrast-free techniques, dynamic, multi-parametric, and multi-contrast MRA, 4D flow, low-field solutions and AI-driven technologies, among others. The program featured 174 attendees from 15 countries, including 43 early-career scientists and 30 industry representatives. The conference offered a rich scientific agenda, with 12 plenary talks, 24 educational talks, 98 abstract presentations, a joint SMRA-MICCAI challenge on intracranial artery lesion detection and segmentation and a joint session with the Society for Cardiovascular Magnetic Resonance (SCMR) emphasizing accessibility, low-field MRI, and AI's transformative role in cardiac imaging. The meeting's single-track format fostered engaging discussions on interdisciplinary research and highlighted innovations spanning various vascular beds. This paper summarizes the conference's key themes, emphasizing the collaborative efforts driving the future of MRA, while reflecting on SMRA's vision to advance research, education, and clinical practice globally.
Collapse
Affiliation(s)
- Claudia Prieto
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millenium Institute for Intelligent Healthcare Engineering, Santiago, Chile; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Calder D Sheagren
- Department of Medical Biophysics, University of Toronto, Toronto ON Canada. Physical Sciences Platform, Sunnybrook Research Institute, Toronto ON Canada
| | - Yin Guo
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Xihai Zhao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | | | - René M Botnar
- Institute for Biological and Medical Engineering and School of Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millenium Institute for Intelligent Healthcare Engineering, Santiago, Chile; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Oliver Wieben
- Depts. of Medical Physics & Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Zhang P, Li Y, Li X, Wang Y, Lin H, Zhang N, Li W, Jing L, Jiao M, Luo X, Hou Y. Shedding light on vascular imaging: the revolutionary role of nanotechnology. J Nanobiotechnology 2024; 22:757. [PMID: 39695727 DOI: 10.1186/s12951-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents. Compared with conventional small molecule counterparts, nanomaterials possess numerous advantages for vascular imaging, holding the potential to significantly advance related technologies. In this review, the latest developments in nanotechnology-assisted vascular imaging research across different imaging modalities, including contrast-enhanced magnetic resonance (MR) angiography, susceptibility-weighted imaging (SWI), and fluorescence imaging in the second near-infrared window (NIR-II) are summarized. Additionally, the advancements of preclinical and clinical studies related to these nanotechnology-enhanced vascular imaging approaches are outlined, with subsequent discussion on the current challenges and future prospects in both basic research and clinical translation.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yudong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hua Lin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Liu Y, Cao B, Wang X, Zhong J, Li Z, Peng R, Zhao D, Gu N, Yang Q. Ferumoxytol-enhanced MR venography for mapping lower-extremity venous networks and evaluating varicose veins in patients with diabetes. Eur Radiol 2024; 34:7197-7207. [PMID: 38713277 DOI: 10.1007/s00330-024-10772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVES Comprehensive evaluation of lower-extremity varicose veins (VVs) in patients with diabetes is crucial for treatment strategizing. The study aims to assess the feasibility of using ferumoxytol-enhanced MR venography (FE-MRV) for lower-extremity venous mapping and the detection of VVs in patients with diabetes. MATERIALS AND METHODS As part of a phase II clinical trial of a generic brand of ferumoxytol, documented patients with diabetes were enrolled and underwent FE-MRV on a 3-Τ MRI system. Two observers assessed FE-MRV images for image quality, signal intensity ratio (SIR), perforator (PV) diameter, and luminal signal uniformity in deep-to-superficial venous networks with the assessment of intra- and inter-rater reliability. FE-MRV was used to detect lower-extremity VVs. RESULTS Eleven patients underwent FE-MRV without adverse events. The average image quality, as scored by the two observers who assessed 275 venous segments, was 3.4 ± 0.6. Two observers strongly agreed on image quality (κ = 0.90) and SIR measurements (interclass correlation coefficient [ICC]: 0.72) and had good agreement on PV diameter (ICC: 0.64). FE-MRV revealed uniform luminal signals in deep and saphenous venous networks (0.13 ± 0.05 vs 0.08 ± 0.03). Below-knee segments exhibited a significantly higher heterogeneity index than above-knee (p = 0.039) segments. Superficial VVs were observed in 55% (12/22) of legs in 64% (7/11) of patients. Calf muscle VVs were present in 64% (14/22) of legs in 9 patients. CONCLUSION FE-MRV safely and robustly mapped entire lower-extremity venous networks, enabling the detection and pre-treatment evaluation of both superficial, and deep VVs in patients with diabetes. CLINICAL RELEVANCE STATEMENT Ferumoxytol-enhanced magnetic resonance venography offers a "one-stop" imaging strategy for the detection and pre-operative evaluation of both superficial and deep VVs in diabetic patients. KEY POINTS Diabetic patients with VVs are at a higher risk of ulcer-related complications. FE-MRV allowed rapid and comprehensive visualization of the lower-limb venous networks and abdominopelvic veins in diabetic patients. This technique allowed for the detection of superficial and deep VVs in diabetic patients before the development of severe peripheral artery disease.
Collapse
Affiliation(s)
- Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiali Zhong
- Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Li
- Department of Radiology, Central Hospital Affiliated to Xinxiang Medical University, Xinxiang, China
| | - Ruchen Peng
- Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Ning Gu
- Medical School of Nanjing University, Nanjing, China.
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Jang JS, Kim N, Kim MH, Lee DW, Kim JW, Shin TH, Park HJ, Kim KW. Analysis on efficacy of magnetic resonance lymphangiography using INV-001 in healthy beagle dogs. Sci Rep 2024; 14:10502. [PMID: 38714849 PMCID: PMC11076550 DOI: 10.1038/s41598-024-61104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
We aimed to conduct a proof-of-concept study of INV-001 in visualizing lymphatic vessels and nodes without venous contamination and to determine the optimal dose condition of INV-001 for magnetic resonance lymphangiography (MRL) in healthy beagles. MRL was performed using a 3.0-Tesla (T) whole body clinical magnetic resonance imaging (MRI) scanner. A dose-finding study of INV-001 for MRL in beagles (N = 6) was carried out according to an adaptive optimal dose finding design. For the reproducibility study (N = 6), MRL was conducted at selected INV-001 doses (0.056 and 0.112 mg Fe/kg) with a 15 mM concentration. Additionally, an excretion study (N = 3) of INV-001 was conducted by analyzing T1, T2, and T2* maps of the liver and kidney 48 h post-administration. INV-001 administration at doses of 0.056 and 0.112 mg Fe/kg (concentration: 15 mM) consistently demonstrated the visualization of contrast-enhanced lymphatic vessels and nodes without venous contamination in the beagles. The contrast enhancement effect was highest at 30 min after INV-001 administration, then gradually decreasing. No toxicity-related issues were identified during the study. After 48 h, the T1, T2, and T2* values in the liver and both kidneys were found to be comparable to the pre-administration values, indicating thorough INV-001 excretion. The optimal dosing conditions of INV-001 for MRL for contrast-enhanced visualization of lymphatic vessels and nodes exclusively with no venous contamination in beagles was determined to be 0.056 mg Fe/kg with a 15 mM concentration.
Collapse
Affiliation(s)
- Ji Sung Jang
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, Olymphic-ro 43 Gil 88, Songpa-gu, Seoul, 138-735, Republic of Korea
| | - Nari Kim
- Departments of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Hyun Kim
- Research Institute, Trial Informatics Incorporated, Seoul, Republic of Korea
- Department of Radiation Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Do-Wan Lee
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, Olymphic-ro 43 Gil 88, Songpa-gu, Seoul, 138-735, Republic of Korea
| | - Ji-Wook Kim
- Inventera Incorporated, Seoul, Republic of Korea
| | | | - Hyo Jung Park
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, Olymphic-ro 43 Gil 88, Songpa-gu, Seoul, 138-735, Republic of Korea
| | - Kyung Won Kim
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, Olymphic-ro 43 Gil 88, Songpa-gu, Seoul, 138-735, Republic of Korea.
| |
Collapse
|
5
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Dong Z, Si G, Zhu X, Li C, Hua R, Teng J, Zhang W, Xu L, Qian W, Liu B, Wang J, Wang T, Tang Y, Zhao Y, Gong X, Tao Z, Xu Z, Li Y, Chen B, Kong X, Xu Y, Gu N, Li C. Diagnostic Performance and Safety of a Novel Ferumoxytol-Enhanced Coronary Magnetic Resonance Angiography. Circ Cardiovasc Imaging 2023; 16:580-590. [PMID: 37463240 DOI: 10.1161/circimaging.123.015404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Currently, noninvasive arteriography for the diagnosis of coronary artery disease is clinically limited to the computed tomography scanning, where patients have to be exposed to the radiation and risks associated with iodinated contrast. We aimed to investigate the diagnostic performance and safety of a novel ferumoxytol-enhanced coronary magnetic resonance angiography (CMRA) in patients with suspected coronary artery disease. METHODS Thirty patients, 19 males, with a median age of 63 years old, and 17 with renal insufficiency, who were scheduled for invasive coronary angiography, were enrolled. Ferumoxytol was administered intravenously with a dose of 3 mg/kg during CMRA. Images were acquired with an ECG-triggered, navigator-gated, inversion recovery-prepared 3D fast low-angle shot sequence, and the image quality was assessed by a 4-point scale. Eighteen-segment coronary artery model was adopted to evaluate the visibility of the coronary arteries, and the image quality and stenosis were evaluated in nine segments. The diagnostic performance of CMRA is described as sensitivity, specificity, positive and negative predictive values, and accuracy with the invasive coronary angiography results as reference. The patients' vital signs were monitored during CMRA, and their hepatic and renal functions were followed up for 3 months to evaluate the safety of ferumoxytol. RESULTS Two hundred fifty-two of the 270 study segments were identified by CMRA, and their quality score reached 3.6±0.7. Referring to the invasive coronary angiography results, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of ferumoxytol-enhanced CMRA reached 100.0%, 66.7%, 92.3%, 100.0%, and 93.3% respectively in patient-based analysis; 91.4%, 90.9%, 86.5%, 94.3%, and 91.1%, respectively in vessel-based analysis; and 92.3%, 96.7%, 83.7%, 98.6%, and 96.0%, respectively in segment-based analysis. No ferumoxytol-related adverse event was observed during the 3-month follow-up. CONCLUSIONS Ferumoxytol-enhanced CMRA demonstrated good diagnostic performance and excellent safety in the diagnosis of significant coronary stenosis, providing an alternative to coronary computed tomography angiography for the diagnosis of coronary artery disease. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT05032937.
Collapse
Affiliation(s)
- Zhou Dong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Guangxiang Si
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China (G.S., N.G.)
| | - Xiaomei Zhu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Chen Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Rui Hua
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Jianzhen Teng
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Wenhao Zhang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Lulu Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Wen Qian
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Bo Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Jun Wang
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Tong Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yingdan Tang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, China (Y.T., Y.Z.)
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, China (Y.T., Y.Z.)
| | - Xiaoxuan Gong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Zhiwen Tao
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Zhihui Xu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yong Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Bo Chen
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Xiangqing Kong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yi Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Ning Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
- Medical School, Nanjing University, Nanjing, Jiangsu, China (N.G.)
| | - Chunjian Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| |
Collapse
|
7
|
Prasad PV, Li LP, Hack B, Leloudas N, Sprague SM. Quantitative Blood Oxygenation Level Dependent Magnetic Resonance Imaging for Estimating Intra-renal Oxygen Availability Demonstrates Kidneys Are Hypoxemic in Human CKD. Kidney Int Rep 2023; 8:1057-1067. [PMID: 37180507 PMCID: PMC10166744 DOI: 10.1016/j.ekir.2023.02.1092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Kidney blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) has shown great promise in evaluating relative oxygen availability. This method is quite efficacious in evaluating acute responses to physiological and pharmacologic maneuvers. Its outcome parameter, R2∗ is defined as the apparent spin-spin relaxation rate measured in the presence of magnetic susceptibility differences and it is measured using gradient echo MRI. Although associations between R2∗ and renal function decline have been described, it remains uncertain to what extent R2∗ is a true reflection of tissue oxygenation. This is primarily because of not taking into account the confounding factors, especially fractional blood volume (fBV) in tissue. Methods This case-control study included 7 healthy controls and 6 patients with diabetes and chronic kidney disease (CKD). Using data before and after administration of ferumoxytol, a blood pool MRI contrast media, the fBVs in kidney cortex and medulla were measured. Results This pilot study independently measured fBV in kidney cortex (0.23 ± 0.03 vs. 0.17 ± 0.03) and medulla (0.36 ± 0.08 vs. 0.25 ± 0.03) in a small number of healthy controls (n = 7) versus CKD (n = 6). These were then combined with BOLD MRI measurements to estimate oxygen saturation of hemoglobin (StO2) (0.87 ± 0.03 vs. 0.72 ± 0.10 in cortex; 0.82 ± 0.05 vs. 0.72 ± 0.06 in medulla) and partial pressure of oxygen in blood (bloodPO2) (55.4 ± 6.5 vs. 38.4 ± 7.6 mm Hg in cortex; 48.4 ± 6.2 vs. 38.1 ± 4.5 mm Hg in medulla) in control versus CKD. The results for the first time demonstrate that cortex is normoxemic in controls and moderately hypoxemic in CKD. In the medulla, it is mildly hypoxemic in controls and moderately hypoxemic in CKD. Whereas fBV, StO2, and bloodPO2 were strongly associated with estimated glomerular filtration rate (eGFR), R2∗ was not. Conclusion Our results support the feasibility of quantitatively assessing oxygen availability using noninvasive quantitative BOLD MRI that could be translated to the clinic.
Collapse
Affiliation(s)
- Pottumarthi V. Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Lu-Ping Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Bradley Hack
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Nondas Leloudas
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Stuart M. Sprague
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Ferumoxytol-Enhanced Cardiac Magnetic Resonance Angiography and 4D Flow: Safety and Utility in Pediatric and Adult Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121810. [PMID: 36553257 PMCID: PMC9777095 DOI: 10.3390/children9121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Cardiac magnetic resonance imaging and angiography have a crucial role in the diagnostic evaluation and follow up of pediatric and adult patients with congenital heart disease. Although much of the information required of advanced imaging studies can be provided by standard gadolinium-enhanced magnetic resonance imaging, the limitations of precise bolus timing, long scan duration, complex imaging protocols, and the need to image small structures limit more widespread use of this modality. Recent experience with off-label diagnostic use of ferumoxytol has helped to mitigate some of these barriers. Approved by the U.S. FDA for intravenous treatment of anemia, ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle that has a long blood pool residence time and high relaxivity. Once metabolized by macrophages, the iron core is incorporated into the reticuloendothelial system. In this work, we aim to summarize the evolution of ferumoxytol-enhanced cardiovascular magnetic resonance imaging and angiography and highlight its many applications for congenital heart disease.
Collapse
|
9
|
Jalili MH, Yu T, Hassani C, Prosper AE, Finn JP, Bedayat A. Contrast-enhanced MR Angiography without Gadolinium-based Contrast Material: Clinical Applications Using Ferumoxytol. Radiol Cardiothorac Imaging 2022; 4:e210323. [PMID: 36059381 PMCID: PMC9434982 DOI: 10.1148/ryct.210323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 04/25/2023]
Abstract
Vascular imaging can be challenging because of the wide variability of contrast dynamics in different vascular territories and potential safety concerns in patients with renal insufficiency or allergies. Off-label diagnostic use of ferumoxytol, a superparamagnetic iron nanoparticle approved for therapy, is a promising alternative to gadolinium-based contrast agents for MR angiography (MRA). Ferumoxytol has exhibited a reassuring safety profile when used within the dose range recommended for diagnostic imaging. Because of its prolonged and stable intravascular residence, ferumoxytol can be used in its steady-state distribution for a wide variety of imaging indications, including some where conventional MRA is unreliable. In this article, authors discuss some of the major vascular applications of ferumoxytol and highlight how it may be used to provide highly diagnostic images and improve the quality, workflow, and reliability of vascular imaging. Keywords: MR Angiography, MRI Contrast Agent, Cardiac, Vascular © RSNA, 2022.
Collapse
|
10
|
Puricelli F, Voges I, Gatehouse P, Rigby M, Izgi C, Pennell DJ, Krupickova S. Performance of Cardiac MRI in Pediatric and Adult Patients with Fontan Circulation. Radiol Cardiothorac Imaging 2022; 4:e210235. [PMID: 35833165 PMCID: PMC9274315 DOI: 10.1148/ryct.210235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Cardiac MRI has become a widely accepted standard for anatomic and functional assessment of complex Fontan physiology, because it is noninvasive and suitable for comprehensive follow-up evaluation after Fontan completion. The use of cardiac MRI in pediatric and adult patients after completion of the Fontan procedure are described, and a practical and experience-based cardiac MRI protocol for evaluating these patients is provided. The current approach and study protocol in use at the authors' institution are presented, which address technical considerations concerning sequences, planning, and optimal image acquisition in patients with Fontan circulation. Additionally, for each sequence, the information that can be obtained and guidance on how to integrate it into clinical decision-making is discussed. Keywords: Pediatrics, MRI, MRI Functional Imaging, Heart, Congenital © RSNA, 2022.
Collapse
|
11
|
Shahrouki P, Khan SN, Yoshida T, Iskander PJ, Ghahremani S, Finn JP. High-resolution three‑dimensional contrast‑enhanced magnetic resonance venography in children: comparison of gadofosveset trisodium with ferumoxytol. Pediatr Radiol 2022; 52:501-512. [PMID: 34936018 PMCID: PMC8857136 DOI: 10.1007/s00247-021-05225-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Gadofosveset is a gadolinium-based blood pool contrast agent that was approved by the United States Food and Drug Administration in 2008. Its unanticipated withdrawal from production in 2016 created a void in the blood pool agent inventory and highlighted the need for an alternative agent with comparable imaging properties. OBJECTIVE The purpose of our study is to compare the diagnostic image quality, vascular contrast-to-noise ratio (CNR) and temporal signal characteristics of gadofosveset trisodium and ferumoxytol at similar molar doses for high-resolution, three-dimensional (3-D) magnetic resonance (MR) venography in children. MATERIALS AND METHODS The medical records and imaging data sets of patients who underwent high-resolution 3-D gadofosveset-enhanced MR venography (GE-MRV) or ferumoxytol-enhanced MR venography (FE-MRV) were retrospectively reviewed. Two groups of 20 pediatric patients (age- and weight-matched with one patient common to both groups; age range: 2 days-15 years) who underwent high-resolution 3-D GE-MRV or FE-MRV at similar molar doses were identified and analyzed. Qualitative analysis of image quality and vessel definition was performed by two blinded pediatric radiologists. Interobserver agreement was assessed with the AC1 (first-order agreement coefficient) statistic. Signal-to-noise ratio (SNR) and CNR of the inferior vena cava and aorta were measured in the steady-state venous phase. Medical records were retrospectively reviewed for any adverse reactions associated with either contrast agent. RESULTS Measured SNR and CNR of the inferior vena cava were higher for FE-MRV than GE-MRV (P = 0.034 and P < 0.001, respectively). The overall image quality score and individual vessel scores of FE-MRV were equal to or greater than GE-MRV (P = 0.084), with good interobserver agreement (AC1 = 0.657). The venous signal on FE-MRV was stable over the longest interval measured (1 h, 13 min and 46 s), whereas venous signal on GE-MRV showed more variability and earlier loss of signal. No adverse reactions were noted in any patient with either contrast agent. CONCLUSION Ferumoxytol produces more uniform and stable enhancement throughout the entire venous circulation in children than gadofosveset, offering a wider time window for optimal image acquisition. FE-MRV offers a near-ideal approach to high-resolution venography in children at all levels of anatomical complexity.
Collapse
Affiliation(s)
- Puja Shahrouki
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Sarah N. Khan
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Takegawa Yoshida
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Paul J. Iskander
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA ,grid.19006.3e0000 0000 9632 6718Division of Pediatric Radiology, Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA USA ,grid.239546.f0000 0001 2153 6013Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA USA
| | - Shahnaz Ghahremani
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA ,grid.19006.3e0000 0000 9632 6718Division of Pediatric Radiology, Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA USA
| | - J. Paul Finn
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| |
Collapse
|
12
|
Ghodrati V, Rivenson Y, Prosper A, de Haan K, Ali F, Yoshida T, Bedayat A, Nguyen KL, Finn JP, Hu P. Automatic segmentation of peripheral arteries and veins in ferumoxytol-enhanced MR angiography. Magn Reson Med 2021; 87:984-998. [PMID: 34611937 DOI: 10.1002/mrm.29026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To automate the segmentation of the peripheral arteries and veins in the lower extremities based on ferumoxytol-enhanced MR angiography (FE-MRA). METHODS Our automated pipeline has 2 sequential stages. In the first stage, we used a 3D U-Net with local attention gates, which was trained based on a combination of the Focal Tversky loss with region mutual loss under a deep supervision mechanism to segment the vasculature from the high-resolution FE-MRA datasets. In the second stage, we used time-resolved images to separate the arteries from the veins. Because the ultimate segmentation quality of the arteries and veins relies on the performance of the first stage, we thoroughly evaluated the different aspects of the segmentation network and compared its performance in blood vessel segmentation with currently accepted state-of-the-art networks, including Volumetric-Net, DeepVesselNet-FCN, and Uception. RESULTS We achieved a competitive F1 = 0.8087 and recall = 0.8410 for blood vessel segmentation compared with F1 = (0.7604, 0.7573, 0.7651) and recall = (0.7791, 0.7570, 0.7774) obtained with Volumetric-Net, DeepVesselNet-FCN, and Uception. For the artery and vein separation stage, we achieved F1 = (0.8274/0.7863) in the calf region, which is the most challenging region in peripheral arteries and veins segmentation. CONCLUSION Our pipeline is capable of fully automatic vessel segmentation based on FE-MRA without need for human interaction in <4 min. This method improves upon manual segmentation by radiologists, which routinely takes several hours.
Collapse
Affiliation(s)
- Vahid Ghodrati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Yair Rivenson
- Electrical and Computer Engineering Department, University of California, Los Angeles, California, USA
| | - Ashley Prosper
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kevin de Haan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California, USA
| | - Fadil Ali
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Arash Bedayat
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - J Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
13
|
Shahrouki P, Nguyen KL, Moriarty JM, Plotnik AN, Yoshida T, Finn JP. Minimizing table time in patients with claustrophobia using focused ferumoxytol-enhanced MR angiography ( f-FEMRA): a feasibility study. Br J Radiol 2021; 94:20210430. [PMID: 34415199 PMCID: PMC9327752 DOI: 10.1259/bjr.20210430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To assess the feasibility of a rapid, focused ferumoxytol-enhanced MR angiography (f-FEMRA) protocol in patients with claustrophobia. METHODS In this retrospective study, 13 patients with claustrophobia expressed reluctance to undergo conventional MR angiography, but agreed to a trial of up to 10 min in the scanner bore and underwent f-FEMRA. Thirteen matched control patients who underwent gadolinium-enhanced MR angiography (GEMRA) were identified for comparison of diagnostic image quality. For f-FEMRA, the time from localizer image acquisition to completion of the angiographic acquisition was measured. Two radiologists independently scored images on both f-FEMRA and GEMRA for arterial and venous image quality, motion artefact and diagnostic confidence using a 5-point scale, five being best. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the aorta and IVC were measured. The Wilcoxon rank-sum test, one-way ANOVA with Tukey correction and two-tailed t tests were utilized for statistical analyses. RESULTS All scans were diagnostic and assessed with high confidence (scores ≥ 4). Average scan time for f-FEMRA was 6.27 min (range 3.56 to 10.12 min), with no significant difference between f-FEMRA and GEMRA in diagnostic confidence (4.86 ± 0.24 vs 4.69 ± 0.25, p = 0.13), arterial image quality (4.62 ± 0.57 vs 4.65 ± 0.49, p = 0.78) and motion artefact score (4.58 ± 0.49 vs 4.58 ± 0.28, p > 0.99). f-FEMRA scored significantly better for venous image quality than GEMRA (4.62 ± 0.42 vs 4.19 ± 0.56, p = 0.04). CNR in the IVC was significantly higher for steady-state f-FEMRA than GEMRA regardless of the enhancement phase (p < 0.05). CONCLUSIONS Comprehensive vascular MR imaging of the thorax, abdomen and pelvis can be completed in as little as 5 min within the magnet bore using f-FEMRA, facilitating acceptance by patients with claustrophobia and streamlining workflow. ADVANCES IN KNOWLEDGE A focused approach to vascular imaging with ferumoxytol can be performed in patients with claustrophobia, limiting time in the magnet bore to 10 min or less, while acquiring fully diagnostic images of the thorax, abdomen and pelvis.
Collapse
Affiliation(s)
- Puja Shahrouki
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - John M. Moriarty
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Adam N. Plotnik
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - J. Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, United States
| |
Collapse
|
14
|
van Zandwijk JK, Simonis FFJ, Heslinga FG, Hofmeijer EIS, Geelkerken RH, ten Haken B. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS One 2021; 16:e0256252. [PMID: 34403442 PMCID: PMC8370648 DOI: 10.1371/journal.pone.0256252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0–15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.
Collapse
Affiliation(s)
- Jordy K. van Zandwijk
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- * E-mail:
| | - Frank F. J. Simonis
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Friso G. Heslinga
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Elfi I. S. Hofmeijer
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert H. Geelkerken
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- Multimodality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Bennie ten Haken
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
15
|
Nguyen KL, Ghosh RM, Griffin LM, Yoshida T, Bedayat A, Rigsby CK, Fogel MA, Whitehead KK, Hu P, Finn JP. Four-dimensional Multiphase Steady-State MRI with Ferumoxytol Enhancement: Early Multicenter Feasibility in Pediatric Congenital Heart Disease. Radiology 2021; 300:162-173. [PMID: 33876971 DOI: 10.1148/radiol.2021203696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The value of MRI in pediatric congenital heart disease (CHD) is well recognized; however, the requirement for expert oversight impedes its widespread use. Four-dimensional (4D) multiphase steady-state imaging with contrast enhancement (MUSIC) is a cardiovascular MRI technique that uses ferumoxytol and captures all anatomic features dynamically. Purpose To evaluate multicenter feasibility of 4D MUSIC MRI in pediatric CHD. Materials and Methods In this prospective study, participants with CHD underwent 4D MUSIC MRI at 3.0 T or 1.5 T between 2014 and 2020. From a pool of 460 total studies, an equal number of MRI studies from three sites (n = 60) was chosen for detailed analysis. With use of a five-point scale, the feasibility of 4D MUSIC was scored on the basis of artifacts, image quality, and diagnostic confidence for intracardiac and vascular connections (n = 780). Respiratory motion suppression was assessed by using the signal intensity profile. Bias between 4D MUSIC and two-dimensional (2D) cine imaging was evaluated by using Bland-Altman analysis; 4D MUSIC examination duration was compared with that of the local standard for CHD. Results A total of 206 participants with CHD underwent MRI at 3.0 T, and 254 participants underwent MRI at 1.5 T. Of the 60 MRI examinations chosen for analysis (20 per site; median participant age, 14.4 months [interquartile range, 2.3-49 months]; 33 female participants), 56 (93%) had good or excellent image quality scores across a spectrum of disease complexity (mean score ± standard deviation: 4.3 ± 0.6 for site 1, 4.9 ± 0.3 for site 2, and 4.6 ± 0.7 for site 3; P < .001). Artifact scores were inversely related to image quality (r = -0.88, P < .001) and respiratory motion suppression (P < .001, r = -0.45). Diagnostic confidence was high or definite in 730 of 780 (94%) intracardiac and vascular connections. The correlation between 4D MUSIC and 2D cine ventricular volumes and ejection fraction was high (range of r = 0.72-0.85; P < .001 for all). Compared with local standard MRI, 4D MUSIC reduced the image acquisition time (44 minutes ± 20 vs 12 minutes ± 3, respectively; P < .001). Conclusion Four-dimensional multiphase steady-state imaging with contrast enhancement MRI in pediatric congenital heart disease was feasible in a multicenter setting, shortened the examination time, and simplified the acquisition protocol, independently of disease complexity. Clinical trial registration no. NCT02752191 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Roest and Lamb in this issue.
Collapse
Affiliation(s)
- Kim-Lien Nguyen
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Reena M Ghosh
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Lindsay M Griffin
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Takegawa Yoshida
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Arash Bedayat
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Cynthia K Rigsby
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Mark A Fogel
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Kevin K Whitehead
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - Peng Hu
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| | - J Paul Finn
- From the Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences (K.L.N., T.Y., A.B., P.H., J.P.F.), and Division of Cardiology (K.L.N.), David Geffen School of Medicine at UCLA, 300 Medical Plaza, B119, Los Angeles, CA 90095; VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N.); Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pa (R.M.G., M.A.F., K.K.W.); Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill (L.M.G., C.K.R.); and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.M.G., C.K.R.)
| |
Collapse
|
16
|
Wilson S, Culp WTN, Wisner ER, Cissell DD, Finn JP, Zwingenberger AL. Ferumoxytol-enhanced magnetic resonance angiography provides comparable vascular conspicuity to CT angiography in dogs with intrahepatic portosystemic shunts. Vet Radiol Ultrasound 2021; 62:463-470. [PMID: 33634935 DOI: 10.1111/vru.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/26/2022] Open
Abstract
Computed tomography angiography (CTA) is currently the gold standard imaging modality for anatomically characterizing canine hepatic vascular anomalies; with conventional, gadolinium-enhanced MR angiography being less frequently utilized. However, both imaging modalities are limited by a brief, first pass peak of contrast medium in the vasculature that necessitates precisely timed image acquisition. A long-acting purely intravascular magnetic resonance imaging (MRI) contrast agent, ferumoxytol, offers the potential to reduce complexity of magnetic resonance angiography (MRA) protocol planning by ensuring diagnostic contrast medium concentration in all the vessels that are targeted for imaging. Aims of this prospective, pilot, methods comparison study were to develop an optimized MRA protocol using ferumoxytol in dogs with hepatic vascular anomalies, perform a dose escalation trial to compare image quality with four-dose regimens of ferumoxytol, and compare accuracy of vascular anatomic depiction based on the gold standard of CTA. Six dogs (10.7-36.1 kg) with portosystemic shunts (four intrahepatic left divisional shunts and two intrahepatic right divisional shunts) were recruited for inclusion in the study. A dose-escalation trial was performed to compare image quality at four incremental dose levels of ferumoxytol (1, 2, 3, and 4 mg/kg) and to compare the accuracy of vascular anatomic detection to CTA. Ferumoxytol contrast-enhanced MRA (CE-MRA) at 4 mg/kg provided similar conspicuity of normal and abnormal vasculature compared to CTA with a minimal decrease in spatial resolution. Findings indicated that ferumoxytol holds promise for comprehensive, single breath hold CE-MRA of all abdominal vessels in dogs with portosystemic shunts. Background information provided in this study can be used to support development of other future applications such as intracranial and cardiac MRA, real-time imaging, flow quantification, and potentially sedated MRI imaging.
Collapse
Affiliation(s)
- Sabrina Wilson
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - William T N Culp
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Erik R Wisner
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Derek D Cissell
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - J Paul Finn
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, School of Medicine, Davis, California, USA
| | - Allison L Zwingenberger
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
17
|
Montalt-Tordera J, Quail M, Steeden JA, Muthurangu V. Reducing Contrast Agent Dose in Cardiovascular MR Angiography with Deep Learning. J Magn Reson Imaging 2021; 54:795-805. [PMID: 33619859 PMCID: PMC9681557 DOI: 10.1002/jmri.27573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Background Contrast‐enhanced magnetic resonance angiography (MRA) is used to assess various cardiovascular conditions. However, gadolinium‐based contrast agents (GBCAs) carry a risk of dose‐related adverse effects. Purpose To develop a deep learning method to reduce GBCA dose by 80%. Study Type Retrospective and prospective. Population A total of 1157 retrospective and 40 prospective congenital heart disease patients for training/validation and testing, respectively. Field Strength/Sequence A 1.5 T, T1‐weighted three‐dimensional (3D) gradient echo. Assessment A neural network was trained to enhance low‐dose (LD) 3D MRA using retrospective synthetic data and tested with prospective LD data. Image quality for LD (LD‐MRA), enhanced LD (ELD‐MRA), and high‐dose (HD‐MRA) was assessed in terms of signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR), and a quantitative measure of edge sharpness and scored for perceptual sharpness and contrast on a 1–5 scale. Diagnostic confidence was assessed on a 1–3 scale. LD‐ and ELD‐MRA were assessed against HD‐MRA for sensitivity/specificity and agreement of vessel diameter measurements (aorta and pulmonary arteries). Statistical Tests SNR, CNR, edge sharpness, and vessel diameters were compared between LD‐, ELD‐, and HD‐MRA using one‐way repeated measures analysis of variance with post‐hoc t‐tests. Perceptual quality and diagnostic confidence were compared using Friedman's test with post‐hoc Wilcoxon signed‐rank tests. Sensitivity/specificity was compared using McNemar's test. Agreement of vessel diameters was assessed using Bland–Altman analysis. Results SNR, CNR, edge sharpness, perceptual sharpness, and perceptual contrast were lower (P < 0.05) for LD‐MRA compared to ELD‐MRA and HD‐MRA. SNR, CNR, edge sharpness, and perceptual contrast were comparable between ELD and HD‐MRA, but perceptual sharpness was significantly lower. Sensitivity/specificity was 0.824/0.921 for LD‐MRA and 0.882/0.960 for ELD‐MRA. Diagnostic confidence was 2.72, 2.85, and 2.92 for LD, ELD, and HD‐MRA, respectively (PLD‐ELD, PLD‐HD < 0.05). Vessel diameter measurements were comparable, with biases of 0.238 (LD‐MRA) and 0.278 mm (ELD‐MRA). Data Conclusion Deep learning can improve contrast in LD cardiovascular MRA. Level of Evidence Level 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Javier Montalt-Tordera
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, University College London, London, WC1N 1EH, UK
| | - Michael Quail
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, University College London, London, WC1N 1EH, UK.,Great Ormond Street Hospital, London, WC1N 3JH, UK
| | - Jennifer A Steeden
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, University College London, London, WC1N 1EH, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, University College London, London, WC1N 1EH, UK
| |
Collapse
|
18
|
Lu Y, Huang J, Neverova NV, Nguyen KL. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2021; 14:2. [PMID: 33824694 PMCID: PMC8021129 DOI: 10.1007/s12410-021-09552-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW We aim to discuss the diagnostic use of ultra-small superparamagnetic iron oxide (USPIOs) including ferumoxytol in targeted cardiovascular magnetic resonance imaging (MRI). RECENT FINDINGS Ferumoxytol is the only USPIO clinically available in the U.S. and is a negatively charged USPIO that has potential use for tracking and characterization of macrophage-infiltrated cardiovascular structures. As an iron supplement that is approved for treatment of iron deficiency anemia, the iron core of ferumoxytol is incorporated into the body once it is phagocytosed by macrophages. In organs or tissues with high inflammatory cellular infiltration, such as atherosclerotic plaques and myocardial infarction, localization of iron-laden macrophages can be visualized on delayed MRI. The iron core of ferumoxytol alters the magnetic susceptibility and results in shortening of T2* and T2 relaxation rates. Areas with high concentration appear hypointense (negative contrast) on T2 and T2* MRI. Recently, in vitro findings support the potential specificity of ferumoxytol interactions with macrophage subtypes, which has implications for therapeutic interventions. With increasing concerns about gadolinium retention in the brain and other tissues, the value of ferumoxytol-enhanced MR for targeted clinical imaging is aided by its positive safety profile in patients with impaired renal function. SUMMARY This paper discusses pharmacokinetic properties of USPIOs with a focus on ferumoxytol, and summarizes relevant in vitro, animal, and human studies investigating the diagnostic use of USPIOs in targeted contrast-enhanced imaging. We also discuss future directions for USPIOs as targeted imaging agents and associated challenges.
Collapse
Affiliation(s)
- Yi Lu
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Jenny Huang
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| | - Natalia V. Neverova
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Physics and Biology in Medicine Graduate Program,
University of California, Los Angeles
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
19
|
Yoshida T, Nguyen KL, Shahrouki P, Quinones-Baldrich WJ, Lawrence PF, Finn JP. Intermodality feature fusion combining unenhanced computed tomography and ferumoxytol-enhanced magnetic resonance angiography for patient-specific vascular mapping in renal impairment. J Vasc Surg 2020; 71:1674-1684. [PMID: 31734117 PMCID: PMC9583800 DOI: 10.1016/j.jvs.2019.08.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to establish the feasibility of fusing complementary, high-contrast features from unenhanced computed tomography (CT) and ferumoxytol-enhanced magnetic resonance angiography (FE-MRA) for preprocedural vascular mapping in patients with renal impairment. METHODS In this Institutional Review Board-approved and Health Insurance Portability and Accountability Act-compliant study, 15 consecutive patients underwent both FE-MRA and unenhanced CT scanning, and the complementary high-contrast features from both modalities were fused to form an integrated, multifeature image. Source images from CT and MRA were segmented and registered. To validate the accuracy, precision, and concordance of fused images to source images, unambiguous landmarks, such as wires from implantable medical devices or indwelling catheters, were marked on three-dimensional (3D) models of the respective modalities, followed by rigid co-registration, interactive fusion, and fine adjustment. We then compared the positional offsets using pacing wires or catheters in the source FE-MRA (defined as points of interest [POIs]) and fused images (n = 5 patients, n = 247 points). Points within 3D image space were referenced to the respective modalities: x (right-left), y (anterior-posterior), and z (cranial-caudal). The respective 3D orthogonal reference axes from both image sets were aligned, such that with perfect registration, a given point would have the same (x, y, z) component values in both sets. The 3D offsets (Δx mm, Δy mm, Δz mm) for each of the corresponding POIs represent nonconcordance between the source FE-MRA and fused images. The offsets were compared using concordance correlation coefficients. Interobserver agreement was assessed using intraclass correlation coefficients and Bland-Altman analyses. RESULTS Thirteen patients (aged 76 ± 12 years; seven female) with aortic valve stenosis and chronic kidney disease and two patients with thoracoabdominal vascular aneurysms and chronic kidney disease underwent FE-MRA for preprocedural vascular assessment, and unenhanced CT examinations were available in all patients. No ferumoxytol-related adverse events occurred. There were 247 matched POIs evaluated on the source FE-MRA and fused images. In patients with implantable medical devices, the mean offsets in spatial position were 0.31 ± 0.51 mm (ρ = 0.99; Cb = 1; 95% confidence interval [CI], 0.99-0.99) for Δx, 0.27 ± 0.69 mm (ρ = 0.99; Cb = 0.99; 95% CI, 0.99-0.99) for Δy, and 0.20 ± 0.59 mm (ρ = 1; Cb = 1; 95% CI, 0.99-1.00) for Δz. Interobserver agreement was excellent (intraclass correlation coefficient, >0.99). The mean difference in offset between readers was 1.5 mm. CONCLUSIONS Accurate 3D feature fusion is feasible, combining luminal information from FE-MRA with vessel wall information on unenhanced CT. This framework holds promise for combining the complementary strengths of magnetic resonance imaging and CT to generate information-rich, multifeature composite vascular images while avoiding the respective risks and limitations of both modalities.
Collapse
Affiliation(s)
- Takegawa Yoshida
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif
| | - Kim-Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif; Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif; Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, Calif
| | - Puja Shahrouki
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif
| | | | - Peter F Lawrence
- Department of Vascular Surgery, David Geffen School of Medicine at UCLA, Los Angeles, Calif
| | - J Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| |
Collapse
|
20
|
Lee SH, Hong JP. MR Lymphangiography. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2020; 81:70-80. [PMID: 36238120 PMCID: PMC9432101 DOI: 10.3348/jksr.2020.81.1.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/07/2020] [Accepted: 01/14/2020] [Indexed: 12/03/2022]
Abstract
림프부종의 수술적 치료는 최근 늘어나고 있으며 그에 따른 림프관 평가를 위해 자기공명영상 획득이 증가하고 있다. 전통적인 T2 강조영상에서부터 삼차원 영상에 이르기까지 많은 발전이 이루어지고 있는 분야이다. 삼차원 영상으로는 spoiled gradient echo 영상이 있고 그 변형기법들이 시행되고 있으며 영상에 필수적인 지방억제기법은 최근 mDixon 기법이 각광받고 있다.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Radiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Joon Pio Hong
- Department of Plastic Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Rivera-Rivera LA, Schubert T, Johnson KM. Measurements of cerebral blood volume using quantitative susceptibility mapping, R 2 * relaxometry, and ferumoxytol-enhanced MRI. NMR IN BIOMEDICINE 2019; 32:e4175. [PMID: 31482602 PMCID: PMC6868300 DOI: 10.1002/nbm.4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 05/08/2023]
Abstract
Ferumoxytol-enhanced MRI holds potential for the non-invasive assessment of vascular architecture using estimates of cerebral blood volume (CBV). Ferumoxytol specifically enables steady-state imaging with extended acquisition times, for substantial improvements in resolution and contrast-to-noise ratio. With such data, quantitative susceptibility mapping (QSM) can be used to obtain images of local tissue magnetic susceptibility and hence estimate the increase in blood susceptibility after administration of a contrast agent, which in turn can be correlated to tissue CBV. Here, we explore the use of QSM for CBV estimation and compare it with R2 * (1/T2 *)-based results. Institutional review board approval was obtained, and all subjects provided written informed consent. For this prospective study, MR images were acquired on a 3.0 T scanner in 19 healthy subjects using a multiple-echo T2 *-weighted sequence. Scanning was performed before and after the administration of two doses of ferumoxytol (1 mg FE/kg and 4 mg FE/kg). Different QSM approaches were tested on numerical phantom simulations. Results showed that the accuracy of magnetic susceptibility measurements improved with increasing image resolution and decreasing vascular density. In vivo changes in magnetic susceptibility were measured after the administration of ferumoxytol utilizing QSM, and significantly higher QSM-based CBV was measured in gray matter compared with white matter. QSM- and R2 *-based CBV estimates correlated well, with similar average values, but a larger variance was found in QSM-based estimates.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
| | - Tilman Schubert
- Department of Radiology and Nuclear Medicine, Basel University Hospital, Petersgraben 4, 4031 Basel, Switzerland
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53705-2275, USA
| |
Collapse
|
22
|
Nguyen KL, Yoshida T, Kathuria-Prakash N, Zaki IH, Varallyay CG, Semple SI, Saouaf R, Rigsby CK, Stoumpos S, Whitehead KK, Griffin LM, Saloner D, Hope MD, Prince MR, Fogel MA, Schiebler ML, Roditi GH, Radjenovic A, Newby DE, Neuwelt EA, Bashir MR, Hu P, Finn JP. Multicenter Safety and Practice for Off-Label Diagnostic Use of Ferumoxytol in MRI. Radiology 2019; 293:554-564. [PMID: 31638489 PMCID: PMC6884068 DOI: 10.1148/radiol.2019190477] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 01/29/2023]
Abstract
Background Ferumoxytol is approved for use in the treatment of iron deficiency anemia, but it can serve as an alternative to gadolinium-based contrast agents. On the basis of postmarketing surveillance data, the Food and Drug Administration issued a black box warning regarding the risks of rare but serious acute hypersensitivity reactions during fast high-dose injection (510 mg iron in 17 seconds) for therapeutic use. Whereas single-center safety data for diagnostic use have been positive, multicenter data are lacking. Purpose To report multicenter safety data for off-label diagnostic ferumoxytol use. Materials and Methods The multicenter ferumoxytol MRI registry was established as an open-label nonrandomized surveillance databank without industry involvement. Each center monitored all ferumoxytol administrations, classified adverse events (AEs) using the National Cancer Institute Common Terminology Criteria for Adverse Events (grade 1-5), and assessed the relationship of AEs to ferumoxytol administration. AEs related to or possibly related to ferumoxytol injection were considered adverse reactions. The core laboratory adjudicated the AEs and classified them with the American College of Radiology (ACR) classification. Analysis of variance was used to compare vital signs. Results Between January 2003 and October 2018, 3215 patients (median age, 58 years; range, 1 day to 96 years; 1897 male patients) received 4240 ferumoxytol injections for MRI. Ferumoxytol dose ranged from 1 to 11 mg per kilogram of body weight (≤510 mg iron; rate ≤45 mg iron/sec). There were no systematic changes in vital signs after ferumoxytol administration (P > .05). No severe, life-threatening, or fatal AEs occurred. Eighty-three (1.9%) of 4240 AEs were related or possibly related to ferumoxytol infusions (75 mild [1.8%], eight moderate [0.2%]). Thirty-one AEs were classified as allergiclike reactions using ACR criteria but were consistent with minor infusion reactions observed with parenteral iron. Conclusion Diagnostic ferumoxytol use was well tolerated, associated with no serious adverse events, and implicated in few adverse reactions. Registry results indicate a positive safety profile for ferumoxytol use in MRI. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Kim-Lien Nguyen
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Takegawa Yoshida
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Nikhita Kathuria-Prakash
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Islam H. Zaki
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Csanad G. Varallyay
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Scott I. Semple
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Rola Saouaf
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Cynthia K. Rigsby
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Sokratis Stoumpos
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Kevin K. Whitehead
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Lindsay M. Griffin
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - David Saloner
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Michael D. Hope
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Martin R. Prince
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Mark A. Fogel
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Mark L. Schiebler
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Giles H. Roditi
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Aleksandra Radjenovic
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - David E. Newby
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Edward A. Neuwelt
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Mustafa R. Bashir
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - Peng Hu
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| | - J. Paul Finn
- From the Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 300 Medical Plaza, Suite B119, Los Angeles, CA 90095 (K.L.N., T.Y., P.H., J.P.F.); Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, Calif (K.L.N., N.K.); Department of Radiology (I.H.Z., M.R.B.), Center for Advanced Magnetic Resonance Development (I.H.Z., M.R.B.), and Division of Gastroenterology, Department of Medicine (M.R.B.), Duke University Medical Center, Durham, NC; Department of Diagnostic Radiology and Neurology, Oregon Health Sciences University, Portland, Ore (C.G.V.); British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland (S.I.S., D.E.N.); Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, Calif (R.S.); Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Ill (C.K.R., L.M.G.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (C.K.R., L.M.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland (S.S., A.R.); Division of Cardiology, Department of Pediatrics and Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (K.K.W., M.A.F.); Department of Radiology, University of Wisconsin, Madison, Wis (L.M.G., M.L.S.); Department of Radiology, University of California, San Francisco and VA San Francisco Healthcare System, San Francisco, Calif (D.S., M.D.H.); Department of Radiology, Weill Medical College of Cornell University, New York, NY (M.R.P.); Department of Radiology, NHS Greater Glasgow and Clyde, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (G.H.R.); and Department of Neurology and Neurosurgery, Oregon Health Sciences University and VA Portland Healthcare System, Portland, Ore (E.A.N.)
| |
Collapse
|
23
|
Shahrouki P, Moriarty JM, Khan SN, Bista B, Kee ST, DeRubertis BG, Yoshida T, Nguyen KL, Finn JP. High resolution, 3-dimensional Ferumoxytol-enhanced cardiovascular magnetic resonance venography in central venous occlusion. J Cardiovasc Magn Reson 2019; 21:17. [PMID: 30853026 PMCID: PMC6410526 DOI: 10.1186/s12968-019-0528-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/12/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although cardiovascular magnetic resonance venography (CMRV) is generally regarded as the technique of choice for imaging the central veins, conventional CMRV is not ideal. Gadolinium-based contrast agents (GBCA) are less suited to steady state venous imaging than to first pass arterial imaging and they may be contraindicated in patients with renal impairment where evaluation of venous anatomy is frequently required. We aim to evaluate the diagnostic performance of 3-dimensional (3D) ferumoxytol-enhanced CMRV (FE-CMRV) for suspected central venous occlusion in patients with renal failure and to assess its clinical impact on patient management. METHODS In this IRB-approved and HIPAA-compliant study, 52 consecutive adult patients (47 years, IQR 32-61; 29 male) with renal impairment and suspected venous occlusion underwent FE-CMRV, following infusion of ferumoxytol. Breath-held, high resolution, 3D steady state FE-CMRV was performed through the chest, abdomen and pelvis. Two blinded reviewers independently scored twenty-one named venous segments for quality and patency. Correlative catheter venography in 14 patients was used as the reference standard for diagnostic accuracy. Retrospective chart review was conducted to determine clinical impact of FE-CMRV. Interobserver agreement was determined using Gwet's AC1 statistic. RESULTS All patients underwent technically successful FE-CMRV without any adverse events. 99.5% (1033/1038) of venous segments were of diagnostic quality (score ≥ 2/4) with very good interobserver agreement (AC1 = 0.91). Interobserver agreement for venous occlusion was also very good (AC1 = 0.93). The overall accuracy of FE-CMRV compared to catheter venography was perfect (100.0%). No additional imaging was required prior to a clinical management decision in any of the 52 patients. Twenty-four successful and uncomplicated venous interventions were carried out following pre-procedural vascular mapping with FE-CMRV. CONCLUSIONS 3D FE-CMRV is a practical, accurate and robust technique for high-resolution mapping of central thoracic, abdominal and pelvic veins and can be used to inform image-guided therapy. It may play a pivotal role in the care of patients in whom conventional contrast agents may be contraindicated or ineffective.
Collapse
Affiliation(s)
- Puja Shahrouki
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - John M. Moriarty
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Sarah N. Khan
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Biraj Bista
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Stephen T. Kee
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Brian G. DeRubertis
- Department of Surgery, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Takegawa Yoshida
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Kim-Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, USA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, University of California, Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, 90095-7206 CA USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
24
|
Rivera-Rivera LA, Johnson KM, Turski PA, Wieben O, Schubert T. Measurement of microvascular cerebral blood volume changes over the cardiac cycle with ferumoxytol-enhanced T 2 * MRI. Magn Reson Med 2019; 81:3588-3598. [PMID: 30756424 DOI: 10.1002/mrm.27670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE This feasibility study investigates the non-invasive measurement of microvascular cerebral blood volume (BV) changes over the cardiac cycle using cardiac-gated, ferumoxytol-enhanced T 2 ∗ MRI. METHODS Institutional review board approval was obtained and all subjects provided written informed consent. Cardiac gated MR scans were prospectively acquired on a 3.0T scanner in 22 healthy subjects using T 2 ∗ -weighted sequences with 2D-EPI and 3D spiral trajectories. Images were collected before and after the intravenous administration of 2 doses of ferumoxytol (1 mg FE/kg and 4 mg FE/kg). Cardiac cycle-induced R 2 ∗ (1/ T 2 ∗ ) changes (Δ R 2 ∗ ) and BV changes (ΔBV) throughout the cardiac cycle in gray matter (GM) and white matter (WM) were quantified and differences assessed using ANOVA followed by post hoc analysis. RESULTS Δ R 2 ∗ was found to increase in a dose-dependent fashion. A significantly larger increase was observed in GM compared to WM in both 2D and 3D acquisitions (P < 0.050). In addition, Δ R 2 ∗ increased significantly (P < 0.001) post versus pre-contrast injection in GM in both T 2 ∗ MRI acquisitions. Mean GM Δ R 2 ∗ derived from 2D-EPI images was 0.14 ± 0.06 s-1 pre-contrast and 0.33 ± 0.13 s-1 after 5 mg FE/kg. In WM, Δ R 2 ∗ was 0.19 ± 0.06 s-1 pre-contrast, and 0.23 ± 0.06 s-1 after 5 mg FE/kg. The fractional changes in BV throughout the cardiac cycle were 0.031 ± 0.019% in GM and 0.011 ± 0.008% in WM (P < 0.001) after 5 mg FE/kg. CONCLUSION Cardiac-gated, ferumoxytol-enhanced T 2 ∗ MRI enables characterization of microvascular BV changes throughout the cardiac cycle in GM and WM tissue of healthy subjects.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Patrick A Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Radiology and Nuclear Medicine, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| |
Collapse
|
25
|
Montiel Schneider MG, Martin MJ, Coral DF, Muraca D, Gentili C, Fernández van Raap M, Lassalle VL. Selective contrast agents with potential to the earlier detection of tumors: Insights on synthetic pathways, physicochemical properties and performance in MRI assays. Colloids Surf B Biointerfaces 2018; 170:470-478. [DOI: 10.1016/j.colsurfb.2018.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
26
|
Greer MLC. Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol 2018; 48:1348-1363. [PMID: 30078041 DOI: 10.1007/s00247-018-4141-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/11/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
Whole-body MRI is increasingly utilized for assessing oncologic and non-oncologic diseases in infants, children and adolescents. Focusing on the non-oncologic indications, this review covers technical elements required to perform whole-body MRI, the advantages and limitations of the technique, and protocol modifications tailored to specific indications. Rheumatologic diseases account for the majority of non-oncologic whole-body MRI performed in pediatric patients at the author's institution. Whole-body MRI helps in establishing the diagnosis, documenting disease extent and severity, and monitoring treatment response in enthesitis-related arthritis (ERA) and chronic recurrent multifocal osteomyelitis (CRMO). Other non-oncologic indications for whole-body MRI include osteomyelitis (usually pyogenic), pyrexia of unknown origin, neuromuscular disorders, inherited and inflammatory myopathies such as juvenile dermatomyositis and polymyositis, avascular necrosis, and fat/storage disorders. Use of whole-body MRI in postmortem imaging is rising, while whole-body MRI in non-accidental injury is considered to be of limited value. Imaging findings for a range of these indications are reviewed with whole-body MRI examples.
Collapse
Affiliation(s)
- Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON,, M5G 1X8, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Tsuchiya N, Beek EJRV, Ohno Y, Hatabu H, Kauczor HU, Swift A, Vogel-Claussen J, Biederer J, Wild J, Wielpütz MO, Schiebler ML. Magnetic resonance angiography for the primary diagnosis of pulmonary embolism: A review from the international workshop for pulmonary functional imaging. World J Radiol 2018; 10:52-64. [PMID: 29988845 PMCID: PMC6033703 DOI: 10.4329/wjr.v10.i6.52] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary contrast enhanced magnetic resonance angiography (CE-MRA) is useful for the primary diagnosis of pulmonary embolism (PE). Many sites have chosen not to use CE-MRA as a first line of diagnostic tool for PE because of the speed and higher efficacy of computerized tomographic angiography (CTA). In this review, we discuss the strengths and weaknesses of CE-MRA and the appropriate imaging scenarios for the primary diagnosis of PE derived from our unique multi-institutional experience in this area. The optimal patient for this test has a low to intermediate suspicion for PE based on clinical decision rules. Patients in extremis are not candidates for this test. Younger women (< 35 years of age) and patients with iodinated contrast allergies are best served by using this modality We discuss the history of the use of this test, recent technical innovations, artifacts, direct and indirect findings for PE, ancillary findings, and the effectiveness (patient outcomes) of CE-MRA for the exclusion of PE. Current outcomes data shows that CE-MRA and NM V/Q scans are effective alternative tests to CTA for the primary diagnosis of PE.
Collapse
Affiliation(s)
- Nanae Tsuchiya
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa 903-0215, Japan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Edwin JR van Beek
- Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Yoshiharu Ohno
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Andrew Swift
- Department of Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Jens Vogel-Claussen
- Department of Radiology, Carl-Neuberg Strasse 1, Hannover-Gr-Buchholz 30625, Germany
| | - Jürgen Biederer
- Radiology Darmstadt, Gross-Gerau County Hospital, Gross-Gerau 64521, Germany
| | - James Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, United States
| |
Collapse
|
28
|
Abstract
Contrast media are essential to the practice of MR imaging. An increasing variety of agents have been approved for clinical use, specific contrast agents can often be tailored to a specific clinical question. Compared with CT contrast media, MR imaging contrast is well tolerated with an excellent safety record and a low incidence of adverse events. In this article, we review the pharmacology, indications, and the common adverse events of the intravenous and oral MR contrast agents most commonly used in contemporary imaging practice, including gadolinium-based contrast, manganese and iron-based agents and the most common oral contrast agents.
Collapse
|
29
|
Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin Radiol 2018; 74:37-50. [PMID: 29731126 DOI: 10.1016/j.crad.2018.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Ferumoxytol is a promising non-gadolinium-based contrast agent with numerous varied magnetic resonance imaging applications. Previous reviews of vascular applications have focused primarily on cardiac and aortic applications. After considering safety concerns and technical issues, the objective of this paper is to explore peripheral applications for ferumoxytol-enhanced magnetic resonance angiography (MRA) and venography (MRV) in the upper and lower extremities. Separate searches for each of the following keywords were performed in pubmed: "ferumoxytol," "ultrasmall superparamagnetic iron oxide," and "USPIO." All studies pertaining to MRA or MRV in humans are included in this review. Case-based examples of various peripheral applications are used to supplement a relatively scant literature in this space. Ferumoxytol's unique properties including high T1 relaxivity and prolonged intravascular half-life make it the optimal vascular imaging contrast agent on the market and one whose vast potential has only begun to be tapped.
Collapse
|
30
|
Quantifying iron content in magnetic resonance imaging. Neuroimage 2018; 187:77-92. [PMID: 29702183 DOI: 10.1016/j.neuroimage.2018.04.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023] Open
Abstract
Measuring iron content has practical clinical indications in the study of diseases such as Parkinson's disease, Huntington's disease, ferritinopathies and multiple sclerosis as well as in the quantification of iron content in microbleeds and oxygen saturation in veins. In this work, we review the basic concepts behind imaging iron using T2, T2*, T2', phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.
Collapse
|
31
|
Nguyen KL, Park EA, Yoshida T, Hu P, Finn JP. Ferumoxytol enhanced black-blood cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2017; 19:106. [PMID: 29284494 PMCID: PMC5745904 DOI: 10.1186/s12968-017-0422-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bright-blood and black-blood cardiovascular magnetic resonance (CMR) techniques are frequently employed together during a clinical exam because of their complementary features. While valuable, existing black-blood CMR approaches are flow dependent and prone to failure. We aim to assess the effectiveness and reliability of ferumoxytol enhanced (FE) Half-Fourier Single-shot Turbo Spin-echo (HASTE) imaging without magnetization preparation pulses to yield uniform intra-luminal blood signal suppression by comparing FE-HASTE with pre-ferumoxytol HASTE imaging. METHODS This study was IRB-approved and HIPAA compliant. Consecutive patients who were referred for FE-CMR between June 2013 and February 2017 were enrolled. Qualitative image scores reflecting the degree and reliability of blood signal suppression were based on a 3-point Likert scale, with 3 reflecting perfect suppression. For quantitative evaluation, homogeneity indices (defined as standard deviation of the left atrial signal intensity) and signal-to-noise ratios (SNR) for vascular lumens and cardiac chambers were measured. RESULTS Of the 340 unique patients who underwent FE-CMR, HASTE was performed in 257. Ninety-three patients had both pre-ferumoxytol HASTE and FE-HASTE, and were included in this analysis. Qualitative image scores reflecting the degree and reliability of blood signal suppression were significantly higher for FE-HASTE images (2.9 [IQR 2.8-3.0] vs 1.8 [IQR 1.6-2.1], p < 0.001). Inter-reader agreement was moderate (k = 0.50, 95% CI 0.45-0.55). Blood signal suppression was more complete on FE-HASTE images than on pre-ferumoxytol HASTE, as indicated by lower mean homogeneity indices (24.5 [IQR 18.0-32.8] vs 108.0 [IQR 65.0-170.4], p < 0.001) and lower blood pool SNR for all regions (5.6 [IQR 3.2-10.0] vs 21.5 [IQR 12.5-39.4], p < 0.001). CONCLUSION FE-HASTE black-blood imaging offers an effective, reliable, and simple approach for flow independent blood signal suppression. The technique holds promise as a fast and routine complement to bright-blood cardiovascular imaging with ferumoxytol.
Collapse
Affiliation(s)
- Kim-Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California USA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Eun-Ah Park
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California USA
- Department of Radiology and The Institute of Radiation Medicine, Seoul National University Hospital, Seoul, 110-744 South Korea
| | - Takegawa Yoshida
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California USA
| | - Peng Hu
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| |
Collapse
|
32
|
Horváth A, Varallyay CG, Schwartz D, Toth GB, Netto JP, Barajas R, Várallyay P, Szidonya L, Firkins J, Youngers E, Fu R, Ambady P, Bogner P, Neuwelt EA. Quantitative comparison of delayed ferumoxytol T 1 enhancement with immediate gadoteridol enhancement in high grade gliomas. Magn Reson Med 2017; 80:224-230. [PMID: 29205477 DOI: 10.1002/mrm.27028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/26/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Delayed ferumoxytol enhancement on T1 -weighted images appears visually similar to gadoteridol enhancement. The purpose of this study was to quantitatively compare ferumoxytol T1 enhancement to gadoteridol enhancement with an objective, semi-automated method. METHODS 206 sets of post-gadoteridol and 24 h post-ferumoxytol T1 -weighted scans from 58 high grade glioma patients were analyzed (9 pre-chemoradiation, 111 < 90 days post-chemoradiation, 21 > 90 days post-chemoradiation, 65 post-bevacizumab scans). Enhancement volumes and signal intensities normalized to normal appearing tissue proximal to enhancement were calculated with a semi-automated method. Enhancement cube root volumes (D) and signal intensities (SI) were compared between the 2 contrast agents, and relative difference of D and SI were compared in different treatment groups with multivariate analysis. Within patient differences in D and SI before and after treatment with bevacizumab or steroid were assessed in 26 patients in each treatment group. RESULTS When compared to gadoteridol, ferumoxytol D was 13.83% smaller and SI was 7.24% lower (P < 0.0001). The relative differences in D and SI between the 2 contrast agents were not significantly different between treatment groups (P > 0.05). Relative difference in D and SI did not change significantly in response to bevacizumab (P = 0.5234 and P = 0.2442, respectively) or to steroid (P = 0.3774, P = 0.0741) in the within patient comparison. CONCLUSION The correlation between the 2 contrast agents' enhancement size and signal intensity and their similar behavior in response to therapy suggest that ferumoxytol can be used for revealing enhancement in high grade glioma patients. Magn Reson Med 80:224-230, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Andrea Horváth
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.,Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Csanad G Varallyay
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.,Department of Radiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Daniel Schwartz
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.,Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Gerda B Toth
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Joao P Netto
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.,Department of Radiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ramon Barajas
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, USA.,Department of Radiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Péter Várallyay
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - László Szidonya
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Jenny Firkins
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Emily Youngers
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rongwei Fu
- School of Public Health, Oregon Health and Science University, Portland, Oregon, USA
| | - Prakash Ambady
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Péter Bogner
- University of Pécs, Department of Radiology, Pécs, Hungary
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.,Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA.,Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
33
|
Kim J, Kim E, Euceda LR, Meyer DE, Langseth K, Bathen TF, Moestue SA, Huuse EM. Multiparametric characterization of response to anti-angiogenic therapy using USPIO contrast-enhanced MRI in combination with dynamic contrast-enhanced MRI. J Magn Reson Imaging 2017; 47:1589-1600. [DOI: 10.1002/jmri.25898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jana Kim
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Radiology and Nuclear Medicine; St. Olavs Hospital, Trondheim University Hospital; Trondheim Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Radiology and Nuclear Medicine; St. Olavs Hospital, Trondheim University Hospital; Trondheim Norway
| | - Leslie R. Euceda
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
| | - Dan E. Meyer
- Biosciences Technology Organization, GE Global Research Center; Niskayuna NY United States
| | | | - Tone F. Bathen
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
| | - Siver A. Moestue
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Laboratory Medicine, Women's and Children's Health; NTNU - Norwegian University of Science and Technology; Trondheim Norway
| | - Else Marie Huuse
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Radiology and Nuclear Medicine; St. Olavs Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
34
|
Rivera-Rivera LA, Schubert T, Knobloch G, Turski PA, Wieben O, Reeder SB, Johnson KM. Comparison of ferumoxytol-based cerebral blood volume estimates using quantitative R 1 and R2* relaxometry. Magn Reson Med 2017; 79:3072-3081. [PMID: 29096054 DOI: 10.1002/mrm.26975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Cerebral perfusion is commonly assessed clinically with dynamic susceptibility contrast MRI using a bolus injection of gadolinium-based contrast agents, resulting in semi-quantitative values of cerebral blood volume (CBV). Steady-state imaging with ferumoxytol allows estimation of CBV with the potential for higher precision and accuracy. Prior CBV studies have focused on the signal disrupting T2* effects, but ferumoxytol also has high signal-enhancing T1 relaxivity. The purpose of this study was to investigate and compare CBV estimation using T1 and T2*, with the goal of understanding the contrast mechanisms and quantitative differences. METHODS Changes in R1 (1/T1 ) and R2* (1/ T2*) were measured after the administration of ferumoxytol using high-resolution quantitative approaches. Images were acquired at 3.0T and R1 was estimated from an ultrashort echo time variable flip angle approach, while R2* was estimated from a multiple gradient echo sequence. Twenty healthy volunteers were imaged at two doses. CBV was derived and compared from relaxometry in gray and white matter using different approaches. RESULTS R1 measurements showed a linear dependence of blood R1 with respect to dose in large vessels, in contrast to the nonlinear dose-dependence of blood R2* estimates. In the brain parenchyma, R2* showed linear dose-dependency whereas R1 showed nonlinearity. CBV calculations based on R2* changes in tissue and ferumoxytol blood concentration estimates based on R1 relaxivity showed the lowest variability in our cohort. CONCLUSIONS CBV measurements were successfully derived using a combined approach of R1 and R2* relaxometry. Magn Reson Med 79:3072-3081, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Gesine Knobloch
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Departments of Biomedical Engineering, Medicine and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Patrick A Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Departments of Biomedical Engineering, Medicine and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Ripley B, Wilson GJ, Lalwani N, Briller N, Neligan PC, Maki JH. Initial Clinical Experience with Dual-Agent Relaxation Contrast for Isolated Lymphatic Channel Mapping. Radiology 2017; 286:705-714. [PMID: 28934015 DOI: 10.1148/radiol.2017170241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose To evaluate the clinical performance of dual-agent relaxation contrast (DARC) magnetic resonance (MR) lymphangiography compared with that of conventional MR lymphangiography in the creation of isolated lymphatic maps in patients with secondary lymphedema. Materials and Methods This retrospective study was approved by the institutional review board. The diagnostic quality of 42 DARC MR lymphangiographic studies was compared with that of 42 conventional MR lymphangiographic studies. Two independent readers rated venous contamination as absent, mild, or moderate to severe. Interreader agreement on venous contamination grades was assessed by using the linearly weighted Cohen κ statistic. The Mann-Whitney U test was used to compare the distribution of grades at each station between conventional MR lymphangiography and DARC MR lymphangiography for each reader separately. Results DARC MR lymphangiography had significantly less venous contamination than did conventional MR lymphangiography (P < .001). The two radiologists rated venous contamination as moderate to severe in 64% (27 of 42) and 69% (29 of 42) of distal limbs, 23% (10 of 42) of midlimbs, and 2% (one of 42) and 9% (four of 42) of proximal limbs at conventional MR lymphangiography compared with 0% (0 of 42) of distal limbs, 2% (one of 42) of midlimbs, and 0% (0 of 42) of proximal limbs at DARC MR lymphangiography. Lymphatic signal was partially attenuated (median 45% decrease) when longer echo times were used for venous suppression, but it did not subjectively degrade diagnostic quality. Conclusion DARC MR lymphangiography yields isolated lymphatic maps through nulling of venous contamination, thereby simplifying diagnostic interpretation and communication with surgical colleagues. © RSNA, 2017.
Collapse
Affiliation(s)
- Beth Ripley
- From the Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (B.R.); and Departments of Radiology (B.R., G.J.W., N.L., N.B., J.H.M.) and Plastic Surgery (P.C.N.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7115
| | - Gregory J Wilson
- From the Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (B.R.); and Departments of Radiology (B.R., G.J.W., N.L., N.B., J.H.M.) and Plastic Surgery (P.C.N.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7115
| | - Neeraj Lalwani
- From the Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (B.R.); and Departments of Radiology (B.R., G.J.W., N.L., N.B., J.H.M.) and Plastic Surgery (P.C.N.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7115
| | - Noah Briller
- From the Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (B.R.); and Departments of Radiology (B.R., G.J.W., N.L., N.B., J.H.M.) and Plastic Surgery (P.C.N.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7115
| | - Peter C Neligan
- From the Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (B.R.); and Departments of Radiology (B.R., G.J.W., N.L., N.B., J.H.M.) and Plastic Surgery (P.C.N.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7115
| | - Jeffrey H Maki
- From the Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (B.R.); and Departments of Radiology (B.R., G.J.W., N.L., N.B., J.H.M.) and Plastic Surgery (P.C.N.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7115
| |
Collapse
|
36
|
Liu S, Brisset JC, Hu J, Haacke EM, Ge Y. Susceptibility weighted imaging and quantitative susceptibility mapping of the cerebral vasculature using ferumoxytol. J Magn Reson Imaging 2017; 47:621-633. [PMID: 28731570 DOI: 10.1002/jmri.25809] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To demonstrate the potential of imaging cerebral arteries and veins with ferumoxytol using susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS The relationships between ferumoxytol concentration and the apparent susceptibility at 1.5T, 3T, and 7T were determined using phantom data; the ability of visualizing subvoxel vessels was evaluated using simulations; and the feasibility of using ferumoxytol to enhance the visibility of small vessels was confirmed in three healthy volunteers at 7T(with doses 1 mg/kg to 4 mg/kg). The visualization of the lenticulostriate arteries and the medullary veins was assessed by two raters and the contrast-to-noise ratios (CNRs) of these vessels were measured. RESULTS The relationship between ferumoxytol concentration and susceptibility was linear with a slope 13.3 ± 0.2 ppm·mg-1 ·mL at 7T. Simulations showed that SWI data with an increased dose of ferumoxytol, higher echo time (TE), and higher imaging resolution improved the detection of smaller vessels. With 4 mg/kg ferumoxytol, voxel aspect ratio = 1:8, TE = 10 ms, the diameter of the smallest detectable artery was approximately 50μm. The rating score for arteries was improved from 1.5 ± 0.5 (precontrast) to 3.0 ± 0.0 (post-4 mg/kg) in the in vivo data and the apparent susceptibilities of the arteries (0.65 ± 0.02 ppm at 4 mg/kg) agreed well with the expected susceptibility (0.71 ± 0.05 ppm). CONCLUSION The CNR for cerebral vessels with ferumoxytol can be enhanced using SWI, and the apparent susceptibilities of the arteries can be reliably quantified using QSM. This approach improves the imaging of the entire vascular system outside the capillaries and may be valuable for a variety of neurodegenerative diseases which involve the microvasculature. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:621-633.
Collapse
Affiliation(s)
- Saifeng Liu
- The MRI Institute for Biomedical Research, Detroit, Michigan, USA
| | - Jean-Christophe Brisset
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - E Mark Haacke
- The MRI Institute for Biomedical Research, Detroit, Michigan, USA.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|