1
|
Perera Molligoda Arachchige AS, Teixeira de Castro Gonçalves Ortega AC, Catapano F, Politi LS, Hoff MN. From strength to precision: A systematic review exploring the clinical utility of 7-Tesla magnetic resonance imaging in abdominal imaging. World J Radiol 2024; 16:20-31. [PMID: 38312348 PMCID: PMC10835428 DOI: 10.4329/wjr.v16.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017 early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated the feasibility as well as diagnostic capabilities of liver, kidney, and prostate MRI at 7-Tesla. However, the elevation of the field strength to 7-Tesla not only brought advantages to abdominal MRI but also presented considerable challenges and drawbacks, primarily stemming from heightened artifacts and limitations in Specific Absorption Rate, etc. Furthermore, evidence in the literature is relatively scarce concerning human studies in comparison to phantom/animal studies which necessitates an investigation into the evidence so far in humans and summarizing all relevant evidence. AIM To offer a comprehensive overview of current literature on clinical abdominal 7T MRI that emphasizes current trends, details relevant challenges, and provides a concise set of potential solutions. METHODS This systematic review adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A PubMed search, utilizing Medical Subject Headings terms such as "7-Tesla" and organ-specific terms, was conducted for articles published between January 1, 1985, and July 25, 2023. Eligibility criteria included studies exploring 7T MRI for imaging human abdominal organs, encompassing various study types (in-vivo/ex-vivo, method development, reviews/meta-analyses). Exclusion criteria involved animal studies and those lacking extractable data. Study selection involved initial identification via title/abstract, followed by a full-text review by two researchers, with discrepancies resolved through discussion. Data extraction covered publication details, study design, population, sample size, 7T MRI protocol, image characteristics, endpoints, and conclusions. RESULTS The systematic review included a total of 21 studies. The distribution of clinical 7T abdominal imaging studies revealed a predominant focus on the prostate (n = 8), followed by the kidney (n = 6) and the hepatobiliary system (n = 5). Studies on these organs, and in the pancreas, demonstrated clear advantages at 7T. However, small bowel studies showed no significant improvements compared to traditional MRI at 1.5T. The majority of studies evaluated originated from Germany (n = 10), followed by the Netherlands (n = 5), the United States (n = 5), Austria (n = 2), the United Kingdom (n = 1), and Italy (n = 1). CONCLUSION Further increase of abdominal clinical MRI field strength to 7T demonstrated high imaging potential, yet also limitations mainly due to the inhomogeneous radiofrequency (RF) excitation field relative to lower field strengths. Hence, further optimization of dedicated RF coil elements and pulse sequences are expected to better optimize clinical imaging at high magnetic field strength.
Collapse
Affiliation(s)
| | | | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
2
|
Gokyar S, Voss HU, Taracila V, Robb FJL, Bernico M, Kelley D, Ballon DJ, Winkler SA. A pathway towards a two-dimensional, bore-mounted, volume body coil concept for ultra high-field magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4802. [PMID: 35834176 DOI: 10.1002/nbm.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 μT/√W, and a SAR efficiency of 2.14 μT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.
Collapse
Affiliation(s)
- Sayim Gokyar
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | | | | | | | | | - Douglas J Ballon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
3
|
Tenbergen CJA, Metzger GJ, Scheenen TWJ. Ultra-high-field MR in Prostate cancer: Feasibility and Potential. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:631-644. [PMID: 35579785 PMCID: PMC9113077 DOI: 10.1007/s10334-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Multiparametric MRI of the prostate at clinical magnetic field strengths (1.5/3 Tesla) has emerged as a reliable noninvasive imaging modality for identifying clinically significant cancer, enabling selective sampling of high-risk regions with MRI-targeted biopsies, and enabling minimally invasive focal treatment options. With increased sensitivity and spectral resolution, ultra-high-field (UHF) MRI (≥ 7 Tesla) holds the promise of imaging and spectroscopy of the prostate with unprecedented detail. However, exploiting the advantages of ultra-high magnetic field is challenging due to inhomogeneity of the radiofrequency field and high local specific absorption rates, raising local heating in the body as a safety concern. In this work, we review various coil designs and acquisition strategies to overcome these challenges and demonstrate the potential of UHF MRI in anatomical, functional and metabolic imaging of the prostate and pelvic lymph nodes. When difficulties with power deposition of many refocusing pulses are overcome and the full potential of metabolic spectroscopic imaging is used, UHF MR(S)I may aid in a better understanding of the development and progression of local prostate cancer. Together with large field-of-view and low-flip-angle anatomical 3D imaging, 7 T MRI can be used in its full strength to characterize different tumor stages and help explain the onset and spatial distribution of metastatic spread.
Collapse
Affiliation(s)
- Carlijn J A Tenbergen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
4
|
Abstract
Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.
Collapse
|
5
|
MR safety considerations for patients undergoing prostate MRI. Abdom Radiol (NY) 2020; 45:4097-4108. [PMID: 32902658 DOI: 10.1007/s00261-020-02730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/15/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Over the past decade, there has been a dramatic increase in the number of patients undergoing prostate MRI scans. Patients presenting for prostate MRI are an ageing population and may present with a variety of passive or active implants and devices. These implants and devices can be MR safe or MR conditional or MR unsafe. Patients with certain MR-conditional active implants and devices can safely obtain prostate MRI in a specified MR environment within specific MR imaging parameters. Prostate MRI and PET-MRI in patients with passive implants such as hip prostheses, fiducial markers for SBRT, brachytherapy seeds and prostatectomy bed clips have unique concerns for image optimization that can cause geometric distortion of the diffusion-weighted imaging (DWI) sequence. We discuss strategies to overcome these susceptibility artifacts. Prostate MRI in patients with MR conditional active implants such as cardiac implantable electronic devices (CIED) also require modification of imaging parameters and magnet strength. In this setting, a diagnostic quality prostate MRI can be performed at a lower magnet strength (1.5 T) along with modification of imaging parameters to ensure patient safety. Imaging strategies to minimize susceptibility artifact and decrease the specific absorption rate (SAR) in both settings are described. Knowledge of MR safety considerations and imaging strategies specific to prostate MRI and PET-MRI in patients with implants and devices is essential to ensure diagnostic-quality MR images and patient safety.
Collapse
|
6
|
Steensma B, van de Moortele PF, Ertürk A, Grant A, Adriany G, Luijten P, Klomp D, van den Berg N, Metzger G, Raaijmakers A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med 2020; 84:2885-2896. [PMID: 32367560 PMCID: PMC7496175 DOI: 10.1002/mrm.28297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Purpose To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. Methods Electromagnetic simulations on a phantom were used to evaluate the SAR and
B1+‐performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12‐channel array configuration for safety assessment and for comparison to a previous antenna design. This 12‐channel array was constructed after which electromagnetic simulations were validated by
B1+‐maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. Results Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade‐off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12‐channel snake antenna array. Conclusion By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Collapse
Affiliation(s)
- Bart Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Restorative Therapies Group, Medtronic, Minneapolis, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nico van den Berg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregory Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Alexander Raaijmakers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
7
|
Meliadò EF, Raaijmakers AJE, Sbrizzi A, Steensma BR, Maspero M, Savenije MHF, Luijten PR, van den Berg CAT. A deep learning method for image-based subject-specific local SAR assessment. Magn Reson Med 2019; 83:695-711. [PMID: 31483521 PMCID: PMC6899474 DOI: 10.1002/mrm.27948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022]
Abstract
Purpose Local specific absorption rate (SAR) cannot be measured and is usually evaluated by offline numerical simulations using generic body models that of course will differ from the patient's anatomy. An additional safety margin is needed to include this intersubject variability. In this work, we present a deep learning–based method for image‐based subject‐specific local SAR assessment. We propose to train a convolutional neural network to learn a “surrogate SAR model” to map the relation between subject‐specific B1+ maps and the corresponding local SAR. Method Our database of 23 subject‐specific models with an 8–transmit channel body array for prostate imaging at 7 T was used to build 5750 training samples. These synthetic complex B1+ maps and local SAR distributions were used to train a conditional generative adversarial network. Extra penalization for local SAR underestimation errors was included in the loss function. In silico and in vivo validation were performed. Results In silico cross‐validation shows a good qualitative and quantitative match between predicted and ground‐truth local SAR distributions. The peak local SAR estimation error distribution shows a mean overestimation error of 15% with 13% probability of underestimation. The higher accuracy of the proposed method allows the use of less conservative safety factors compared with standard procedures. In vivo validation shows that the method is applicable with realistic measurement data with impressively good qualitative and quantitative agreement to simulations. Conclusion The proposed deep learning method allows online image‐based subject‐specific local SAR assessment. It greatly reduces the uncertainty in current state‐of‐the‐art SAR assessment methods, reducing the time in the examination protocol by almost 25%.
Collapse
Affiliation(s)
- E F Meliadò
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands.,Tesla Dynamic Coils, Zaltbommel, Netherlands
| | - A J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands.,Biomedical Image Analysis, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - A Sbrizzi
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands
| | - B R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands
| | - M Maspero
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands
| | - M H F Savenije
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands
| | - P R Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - C A T van den Berg
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Netherlands
| |
Collapse
|
8
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
9
|
Steensma BR, Luttje M, Voogt IJ, Klomp DW, Luijten PR, van den Berg CA, Raaijmakers AJ. Comparing signal-to-noise ratio for prostate imaging at 7T and 3T. J Magn Reson Imaging 2019; 49:1446-1455. [PMID: 30350388 PMCID: PMC6587835 DOI: 10.1002/jmri.26527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In MRI, the signal-to-noise ratio (SNR) theoretically increases with B0 field strength. However, because of attenuation of the radiofrequency (RF) fields at 7T, it is not certain if this SNR gain can be realized for prostate imaging. PURPOSE/HYPOTHESIS To investigate the SNR gain in prostate imaging at 7T as compared with 3T. It is expected that SNR will improve for prostate imaging at 7T compared with 3T. STUDY TYPE Prospective. SUBJECTS Four healthy volunteers and one prostate cancer patient. FIELD STRENGTH/SEQUENCE All subjects were scanned at 3T and at 7T using optimal coil setups for both field strengths. For all volunteers, proton density-weighted images were acquired for SNR analysis and actual flip angle imaging (AFI) B 1 + | maps were acquired for correction of measured SNR values. In the patient, a T2 -weighted (T2 w) image was acquired at 3T and at 7T. ASSESSMENT SNR was calculated in the prostate region for all volunteers. SNR was normalized for flip angle, receiver bandwidth, and voxel volume. SNR was also calculated for different sensitivity encoding (SENSE) acceleration factors. STATISTICAL TESTING SNR values are represented as the arithmetic mean of SNR values in the prostate. Estimated SNR in the T2 w image is calculated as the arithmetic mean of the signal intensity (SI) divided by the standard deviation of the SI in a specified zone. Tumor-to-tissue contrast is calculated as (SItumor +SIzone )/( SItumor -SIzone ). RESULTS An increase in SNR ranging from 1.7-fold to 2.8-fold was measured in the prostate at 7T in comparison to 3T for four volunteers. At 7T, it is possible to achieve a 4-fold SENSE acceleration in the left-right direction with similar SNR to a nonaccelerated 3T image. T2 w imaging was done at 3T and 7T in one patient, where improved tumor-to-tissue contrast was demonstrated at 7T. DATA CONCLUSION SNR improves for prostate imaging at 7T as compared with 3T. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1446-1455.
Collapse
Affiliation(s)
- Bart R. Steensma
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Mariska Luttje
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Ingmar J. Voogt
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Dennis W.J. Klomp
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Peter R. Luijten
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | | | - Alexander J.E. Raaijmakers
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
- Eindhoven University of TechnologyDepartment of Biomedical EngineeringUtrechtThe Netherlands
| |
Collapse
|
10
|
Chatterjee A, Oto A. Future Perspectives in Multiparametric Prostate MR Imaging. Magn Reson Imaging Clin N Am 2019; 27:117-130. [DOI: 10.1016/j.mric.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Yan X, Gore JC, Grissom WA. Traveling-wave meets standing-wave: A simulation study using pair-of-transverse-dipole-ring (PTDR) coils for adjustable longitudinal coverage in ultra-high field MRI. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2018; 48B:e21402. [PMID: 31467498 PMCID: PMC6715133 DOI: 10.1002/cmr.b.21402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
1.At ultrahigh fields (B 0 ≥7T), it is challenging to cover a large field of view using single-row conventional RF coils (standing wave resonators) due to the limited physical dimensions. In contrast, traveling wave approaches can excite large fields of view even using a relatively simple hardware setup, but suffer from poor efficiency and high local specific absorption rate in non-imaged regions. In this study, we propose and numerically analyze a new coil which combines the concept of traveling wave and standing wave. The new coil consists of a Pair of Transverse Dipole Rings (PTDR) whose separation is adjusted according to the desired imaging coverage. The PTDR coil was validated using electromagnetic (EM) simulations in phantoms and human leg models, which showed that coverage can be as long as 60 cm. When the coverage of the PTDR coil was shortened to 20 cm to cover the knees only, it's transmit and SAR efficiencies were 84% and 37% higher than those of the 50 cm coverage, respectively.
Collapse
Affiliation(s)
- Xinqiang Yan
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - William A. Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Steensma BR, Voogt I, van der Werf AJ, van den Berg CA, Luijten PR, Klomp DW, Raaijmakers AJ. Design of a forward view antenna for prostate imaging at 7 T. NMR IN BIOMEDICINE 2018; 31:e3993. [PMID: 30022543 PMCID: PMC6175442 DOI: 10.1002/nbm.3993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 05/19/2023]
Abstract
PURPOSE To design a forward view antenna for prostate imaging at 7 T, which is placed between the legs of the subject in addition to a dipole array. MATERIALS AND METHODS The forward view antenna is realized by placing a cross-dipole antenna at the end of a small rectangular waveguide. Quadrature drive of the cross-dipole can excite a circularly polarized wave propagating along the axial direction to and from the prostate region. Functioning of the forward view antenna is validated by comparing measurements and simulations. Antenna performance is evaluated by numerical simulations and measurements at 7 T. RESULTS Simulations of B1+ on a phantom are in good correspondence with measurements. Simulations on a human model indicate that the signal-to-noise ratio (SNR), specific absorption rate (SAR) efficiency and SAR increase when adding the forward view antenna to a previously published dipole array. The SNR increases by up to 18% when adding the forward view antenna as a receive antenna to an eight-channel dipole array in vivo. CONCLUSIONS A design for a forward view antenna is presented and evaluated. SNR improvements up to 18% are demonstrated when adding the forward view antenna to a dipole array.
Collapse
Affiliation(s)
| | - Ingmar Voogt
- University Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Kumar V, Bora GS, Kumar R, Jagannathan NR. Multiparametric (mp) MRI of prostate cancer. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:23-40. [PMID: 29548365 DOI: 10.1016/j.pnmrs.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. A large number of men are detected with PCa; however, the clinical behavior ranges from low-grade indolent tumors that never develop into a clinically significant disease to aggressive, invasive tumors that may rapidly progress to metastatic disease. The challenges in clinical management of PCa are at levels of screening, diagnosis, treatment, and follow-up after treatment. Magnetic resonance imaging (MRI) methods have shown a potential role in detection, localization, staging, assessment of aggressiveness, targeting biopsies, etc. in PCa patients. Multiparametric MRI (mpMRI) is emerging as a better option compared to the individual imaging methods used in the evaluation of PCa. There are attempts to improve the reproducibility and reliability of mpMRI by using an objective scoring system proposed in the prostate imaging reporting and data system (PIRADS) for standardized reporting. Prebiopsy mpMRI may be used to detect PCa in men with elevated prostate-specific antigen or abnormal digital rectal examination and to enable targeted biopsies. mpMRI can also be used to decide on clinical management of patients, for example active surveillance, and may help in detecting only the pathology that requires detection. It can potentially not only guide patient selection for initial and repeat biopsy but also reduce false-negative biopsies. This review presents a description of the MR methods most commonly applied for investigations of prostate. The anatomical, functional and metabolic parameters obtained from these MR methods are discussed with regard to their physical basis and their contribution to mpMRI investigations of PCa.
Collapse
Affiliation(s)
- Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Girdhar S Bora
- Department of Urology, Post-Graduate Institute of Medical Sciences, Chandigarh 160012, India
| | - Rajeev Kumar
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Naranamangalam R Jagannathan
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
14
|
Abstract
OBJECTIVES The aim of this study was to evaluate the technical feasibility of prostate multiparametric magnetic resonance imaging (mpMRI) at a magnetic field strength of 7 T. MATERIALS AND METHODS In this prospective institutional review board-approved study, 14 patients with biopsy-proven prostate cancer (mean age, 65.2 years; median prostate-specific antigen [PSA], 6.2 ng/mL), all providing signed informed consent, underwent 7 T mpMRI with an external 8-channel body-array transmit coil and an endorectal receive coil between September 2013 and October 2014. Image and spectral quality of high-resolution T2-weighted (T2W) imaging (0.3 × 0.3 × 2 mm), diffusion-weighted imaging (DWI; 1.4 × 1.4 × 2 mm or 1.75 × 1.75 × 2 mm), and (H) MR spectroscopic imaging (MRSI; real voxel size, 0.6 mm in 7:16 minutes) were rated on a 5-point scale by 2 radiologists and a spectroscopist. RESULTS Prostate mpMRI including at least 2 of 3 MR techniques was obtained at 7 T in 13 patients in 65 ± 12 minutes. Overall T2W and DWI image quality at 7 T was scored as fair (38% and 17%, respectively) to good or very good (55% and 83%, respectively). The main artifacts for T2W imaging were motion and areas of low signal-to-noise ratio, the latter possibly caused by radiofrequency field inhomogeneities. For DWI, the primary artifact was ghosting of the rectal wall in the readout direction. Magnetic resonance spectroscopic imaging quality was rated fair or good in 56% of the acquisitions and was mainly limited by lipid contamination. CONCLUSIONS Multiparametric MRI of the prostate at 7 T is feasible at unprecedented spatial resolutions for T2W imaging and DWI and within clinically acceptable acquisition times for high-resolution MRSI, using the combination of an external 8-channel body-array transmit coil and an endorectal receive coil. The higher spatial resolutions can yield improved delineation of prostate anatomy, but the robustness of the techniques needs to be improved before clinical adoption of 7 T mpMRI.
Collapse
|
15
|
Rietsch SHG, Orzada S, Bitz AK, Gratz M, Ladd ME, Quick HH. Parallel transmit capability of various RF transmit elements and arrays at 7T MRI. Magn Reson Med 2017; 79:1116-1126. [PMID: 28394080 DOI: 10.1002/mrm.26704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE In this work, 22 configurations for remote radiofrequency (RF) coil arrays consisting of different transmit element designs for 7 Tesla (T) ultrahigh-field MRI are compared by numerical simulations. METHODS Investigated transmit RF element types are rectangular loops, micro striplines, micro striplines with meanders, 250-mm shielded dipoles with meanders, and lambda over two dipoles with and without shield. These elements are combined in four different configurations of circumferential RF body arrays with four or eight transmit elements each. Comparisons included coupling behavior, degrees of freedom offered by the individual transmit patterns, and metrics like power and specific absorption rate efficiency. RESULTS Coupling between neighboring RF elements is elevated (up to -7 dB) for all arrays with eight elements, whereas it is below -25 dB for arrays with only four elements. The cumulative sum of singular values points out highest degrees of freedom for the central transversal, reduced values in the central coronal, and minimum values in the sagittal slice. Concerning power and SAR efficiency, eight lambda over two dipoles are most advantageous. CONCLUSIONS Among the investigated remote arrays and parameters, a combination of eight dipoles appears to be most favorable for potential use in 7T body MRI. Magn Reson Med 79:1116-1126, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, University of Applied Sciences Aachen, Aachen, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
16
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
17
|
Abstract
The cavernous nerves, which course along the surface of the prostate gland, are responsible for erectile function. During radical prostatectomy, urologists are challenged in preserving these nerves and their function. Cavernous nerves are microscopic and show variable location in different patients; therefore, postoperative sexual potency rates are widely variable following radical prostatectomy. A variety of technologies, including electrical and optical nerve stimulation, dye-based optical fluorescence and microscopy, spectroscopy, ultrasound and magnetic resonance imaging have all been used to study cavernous nerve anatomy and physiology, and some of these methods are also potential intraoperative methods for identifying and preserving cavernous nerves. However, all of these technologies have inherent limitations, including slow or inconsistent nerve responses, poor image resolution, shallow image depth, slow image acquisition times and/or safety concerns. New and emerging technologies, as well as multimodal approaches combining existing methods, hold promise for improved postoperative sexual outcomes and patient quality of life following radical prostatectomy.
Collapse
|
18
|
Hahnemann ML, Kraff O, Maderwald S, Johst S, Orzada S, Umutlu L, Ladd ME, Quick HH, Lauenstein TC. Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: First steps towards clinical application. Magn Reson Imaging 2015; 34:668-73. [PMID: 26747410 DOI: 10.1016/j.mri.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To perform non-enhanced (NE) magnetic resonance imaging (MRI) of the small bowel at 7 Tesla (7T) and to compare it with 1.5 Tesla (1.5T). MATERIAL AND METHODS Twelve healthy subjects were prospectively examined using a 1.5T and 7T MRI system. Coronal and axial true fast imaging with steady-state precession (TrueFISP) imaging and a coronal T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence were acquired. Image analysis was performed by 1) visual evaluation of tissue contrast and detail detectability, 2) measurement and calculation of contrast ratios and 3) assessment of artifacts. RESULTS NE MRI of the small bowel at 7T was technically feasible. In the vast majority of the cases, tissue contrast and image details were equivalent at both field strengths. At 7T, two cases revealed better detail detectability in the TrueFISP, and better contrast in the HASTE. Susceptibility artifacts and B1 inhomogeneities were significantly increased at 7T. CONCLUSION This study provides first insights into NE ultra-high field MRI of the small bowel and may be considered an important step towards high quality T2w abdominal imaging at 7T MRI.
Collapse
Affiliation(s)
- Maria L Hahnemann
- Institute of Clinical Radiology, University Hospital Muenster, University of Muenster, Muenster, Germany; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Soeren Johst
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas C Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Ertürk MA, Tian J, Van de Moortele PF, Adriany G, Metzger GJ. Development and evaluation of a multichannel endorectal RF coil for prostate MRI at 7T in combination with an external surface array. J Magn Reson Imaging 2015; 43:1279-87. [PMID: 26584144 DOI: 10.1002/jmri.25099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To develop and evaluate a sterilizable multichannel endorectal coil (ERC) for use in combination with an external surface array (ESA) for high-resolution anatomical and functional studies of the prostate at 7T. MATERIALS AND METHODS A two-loop ERC (ERC-2L) and a microstrip-loop ERC (ERC-ML) were compared at 7T in terms of transmit and receive performance. The best-performing ERC was evaluated alone and in combination with the ESA through 1) simulations on both phantom and an anatomically correct numerical human model to assess B1+ transmit and specific absorption rate (SAR) efficiencies, and 2) phantom experiments to calculate B1+ transmit efficiency and signal-to-noise ratio (SNR). Phantom studies were also performed to look at heating when using the ERC as a transmitter and for comparing the new coil against a single-channel balloon-type ERC (ERC-b). High-resolution magnetic resonance imaging (MRI) acquisitions were performed on a single healthy subject using the two-channel ERC combined with the ESA. RESULTS Compared to the ERC-ML, the ERC-2L demonstrated 20% higher SAR efficiency and higher SNR 3 cm from the coil. The presence of a tuned and detuned ERC-2L did not alter the peak local SAR of the ESA alone; however, the detuned ERC-2L had 45% less peak local SAR around the rectum compared to the tuned ERC-2L. The receive-only version of the ERC-2L improved the SNR 4.7-fold and 1.3-fold compared to the ESA and ERC-b, respectively. In combination with the ESA, the ERC-2L supported in-plane voxel-size of 0.36 × 0.36 mm(2) in T2 -weighted anatomic imaging. CONCLUSION The reusable ERC-2L combined with an ESA offers a high SNR imaging platform for translational studies of the prostate at 7T. J. Magn. Reson. Imaging 2016;43:1279-1287.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jinfeng Tian
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
|
21
|
Muller BG, van den Bos W, Pinto PA, de la Rosette JJ. Imaging modalities in focal therapy: patient selection, treatment guidance, and follow-up. Curr Opin Urol 2014; 24:218-24. [PMID: 24637316 DOI: 10.1097/mou.0000000000000041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Focal therapy for prostate cancer is emerging as a management option between active surveillance and radical treatments. In this article, we present two of the most important imaging modalities in focal therapy, multiparametric MRI (mpMRI) and ultrasonography. We review the recent advances within these two platforms. RECENT FINDINGS State-of-the-art imaging in all phases of focal therapy is essential for treatment safety. In patient selection, treatment guidance, and follow-up, different aspects of imaging are important. mpMRI is an imaging technology with high imaging resolution and contrast. This makes it an excellent technology for patient selection and treatment planning and follow-up. Ultrasound has the unique property of real-time image acquisition. This makes it an excellent technology for real-time treatment guidance. There are multiple novelties in these two platforms that have increased the accuracy considerably. Examples in ultrasound are contrast-enhanced ultrasonography, elastography, shear-wave elastography, and histoscanning. In mpMRI, these advantages consist of multiple sequences combined to one image and magnetic resonance thermometry. SUMMARY Standardization of multiparametric transrectal ultrasound and mpMRI is of paramount importance. For targeted treatment and follow-up, a good negative predictive value of the test is important. There is much to gain from both of these developing fields and imaging accuracy of the two platforms is comparable. Standardization in conduct and interpretation, three-dimensional reconstruction, and fusion of the two platforms can make focal therapy the standard of care for prostate cancer.
Collapse
Affiliation(s)
- Berrend G Muller
- aDepartment of Urology, AMC University Hospital, Amsterdam, The Netherlands bDepartment of Urology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|