BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: de Oliveira JEE, Araújo AA, Deserno TM. Content-based image retrieval applied to BI-RADS tissue classification in screening mammography. World J Radiol 2011; 3(1): 24-31 [PMID: 21286492 DOI: 10.4329/wjr.v3.i1.24]
URL: https://www.wjgnet.com/1949-8470/full/v3/i1/24.htm
Number Citing Articles
1
Rajeshwari S. Patil, Nagashettappa Biradar. Improved region growing segmentation for breast cancer detection: progression of optimized fuzzy classifierInternational Journal of Intelligent Computing and Cybernetics 2020; 13(2): 181 doi: 10.1108/IJICC-10-2019-0116
2
Abdelali Elmoufidi, Khalid El Fahssi, Said Jai‐andaloussi, Abderrahim Sekkaki, Quellec Gwenole, Mathieu Lamard. Anomaly classification in digital mammography based on multiple‐instance learningIET Image Processing 2018; 12(3): 320 doi: 10.1049/iet-ipr.2017.0536
3
Gwenole Quellec, Mathieu Lamard, Michel Cozic, Gouenou Coatrieux, Guy Cazuguel. Multiple-Instance Learning for Anomaly Detection in Digital MammographyIEEE Transactions on Medical Imaging 2016; 35(7): 1604 doi: 10.1109/TMI.2016.2521442
4
Jyotismita Chaki, Nilanjan Dey. Data Tagging in Medical Images: A Survey of the State-of-ArtCurrent Medical Imaging Formerly Current Medical Imaging Reviews 2021; 16(10): 1214 doi: 10.2174/1573405616666200218130043
5
Reza Majidpourkhoei, Mehdi Alilou, Kambiz Majidzadeh, Amin Babazadehsangar. A novel deep learning framework for lung nodule detection in 3d CT imagesMultimedia Tools and Applications 2021; 80(20): 30539 doi: 10.1007/s11042-021-11066-w
6
Shubhi Sharma, Pritee Khanna. Computer-Aided Diagnosis of Malignant Mammograms using Zernike Moments and SVMJournal of Digital Imaging 2015; 28(1): 77 doi: 10.1007/s10278-014-9719-7
7
Aditya A. Shastri, Deepti Tamrakar, Kapil Ahuja. Density-wise two stage mammogram classification using texture exploiting descriptorsExpert Systems with Applications 2018; 99: 71 doi: 10.1016/j.eswa.2018.01.024
8
Thomas Christy Bobby, Swaminathan Ramakrishnan. Swarm, Evolutionary, and Memetic ComputingLecture Notes in Computer Science 2012; 7677: 594 doi: 10.1007/978-3-642-35380-2_69
9
D. Saranyaraj, R. Vaisshale, R. NandhaKishore. International Conference on Innovative Computing and CommunicationsLecture Notes in Networks and Systems 2023; 703: 225 doi: 10.1007/978-981-99-3315-0_18
10
Luiz A. P. Neves, Gilson A. Giraldi. Topics in Medical Image Processing and Computational VisionLecture Notes in Computational Vision and Biomechanics 2013; 8: 49 doi: 10.1007/978-94-007-0726-9_3
11
Xiaorong Li, Yunliang Qi, Meng Lou, Wenwei Zhao, Jie Meng, Wenjun Zhang, Yide Ma. Breast density measurement methods on mammograms: a reviewMultimedia Systems 2022; 28(6): 2367 doi: 10.1007/s00530-022-00955-1
12
Thomas Deserno, Michael Soiron, Julia Oliveira, Arnaldo Araujo. Towards Computer-Aided Diagnostics of Screening Mammography Using Content-Based Image Retrieval2011 24th SIBGRAPI Conference on Graphics, Patterns and Images 2011; : 211 doi: 10.1109/SIBGRAPI.2011.40
13
Siti Salmah Yasiran, Shaharuddin Salleh, Rozi Mahmud. Haralick texture and invariant moments features for breast cancer classification2016; 1750: 020022 doi: 10.1063/1.4954535
14
Fatima Ghazi, Aziza Benkuider, Mohamed Zraidi, Fouad Ayoub, Khalil Ibrahimi. Neighborhood Feature Extraction and Haralick Attributes for Medical Image Analysis: Application to Breast Cancer Mammography Image2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM) 2023; : 1 doi: 10.1109/WINCOM59760.2023.10323028
15
D Saranyaraj. Image De-noising and Edge Segmentation using Bilateral Filtering and Gabor-cut for Edge Representation of a Breast Tumor2022 International Conference on Engineering and Emerging Technologies (ICEET) 2022; : 1 doi: 10.1109/ICEET56468.2022.10007228
16
Omid Rahmani Seryasat, Javad Haddadnia. Evaluation of a New Ensemble Learning Framework for Mass Classification in MammogramsClinical Breast Cancer 2018; 18(3): e407 doi: 10.1016/j.clbc.2017.05.009
17
Xiaonan Gong, Zhen Yang, Deyuan Wang, Yunliang Qi, Yanan Guo, Yide Ma. Breast density analysis based on glandular tissue segmentation and mixed feature extractionMultimedia Tools and Applications 2019; 78(22): 31185 doi: 10.1007/s11042-019-07917-2
18
Keith Chikamai, Serestina Viriri, Jules-Raymond Tapamo. Mammogram content-based image retrieval based on malignancy classificationIntelligent Data Analysis 2017; 21(5): 1193 doi: 10.3233/IDA-163101
19
Samaneh Aminikhanghahi, Sung Shin, Wei Wang, Soon I. Jeon, Seong H. Son. A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classificationMultimedia Tools and Applications 2017; 76(7): 10191 doi: 10.1007/s11042-016-3605-x
20
C. Mata, A. Oliver, A. Lalande, P. Walker, J. Martí. On the Use of XML in Medical Imaging Web-Based ApplicationsIRBM 2017; 38(1): 3 doi: 10.1016/j.irbm.2016.10.001
21
Fatima Ghazi, Aziza Benkuider, Fouad Ayoub, Khalil Ibrahimi. Selection of the Discriming Feature Using the BEMD’s BIMF for Classification of Breast Cancer Mammography ImageBioMedInformatics 2024; 4(2): 1202 doi: 10.3390/biomedinformatics4020066