Published online Aug 26, 2016. doi: 10.4330/wjc.v8.i8.436
Peer-review started: April 28, 2016
First decision: June 16, 2016
Revised: June 21, 2016
Accepted: July 14, 2016
Article in press: July 18, 2016
Published online: August 26, 2016
Processing time: 116 Days and 21.7 Hours
Many forms of human hypertension are associated with an increased systemic sympathetic activity. Especially the renal sympathetic nervous system has been found to play a prominent role in this context. Therefore, catheter-interventional renal sympathetic denervation (RDN) has been established as a treatment for patients suffering from therapy resistant hypertension in the past decade. The initial enthusiasm for this treatment was markedly dampened by the results of the Symplicity-HTN-3 trial, although the transferability of the results into clinical practice to date appears to be questionable. In contrast to the extensive use of RDN in treating hypertensive patients within or without clinical trial settings over the past years, its effects on the complex pathophysiological mechanisms underlying therapy resistant hypertension are only partly understood and are part of ongoing research. Effects of RDN have been described on many levels in human trials: From altered systemic sympathetic activity across cardiac and metabolic alterations down to changes in renal function. Most of these changes could sustainably change long-term morbidity and mortality of the treated patients, even if blood pressure remains unchanged. Furthermore, a number of promising predictors for a successful treatment with RDN have been identified recently and further trials are ongoing. This will certainly help to improve the preselection of potential candidates for RDN and thereby optimize treatment outcomes. This review summarizes important pathophysiologic effects of renal denervation and illustrates the currently known predictors for therapy success.
Core tip: The initial enthusiasm for renal sympathetic denervation (RDN) has disappeared. However, the detailed effects of RDN on the complex pathophysiological mechanisms underlying therapy resistant hypertension are only partly understood and are part of ongoing research. Moreover, a number of promising predictors for successful RDN treatment have been identified recently which could help to improve future trial design. This review summarizes important pathophysiologic effects of renal denervation and illustrates the currently known predictors for therapy success.