1
|
Fakhouri F, Dong H, Kolipaka A. Magnetic resonance elastography of the lungs: A repeatability and reproducibility study. NMR IN BIOMEDICINE 2019; 32:e4102. [PMID: 31087728 DOI: 10.1002/nbm.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 05/17/2023]
Abstract
Lung diseases are one of the leading causes of death worldwide, from which four million people die annually. Lung diseases are associated with changes in the mechanical properties of the lungs. Several studies have shown the feasibility of using magnetic resonance elastography (MRE) to quantify the lungs' shear stiffness. The aim of this study is to investigate the reproducibility and repeatability of lung MRE, and its shear stiffness measurements, obtained using a modified spin echo-echo planar imaging (SE-EPI) MRE sequence. In this study, 21 healthy volunteers were scanned twice by repositioning the volunteers to image right lung both at residual volume (RV) and total lung capacity (TLC) to assess the reproducibility of lung shear stiffness measurements. Additionally, 19 out of the 21 volunteers were scanned immediately without moving the volunteers to test the repeatability of the modified SE-EPI MRE sequence. A paired t-test was performed to determine the significant difference between stiffness measurements obtained at RV and TLC. Concordance correlation and Bland-Altman's analysis were performed to determine the reproducibility and repeatability of the SE-EPI MRE-derived shear stiffness measurements. The SE-EPI MRE sequence is highly repeatable with a concordance correlation coefficient (CCC) of 0.95 at RV and 0.96 at TLC. Similarly, the stiffness measurements obtained across all volunteers were highly reproducible with a CCC of 0.95 at RV and 0.92 at TLC. The mean shear stiffness of the lung at RV was 0.93 ± 0.22 kPa and at TLC was 1.41 ± 0.41 kPa. TLC showed a significantly higher mean shear stiffness (P = 0.0004) compared with RV. Lung MRE stiffness measurements obtained using the SE-EPI sequence were reproducible and repeatable, both at RV and TLC. Lung shear stiffness changes across respiratory cycle with significantly higher stiffness at TLC than RV.
Collapse
Affiliation(s)
- Faisal Fakhouri
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Huiming Dong
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
2
|
Kargozar S, Hamzehlou S, Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1009-1020. [DOI: 10.1016/j.msec.2019.01.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
|
3
|
Guidetti M, Royston TJ. Analytical solution for diverging elliptic shear wave in bounded and unbounded transverse isotropic viscoelastic material with nonhomogeneous inner boundary. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL59. [PMID: 30710967 PMCID: PMC6345629 DOI: 10.1121/1.5088028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A theoretical approach was recently introduced by Guidetti and Royston [J. Acoust. Soc. Am. 144, 2312-2323 (2018)] for the radially converging elliptic shear wave pattern in transverse isotropic materials subjected to axisymmetric excitation normal to the fiber axis at the outer boundary of the material. This approach is enabled via a transformation to an elliptic coordinate system with isotropic properties. The approach is extended to the case of diverging shear waves radiating from a cylindrical rod that is axially oscillating perpendicular to the axis of isotropy and parallel to the plane of isotropy.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, ,
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, ,
| |
Collapse
|
4
|
Abstract
The mechanical properties of soft tissues are closely associated with a variety of diseases. This motivates the development of elastography techniques in which tissue mechanical properties are quantitatively estimated through imaging. Magnetic resonance elastography (MRE) is a noninvasive phase-contrast MR technique wherein shear modulus of soft tissue can be spatially and temporally estimated. MRE has recently received significant attention due to its capability in noninvasively estimating tissue mechanical properties, which can offer considerable diagnostic potential. In this work, recent technology advances of MRE, its future clinical applications, and the related limitations will be discussed.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard D. White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Bayly PV, Garbow JR. Pre-clinical MR elastography: Principles, techniques, and applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:73-83. [PMID: 29705042 PMCID: PMC5943171 DOI: 10.1016/j.jmr.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/07/2018] [Indexed: 05/09/2023]
Abstract
Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.
Collapse
Affiliation(s)
- P V Bayly
- Mechanical Engineering and Materials Science, Washington University in Saint Louis, MO, USA.
| | - J R Garbow
- Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
Haak AJ, Tan Q, Tschumperlin DJ. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol 2017; 73:64-76. [PMID: 29274939 DOI: 10.1016/j.matbio.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/09/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The composition and mechanical properties of the extracellular matrix are dramatically altered during the development and progression of pulmonary fibrosis. Recent evidence indicates that these changes in matrix composition and mechanics are not only end-results of fibrotic remodeling, but active participants in driving disease progression. These insights have stimulated interest in identifying the components and physical aspects of the matrix that contribute to cell activation and disease initiation and progression. This review summarizes current knowledge regarding the biomechanics and dynamics of the ECM in mouse models and human IPF, and discusses how matrix mechanical and compositional changes might be non-invasively assessed, therapeutically targeted, and biologically restored to resolve fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States.
| |
Collapse
|
7
|
Hasse K, O'Connell D, Min Y, Neylon J, Low DA, Santhanam A. Estimation and validation of patient‐specific high‐resolution lung elasticity derived from 4DCT. Med Phys 2017; 45:666-677. [DOI: 10.1002/mp.12697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Katelyn Hasse
- Department of Radiation Oncology University of California Los Angeles CA USA
| | - Dylan O'Connell
- Department of Radiation Oncology University of California Los Angeles CA USA
| | - Yugang Min
- Department of Radiation Oncology University of California Los Angeles CA USA
| | - John Neylon
- Department of Radiation Oncology University of California Los Angeles CA USA
| | - Daniel A. Low
- Department of Radiation Oncology University of California Los Angeles CA USA
| | - Anand Santhanam
- Department of Radiation Oncology University of California Los Angeles CA USA
| |
Collapse
|
8
|
Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. World J Radiol 2016; 8:59-72. [PMID: 26834944 PMCID: PMC4731349 DOI: 10.4329/wjr.v8.i1.59] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration.
Collapse
|
9
|
Sarvazyan AP, Urban MW, Greenleaf JF. Acoustic waves in medical imaging and diagnostics. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1133-46. [PMID: 23643056 PMCID: PMC3682421 DOI: 10.1016/j.ultrasmedbio.2013.02.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 05/03/2023]
Abstract
Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.
Collapse
|
10
|
McGee KP, Mariappan YK, Hubmayr RD, Carter RE, Bao Z, Levin DL, Manduca A, Ehman RL. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung. J Appl Physiol (1985) 2012; 113:666-76. [PMID: 22678969 DOI: 10.1152/japplphysiol.01628.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Magnetic resonance elastography (MRE) is a MR imaging method capable of spatially resolving the intrinsic mechanical properties of normal lung parenchyma. We tested the hypothesis that the mechanical properties of edematous lung exhibit local properties similar to those of a fluid-filled lung at transpulmonary pressures (P(tp)) up to 25 cm H(2)O. Pulmonary edema was induced in anesthetized female adult Sprague-Dawley rats by mechanical ventilation to a pressure of 40 cm H(2)O for ≈ 30 min. Prior to imaging the wet weight of each ex vivo lung set was measured. MRE, high-resolution T(1)-weighted spin echo and T(2)* gradient echo data were acquired at each P(tp) for both normal and injured ex vivo lungs. At P(tp)s of 6 cm H(2)O and greater, the shear stiffness of normal lungs was greater than injured lungs (P ≤ 0.0003). For P(tp)s up to 12 cm H(2)O, shear stiffness was equal to 1.00, 1.07, 1.16, and 1.26 kPa for the injured and 1.31, 1.89, 2.41, and 2.93 kPa for normal lungs at 3, 6, 9, and 12 cm H(2)O, respectively. For injured lungs MRE magnitude signal and shear stiffness within regions of differing degrees of alveolar flooding were calculated as a function of P(tp). Differences in shear stiffness were statistically significant between groups (P < 0.001) with regions of lower magnitude signal being stiffer than those of higher signal. These data demonstrate that when the alveolar space filling material is fluid, MRE-derived parenchymal shear stiffness of the lung decreases, and the lung becomes inherently softer compared with normal lung.
Collapse
Affiliation(s)
- Kiaran P McGee
- Department of Radiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hirsch S, Posnansky O, Papazoglou S, Elgeti T, Braun J, Sack I. Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 2012; 69:667-74. [PMID: 22529038 DOI: 10.1002/mrm.24294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/08/2012] [Accepted: 03/21/2012] [Indexed: 01/22/2023]
Abstract
Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs.
Collapse
Affiliation(s)
- Sebastian Hirsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
13
|
Naini AS, Patel RV, Samani A. Measurement of Lung Hyperelastic Properties Using Inverse Finite Element Approach. IEEE Trans Biomed Eng 2011; 58:2852-9. [DOI: 10.1109/tbme.2011.2160637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Abstract
The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This chapter focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
15
|
Mariappan YK, Glaser KJ, Hubmayr RD, Manduca A, Ehman RL, McGee KP. MR elastography of human lung parenchyma: technical development, theoretical modeling and in vivo validation. J Magn Reson Imaging 2011; 33:1351-61. [PMID: 21591003 PMCID: PMC3098473 DOI: 10.1002/jmri.22550] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To develop a novel MR-based method for visualizing the elastic properties of human lung parenchyma in vivo and to evaluate the ability of this method to resolve differences in parenchymal stiffness at different respiration states in healthy volunteers. MATERIALS AND METHODS A spin-echo MR Elastography (MRE) pulse sequence was developed to provide both high shear wave motion sensitivity and short TE for improved visualization of lung parenchyma. The improved motion sensitivity of this approach was modeled and tested with phantom experiments. In vivo testing was then performed on 10 healthy volunteers at the respiratory states of residual volume (RV) and total lung capacity (TLC). RESULTS Shear wave propagation was visualized within the lungs of all volunteers and was processed to provide parenchymal shear stiffness maps for all 10 subjects. Density corrected stiffness values at TLC (1.83 ± 0.22 kPa) were higher than those at the RV (1.14 ± 0.14 kPa) with the difference being statistically significant (P < 0.0001). CONCLUSION (1)H-based MR elastography can noninvasively measure the shear stiffness of human lung parenchyma in vivo and can quantitate the change in shear stiffness due to respiration. The values obtained were consistent with previously reported in vitro assessments of cadaver lungs. Further work is required to increase the flexibility of the current acquisition and to investigate the clinical potential of lung MRE.
Collapse
Affiliation(s)
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Rolf D Hubmayr
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Mariappan YK, Kolipaka A, Manduca A, Hubmayr RD, Ehman RL, Araoz P, McGee KP. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures. Magn Reson Med 2011; 67:210-7. [PMID: 21590723 DOI: 10.1002/mrm.22976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 12/13/2022]
Abstract
Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) .
Collapse
|
17
|
Zhang X, Qiang B, Hubmayr RD, Urban MW, Kinnick R, Greenleaf JF. Noninvasive ultrasound image guided surface wave method for measuring the wave speed and estimating the elasticity of lungs: A feasibility study. ULTRASONICS 2011; 51:289-295. [PMID: 20971489 DOI: 10.1016/j.ultras.2010.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Lung diseases, such as acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), are closely associated with altered lung elastic properties. Pulmonary function testing and imaging are routinely performed for evaluating lung diseases. However, lung compliance, a measure of lung elastic properties, is rarely used in clinic, because it is invasive and provides only a global and arguably biased estimate of lung elastic properties. Current ultrasound methods also cannot be used for imaging lungs because ultrasound cannot penetrate the lung tissue. In this paper, an ultrasound image guided and surface wave based method is proposed to measure regional lung surface wave speed and estimate lung elasticity noninvasively. The method described here was not explored before to the best knowledge of the authors. Experiments in an ex vivo pig lung and an in vivo human lung pilot study are reported. The surface wave speed is measured to be 1.83±0.02m/s at 100Hz by ultrasound for the ex vivo pig lung at 3mmHg pressure, which is validated by an optical measurement. An in vivo human lung pilot experiment measures the surface wave speed to be 2.41±0.33m/s for the 100Hz sinusoidal wave at total lung capacity (TLC) and 0.99±0.09m/s at functional residual capacity (FRC). These values of wave speed fall well within the range of available literature.
Collapse
Affiliation(s)
- X Zhang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Li Y, Snedeker JG. Elastography: modality-specific approaches, clinical applications, and research horizons. Skeletal Radiol 2011; 40:389-97. [PMID: 20352427 DOI: 10.1007/s00256-010-0918-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 02/02/2023]
Abstract
Manual palpation has been used for centuries to provide a relative indication of tissue health and disease. Engineers have sought to make these assessments increasingly quantitative and accessible within daily clinical practice. Since many of the developed techniques involve image-based quantification of tissue deformation in response to an applied force (i.e., "elastography"), such approaches fall squarely within the domain of the radiologist. While commercial elastography analysis software is becoming increasingly available for clinical use, the internal workings of these packages often remain a "black box," with limited guidance on how to usefully apply the methods toward a meaningful diagnosis. The purpose of the present review article is to introduce some important approaches to elastography that have been developed for the most widely used clinical imaging modalities (e.g., ultrasound, MRI), to provide a basic sense of the underlying physical principles, and to discuss both current and potential (musculoskeletal) applications. The article also seeks to provide a perspective on emerging approaches that are rapidly developing in the research laboratory (e.g., optical coherence tomography, fibered confocal microscopy), and which may eventually gain a clinical foothold.
Collapse
Affiliation(s)
- Yufei Li
- Department of Orthopaedics, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland
| | | |
Collapse
|
19
|
Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury. Expert Rev Respir Med 2010. [PMID: 20524920 DOI: 10.1586/ers.10.28.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although mechanical ventilation (MV) is a life-saving intervention for patients with acute respiratory distress syndrome (ARDS), it can aggravate or cause lung injury, known as ventilator-induced lung injury (VILI). The biophysical characteristics of heterogeneously injured ARDS lungs increase the parenchymal stress associated with breathing, which is further aggravated by MV. Cells, in particular those lining the capillaries, airways and alveoli, transform this strain into chemical signals (mechanotransduction). The interaction of reparative and injurious mechanotransductive pathways leads to VILI. Several attempts have been made to identify clinical surrogate measures of lung stress/strain (e.g., density changes in chest computed tomography, lower and upper inflection points of the pressure-volume curve, plateau pressure and inflammatory cytokine levels) that could be used to titrate MV. However, uncertainty about the topographical distribution of stress relative to that of the susceptibility of the cells and tissues to injury makes the existence of a single 'global' stress/strain injury threshold doubtful.
Collapse
Affiliation(s)
- Maria Plataki
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
20
|
Abstract
Although mechanical ventilation (MV) is a life-saving intervention for patients with acute respiratory distress syndrome (ARDS), it can aggravate or cause lung injury, known as ventilator-induced lung injury (VILI). The biophysical characteristics of heterogeneously injured ARDS lungs increase the parenchymal stress associated with breathing, which is further aggravated by MV. Cells, in particular those lining the capillaries, airways and alveoli, transform this strain into chemical signals (mechanotransduction). The interaction of reparative and injurious mechanotransductive pathways leads to VILI. Several attempts have been made to identify clinical surrogate measures of lung stress/strain (e.g., density changes in chest computed tomography, lower and upper inflection points of the pressure-volume curve, plateau pressure and inflammatory cytokine levels) that could be used to titrate MV. However, uncertainty about the topographical distribution of stress relative to that of the susceptibility of the cells and tissues to injury makes the existence of a single 'global' stress/strain injury threshold doubtful.
Collapse
Affiliation(s)
- Maria Plataki
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rolf D Hubmayr
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|