1
|
Li Z, Kong J, Xi S, Jin Z, Yang F, Zhu Z, Liu L. Exploring the Potential Regulatory Mechanisms of Mitophagy in Ischemic Cardiomyopathy. Int J Gen Med 2025; 18:2881-2899. [PMID: 40492232 PMCID: PMC12147806 DOI: 10.2147/ijgm.s519388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Purpose Ischemic cardiomyopathy (ICM) was a clinical syndrome. Long - term myocardial blood supply insufficiency, caused by coronary atherosclerotic plaque, led to myocardial nutritional disorders and atrophy. After large - scale myocardial infarction, fibrous tissue hyperplasia impaired cardiac systolic and/or diastolic functions, causing heart failure and arrhythmia. Study shows that dysregulated mitophagy can lead to cardiomyocyte death and cardiomyopathy. However, it is still uncertain how mitophagy related genes (MRGs) may affect the diagnosis of ICM. Patients and Methods Data were obtained from public databases. Subsequently, mitochondria autophagy score-related genes (MSRGs) were obtained through Weighted Gene Co-expression Network Analysis (WGCNA). Then, an intersection was taken between MSRGs and the differentially expressed genes (DEGs) obtained from the differential expression analysis to obtain DE-MSRGs. Then, biomarkers were identified through machine learning algorithms and Receiver Operating Characteristic curve (ROC) analysis. Next, analyses of immune infiltration, molecular regulatory network, and drug prediction were carried out. Finally, Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) was performed on the biomarkers. It provides a certain theoretical basis for the research on the mechanism of the occurrence and development of ICM. Results In total, 99 DE-MSRGs between ICM and control groups were gained. The four biomarkers (PPDPF, DPEP2, LTBP1, SOCS2) were acquired, and all biomarkers had good diagnostic efficacy for ICM. The content of 3 immune cells between ICM and control groups was significantly different, namely T cells, CD8+ T cells, and neutrophil, and all biomarkers were considerably positively correlated with T cells. The ceRNA network contained 4 mRNAs, 14 miRNAs, and 12 lncRNAs, and TF-mRNA network contained 32 nodes and 38 edges. Finally, 45 drugs targeting the biomarkers were predicted, such as Salmeterol, Histamine, Rotavirus vaccine, etc. Importantly, this all 4 biomarkers were higher in ICM samples in RT-qPCR analysis. Conclusion Our findings provided four mitophagy related biomarkers (PPDPF, DPEP2, LTBP1, and SOCS2) for diagnosis of ICM, providing a scientific reference for further studies of ICM.
Collapse
Affiliation(s)
- Zhaobin Li
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiajie Kong
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuqiang Xi
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zeyue Jin
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Fan Yang
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhe Zhu
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Liu
- Department of Cardiac Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
2
|
Ivy A, Bess SN, Agrawal S, Kochar V, Stokes AL, Muldoon TJ, Nelson CE. A dual-fluorescence assay for gene delivery vehicle screening in macrophages with an inflammation-inducible reporter construct. BMC METHODS 2025; 2:8. [PMID: 40352095 PMCID: PMC12062070 DOI: 10.1186/s44330-025-00030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Background Macrophages are a promising target for therapeutics in various applications such as regenerative medicine and immunotherapy for cancer. Due to their plastic nature, macrophages can switch from a non-activated state to activated with the smallest environmental change. For macrophages to be effective in their respective applications, screening for phenotypic changes is necessary to elucidate the cell response to different delivery vehicles, vaccines, small molecules, and other stimuli. Methods We created a sensitive and dynamic high-throughput screening method for macrophages based on the activation of NF-κB. For this reporter, we placed an mRFP1 fluorescence gene under the control of an inflammatory promoter, which recruits NF-κB response elements to promote expression during the inflammatory response in macrophages. We characterized the inflammatory reporter based on key markers of an inflammatory response in macrophages including TNF-α cytokine release and immunostaining for inflammatory and non-inflammatory cell surface markers. We compared gene delivery and inflammation of several clinically relevant viral vehicles and commercially available non-viral vehicles. Statistical analysis between groups was performed with a one-way ANOVA with post-hoc Tukey's test. Results The reporter macrophages demonstrated a dynamic range after LPS stimulation with an EC50 of 0.61 ng/mL that was highly predictive of TNF-α release. Flow cytometry revealed heterogeneity between groups but confirmed population level shifts in pro-inflammatory markers. Finally, we demonstrated utility of the reporter by showing divergent effects with various leading gene delivery vehicles. Discussion This screening technique developed here provides a dynamic, high-throughput screening technique for determining inflammatory response by mouse macrophages to specific stimuli. The method presented here provides insight into the inflammatory response in mouse macrophages to different viral and non-viral gene delivery methods and provides a tool for high-throughput screening of novel vehicles. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-025-00030-x.
Collapse
Affiliation(s)
- Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Varun Kochar
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Abbey L. Stokes
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR USA
| |
Collapse
|
3
|
Xu S, Li H, Han J, Xu Y, Li N, Che W, Liu F, Yue W. Klf9 promotes the repair of myocardial infarction by regulating macrophage recruitment and polarization. JCI Insight 2025; 10:e187072. [PMID: 40198141 DOI: 10.1172/jci.insight.187072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
The inflammatory response after myocardial infarction (MI) is a precisely regulated process that greatly affects subsequent wound healing and remodeling. However, understanding about the process is still limited. Macrophages are critically involved in inflammation resolution after MI. Krüppel-like factor 9 (Klf9) is a C2H2 zinc finger-containing transcription factor that has been implicated in glucocorticoid regulation of macrophages. However, the contribution of Klf9 to macrophage phenotype and function in the context of MI remains unclear. Our study revealed that KLF9 deficiency resulted in higher mortality and cardiac rupture rate, as well as a considerable exacerbation in cardiac function. Single-cell RNA sequencing and flow cytometry analyses revealed that, compared with WT mice, Klf9-/- mice displayed excessive neutrophil infiltration, insufficient macrophage infiltration, and a reduced proportion of monocyte-derived CD206+ macrophages after MI. Moreover, the expression of IFN-γ/STAT1 pathway genes in Klf9-/- cardiac macrophages was dysregulated, characterized by insufficient expression at 1 day post-MI and excessive expression at day 3 post-MI. Mechanistically, Klf9 directly binds to the promoters of Stat1 gene, regulating its transcription. Overall, these findings indicate that Klf9 beneficially influences wound healing after MI by modulating macrophage recruitment and differentiation by regulating the IFN-γ/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Han
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenhui Yue
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Li AL, Guo KZ, Yu LR, Ge J, Zhou W, Zhang JP. Intercellular communication after myocardial infarction: Macrophage as the centerpiece. Ageing Res Rev 2025; 109:102757. [PMID: 40320153 DOI: 10.1016/j.arr.2025.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Post-myocardial infarction (MI) injury, repair, and remodeling are complex biological events orchestrated by the heart and immune cell populations, with immune-inflammation at the core. Macrophages, as the main immune cell population active throughout the post-MI injury to repair processes, are the core of this "drama". Recently, single-cell sequencing and other techniques have revealed the heterogeneity of macrophage origins and the complexity of macrophage subpopulation transformation and intercellular communication after MI. Defining the changes in macrophage subpopulation dynamics and macrophage-centered intercellular communication after MI may represent new targeted therapeutic strategies. It also helps to select the optimal time point for anti-inflammatory or pro-repair accurately. Therefore, in this review, we summarize the major macrophage subpopulations active at different times after MI and their functional characteristics based on gene expression profiles. Meanwhile, we summarize macrophage-centered intercellular communication, focusing on how macrophages interact with cardiomyocytes, neutrophils, fibroblasts, endothelial cells, and other cardiac cells. Together, these dominate the transition from inflammatory injury to fibrotic repair in the infarcted heart. We also focus on the regulatory potential of immune metabolism in macrophage subpopulation transformation and intercellular communication after MI, particularly providing new insights about lactylation. We conclude by emphasizing macrophage-centric targeting strategies and clinical translational potential, to provide ideas for the clinical treatment of MI.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kang-Zheng Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Le-Rong Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China.
| |
Collapse
|
5
|
Wang T, Wang X, Ren W, Sun Z, Zhang Y, Wu N, Diao H. Cardiomyocyte proliferation: Advances and insights in macrophage-targeted therapy for myocardial injury. Genes Dis 2025; 12:101332. [PMID: 39935606 PMCID: PMC11810708 DOI: 10.1016/j.gendis.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the mammalian heart, cardiomyocytes undergo a transient window of proliferation that leads to regenerative impairment, limiting cardiomyocyte proliferation and myocardial repair capacity. Cardiac developmental patterns exacerbate the progression of heart disease characterized by myocardial cell loss, ultimately leading to cardiac dysfunction and heart failure. Myocardial infarction causes the death of partial cardiomyocytes, which triggers an immune response to remove debris and restore tissue integrity. Interestingly, when transient myocardial injury triggers irreversible loss of cardiomyocytes, the subsequent macrophages responsible for proliferation and regeneration have a unique immune phenotype that promotes the formation of pre-existing new cardiomyocytes. During mammalian regeneration, mononuclear-derived macrophages and self-renewing resident cardiac macrophages provide multiple cytokines and molecular signals that create a regenerative environment and cellular plasticity capacity in postnatal cardiomyocytes, a pivotal strategy for achieving myocardial repair. Consistent with other human tissues, cardiac macrophages originating from the embryonic endothelium produce a hierarchy of contributions to monocyte recruitment and fate specification. In this review, we discuss the novel functions of macrophages in triggering cardiac regeneration and repair after myocardial infarction and provide recent advances and prospective insights into the phenotypic transformation and heterogeneous features involving cardiac macrophages. In conclusion, macrophages contribute critically to regeneration, repair, and remodeling, and are challenging targets for cardiovascular therapeutic interventions.
Collapse
Affiliation(s)
- Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
6
|
Liu A, Bai P, You H, Zhuang Z, Tian F, Weng H, Wei X, Tang L, Wang L, Liu C, Zhang J, Sun M, Zhang S, Shu X, Ge J. SLAMF7 Restrains Pro-Inflammatory Macrophage Activation to Counteract Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci 2025:S2452-302X(25)00073-7. [PMID: 40372307 DOI: 10.1016/j.jacbts.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 05/16/2025]
Abstract
Doxorubicin-induced cardiotoxicity (DIC) poses a significant challenge in cancer treatment. This study investigated the role of SLAMF7 in DIC, particularly in macrophage-mediated inflammation. Using SLAMF7 knockout mice, we found that SLAMF7 deficiency exacerbates DIC and amplifies inflammatory responses. Mechanistically, SLAMF7 interacts with TNF receptor-associated factor 6 to attenuate nuclear factor κB signaling, reducing oxidative stress and proinflammatory cytokines. Notably, administering recombinant SLAMF7 protein effectively mitigated DIC. These findings underscore the critical role of SLAMF7 in protecting against DIC, positioning it as a promising therapeutic target.
Collapse
Affiliation(s)
- Ao Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hongmin You
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zehao Zhuang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Fangyan Tian
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haobo Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xuemei Wei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lu Tang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Litao Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaobao Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinghong Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Minmin Sun
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xianhong Shu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
7
|
Frangogiannis NG. Targeting macrophage-fibroblast interactions in the failing heart. Nat Rev Cardiol 2025; 22:223-224. [PMID: 39681733 DOI: 10.1038/s41569-024-01112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute. Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
8
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
9
|
Tan Y, Li H, Cao G, Xin J, Yan D, Liu Y, Li P, Zhang Y, Shi L, Zhang B, Yi W, Sun Y. N-terminal domain of CTRP9 promotes cardiac fibroblast activation in myocardial infarction via Rap1/Mek/Erk pathway. J Transl Med 2025; 23:300. [PMID: 40065407 PMCID: PMC11892279 DOI: 10.1186/s12967-025-06274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND In developed nations, myocardial infarction (MI) is one of the main causes of morbidity and mortality, resulting in a significant economic burden and becoming a global public health problem. C1q/tumor necrosis factor-related protein 9 (CTRP9) is a secreted protein comprising a variable domain, a collagenous region, and a C-terminal trimerizing globular C1q (gC1q) domain. In vivo, the full-length CTRP9 (fCTRP9) can be cleaved into the globular domain of CTRP9 (gCTRP9). Here, we tested the cardio-protective impacts of fCTRP9, gCTRP9, and N-terminal domain, including the variable and collagenous domain, of CTRP9 (nCTRP9) in the context of MI. METHODS Studies comparing the protective properties of fCTRP9 and gCTRP9 against MI in mice hearts were performed both in vitro and in vivo. The role of matrix metalloproteinase-9 (MMP9) in CTRP9 cleavage was examined, and the effects of different CTRP9 domains on cardiac fibrosis and cardiac fibroblast (CF) activation were investigated. RESULTS gCTRP9 exerted better protective effects than fCTRP9 against MI, demonstrating superior anti-apoptotic and anti-fibrotic properties. fCTRP9 was cleaved by MMP9, resulting in gCTRP9 and nCTRP9. MMP9 overexpression enhanced the cardioprotective effects of fCTRP9, while nCTRP9 supplementation aggravated cardiac fibrosis in MI mice. Mechanistically, nCTRP9 activated CFs via an increase in Rap1 expression and MEK 1/2 and ERK1/2 phosphorylation. CONCLUSIONS Different domains of CTRP9 have distinct cardioprotective effects. gCTRP9 shows beneficial effects, while nCTRP9 promotes cardiac fibrosis. These findings highlight the importance of CTRP9 in cardiac function regulation and suggest prospective therapeutic options for MI treatment.
Collapse
Affiliation(s)
- Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guojie Cao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jialin Xin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongxu Yan
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingying Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Panpan Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuxi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No.127, Changlexi Road, Xi'an, Shaanxi, 710032, China.
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No.127, Changlexi Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
10
|
Koenig AL, Kadyrov FF, Amrute JM, Yang S, Weinheimer CJ, Nigro JM, Kovacs A, Smith G, Lavine KJ. Genetic Mapping of Monocyte Fate Decisions Following Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.24.573263. [PMID: 39974922 PMCID: PMC11838486 DOI: 10.1101/2023.12.24.573263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammation contributes to the pathogenesis of myocardial infarction and heart failure and represents a viable therapeutic target. Monocytes and their progeny are highly abundant and display incredible functional diversity, serving as key determinants of myocardial inflammation and tissue repair. Much remains to be learned regarding mechanisms and signaling events that instruct monocyte fate decisions. We devised a genetic lineage tracing strategy using Ccr2 crERT2 Rosa26 LSL-tdTomato mice in combination with single cell RNA-sequencing to map the differentiation trajectories of monocytes that infiltrate the heart after reperfused myocardial infarction. Monocytes are recruited to the heart early after injury and give rise to transcriptionally distinct and spatially restricted macrophage and dendritic cell-like subsets that are specified prior to extravasation and chronically persist within the myocardium. Pseudotime analysis predicted two differentiation trajectories of monocyte-derived macrophages that are partitioned into the border and infarct zones, respectively. Among these trajectories, we show that macrophages expressing a type I IFN responsive signature are an intermediate population that gives rise to MHC-II hi macrophages, are localized within the border zone, and promote myocardial protection. Collectively, these data uncover new complexities of monocyte differentiation in the infarcted heart and suggest that modulating monocyte fate decisions may have clinical implications.
Collapse
|
11
|
Wang H, Yang J, Cai Y, Zhao Y. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit. Protein Cell 2024; 15:906-929. [PMID: 38530808 PMCID: PMC11637486 DOI: 10.1093/procel/pwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Direct conversion of cardiac fibroblasts (CFs) to cardiomyocytes (CMs) in vivo to regenerate heart tissue is an attractive approach. After myocardial infarction (MI), heart repair proceeds with an inflammation stage initiated by monocytes infiltration of the infarct zone establishing an immune microenvironment. However, whether and how the MI microenvironment influences the reprogramming of CFs remains unclear. Here, we found that in comparison with cardiac fibroblasts (CFs) cultured in vitro, CFs that transplanted into infarct region of MI mouse models resisted to cardiac reprogramming. RNA-seq analysis revealed upregulation of interferon (IFN) response genes in transplanted CFs, and subsequent inhibition of the IFN receptors increased reprogramming efficiency in vivo. Macrophage-secreted IFN-β was identified as the dominant upstream signaling factor after MI. CFs treated with macrophage-conditioned medium containing IFN-β displayed reduced reprogramming efficiency, while macrophage depletion or blocking the IFN signaling pathway after MI increased reprogramming efficiency in vivo. Co-IP, BiFC and Cut-tag assays showed that phosphorylated STAT1 downstream of IFN signaling in CFs could interact with the reprogramming factor GATA4 and inhibit the GATA4 chromatin occupancy in cardiac genes. Furthermore, upregulation of IFN-IFNAR-p-STAT1 signaling could stimulate CFs secretion of CCL2/7/12 chemokines, subsequently recruiting IFN-β-secreting macrophages. Together, these immune cells further activate STAT1 phosphorylation, enhancing CCL2/7/12 secretion and immune cell recruitment, ultimately forming a self-reinforcing positive feedback loop between CFs and macrophages via IFN-IFNAR-p-STAT1 that inhibits cardiac reprogramming in vivo. Cumulatively, our findings uncover an intercellular self-stimulating inflammatory circuit as a microenvironmental molecular barrier of in situ cardiac reprogramming that needs to be overcome for regenerative medicine applications.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junbo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yihong Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Maimaitijiang A, Huang Q, Wu Y, Sun S, Chen Q. Transglutaminase 2 inhibition ameliorates cardiac fibrosis in myocardial infarction by inducing M2 macrophage polarization in vitro and in vivo. Cytojournal 2024; 21:58. [PMID: 39737120 PMCID: PMC11683372 DOI: 10.25259/cytojournal_32_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear. This study aimed to discover the functions and possible mechanisms of TG2 in MI. Material and Methods C57BL/6 mice were classified into three groups (six mice per group): Sham, MI, and MI+GK921 groups. GK921 acts as a TG2 inhibitor. Cardiac function, myocardial cell apoptosis, fibrosis, and macrophage phenotype in mouse experiments were detected through echocardiography, terminal deoxynucleotidyl transferase dUTP nick end labeling, Masson staining, immunofluorescence, and flow cytometry, respectively. The in vitro study involved the treatment of mouse cardiac fibroblasts isolated from mice with transforming growth factor β1 (TGF-β1) and evaluation of fibrosis through the detection of the expressions of fibrosis-associated proteins using Western blot. Bone marrow-derived macrophages (BMDMs) obtained from mice were triggered by interleukin (IL)-4, and the type of macrophages was determined through flow cytometry. Results In in vivo experiments, GK921 substantially improved cardiac injury and fibrosis, induced M2 macrophage polarization, and suppressed the TGF-β1/small mother against decapentaplegic 3 (Smad3) pathway in MI mice. Moreover, TG2 knockdown considerably decreased the expressions of fibrosis-associated proteins in TGF-β1-triggered mouse cardiac fibroblasts, which indicates the repressive effect of TG2 knockdown on fibrosis. In addition, the inhibition effect of TG2 downregulation on the TGF-β1/Smad3 pathway was proven in TGF-β1-treated mouse cardiac fibroblasts in vitro. Moreover, TG2 inhibition remarkably increased M2 macrophage polarization in IL-4-induced BMDMs. Conclusion TG2 inhibition facilitated M2 macrophage polarization to provide protection against MI-caused cardiac fibrosis in mice, and these effects may be attained through modulation of the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
| | - Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yurong Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengjia Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiying Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1337-1355. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
15
|
Li R, Hanna A, Huang S, Hernandez SC, Tuleta I, Kubota A, Humeres C, Chen B, Liu Y, Zheng D, Frangogiannis NG. Macrophages in the infarcted heart acquire a fibrogenic phenotype, expressing matricellular proteins, but do not undergo fibroblast conversion. J Mol Cell Cardiol 2024; 196:152-167. [PMID: 39089570 PMCID: PMC11534516 DOI: 10.1016/j.yjmcc.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Although some studies have suggested that macrophages may secrete structural collagens, and convert to fibroblast-like cells, macrophage to fibroblast transdifferentiation in infarcted and remodeling hearts remains controversial. Our study uses linage tracing approaches and single cell transcriptomics to examine whether macrophages undergo fibroblast conversion, and to characterize the extracellular matrix expression profile of myeloid cells in myocardial infarction. To examine whether infarct macrophages undergo fibroblast conversion, we identified macrophage-derived progeny using the inducible CX3CR1CreER mice crossed with the PDGFRαEGFP reporter line for reliable fibroblast identification. The abundant fibroblasts that infiltrated the infarcted myocardium after 7 and 28 days of coronary occlusion were not derived from CX3CR1+ macrophages. Infarct macrophages retained myeloid cell characteristics and did not undergo conversion to myofibroblasts, endothelial or vascular mural cells. Single cell RNA-seq of CSF1R+ myeloid cells harvested from control and infarcted hearts showed no significant expression of fibroblast identity genes by myeloid cell clusters. Moreover, infarct macrophages did not express significant levels of genes encoding structural collagens. However, infarct macrophage and monocyte clusters were the predominant source of the fibrogenic growth factors Tgfb1 and Pdgfb, and of the matricellular proteins Spp1/Osteopontin, Thbs1/Thrombospondin-1, Emilin2, and Fn1/fibronectin, while expressing significant amounts of several other matrix genes, including Vcan/versican, Ecm1 and Sparc. ScRNA-seq data suggested similar patterns of matrix gene expression in human myocardial infarction. In conclusion, infarct macrophages do not undergo fibroblast or myofibroblast conversion and do not exhibit upregulation of structural collagens but may contribute to fibrotic remodeling by producing several fibrogenic matricellular proteins.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
16
|
Padmanaban AM, Ganesan K, Ramkumar KM. A Co-Culture System for Studying Cellular Interactions in Vascular Disease. Bioengineering (Basel) 2024; 11:1090. [PMID: 39593750 PMCID: PMC11591305 DOI: 10.3390/bioengineering11111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are leading causes of morbidity and mortality globally, characterized by complications such as heart failure, atherosclerosis, and coronary artery disease. The vascular endothelium, forming the inner lining of blood vessels, plays a pivotal role in maintaining vascular homeostasis. The dysfunction of endothelial cells contributes significantly to the progression of CVDs, particularly through impaired cellular communication and paracrine signaling with other cell types, such as smooth muscle cells and macrophages. In recent years, co-culture systems have emerged as advanced in vitro models for investigating these interactions and mimicking the pathological environment of CVDs. This review provides an in-depth analysis of co-culture models that explore endothelial cell dysfunction and the role of cellular interactions in the development of vascular diseases. It summarizes recent advancements in multicellular co-culture models, their physiological and therapeutic relevance, and the insights they provide into the molecular mechanisms underlying CVDs. Additionally, we evaluate the advantages and limitations of these models, offering perspectives on how they can be utilized for the development of novel therapeutic strategies and drug testing in cardiovascular research.
Collapse
Affiliation(s)
- Abirami M. Padmanaban
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
17
|
Wu Q, Song J, Liu W, Li L, Li S. Recent advances in positron emission tomography for detecting early fibrosis after myocardial infarction. Front Cardiovasc Med 2024; 11:1479777. [PMID: 39529975 PMCID: PMC11552091 DOI: 10.3389/fcvm.2024.1479777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiac remodeling after myocardial infarction is one of the key factors affecting patient prognosis. Myocardial fibrosis is an important pathological link of adverse ventricular remodeling after myocardial infarction, and early fibrosis is reversible. Timely detection and intervention can effectively prevent its progression to irreversible ventricular remodeling. Although imaging modalities such as CMR and echocardiography can identify fibrosis, their sensitivity and specificity are limited, and they cannot detect early fibrosis or its activity level. Positron emission tomography (PET) allows non-invasive visualization of cellular and subcellular processes and can monitor and quantify molecules and proteins in the fibrotic pathway. It is valuable in assessing the extent of early myocardial fibrosis progression, selecting appropriate treatments, evaluating response to therapy, and determining the prognosis. In this article, we present a brief overview of mechanisms underlying myocardial fibrosis following myocardial infarction and several routine imaging techniques currently available for assessing fibrosis. Then, we focus on the application of PET molecular imaging in detecting fibrosis after myocardial infarction.
Collapse
Affiliation(s)
- Qiuyan Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Jialin Song
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Wenyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Lukovic D, Gyöngyösi M, Pavo IJ, Mester-Tonczar J, Einzinger P, Zlabinger K, Kastner N, Spannbauer A, Traxler D, Pavo N, Goliasch G, Pils D, Jakab A, Szankai Z, Michel-Behnke I, Zhang L, Devaux Y, Graf S, Beitzke D, Winkler J. Increased [ 18F]FDG uptake in the infarcted myocardial area displayed by combined PET/CMR correlates with snRNA-seq-detected inflammatory cell invasion. Basic Res Cardiol 2024; 119:807-829. [PMID: 38922408 PMCID: PMC11461641 DOI: 10.1007/s00395-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Combined [18F]FDG PET-cardiac MRI imaging (PET/CMR) is a useful tool to assess myocardial viability and cardiac function in patients with acute myocardial infarction (AMI). Here, we evaluated the prognostic value of PET/CMR in a porcine closed-chest reperfused AMI (rAMI) model. Late gadolinium enhancement by PET/CMR imaging displayed tracer uptake defect at the infarction site by 3 days after the rAMI in the majority of the animals (group Match, n = 28). Increased [18F]FDG uptake at the infarcted area (metabolism/contractility mismatch) with reduced tracer uptake in the remote viable myocardium (group Mismatch, n = 12) 3 days after rAMI was observed in the animals with larger infarct size and worse left ventricular ejection fraction (LVEF) (34 ± 8.7 vs 42.0 ± 5.2%), with lower LVEF also at the 1-month follow-up (35.8 ± 9.5 vs 43.0 ± 6.3%). Transcriptome analyses by bulk and single-nuclei RNA sequencing of the infarcted myocardium and border zones (n = 3 of each group, and 3 sham-operated controls) revealed a strong inflammatory response with infiltration of monocytes and macrophages in the infarcted and border areas in Mismatch animals. Our data indicate a high prognostic relevance of combined PET/MRI in the subacute phase of rAMI for subsequent impairment of heart function and underline the adverse effects of an excessive activation of the innate immune system in the initial phase after rAMI.
Collapse
Affiliation(s)
- Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| | - Imre J Pavo
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Patrick Einzinger
- Institute of Information Systems Engineering, Research Unit of Information and Software Engineering, Vienna University of Technology, 1040, Vienna, Austria
| | - Katrin Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Andras Jakab
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Ina Michel-Behnke
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Senta Graf
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Popovic AM, Lei MHC, Shakeri A, Khosravi R, Radisic M. Lab-on-a-chip models of cardiac inflammation. BIOMICROFLUIDICS 2024; 18:051507. [PMID: 39483204 PMCID: PMC11524635 DOI: 10.1063/5.0231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide with numerous inflammatory cell etiologies associated with impaired cardiac function and heart failure. Inflammatory cardiomyopathy, also known as myocarditis, is an acquired cardiomyopathy characterized by inflammatory cell infiltration into the myocardium with a high risk of progression to deteriorated cardiac function. Recently, amidst the ongoing COVID-19 pandemic, the emergence of acute myocarditis as a complication of SARS-CoV-2 has garnered significant concern. Given its mechanisms remain elusive in conjunction with the recent withdrawal of previously FDA-approved antiviral therapeutics and prophylactics due to unexpected cardiotoxicity, there is a pressing need for human-mimetic platforms to investigate disease pathogenesis, model dysfunctional features, and support pre-clinical drug screening. Traditional in vitro models for studying cardiovascular diseases have inherent limitations in recapitulating the complexity of the in vivo microenvironment. Heart-on-a-chip technologies, combining microfabrication, microfluidics, and tissue engineering techniques, have emerged as a promising approach for modeling inflammatory cardiac diseases like myocarditis. This review outlines the established and emerging conditions of inflamed myocardium, identifying key features essential for recapitulating inflamed myocardial structure and functions in heart-on-a-chip models, highlighting recent advancements, including the integration of anisotropic contractile geometry, cardiomyocyte maturity, electromechanical functions, vascularization, circulating immunity, and patient/sex specificity. Finally, we discuss the limitations and future perspectives necessary for the clinical translation of these advanced technologies.
Collapse
Affiliation(s)
- Anna Maria Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Matthew Ho Cheong Lei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
20
|
Khalil NN, Rexius-Hall ML, Escopete S, Parker SJ, McCain ML. Distinct phenotypes induced by acute hypoxia and TGF-β1 in human adult cardiac fibroblasts. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100080. [PMID: 39329164 PMCID: PMC11423773 DOI: 10.1016/j.jmccpl.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/28/2024]
Abstract
Myocardial infarction (MI) causes hypoxic injury to downstream myocardial tissue, which initiates a wound healing response that replaces injured myocardial tissue with a scar. Wound healing is a complex process that consists of multiple phases, in which many different stimuli induce cardiac fibroblasts to differentiate into myofibroblasts and deposit new matrix. While this process is necessary to replace necrotic tissue, excessive and unresolved fibrosis is common post-MI and correlated with heart failure. Therefore, defining how cardiac fibroblast phenotypes are distinctly regulated by stimuli that are prevalent in the post-MI microenvironment, such as hypoxia and transforming growth factor-beta (TGF-β), is essential for understanding and ultimately mitigating pathological fibrosis. In this study, we acutely treated primary human adult cardiac fibroblasts with TGF-β1 or hypoxia and then characterized their phenotype through immunofluorescence, quantitative RT-PCR, and proteomic analysis. We found that fibroblasts responded to low oxygen with increased localization of hypoxia inducible factor 1 (HIF-1) to the nuclei after 4h, which was followed by increased gene expression of vascular endothelial growth factor A (VEGFA), a known target of HIF-1, by 24h. Both TGF-β1 and hypoxia inhibited proliferation after 24h. TGF-β1 treatment also upregulated various fibrotic pathways. In contrast, hypoxia caused a reduction in several protein synthesis pathways, including collagen biosynthesis. Collectively, these data suggest that TGF-β1, but not acute hypoxia, robustly induces the differentiation of human cardiac fibroblasts into myofibroblasts. Discerning the overlapping and distinctive outcomes of TGF-β1 and hypoxia treatment is important for elucidating their roles in fibrotic remodeling post-MI and provides insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Natalie N. Khalil
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean Escopete
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah J. Parker
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Kanuri B, Sreejit G, Biswas P, Murphy AJ, Nagareddy PR. Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches. iScience 2024; 27:110274. [PMID: 39040061 PMCID: PMC11261154 DOI: 10.1016/j.isci.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Gopalkrishna Sreejit
- Department of Pathology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Priosmita Biswas
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, VIC, Australia
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
22
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
23
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
24
|
Peters VB, Matheis F, Erdmann I, Nemade HN, Muders D, Toubartz M, Torun M, Mehrkens D, Geißen S, Nettersheim FS, Picard F, Guthoff H, Hof A, Arkenberg P, Arand B, Klinke A, Rudolph V, Hansen HP, Bachurski D, Adam M, Hoyer FF, Winkels H, Baldus S, Mollenhauer M. Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction. Front Immunol 2024; 15:1360700. [PMID: 38736886 PMCID: PMC11082299 DOI: 10.3389/fimmu.2024.1360700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.
Collapse
Affiliation(s)
- Vera B.M. Peters
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friederike Matheis
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Immanuel Erdmann
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Harshal N. Nemade
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Muders
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Toubartz
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Merve Torun
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Picard
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Per Arkenberg
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Birgit Arand
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Hinrich Peter Hansen
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Tan X, Wang J, Liu X, Xie G, Ouyang F. M2 macrophage-derived paracrine factor TNFSF13 affects the fibrogenic alterations in endothelial cells and cardiac fibroblasts by mediating the NF-κB and Akt pathway. J Biochem Mol Toxicol 2024; 38:e23707. [PMID: 38622979 DOI: 10.1002/jbt.23707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Jintang Wang
- People's Hospital of Wangcheng District Changsha, Changsha, Hunan, China
| | - Xiangyang Liu
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Genyuan Xie
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
26
|
Redgrave RE, Singh E, Tual-Chalot S, Park C, Hall D, Bennaceur K, Smyth DJ, Maizels RM, Spyridopoulos I, Arthur HM. Exogenous Transforming Growth Factor-β1 and Its Helminth-Derived Mimic Attenuate the Heart's Inflammatory Response to Ischemic Injury and Reduce Mature Scar Size. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:562-573. [PMID: 37832870 DOI: 10.1016/j.ajpath.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-β1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-β1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-β1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-β1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-β1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1β and chemokine (C-C motif) ligand 2 (>50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-β1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-β signaling in the vascular endothelium.
Collapse
Affiliation(s)
- Rachael E Redgrave
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Esha Singh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Simon Tual-Chalot
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Catherine Park
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Darroch Hall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Karim Bennaceur
- Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Ioakim Spyridopoulos
- Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Helen M Arthur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom.
| |
Collapse
|
27
|
Gunning JA, Gilman KE, Zúñiga TM, Simpson RJ, Limesand KH. Parotid glands have a dysregulated immune response following radiation therapy. PLoS One 2024; 19:e0297387. [PMID: 38470874 PMCID: PMC10931461 DOI: 10.1371/journal.pone.0297387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/04/2024] [Indexed: 03/14/2024] Open
Abstract
Head and neck cancer treatment often consists of surgical resection of the tumor followed by ionizing radiation (IR), which can damage surrounding tissues and cause adverse side effects. The underlying mechanisms of radiation-induced salivary gland dysfunction are not fully understood, and treatment options are scarce and ineffective. The wound healing process is a necessary response to tissue injury, and broadly consists of inflammatory, proliferative, and redifferentiation phases with immune cells playing key roles in all three phases. In this study, select immune cells were phenotyped and quantified, and certain cytokine and chemokine concentrations were measured in mouse parotid glands after IR. Further, we used a model where glandular function is restored to assess the immune phenotype in a regenerative response. These data suggest that irradiated parotid tissue does not progress through a typical inflammatory response observed in wounds that heal. Specifically, total immune cells (CD45+) decrease at days 2 and 5 following IR, macrophages (F4/80+CD11b+) decrease at day 2 and 5 and increase at day 30, while neutrophils (Ly6G+CD11b+) significantly increase at day 30 following IR. Additionally, radiation treatment reduces CD3- cells at all time points, significantly increases CD3+/CD4+CD8+ double positive cells, and significantly reduces CD3+/CD4-CD8- double negative cells at day 30 after IR. Previous data indicate that post-IR treatment with IGF-1 restores salivary gland function at day 30, and IGF-1 injections attenuate the increase in macrophages, neutrophils, and CD4+CD8+ T cells observed at day 30 following IR. Taken together, these data indicate that parotid salivary tissue exhibits a dysregulated immune response following radiation treatment which may contribute to chronic loss of function phenotype in head and neck cancer survivors.
Collapse
Affiliation(s)
- Jordan A. Gunning
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kristy E. Gilman
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Tiffany M. Zúñiga
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Richard J. Simpson
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
28
|
Huang M, Huiskes FG, de Groot NMS, Brundel BJJM. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024; 13:311. [PMID: 38391924 PMCID: PMC10886649 DOI: 10.3390/cells13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
- Department of Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| |
Collapse
|
29
|
Kishigami T, Ishikane S, Arioka M, Igawa K, Nishimura Y, Takahashi-Yanaga F. 2,5-Dimethyl-celecoxib induces early termination of inflammatory responses by transient macrophage accumulation and inhibits the progression of cardiac remodeling in a mouse model of cryoinjury-induced myocardial infarction. J Pharmacol Sci 2024; 154:97-107. [PMID: 38246733 DOI: 10.1016/j.jphs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
In our previous study, we reported that 2, 5-dimethyl-celecoxib (DM-C), a derivative of celecoxib, prevents cardiac remodeling in different mouse models of heart failure, including myocardial infarction (MI). The inflammatory response after MI affects the progression of cardiac remodeling, wherein the immune cells, mainly macrophages, play crucial roles. Therefore, we evaluated the effect of DM-C on macrophages in a cryoinjury-induced myocardial infarction (CMI) mouse model. We observed that DM-C attenuated the deterioration of left ventricular ejection fraction and cardiac fibrosis 14 d after CMI. Gene expression of pro-inflammatory cytokines at the infarct site was reduced by DM-C treatment. Analysis of macrophage surface antigens revealed that DM-C induced transient accumulation of macrophages at the infarct site without affecting their polarization. In vitro experiments using peritoneal monocytes/macrophages revealed that DM-C did not directly increase the phagocytic ability of the macrophages but increased their number, thereby upregulating the clearance capacity. Moreover, DM-C rapidly excluded the cells expressing necrotic cell marker from the infarct site. These results suggested that DM-C enhanced the clearance capacity of macrophages by transiently increasing their number at the infarct site, and terminated the escape from the inflammatory phase earlier, thereby suppressing excessive cardiac remodeling and ameliorating cardiac dysfunction.
Collapse
Affiliation(s)
- Takehiro Kishigami
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Shin Ishikane
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Masaki Arioka
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yosuke Nishimura
- Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
30
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
31
|
Mihaila AC, Ciortan L, Tucureanu MM, Simionescu M, Butoi E. Anti-Inflammatory Neutrophils Reprogram Macrophages toward a Pro-Healing Phenotype with Increased Efferocytosis Capacity. Cells 2024; 13:208. [PMID: 38334600 PMCID: PMC10854927 DOI: 10.3390/cells13030208] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Following myocardial infarction (MI), blood neutrophils quickly and extensively infiltrate the heart, where they are temporally polarized into pro-inflammatory (N1) and anti-inflammatory (N2) subpopulations. Neutrophil transmigration is rapidly followed by the accrual of macrophages (MACs), which are believed to undergo local phenotypic transformations from pro-inflammatory to pro-healing MACs that mediate inflammation resolution. We hypothesized that N2 neutrophils can reprogram MACs toward a healing phenotype with increased efferocytosis capacity. To examine this, human neutrophils isolated from healthy subjects were polarized in N1 and N2 neutrophils, and their secretome was added to human MACs derived from THP monocytes. The impact of neutrophil factors on macrophages was investigated using qPCR, ELISA, Western blot, immunofluorescence, or an efferocytosis assay. The results show that the MACs exposed to N2 neutrophil secretome exhibited (i) increased expression of the anti-inflammatory molecules CD206, TGF-β, and IL-10 and the nuclear factors associated with reparatory macrophages (PPARγ, Nur77, and KLF4); (ii) enhanced expression of efferocytosis receptors (MerTK, CD36, CX3CR1, and integrins αv/β5) and of the bridge molecules Mfage8 and Gas6; and (iii) enhanced efferocytosis. In conclusion, factors released by N2 neutrophils induce a pro-healing phenotype of MACs by upregulating anti-inflammatory molecules and efferocytosis receptors and ensuing the efferocytosis capacity. The data suggest that molecular therapy to foster N2 polarization, which boosts macrophages' pro-healing phenotype, could be a promising strategy to speed up inflammation resolution and tissue repair.
Collapse
Affiliation(s)
| | | | | | | | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (A.C.M.); (L.C.); (M.S.)
| |
Collapse
|
32
|
Maassen S, Warner HM, Grijpstra P, van den Bogaart G. A quantitative in vitro collagen uptake assay. MethodsX 2023; 11:102288. [PMID: 37533791 PMCID: PMC10392602 DOI: 10.1016/j.mex.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Collagen remodelling is a vital process for embryonic development and homoeostatic maintenance of the adult body. Collagen remodelling is a complex process in fibroblasts, macrophages and other cells, whereby new collagen is secreted and polymerized into fibrils and old collagen is removed by proteolysis and endocytosis. Whereas the production of collagen is well-studied, the removal of collagen is less understood. In this protocol, we describe a method for the quantification of collagen uptake by cells. This protocol is based on the polymerisation of collagen type I-FITC conjugate in cell culture plate wells. Next, unpolymerized collagen is washed away and the cells are added in cell culture media. At this stage, they can be treated with inhibitors and/or stimulants if required. Afterwards, the cells are detached from the collagen using the protease accutase and the FITC signal is quantified using microscopy and/or flow cytometry.•Easy-to-use protocol for the quantitative measurement of collagen uptake in cells.•Cell detachment from collagen is quick and easy with accutase, even with strong adhering cells like macrophages.•Downstream applications can be a wide selection of analysis techniques like microscopy, RNA- and protein isolation, and flow cytometry.
Collapse
Affiliation(s)
- Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
- Department of Medical Biology and Pathology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Harry M. Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Pieter Grijpstra
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
- Department of Medical Biology and Pathology, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
33
|
Xu Z, Lu Q, Chen L, Ruan C, Bai Y, Zou Y, Ge J. Role of Lymphangiogenesis in Cardiac Repair and Regeneration. Methodist Debakey Cardiovasc J 2023; 19:37-46. [PMID: 38028969 PMCID: PMC10655763 DOI: 10.14797/mdcvj.1286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
This article highlights the importance of the structure and function of cardiac lymphatics in cardiovascular diseases and the therapeutic potential of cardiac lymphangiogenesis. Specifically, we explore the innate lymphangiogenic response to damaged cardiac tissue or cardiac injury, derive key findings from regenerative models demonstrating how robust lymphangiogenic responses can be supported to improve cardiac function, and introduce an approach to imaging the structure and function of cardiac lymphatics.
Collapse
Affiliation(s)
- Zhongyun Xu
- Shanghai East Hospital Tongji University, Shanghai, China
| | - Qing Lu
- Shanghai East Hospital Tongji University, Shanghai, China
| | | | - Chengchao Ruan
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingnan Bai
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- National Health Commission, Shanghai, China
- Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
34
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Jiang H, Fang T, Cheng Z. Mechanism of heart failure after myocardial infarction. J Int Med Res 2023; 51:3000605231202573. [PMID: 37818767 PMCID: PMC10566288 DOI: 10.1177/03000605231202573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the widespread use of early revascularization and drugs to regulate the neuroendocrine system, the impact of such measures on alleviating the development of heart failure (HF) after myocardial infarction (MI) remains limited. Therefore, it is important to discuss the development of new therapeutic strategies to prevent or reverse HF after MI. This requires a better understanding of the potential mechanisms involved. HF after MI is the result of complex pathophysiological processes, with adverse ventricular remodeling playing a major role. Adverse ventricular remodeling refers to the heart's adaptation in terms of changes in ventricular size, shape, and function under the influence of various regulatory factors, including the mechanical, neurohormonal, and cardiac inflammatory immune environments; ischemia/reperfusion injury; energy metabolism; and genetic correlation factors. Additionally, unique right ventricular dysfunction can occur secondary to ischemic shock in the surviving myocardium. HF after MI may also be influenced by other factors. This review summarizes the main pathophysiological mechanisms of HF after MI and highlights sex-related differences in the prognosis of patients with acute MI. These findings provide new insights for guiding the development of targeted treatments to delay the progression of HF after MI and offering incremental benefits to existing therapies.
Collapse
Affiliation(s)
- Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Fang
- Department of Cardiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zeyi Cheng
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Shook PL, Singh M, Singh K. Macrophages in the Inflammatory Phase following Myocardial Infarction: Role of Exogenous Ubiquitin. BIOLOGY 2023; 12:1258. [PMID: 37759657 PMCID: PMC10526096 DOI: 10.3390/biology12091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. One of the most common implications of CVD is myocardial infarction (MI). Following MI, the repair of the infarcted heart occurs through three distinct, yet overlapping phases of inflammation, proliferation, and maturation. Macrophages are essential to the resolution of the inflammatory phase due to their role in phagocytosis and efferocytosis. However, excessive and long-term macrophage accumulation at the area of injury and dysregulated function can induce adverse cardiac remodeling post-MI. Ubiquitin (UB) is a highly evolutionarily conserved small protein and is a normal constituent of plasma. Levels of UB are increased in the plasma during a variety of pathological conditions, including ischemic heart disease. Treatment of mice with UB associates with decreased inflammatory response and improved heart function following ischemia/reperfusion injury. This review summarizes the role of macrophages in the infarct healing process of the heart post-MI, and discusses the role of exogenous UB in myocardial remodeling post-MI and in the modulation of macrophage phenotype and function.
Collapse
Affiliation(s)
- Paige L. Shook
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
| | - Mahipal Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
| | - Krishna Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- James H. Quillen Veterans Affairs Medical Center, Mountain Home, TN 37684, USA
| |
Collapse
|
37
|
Abstract
Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.
Collapse
|
38
|
Zhuang L, Zong X, Yang Q, Fan Q, Tao R. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization. EBioMedicine 2023; 95:104744. [PMID: 37556943 PMCID: PMC10433018 DOI: 10.1016/j.ebiom.2023.104744] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Macrophage infiltration and polarization are integral to the progression of heart failure and cardiac fibrosis after ischemia/reperfusion (IR). Interleukin 34 (IL-34) is an inflammatory regulator related to a series of autoimmune diseases. Whether IL-34 mediates inflammatory responses and contributes to cardiac remodeling and heart failure post-IR remains unclear. METHODS IL-34 knock-out mice were used to determine the role of IL-34 on cardiac remodeling after IR surgery. Then, immunofluorescence, flow cytometry assays, and RNA-seq analysis were performed to explore the underlying mechanisms of IL-34-induced macrophage recruitment and polarization, and further heart failure after IR. FINDINGS By re-analyzing single-cell RNA-seq and single-nucleus RNA-seq data of murine and human ischemic hearts, we showed that IL-34 expression was upregulated after IR. IL-34 knockout mitigated cardiac remodeling, cardiac dysfunction, and fibrosis after IR and vice versa. RNA-seq analysis revealed that IL-34 deletion correlated negatively with immune responses and chemotaxis after IR injury. Consistently, immunofluorescence and flow cytometry assays demonstrated that IL-34 deletion attenuated macrophage recruitment and CCR2+ macrophage polarization. Mechanistically, IL-34 deficiency repressed both the canonical and noncanonical NF-κB signaling pathway, leading to marked reduction of P-IKKβ and P-IκBα kinase levels; downregulation of NF-κB p65, RelB, and p52 expression, which drove the decline in chemokine CCL2 expression. Finally, IL-34 and CCL2 levels were increased in the serum of acute coronary syndrome patients, with a positive correlation between circulating IL-34 and CCL2 levels in clinical patients. INTERPRETATION In conclusion, IL-34 sustains NF-κB pathway activation to elicit increased CCL2 expression, which contributes to macrophage recruitment and polarization, and subsequently exacerbates cardiac remodeling and heart failure post-IR. Strategies targeting IL-34-centered immunomodulation may provide new therapeutic approaches to prevent and reverse cardiac remodeling and heart failure in clinical MI patients after percutaneous coronary intervention. FUNDING This study was supported by the National Nature Science Foundation of China (81670352 and 81970327 to R T, 82000368 to Q F).
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao Zong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qin Fan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Rong Tao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
39
|
Künzel SR, Winter L, Hoffmann M, Kant TA, Thiel J, Kronstein‐Wiedemann R, Klapproth E, Lorenz K, El‐Armouche A, Kämmerer S. Investigation of mesalazine as an antifibrotic drug following myocardial infarction in male mice. Physiol Rep 2023; 11:e15809. [PMID: 37688424 PMCID: PMC10492006 DOI: 10.14814/phy2.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVES Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 μg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.
Collapse
Affiliation(s)
- Stephan R. Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- Institute of Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- German Red Cross Blood Donation Service North‐EastDresdenGermany
| | - Luise Winter
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Theresa A. Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Jessica Thiel
- Institute of Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- German Red Cross Blood Donation Service North‐EastDresdenGermany
| | - Romy Kronstein‐Wiedemann
- Institute of Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- German Red Cross Blood Donation Service North‐EastDresdenGermany
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, Julius‐Maximilians‐University of WürzburgWürzburgGermany
- Leibniz‐Institut für Analytische Wissenschaften ‐ISAS‐ e.VDortmundGermany
| | - Ali El‐Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| |
Collapse
|
40
|
Francisco J, Guan J, Zhang Y, Nakada Y, Mareedu S, Sung EA, Hu CM, Oka S, Zhai P, Sadoshima J, Del Re DP. Suppression of myeloid YAP antagonizes adverse cardiac remodeling during pressure overload stress. J Mol Cell Cardiol 2023; 181:1-14. [PMID: 37235928 PMCID: PMC10524516 DOI: 10.1016/j.yjmcc.2023.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Inflammation is an integral component of cardiovascular disease and is thought to contribute to cardiac dysfunction and heart failure. While ischemia-induced inflammation has been extensively studied in the heart, relatively less is known regarding cardiac inflammation during non-ischemic stress. Recent work has implicated a role for Yes-associated protein (YAP) in modulating inflammation in response to ischemic injury; however, whether YAP influences inflammation in the heart during non-ischemic stress is not described. We hypothesized that YAP mediates a pro-inflammatory response during pressure overload (PO)-induced non-ischemic injury, and that targeted YAP inhibition in the myeloid compartment is cardioprotective. In mice, PO elicited myeloid YAP activation, and myeloid-specific YAP knockout mice (YAPF/F;LysMCre) subjected to PO stress had better systolic function, and attenuated pathological remodeling compared to control mice. Inflammatory indicators were also significantly attenuated, while pro-resolving genes including Vegfa were enhanced, in the myocardium, and in isolated macrophages, of myeloid YAP KO mice after PO. Experiments using bone marrow-derived macrophages (BMDMs) from YAP KO and control mice demonstrated that YAP suppression shifted polarization toward a resolving phenotype. We also observed attenuated NLRP3 inflammasome priming and function in YAP deficient BMDMs, as well as in myeloid YAP KO hearts following PO, indicating disruption of inflammasome induction. Finally, we leveraged nanoparticle-mediated delivery of the YAP inhibitor verteporfin and observed attenuated PO-induced pathological remodeling compared to DMSO nanoparticle control treatment. These data implicate myeloid YAP as an important molecular nodal point that facilitates cardiac inflammation and fibrosis during PO stress and suggest that selective inhibition of YAP may prove a novel therapeutic target in non-ischemic heart disease.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jin Guan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yasuki Nakada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Che-Ming Hu
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
41
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
42
|
Kumar N, Pestrak MJ, Wu Q, Ahumada OS, Dellos-Nolan S, Saljoughian N, Shukla RK, Mitchem CF, Nagareddy PR, Ganesan LP, William LP, Wozniak DJ, Rajaram MVS. Pseudomonas aeruginosa pulmonary infection results in S100A8/A9-dependent cardiac dysfunction. PLoS Pathog 2023; 19:e1011573. [PMID: 37624851 PMCID: PMC10484443 DOI: 10.1371/journal.ppat.1011573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/07/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%. P.a. infection induces a robust inflammatory response, which ideally enhances bacterial clearance. Unfortunately, excessive inflammation can also have negative effects, and often leads to cardiac dysfunction with associated morbidity and mortality. However, it remains unclear how P.a. lung infection causes cardiac dysfunction. Using a murine pneumonia model, we found that P.a. infection of the lungs led to severe cardiac left ventricular dysfunction and electrical abnormalities. More specifically, we found that neutrophil recruitment and release of S100A8/A9 in the lungs activates the TLR4/RAGE signaling pathways, which in turn enhance systemic inflammation and subsequent cardiac dysfunction. Paradoxically, global deletion of S100A8/A9 did not improve but aggravated cardiac dysfunction and mortality likely due to uncontrolled bacterial burden in the lungs and heart. Our results indicate that P.a. infection induced release of S100A8/9 is double-edged, providing increased risk for cardiac dysfunction yet limiting P.a. growth.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Matthew J. Pestrak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Qian Wu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Omar Santiagonunez Ahumada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Cortney F. Mitchem
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Prabhakara R. Nagareddy
- Department of Surgery, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Lafuse P. William
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
43
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
44
|
Rondeaux J, Groussard D, Renet S, Tardif V, Dumesnil A, Chu A, Di Maria L, Lemarcis T, Valet M, Henry JP, Badji Z, Vézier C, Béziau-Gasnier D, Neele AE, de Winther MPJ, Guerrot D, Brand M, Richard V, Durand E, Brakenhielm E, Fraineau S. Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI. Nat Commun 2023; 14:4461. [PMID: 37491334 PMCID: PMC10368741 DOI: 10.1038/s41467-023-40186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.
Collapse
Affiliation(s)
- Julie Rondeaux
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | | | - Sylvanie Renet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Virginie Tardif
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Anaïs Dumesnil
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Alphonse Chu
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Léa Di Maria
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Théo Lemarcis
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Manon Valet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Jean-Paul Henry
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Zina Badji
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Claire Vézier
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | | | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique Guerrot
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Nephrology, F-76000, Rouen, France
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Vincent Richard
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Pharmacology, F-76000, Rouen, France
| | - Eric Durand
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Ebba Brakenhielm
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Sylvain Fraineau
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France.
| |
Collapse
|
45
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Sung S, Steele LA, Risser GE, Spiller KL. Biomaterial-Assisted Macrophage Cell Therapy for Regenerative Medicine. Adv Drug Deliv Rev 2023:114979. [PMID: 37394101 DOI: 10.1016/j.addr.2023.114979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Although most tissue types are capable of some form of self-repair and regeneration, injuries that are larger than a critical threshold or those occurring in the setting of certain diseases can lead to impaired healing and ultimately loss of structure and function. The immune system plays an important role in tissue repair and must be considered in the design of therapies in regenerative medicine. In particular, macrophage cell therapy has emerged as a promising strategy that leverages the reparative roles of these cells. Macrophages are critical for successful tissue repair and accomplish diverse functions throughout all phases of the process by dramatically shifting in phenotypes in response to microenvironmental cues. Depending on their response to various stimuli, they may release growth factors, support angiogenesis, and facilitate extracellular matrix remodeling. However, this ability to rapidly shift phenotype is also problematic for macrophage cell therapy strategies, because adoptively transferred macrophages fail to maintain therapeutic phenotypes following their administration to sites of injury or inflammation. Biomaterials are a potential way to control macrophage phenotype in situ while also enhancing their retention at sites of injury. Cell delivery systems incorporated with appropriately designed immunomodulatory signals have potential to achieve tissue regeneration in intractable injuries where traditional therapies have failed. Here we explorecurrent challenges in macrophage cell therapy, especially retention and phenotype control, how biomaterials may overcome them, and opportunities for next generation strategies. Biomaterials will be an essential tool to advance macrophage cell therapy for widespread clinical applications.
Collapse
Affiliation(s)
- Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory E Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The intricate interplay between inflammatory and reparative responses in the context of heart injury is central to the pathogenesis of heart failure. Recent clinical studies have shown the therapeutic benefits of anti-inflammatory strategies in the treatment of cardiovascular diseases. This review provides a comprehensive overview of the cross-talk between immune cells and fibroblasts in the diseased heart. RECENT FINDINGS The role of inflammatory cells in fibroblast activation after cardiac injury is well-documented, but recent single-cell transcriptomics studies have identified putative pro-inflammatory fibroblasts in the infarcted heart, suggesting that fibroblasts, in turn, can modify inflammatory cell behavior. Furthermore, anti-inflammatory immune cells and fibroblasts have been described. The use of spatial and temporal-omics analyses may provide additional insights toward a better understanding of disease-specific microenvironments, where activated fibroblasts and inflammatory cells are in proximity. Recent studies focused on the interplay between fibroblasts and immune cells have brought us closer to the identification of cell type-specific targets for intervention. Further exploration of these intercellular communications will provide deeper insights toward the development of novel therapeutics.
Collapse
Affiliation(s)
- Akitoshi Hara
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, 96825, USA.
| | - Michelle D Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, 96825, USA
| |
Collapse
|
48
|
Cohen CD, Rousseau ST, Bermea KC, Bhalodia A, Lovell JP, Dina Zita M, Čiháková D, Adamo L. Myocardial Immune Cells: The Basis of Cardiac Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1198-1207. [PMID: 37068299 PMCID: PMC10111214 DOI: 10.4049/jimmunol.2200924] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/14/2023] [Indexed: 04/19/2023]
Abstract
The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Sylvie T. Rousseau
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kevin C. Bermea
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Aashik Bhalodia
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jana P. Lovell
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marcelle Dina Zita
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Luigi Adamo
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
49
|
Sun JY, Du LJ, Shi XR, Zhang YY, Liu Y, Wang YL, Chen BY, Liu T, Zhu H, Liu Y, Ruan CC, Gan Z, Ying H, Yin Z, Gao PJ, Yan X, Li RG, Duan SZ. An IL-6/STAT3/MR/FGF21 axis mediates heart-liver cross-talk after myocardial infarction. SCIENCE ADVANCES 2023; 9:eade4110. [PMID: 37018396 PMCID: PMC10075967 DOI: 10.1126/sciadv.ade4110] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The liver plays a protective role in myocardial infarction (MI). However, very little is known about the mechanisms. Here, we identify mineralocorticoid receptor (MR) as a pivotal nexus that conveys communications between the liver and the heart during MI. Hepatocyte MR deficiency and MR antagonist spironolactone both improve cardiac repair after MI through regulation on hepatic fibroblast growth factor 21 (FGF21), illustrating an MR/FGF21 axis that underlies the liver-to-heart protection against MI. In addition, an upstreaming acute interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway transmits the heart-to-liver signal to suppress MR expression after MI. Hepatocyte Il6 receptor deficiency and Stat3 deficiency both aggravate cardiac injury through their regulation on the MR/FGF21 axis. Therefore, we have unveiled an IL-6/STAT3/MR/FGF21 signaling axis that mediates heart-liver cross-talk during MI. Targeting the signaling axis and the cross-talk could provide new strategies to treat MI and heart failure.
Collapse
Affiliation(s)
- Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xue-Rui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Yao Zhang
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yong-Li Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing 210061, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
| |
Collapse
|
50
|
Shiraishi M, Suzuki K, Yamaguchi A. Effect of mechanical tension on fibroblast transcriptome profile and regulatory mechanisms of myocardial collagen turnover. FASEB J 2023; 37:e22841. [PMID: 36856975 DOI: 10.1096/fj.202201899r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Excess deposition of extracellular matrix in the myocardium is a predictor of reduced left ventricular function. Although reducing the hemodynamic load is known to improve myocardial fibrosis, the mechanisms underlying the reversal of the fibrosis have not been elucidated. We focused on the elasticity of myocardial tissue, which is assumed to influence the fibroblast phenotype. Normal and fibrotic myocardium were cultured in 16 kPa and 64 kPa silicone gel-coated dishes supplemented with recombinant TGFβ protein, respectively. Matrix-degrading myocardium was cultured in 64 kPa silicone gel-coated dishes with recombinant TGFβ protein and then in 16 kPa silicone gel-coated dishes. Cardiac fibroblasts were cultured in this three-part in vitro pathological models and compared. Fibroblasts differentiated into activated or matrix-degrading types in response to the pericellular environment. Comprehensive gene expression analysis of fibroblasts in each in vitro condition showed Selenbp1 to be one of the genes responsible for regulating differentiation of fibroblasts. In vitro knockdown of Selenbp1 enhanced fibroblast activation and inhibited conversion to the matrix-degrading form. In vivo knockdown of Selenbp1 resulted in structural changes in the left ventricle associated with progressive tissue fibrosis and left ventricular diastolic failure. Selenbp1 is involved in regulating fibroblast differentiation and appears to be one of the major molecules regulating collagen turnover in cardiac fibrosis.
Collapse
Affiliation(s)
- Manabu Shiraishi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|