1
|
Tampakis K, Pastromas S, Sykiotis A, Kampanarou S, Kourgiannidis G, Pyrpiri C, Bousoula M, Rozakis D, Andrikopoulos G. Real-time cardiovascular magnetic resonance-guided radiofrequency ablation: A comprehensive review. World J Cardiol 2023; 15:415-426. [PMID: 37900261 PMCID: PMC10600785 DOI: 10.4330/wjc.v15.i9.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Cardiac magnetic resonance (CMR) imaging could enable major advantages when guiding in real-time cardiac electrophysiology procedures offering high-resolution anatomy, arrhythmia substrate, and ablation lesion visualization in the absence of ionizing radiation. Over the last decade, technologies and platforms for performing electrophysiology procedures in a CMR environment have been developed. However, performing procedures outside the conventional fluoroscopic laboratory posed technical, practical and safety concerns. The development of magnetic resonance imaging compatible ablation systems, the recording of high-quality electrograms despite significant electromagnetic interference and reliable methods for catheter visualization and lesion assessment are the main limiting factors. The first human reports, in order to establish a procedural workflow, have rationally focused on the relatively simple typical atrial flutter ablation and have shown that CMR-guided cavotricuspid isthmus ablation represents a valid alternative to conventional ablation. Potential expansion to other more complex arrhythmias, especially ventricular tachycardia and atrial fibrillation, would be of essential impact, taking into consideration the widespread use of substrate-based strategies. Importantly, all limitations need to be solved before application of CMR-guided ablation in a broad clinical setting.
Collapse
Affiliation(s)
- Konstantinos Tampakis
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece.
| | - Sokratis Pastromas
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Alexandros Sykiotis
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | | | - Georgios Kourgiannidis
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Chrysa Pyrpiri
- Department of Radiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Maria Bousoula
- Department of Anesthesiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - Dimitrios Rozakis
- Department of Anesthesiology, Henry Dunant Hospital Center, Athens 11526, Greece
| | - George Andrikopoulos
- Department of Pacing & Electrophysiology, Henry Dunant Hospital Center, Athens 11526, Greece
| |
Collapse
|
2
|
Rogers T, Campbell-Washburn AE, Ramasawmy R, Yildirim DK, Bruce CG, Grant LP, Stine AM, Kolandaivelu A, Herzka DA, Ratnayaka K, Lederman RJ. Interventional cardiovascular magnetic resonance: state-of-the-art. J Cardiovasc Magn Reson 2023; 25:48. [PMID: 37574552 PMCID: PMC10424337 DOI: 10.1186/s12968-023-00956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.
Collapse
Affiliation(s)
- Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving St NW, Suite 4B01, Washington, DC, 20011, USA.
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - D Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Laurie P Grant
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Annette M Stine
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Aravindan Kolandaivelu
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Johns Hopkins Hospital, Baltimore, MD, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Kanishka Ratnayaka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
| |
Collapse
|
3
|
Wang L, Peng L, Zhao X, Ma Y, Jin F, Zhao X. Prognostic Value of Entropy Derived from Late Gadolinium Enhancement Images to Adverse Cardiac Events in Post-Myocardial Infarction Patients. Acad Radiol 2023; 30:239-247. [PMID: 35484033 DOI: 10.1016/j.acra.2022.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023]
Abstract
RATIONALE AND OBJECTIVES To explore the prognostic value of entropy derived from late gadolinium enhancement images on cardiac magnetic resonance (CMR) for major adverse cardiac events (MACE) in post-myocardial infarction (MI) patients. MATERIALS AND METHODS Participants with MI underwent 3.0T CMR were retrospectively enrolled. CMR parameters, including the entropy of infarct core (IC), peri-infarct border zone (BZ), and infarct core and peri-infarct border zone (IBZ) were analyzed. Patients were divided into the No-MACE group and the MACE group according to the absence or presence of MACE during the follow-up period. RESULTS Eighty-four patients were included, among whom 51 patients without MACE and 33 patients with MACE. The MACE group showed higher IC mass, IBZ mass, IC entropy, BZ entropy, IBZ entropy, and LV entropy and lower LVEF than those of the NO-MACE group. LVEF, BZ entropy, and IBZ entropy were independent predictors of MACE (p < 0.05). Receiver operating characteristic curve revealed that the predictive values of BZ entropy with AUC of 0.860, IBZ entropy with AUC of 0.930, the combined model of LVEF and BZ entropy with AUC of 0.923, and the combined model of LVEF and IBZ entropy with AUC of 0.954 were higher than that of LVEF with AUC of 0.797. Delong test illustrated there was no significant difference in AUC among the three models with AUC > 0.900 (p > 0.05). CONCLUSION BZ entropy and IBZ entropy were noninvasive parameters for better risk stratification of post-MI patients. MI Patients with MACE showed higher BZ entropy and IBZ entropy than patients without MACE.
Collapse
Affiliation(s)
- Lujing Wang
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, 374(th) Dianmian Road, Wuhua District, Kunming, Yunnan, 650101, China
| | - Liang Peng
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoying Zhao
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, 374(th) Dianmian Road, Wuhua District, Kunming, Yunnan, 650101, China
| | - Yunting Ma
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, 374(th) Dianmian Road, Wuhua District, Kunming, Yunnan, 650101, China
| | - Fuwei Jin
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, 374(th) Dianmian Road, Wuhua District, Kunming, Yunnan, 650101, China
| | - Xinxiang Zhao
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, 374(th) Dianmian Road, Wuhua District, Kunming, Yunnan, 650101, China..
| |
Collapse
|
4
|
Tore D, Faletti R, Biondo A, Carisio A, Giorgino F, Landolfi I, Rocco K, Salto S, Santonocito A, Ullo F, Anselmino M, Fonio P, Gatti M. Role of Cardiovascular Magnetic Resonance in the Management of Atrial Fibrillation: A Review. J Imaging 2022; 8:300. [PMID: 36354873 PMCID: PMC9696856 DOI: 10.3390/jimaging8110300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 08/30/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia, and its prevalence is growing with time. Since the introduction of catheter ablation procedures for the treatment of AF, cardiovascular magnetic resonance (CMR) has had an increasingly important role for the treatment of this pathology both in clinical practice and as a research tool to provide insight into the arrhythmic substrate. The most common applications of CMR for AF catheter ablation are the angiographic study of the pulmonary veins, the sizing of the left atrium (LA), and the evaluation of the left atrial appendage (LAA) for stroke risk assessment. Moreover, CMR may provide useful information about esophageal anatomical relationship to LA to prevent thermal injuries during ablation procedures. The use of late gadolinium enhancement (LGE) imaging allows to evaluate the burden of atrial fibrosis before the ablation procedure and to assess procedural induced scarring. Recently, the possibility to assess atrial function, strain, and the burden of cardiac adipose tissue with CMR has provided more elements for risk stratification and clinical decision making in the setting of catheter ablation planning of AF. The purpose of this review is to provide a comprehensive overview of the potential applications of CMR in the workup of ablation procedures for atrial fibrillation.
Collapse
Affiliation(s)
- Davide Tore
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Andrea Biondo
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Andrea Carisio
- Department of Radiology, Humanitas Gradenigo Hospital, 10126 Turin, Italy
| | - Fabio Giorgino
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Ilenia Landolfi
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Katia Rocco
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Salto
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Ambra Santonocito
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Federica Ullo
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Matteo Anselmino
- Division of Cardiology, Department of Medical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
5
|
Vázquez-Calvo S, Roca-Luque I, Porta-Sánchez A. Ventricular Tachycardia Ablation Guided by Functional Substrate Mapping: Practices and Outcomes. J Cardiovasc Dev Dis 2022; 9:jcdd9090288. [PMID: 36135433 PMCID: PMC9501404 DOI: 10.3390/jcdd9090288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Catheter ablation of ventricular tachycardia has demonstrated its important role in the treatment of ventricular tachycardia in patients with structural cardiomyopathy. Conventional mapping techniques used to define the critical isthmus, such as activation mapping and entrainment, are limited by the non-inducibility of the clinical tachycardia or its poor hemodynamic tolerance. To overcome these limitations, a voltage mapping strategy based on bipolar electrograms peak to peak analysis was developed, but a low specificity (30%) for VT isthmus has been described with this approach. Functional mapping strategy relies on the analysis of the characteristics of the electrograms but also their propagation patterns and their response to extra-stimulus or alternative pacing wavefronts to define the targets for ablation. With this review, we aim to summarize the different functional mapping strategies described to date to identify ventricular arrhythmic substrate in patients with structural heart disease.
Collapse
|
6
|
Bauer BK, Meier C, Bietenbeck M, Lange PS, Eckardt L, Yilmaz A. Cardiovascular Magnetic Resonance-Guided Radiofrequency Ablation: Where Are We Now? JACC Clin Electrophysiol 2022; 8:261-274. [PMID: 35210090 DOI: 10.1016/j.jacep.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
The possibilities of cardiovascular magnetic resonance (CMR) imaging for myocardial tissue characterization and catheter ablation guidance are accompanied by some fictional concepts. In this review, we present the available facts about CMR-guided catheter ablation procedures as well as promising, however unproven, theoretical concepts. CMR promises to visualize the respective arrhythmogenic substrate and may thereby make it more localizable for electrophysiology (EP)-based ablation. Robust CMR imaging is challenged by motion of the heart resulting from cardiac and respiratory cycles. In contrast to conventional "passive" tracking of the catheter tip by real-time CMR, novel approaches based on "active" tracking are performed by integrating microcoils into the catheter tip that send a receiver signal. Several experimental and clinical studies were already performed based on real-time CMR for catheter ablation of atrial and ventricular arrhythmias. Importantly, successful ablation of the cavotricuspid isthmus was already performed in patients with typical atrial flutter. However, a complete EP procedure with real-time CMR-guided transseptal puncture and subsequent pulmonary vein isolation has not been shown so far in patients with atrial fibrillation. Moreover, real-time CMR-guided EP for ventricular tachycardia ablation was only performed in animal models using a transseptal, retrograde, or epicardial access-but not in humans. Essential improvements within the next few years regarding basic technical requirements, such as higher spatial and temporal resolution of real-time CMR imaging as well as clinically approved cardiac magnetic resonance-conditional defibrillators, are ultimately required-but can also be expected-and will move this field forward.
Collapse
Affiliation(s)
- Bastian Klemens Bauer
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Claudia Meier
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Michael Bietenbeck
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Philipp Sebastian Lange
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Lars Eckardt
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Ali Yilmaz
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany.
| |
Collapse
|
7
|
Roca-Luque I, Mont-Girbau L. Cardiac Magnetic Resonance for Ventricular Tachycardia Ablation and Risk Stratification. Front Cardiovasc Med 2022; 8:797864. [PMID: 35097017 PMCID: PMC8790056 DOI: 10.3389/fcvm.2021.797864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
Ventricular tachycardia is the most frequent cause of sudden cardiovascular death in patients with structural heart disease. Radiofrequency ablation is the treatment cornerstone in this population. Main mechanism for structural heart disease-related ventricular tachycardia is re-entry due to presence of slow conduction area within the scar tissue. Electroanatomical mapping with high density catheters can elucidate the presence of both scar (voltage maps) and slow conduction (activation maps). Despite the technological improvements recurrence rate after ventricular tachycardia ablation is high. Cardiac magnetic resonance has demonstrated to be useful to define the location of the scar tissue in endocardium, midmyocardium and/or epicardial region. Furthermore, recent studies have shown that cardiac magnetic resonance can analyse in detail the ventricular tachycardia substrate in terms of core scar and border zone tissue. This detailed tissue analysis has been proved to have good correlation with slow conduction areas and ventricular tachycardia isthmuses in electroanatomical maps. This review will provide a summary of the current role of cardiac magnetic resonance in different scenarios related with ventricular tachycardia in patients with structural heart disease, its limitations and the future perspectives.
Collapse
Affiliation(s)
- Ivo Roca-Luque
- Arrhythmia Section, Cardiology Department, Cardiovascular Clinical Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Médica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,*Correspondence: Ivo Roca-Luque
| | - Lluis Mont-Girbau
- Arrhythmia Section, Cardiology Department, Cardiovascular Clinical Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Médica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
8
|
Rier SC, Vreemann S, Nijhof WH, van Driel VJHM, van der Bilt IAC. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. Ther Adv Cardiovasc Dis 2022; 16:17539447221119624. [PMID: 36039865 PMCID: PMC9434707 DOI: 10.1177/17539447221119624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) provides excellent temporal and spatial resolution, tissue characterization, and flow measurements. This enables major advantages when guiding cardiac invasive procedures compared with X-ray fluoroscopy or ultrasound guidance. However, clinical implementation is limited due to limited availability of technological advancements in magnetic resonance imaging (MRI) compatible equipment. A systematic review of the available literature on past and present applications of interventional MR and its technology readiness level (TRL) was performed, also suggesting future applications. METHODS A structured literature search was performed using PubMed. Search terms were focused on interventional CMR, cardiac catheterization, and other cardiac invasive procedures. All search results were screened for relevance by language, title, and abstract. TRL was adjusted for use in this article, level 1 being in a hypothetical stage and level 9 being widespread clinical translation. The papers were categorized by the type of procedure and the TRL was estimated. RESULTS Of 466 papers, 117 papers met the inclusion criteria. TRL was most frequently estimated at level 5 meaning only applicable to in vivo animal studies. Diagnostic right heart catheterization and cavotricuspid isthmus ablation had the highest TRL of 8, meaning proven feasibility and efficacy in a series of humans. CONCLUSION This article shows that interventional CMR has a potential widespread application although clinical translation is at a modest level with TRL usually at 5. Future development should be directed toward availability of MR-compatible equipment and further improvement of the CMR techniques. This could lead to increased TRL of interventional CMR providing better treatment.
Collapse
Affiliation(s)
- Sophie C Rier
- Cardiology Division, Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, Postbus 40551, The Hague 2504 LN, The Netherlands
| | - Suzan Vreemann
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | - Wouter H Nijhof
- Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | | | | |
Collapse
|
9
|
Guo F, Krahn PRP, Escartin T, Roifman I, Wright G. Cine and late gadolinium enhancement MRI registration and automated myocardial infarct heterogeneity quantification. Magn Reson Med 2020; 85:2842-2855. [PMID: 33226667 DOI: 10.1002/mrm.28596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop an approach for automated quantification of myocardial infarct heterogeneity in late gadolinium enhancement (LGE) cardiac MRI. METHODS We acquired 2D short-axis cine and 3D LGE in 10 pigs with myocardial infarct. The 2D cine myocardium was segmented and registered to the LGE images. LGE image signal intensities within the warped cine myocardium masks were analyzed to determine the thresholds of infarct core (IC) and gray zone (GZ) for the standard-deviation (SD) and full-width-at-halfmaximum (FWHM) methods. The initial IC, GZ, and IC + GZ segmentations were postprocessed using a normalized cut approach. Cine segmentation and cine-LGE registration accuracies were evaluated using dice similarity coefficient and average symmetric surface distance. Automated IC, GZ, and IC + GZ volumes were compared with manual results using Pearson correlation coefficient (r), Bland-Altman analyses, and intraclass correlation coefficient. RESULTS For n = 87 slices containing scar, we achieved cine segmentation dice similarity coefficient = 0.87 ± 0.12, average symmetric surface distance = 0.94 ± 0.74 mm (epicardium), and 1.03 ± 0.82 mm (endocardium) in the scar region. For cine-LGE registration, dice similarity coefficient was 0.90 ± 0.06 and average symmetric surface distance was 0.72 ± 0.39 mm (epicardium) and 0.86 ± 0.53 mm (endocardium) in the scar region. For both SD and FWHM methods, automated IC, GZ, and IC + GZ volumes were strongly (r > 0.70) correlated with manual measurements, and the correlations were not significantly different from interobserver correlations (P > .05). The agreement between automated and manual scar volumes (intraclass correlation coefficient = 0.85-0.96) was similar to that between two observers (intraclass correlation coefficient = 0.81-0.99); automated scar segmentation errors were not significantly different from interobserver segmentation differences (P > .05). CONCLUSIONS Our approach provides fully automated cine-LGE MRI registration and LGE myocardial infarct heterogeneity quantification in preclinical studies.
Collapse
Affiliation(s)
- Fumin Guo
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Philippa R P Krahn
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Terenz Escartin
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Idan Roifman
- Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Graham Wright
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Kucukseymen S, Yavin H, Barkagan M, Jang J, Shapira-Daniels A, Rodriguez J, Shim D, Pashakhanloo F, Pierce P, Botzer L, Manning WJ, Anter E, Nezafat R. Discordance in Scar Detection Between Electroanatomical Mapping and Cardiac MRI in an Infarct Swine Model. JACC Clin Electrophysiol 2020; 6:1452-1464. [DOI: 10.1016/j.jacep.2020.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
|
11
|
Mukherjee RK, Costa CM, Neji R, Harrison JL, Sim I, Williams SE, Whitaker J, Chubb H, O'Neill L, Schneider R, Lloyd T, Pohl T, Roujol S, Niederer SA, Razavi R, O'Neill MD. Evaluation of a real-time magnetic resonance imaging-guided electrophysiology system for structural and electrophysiological ventricular tachycardia substrate assessment. Europace 2019; 21:1432-1441. [PMID: 31219547 PMCID: PMC6735875 DOI: 10.1093/europace/euz165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
Aims Potential advantages of real-time magnetic resonance imaging (MRI)-guided electrophysiology (MR-EP) include contemporaneous three-dimensional substrate assessment at the time of intervention, improved procedural guidance, and ablation lesion assessment. We evaluated a novel real-time MR-EP system to perform endocardial voltage mapping and assessment of delayed conduction in a porcine ischaemia–reperfusion model. Methods and results Sites of low voltage and slow conduction identified using the system were registered and compared to regions of late gadolinium enhancement (LGE) on MRI. The Sorensen–Dice similarity coefficient (DSC) between LGE scar maps and voltage maps was computed on a nodal basis. A total of 445 electrograms were recorded in sinus rhythm (range: 30–186) using the MR-EP system including 138 electrograms from LGE regions. Pacing captured at 103 sites; 47 (45.6%) sites had a stimulus-to-QRS (S-QRS) delay of ≥40 ms. Using conventional (0.5–1.5 mV) bipolar voltage thresholds, the sensitivity and specificity of voltage mapping using the MR-EP system to identify MR-derived LGE was 57% and 96%, respectively. Voltage mapping had a better predictive ability in detecting LGE compared to S-QRS measurements using this system (area under curve: 0.907 vs. 0.840). Using an electrical threshold of 1.5 mV to define abnormal myocardium, the total DSC, scar DSC, and normal myocardium DSC between voltage maps and LGE scar maps was 79.0 ± 6.0%, 35.0 ± 10.1%, and 90.4 ± 8.6%, respectively. Conclusion Low-voltage zones and regions of delayed conduction determined using a real-time MR-EP system are moderately associated with LGE areas identified on MRI.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Caroline Mendonca Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK.,Siemens Healthcare, Sir William Siemens Square, Frimley, Camberley, UK
| | - James L Harrison
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK.,Department of Cardiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Iain Sim
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK.,Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Henry Chubb
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Louisa O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | | | - Tom Lloyd
- Imricor Medical Systems, 400 Gateway Blvd, MN, USA
| | | | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK
| | - Mark D O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, North Wing, St Thomas' Hospital, London, UK.,Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Mukherjee RK, Whitaker J, Williams SE, Razavi R, O'Neill MD. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace 2019; 20:1721-1732. [PMID: 29584897 PMCID: PMC6212773 DOI: 10.1093/europace/euy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Catheter ablation has an important role in the management of patients with ventricular tachycardia (VT) but is limited by modest long-term success rates. Magnetic resonance imaging (MRI) can provide valuable anatomic and functional information as well as potentially improve identification of target sites for ablation. A major limitation of current MRI protocols is the spatial resolution required to identify the areas of tissue responsible for VT but recent developments have led to new strategies which may improve substrate assessment. Potential ways in which detailed information gained from MRI may be utilized during electrophysiology procedures include image integration or performing a procedure under real-time MRI guidance. Image integration allows pre-procedural magnetic resonance (MR) images to be registered with electroanatomical maps to help guide VT ablation and has shown promise in preliminary studies. However, multiple errors can arise during this process due to the registration technique used, changes in ventricular geometry between the time of MRI and the ablation procedure, respiratory and cardiac motion. As isthmus sites may only be a few millimetres wide, reducing these errors may be critical to improve outcomes in VT ablation. Real-time MR-guided intervention has emerged as an alternative solution to address the limitations of pre-acquired imaging to guide ablation. There is now a growing body of literature describing the feasibility, techniques, and potential applications of real-time MR-guided electrophysiology. We review whether real-time MR-guided intervention could be applied in the setting of VT ablation and the potential challenges that need to be overcome.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK.,Department of Cardiology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - Mark D O'Neill
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK.,Department of Cardiology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Mukherjee RK, Roujol S, Chubb H, Harrison J, Williams S, Whitaker J, O'Neill L, Silberbauer J, Neji R, Schneider R, Pohl T, Lloyd T, O'Neill M, Razavi R. Epicardial electroanatomical mapping, radiofrequency ablation, and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance-an in vivo feasibility study. Europace 2019; 20:f254-f262. [PMID: 29294008 PMCID: PMC6140436 DOI: 10.1093/europace/eux341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 12/03/2022] Open
Abstract
Aims Magnetic resonance imaging (MRI) is the gold standard for defining myocardial substrate in 3D and can be used to guide ventricular tachycardia ablation. We describe the feasibility of using a prototype magnetic resonance-guided electrophysiology (MR-EP) system in a pre-clinical model to perform real-time MRI-guided epicardial mapping, ablation, and lesion imaging with active catheter tracking. Methods and results Experiments were performed in vivo in pigs (n = 6) using an MR-EP guidance system research prototype (Siemens Healthcare) with an irrigated ablation catheter (Vision-MR, Imricor) and a dedicated electrophysiology recording system (Advantage-MR, Imricor). Following epicardial access, local activation and voltage maps were acquired, and targeted radiofrequency (RF) ablation lesions were delivered. Ablation lesions were visualized in real time during RF delivery using MR-thermometry and dosimetry. Hyper-acute and acute assessment of ablation lesions was also performed using native T1 mapping and late-gadolinium enhancement (LGE), respectively. High-quality epicardial bipolar electrograms were recorded with a signal-to-noise ratio of greater than 10:1 for a signal of 1.5 mV. During epicardial ablation, localized temperature elevation could be visualized with a maximum temperature rise of 35 °C within 2 mm of the catheter tip relative to remote myocardium. Decreased native T1 times were observed (882 ± 107 ms) in the lesion core 3–5 min after lesion delivery and relative location of lesions matched well to LGE. There was a good correlation between ablation lesion site on the iCMR platform and autopsy. Conclusion The MR-EP system was able to successfully acquire epicardial voltage and activation maps in swine, deliver, and visualize ablation lesions, demonstrating feasibility for intraprocedural guidance and real-time assessment of ablation injury.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Sébastien Roujol
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Henry Chubb
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - James Harrison
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Steven Williams
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - John Whitaker
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Louisa O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - John Silberbauer
- Department of Cardiology, Brighton and Sussex University Hospital NHS Trust, Eastern Road, Brighton, UK
| | - Radhouene Neji
- Siemens Healthcare, Sir William Siemens Square, Frimley, Camberley, UK
| | | | | | - Tom Lloyd
- Imricor Medical Systems, 400 Gateway Blvd, Burnsville, MN, USA
| | - Mark O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, UK
| |
Collapse
|
14
|
Mukherjee RK, Chubb H, Roujol S, Razavi R, O’Neill MD. Advances in Real-Time MRI-Guided Electrophysiology. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:6. [PMID: 31501689 PMCID: PMC6733706 DOI: 10.1007/s12410-019-9481-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Theoretical benefits of real-time MRI guidance over conventional electrophysiology include contemporaneous 3D substrate assessment and accurate intra-procedural guidance and evaluation of ablation lesions. We review the unique challenges inherent to MRI-guided electrophysiology and how to translate the potential benefits in the treatment of cardiac arrhythmias. RECENT FINDINGS Over the last 5 years, there has been substantial progress, initially in animal models and more recently in clinical studies, to establish methods and develop workflows within the MR environment that resemble those of conventional electrophysiology laboratories. Real-time MRI-guided systems have been used to perform electroanatomic mapping and ablation in patients with atrial flutter, and there is interest in developing the technology to tackle more complex arrhythmias including atrial fibrillation and ventricular tachycardia. SUMMARY Mainstream adoption of real-time MRI-guided electrophysiology will require demonstration of clinical benefit and will be aided by increased availability of devices suitable for use in the MRI environment.
Collapse
Affiliation(s)
- Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, North Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Henry Chubb
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, North Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, North Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, North Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Mark D. O’Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, North Wing, St Thomas’ Hospital, London, SE1 7EH UK
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Acosta J, Andreu D, Penela D, Cabrera M, Carlosena A, Korshunov V, Vassanelli F, Borras R, Martínez M, Fernández-Armenta J, Linhart M, Tolosana JM, Mont L, Berruezo A. Elucidation of hidden slow conduction by double ventricular extrastimuli: a method for further arrhythmic substrate identification in ventricular tachycardia ablation procedures. Europace 2018; 20:337-346. [PMID: 28017938 DOI: 10.1093/europace/euw325] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/21/2016] [Indexed: 11/12/2022] Open
Abstract
Aims Identification of local abnormal electrograms (EGMs) during ventricular tachycardia substrate ablation (VTSA) is challenging when they are hidden within the far-field signal. This study analyses whether the response to a double ventricular extrastimulus during substrate mapping could identify slow conducting areas that are hidden during sinus rhythm. Methods and results Consecutive patients (n = 37) undergoing VTSA were prospectively included. Bipolar EGMs with >3 deflections and duration <133 ms were considered as potential hidden slow conduction EGMs (HSC-EGM) if located within/surrounding the scar area. Whenever a potential HSC-EGM was identified, a double ventricular extrastimulus was delivered. If the local potential delayed, it was annotated as HSC-EGM. The incidence of HSC-EGM in core, border-zone, and normal-voltage regions was determined. Ablation was delivered at conducting channel entrances and HSC-EGMs. VT inducibility after VTSA obtained was compared with data from a historic control group. 2417 EGMs were analyzed. 575 (23.7%) qualified as potential HSC-EGM, and 198 of them were tagged as HSC-EGMs. Scars in patients with HSC-EGMs (n = 21, 56.7%) were smaller (35.424.7 vs 67.639.1 cm2; P = 0.006) and more heterogeneous (core/scar area ratio 0.250.2 vs 0.450.19; P = 0.02). 28.8% of HSC-EGMs were located in normal-voltage tissue; 81.3% were targeted for ablation. Patients undergoing VTSA incorporating HSC analysis needed less radiofrequency time (17.411 vs 2310.7 minutes; P = 0.016) and had a lower rate of VT inducibility after VTSA than the historic controls (24.3% vs 50%; P = 0.018). Conclusion Ventricular tachycardia substrate ablation incorporating HSC analysis allowed further arrhythmic substrate identification (especially in normal-voltage areas) and reduced RF time and VT inducibility after VTSA.
Collapse
Affiliation(s)
- Juan Acosta
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - David Andreu
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Diego Penela
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Mario Cabrera
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Alicia Carlosena
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Viatcheslav Korshunov
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Francesca Vassanelli
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Roger Borras
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Mikel Martínez
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Juan Fernández-Armenta
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Markus Linhart
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - José M Tolosana
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Antonio Berruezo
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic and IDIBAPS (Institut d'Investigació Agustí Pi i Sunyer), C/Villarroel 170, 08036 Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Krahn PRP, Singh SM, Ramanan V, Biswas L, Yak N, Anderson KJT, Barry J, Pop M, Wright GA. Cardiovascular magnetic resonance guided ablation and intra-procedural visualization of evolving radiofrequency lesions in the left ventricle. J Cardiovasc Magn Reson 2018; 20:20. [PMID: 29544514 PMCID: PMC5856306 DOI: 10.1186/s12968-018-0437-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/15/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Radiofrequency (RF) ablation has become a mainstay of treatment for ventricular tachycardia, yet adequate lesion formation remains challenging. This study aims to comprehensively describe the composition and evolution of acute left ventricular (LV) lesions using native-contrast cardiovascular magnetic resonance (CMR) during CMR-guided ablation procedures. METHODS RF ablation was performed using an actively-tracked CMR-enabled catheter guided into the LV of 12 healthy swine to create 14 RF ablation lesions. T2 maps were acquired immediately post-ablation to visualize myocardial edema at the ablation sites and T1-weighted inversion recovery prepared balanced steady-state free precession (IR-SSFP) imaging was used to visualize the lesions. These sequences were repeated concurrently to assess the physiological response following ablation for up to approximately 3 h. Multi-contrast late enhancement (MCLE) imaging was performed to confirm the final pattern of ablation, which was then validated using gross pathology and histology. RESULTS Edema at the ablation site was detected in T2 maps acquired as early as 3 min post-ablation. Acute T2-derived edematous regions consistently encompassed the T1-derived lesions, and expanded significantly throughout the 3-h period post-ablation to 1.7 ± 0.2 times their baseline volumes (mean ± SE, estimated using a linear mixed model determined from n = 13 lesions). T1-derived lesions remained approximately stable in volume throughout the same time frame, decreasing to 0.9 ± 0.1 times the baseline volume (mean ± SE, estimated using a linear mixed model, n = 9 lesions). CONCLUSIONS Combining native T1- and T2-based imaging showed that distinctive regions of ablation injury are reflected by these contrast mechanisms, and these regions evolve separately throughout the time period of an intervention. An integrated description of the T1-derived lesion and T2-derived edema provides a detailed picture of acute lesion composition that would be most clinically useful during an ablation case.
Collapse
Affiliation(s)
- Philippa R. P. Krahn
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Toronto, ON Canada
| | - Sheldon M. Singh
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON Canada
- Division of Cardiology, Schulich Heart Centre, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | | | | | - Nicolas Yak
- Sunnybrook Research Institute, Toronto, ON Canada
| | | | | | - Mihaela Pop
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Toronto, ON Canada
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON Canada
| | - Graham A. Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Toronto, ON Canada
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON Canada
| |
Collapse
|
17
|
Manning WJ. Review of Journal of Cardiovascular Magnetic Resonance (JCMR) 2015-2016 and transition of the JCMR office to Boston. J Cardiovasc Magn Reson 2017; 19:108. [PMID: 29284487 PMCID: PMC5747150 DOI: 10.1186/s12968-017-0423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
The Journal of Cardiovascular Magnetic Resonance (JCMR) is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2016, the JCMR published 93 manuscripts, including 80 research papers, 6 reviews, 5 technical notes, 1 protocol, and 1 case report. The number of manuscripts published was similar to 2015 though with a 12% increase in manuscript submissions to an all-time high of 369. This reflects a decrease in the overall acceptance rate to <25% (excluding solicited reviews). The quality of submissions to JCMR continues to be high. The 2016 JCMR Impact Factor (which is published in June 2016 by Thomson Reuters) was steady at 5.601 (vs. 5.71 for 2015; as published in June 2016), which is the second highest impact factor ever recorded for JCMR. The 2016 impact factor means that the JCMR papers that were published in 2014 and 2015 were on-average cited 5.71 times in 2016.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in the order that they are accepted with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes with previously published JCMR papers to guide continuity of thought in the journal. In addition, I have elected to open this publication with information for the readership regarding the transition of the JCMR editorial office to the Beth Israel Deaconess Medical Center, Boston and the editorial process.Though there is an author publication charge (APC) associated with open-access to cover the publisher's expenses, this format provides a much wider distribution/availability of the author's work and greater manuscript citation. For SCMR members, there is a substantial discount in the APC. I hope that you will continue to send your high quality manuscripts to JCMR for consideration. Importantly, I also ask that you consider referencing recent JCMR publications in your submissions to the JCMR and elsewhere as these contribute to our impact factor. I also thank our dedicated Associate Editors, Guest Editors, and reviewers for their many efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the leading publication in our field.
Collapse
Affiliation(s)
- Warren J Manning
- From the Journal of Cardiovascular Magnetic Resonance Editorial Office and the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Campbell-Washburn AE, Tavallaei MA, Pop M, Grant EK, Chubb H, Rhode K, Wright GA. Real-time MRI guidance of cardiac interventions. J Magn Reson Imaging 2017; 46:935-950. [PMID: 28493526 PMCID: PMC5675556 DOI: 10.1002/jmri.25749] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 11/09/2022] Open
Abstract
Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:935-950.
Collapse
Affiliation(s)
- Adrienne E Campbell-Washburn
- Laboratory of Imaging Technology, Biochemistry and Biophysics Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohammad A Tavallaei
- Physical Sciences Platform and Schulich Heart Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mihaela Pop
- Physical Sciences Platform and Schulich Heart Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Elena K Grant
- Laboratory of Imaging Technology, Biochemistry and Biophysics Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Cardiology, Children's National Medical Center, Washington, DC, USA
| | - Henry Chubb
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - Kawal Rhode
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - Graham A Wright
- Physical Sciences Platform and Schulich Heart Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Chubb H, Harrison JL, Weiss S, Krueger S, Koken P, Bloch LØ, Kim WY, Stenzel GS, Wedan SR, Weisz JL, Gill J, Schaeffter T, O’Neill MD, Razavi RS. Development, Preclinical Validation, and Clinical Translation of a Cardiac Magnetic Resonance - Electrophysiology System With Active Catheter Tracking for Ablation of Cardiac Arrhythmia. JACC Clin Electrophysiol 2017; 3:89-103. [DOI: 10.1016/j.jacep.2016.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|
20
|
Lutfi MF. Ventricular late potential in cardiac syndrome X compared to coronary artery disease. BMC Cardiovasc Disord 2017; 17:35. [PMID: 28103808 PMCID: PMC5244555 DOI: 10.1186/s12872-017-0469-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although ventricular late potential (VLP) was extensively studied in risk stratification of myocardial infarction (MI) patients, comparable researches evaluating presence of VLP in MI-free coronary artery disease (CAD) and cardiac syndrome X (CSX) subjects are scarce. This study aimed to compare presence of VLP between CSX and CAD patients. METHODS Signal average ECG (SAECG) was performed to 49 patients with a history of typical cardiac pain before undergoing diagnostic coronary angiography (DCA) in Al-Shaab cardiac center, Khartoum, Sudan. QRS duration, duration of the terminal part of the QRS complex with amplitude less than 40 microvolts (LAS40) and the root mean square voltage of the terminal 40 milliseconds (RMS40) of the filtered QRS complex were identified for each patient. Presence of two or more of QRS duration > 120 ms, RMS40 > 38 ms and LAS40 < 20 μV was considered indicative of VLP. Associations between VLP and patients grouped according to DCA results were assessed using appropriate statistical tests. RESULTS VLP was present in 11.11% (3.63%-24.66%) and 15.38% (2.66%-42.23%) of patients with CAD and CSX respectively. Presence of VLP was comparable in patients with CAD and CSX (OR = 0.69, 95% CI = 0.11-6.05, P = 0.692), even after controlling for the possible variations in gender, age, body mass index (BMI), hypertension and diabetes mellitus in the studied groups. CONCLUSION Presence of VLP is comparable among CSX and CAD patients.
Collapse
Affiliation(s)
- Mohamed Faisal Lutfi
- Department of Physiology, Faculty of Medicine and Health Sciences, Al-Neelain University, Khartoum, Sudan.
| |
Collapse
|
21
|
Chubb H, Williams SE, Whitaker J, Harrison JL, Razavi R, O'Neill M. Cardiac Electrophysiology Under MRI Guidance: an Emerging Technology. Arrhythm Electrophysiol Rev 2017; 6:85-93. [PMID: 28845235 DOI: 10.15420/aer.2017.1.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
MR-guidance of electrophysiological (EP) procedures offers the potential for enhanced arrhythmia substrate assessment, improved procedural guidance and real-time assessment of ablation lesion formation. Accurate device tracking techniques, using both active and passive methods, have been developed to offer an interface similar to electroanatomic mapping platforms, and MR-compatible EP equipment continues to be developed. Progress to clinical implementation of these technically complex fields has been relatively slow over the last 10 years, but recent developments have led to successful clinical experience. However, further advances, particularly in harnessing the full imaging potential of CMR, are required to realise the mainstream adoption of this powerful guidance modality.
Collapse
Affiliation(s)
| | - Steven E Williams
- King's College London, London, UK.,Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - James L Harrison
- King's College London, London, UK.,Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Mark O'Neill
- King's College London, London, UK.,Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Pennell DJ, Baksi AJ, Prasad SK, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider JE, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2015. J Cardiovasc Magn Reson 2016; 18:86. [PMID: 27846914 PMCID: PMC5111217 DOI: 10.1186/s12968-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D. J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - A. J. Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - R. H. Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - F. Alpendurada
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. V. Babu-Narayan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - J. E. Schneider
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - D. N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| |
Collapse
|