1
|
Morales-Hernández A. Patrolling progenitors: a first responder team. Blood 2024; 143:1883-1884. [PMID: 38722657 DOI: 10.1182/blood.2024024443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
|
2
|
Quaranta P, Basso-Ricci L, Jofra Hernandez R, Pacini G, Naldini MM, Barcella M, Seffin L, Pais G, Spinozzi G, Benedicenti F, Pietrasanta C, Cheong JG, Ronchi A, Pugni L, Dionisio F, Monti I, Giannelli S, Darin S, Fraschetta F, Barera G, Ferrua F, Calbi V, Ometti M, Di Micco R, Mosca F, Josefowicz SZ, Montini E, Calabria A, Bernardo ME, Cicalese MP, Gentner B, Merelli I, Aiuti A, Scala S. Circulating hematopoietic stem/progenitor cell subsets contribute to human hematopoietic homeostasis. Blood 2024; 143:1937-1952. [PMID: 38446574 PMCID: PMC11106755 DOI: 10.1182/blood.2023022666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).
Collapse
Affiliation(s)
- Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Pacini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Seffin
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Pietrasanta
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Ometti
- Department of Orthopedics and Traumatology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Steven Zvi Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Rincon JC, Efron PA, Moldawer LL. Immunopathology of chronic critical illness in sepsis survivors: Role of abnormal myelopoiesis. J Leukoc Biol 2022; 112:1525-1534. [PMID: 36193662 PMCID: PMC9701155 DOI: 10.1002/jlb.4mr0922-690rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sepsis remains the single most common cause of mortality and morbidity in hospitalized patients requiring intensive care. Although earlier detection and improved treatment bundles have reduced in-hospital mortality, long-term recovery remains dismal. Sepsis survivors who experience chronic critical illness often demonstrate persistent inflammation, immune suppression, lean tissue wasting, and physical and functional cognitive declines, which often last in excess of 1 year. Older patients and those with preexisting comorbidities may never fully recover and have increased mortality compared with individuals who restore their immunologic homeostasis. Many of these responses are shared with individuals with advanced cancer, active autoimmune diseases, chronic obstructive pulmonary disease, and chronic renal disease. Here, we propose that this resulting immunologic endotype is secondary to a persistent maladaptive reprioritization of myelopoiesis and pathologic activation of myeloid cells. Driven in part by the continuing release of endogenous alarmins from chronic organ injury and muscle wasting, as well as by secondary opportunistic infections, ongoing myelopoiesis at the expense of lymphopoiesis and erythropoiesis leads to anemia, recurring infections, and lean tissue wasting. Early recognition and intervention are required to interrupt this pathologic activation of myeloid populations.
Collapse
Affiliation(s)
- Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Laboratory of Inflammation Biology and Surgical Science, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Laboratory of Inflammation Biology and Surgical Science, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Laboratory of Inflammation Biology and Surgical Science, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
4
|
Evidence of Stem Cells Mobilization in the Blood of Patients with Pancreatitis: A Potential Link with Disease Severity. Stem Cells Int 2022; 2022:5395248. [PMID: 35846982 PMCID: PMC9286984 DOI: 10.1155/2022/5395248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
A growing number of studies indicate the potential involvement of various populations of bone marrow-derived stem cells (BMSCs) in tissue repair. However, the mobilization of BMSCs to the peripheral blood (PB) in acute and chronic pancreatitis (AP and CP) has not been investigated. A total of 78 patients were assigned into AP, CP, and healthy control groups in this study. Using flow cytometry, we found that VSELs, EPCs, and CD133+SCs were mobilized to the PB of patients with both AP and CP. Interestingly, AP and CP patients exhibited lower absolute number of circulating MSCs in the PB compared to healthy individuals. SC mobilization to the PB was more evident in patients with AP than CP and in patients with moderate/severe AP than mild AP. Using ELISA, we found a significantly increased HGF concentration in the PB of patients with AP and SDF1α in the PB of patients with CP. We noted a significant positive correlation between SDF1α concentration and the mobilized population of CD133+SCs in AP and between C5a and the mobilized population of VSELs moderate/severe AP. Thus, bone marrow-derived SCs may play a role in the regeneration of pancreatic tissue in both AP and CP, and mobilization of VSELs to the PB depends on the severity of AP.
Collapse
|
5
|
Skirecki T, Drechsler S, Jeznach A, Hoser G, Jafarmadar M, Kawiak J, Osuchowski MF. An Early Myelosuppression in the Acute Mouse Sepsis Is Partly Outcome-Dependent. Front Immunol 2021; 12:708670. [PMID: 34367170 PMCID: PMC8339578 DOI: 10.3389/fimmu.2021.708670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
Adult hematopoietic stem and progenitor cells (HSPCs) respond to bacterial infections by expansion to myeloid cells. Sepsis impairs this process by suppressing differentiation of stem cells subsequently contributing to an ineffective immune response. Whether the magnitude of HSPCs impairment in sepsis is severity-dependent remains unknown. This study investigated dynamics of the HSPC immune-inflammatory response in the bone marrow, splenic, and blood compartments in moribund and surviving septic mice. The 12-week-old outbred CD-1 female mice (n=65) were subjected to a cecal ligation and puncture (CLP) sepsis, treated with antibiotics and fluid resuscitation, and stratified into predicted-to-die (P-DIE) and predicted-to-survive (P-SUR) cohorts for analysis. CLP strongly reduced the common myeloid and multipotent progenitors, short- and long-term hematopoietic stem cell (HSC) counts in the bone marrow; lineage−ckit+Sca-1+ and short-term HSC suppression was greater in P-DIE versus P-SUR mice. A profound depletion of the common myeloid progenitors occurred in the blood (by 75%) and spleen (by 77%) of P-DIE. In P-SUR, most common circulating HSPCs subpopulations recovered to baseline by 72 h post-CLP. Analysis of activated caspase-1/-3/-7 revealed an increased apoptotic (by 30%) but not pyroptotic signaling in the bone marrow HSCs of P-DIE mice. The bone marrow from P-DIE mice revealed spikes of IL-6 (by 5-fold), CXCL1/KC (15-fold), CCL3/MIP-1α (1.7-fold), and CCL2/MCP-1 (2.8-fold) versus P-SUR and control (TNF, IFN-γ, IL-1β, -5, -10 remained unaltered). Summarizing, our findings demonstrate that an early sepsis-induced impairment of myelopoiesis is strongly outcome-dependent but varies among compartments. It is suggestive that the HSCPC loss is at least partly due to an increased apoptosis but not pyroptosis.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| | - Aldona Jeznach
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| |
Collapse
|
6
|
Kelly LS, Darden DB, Fenner BP, Efron PA, Mohr AM. The Hematopoietic Stem/Progenitor Cell Response to Hemorrhage, Injury, and Sepsis: A Review of Pathophysiology. Shock 2021; 56:30-41. [PMID: 33234838 PMCID: PMC8141062 DOI: 10.1097/shk.0000000000001699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Hematopoietic stem/progenitor cells (HSPC) have both unique and common responses following hemorrhage, injury, and sepsis. HSPCs from different lineages have a distinctive response to these "stress" signals. Inflammation, via the production of inflammatory factors, including cytokines, hormones, and interferons, has been demonstrated to impact the differentiation and function of HSPCs. In response to injury, hemorrhagic shock, and sepsis, cellular phenotypic changes and altered function occur, demonstrating the rapid response and potential adaptability of bone marrow hematopoietic cells. In this review, we summarize the pathophysiology of emergency myelopoiesis and the role of myeloid-derived suppressor cells, impaired erythropoiesis, as well as the mobilization of HSPCs from the bone marrow. Finally, we discuss potential therapeutic options to optimize HSPC function after severe trauma or infection.
Collapse
Affiliation(s)
- Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | |
Collapse
|
7
|
Sepsis and Septic Shock; Current Treatment Dilemma and Role of Stem Cell Therapy in Pediatrics. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Sepsis’s primary therapy consists of antibiotics therapy, supportive therapies, and source control of infection. The failure rate of this approach is about 20 - 40%. The widespread use of antibiotics has caused multiple drug resistance in primary etiological agents of sepsis in community-acquired and healthcare-associated infections. In the absence of new antibiotic options, alternative treatment modalities seem necessary. Evidence Acquisition: Herein, we have reviewed and discussed current problems with sepsis management and stem cell therapy in sepsis, preclinical, experimental studies, and early-phase clinical trials using stem cells to treat sepsis. In the preparation of the paper, PubMed, Web of Science Core Collection (Clarivate), Scopus, and the web address (www.clinicaltrials.gov) were searched by the keywords (sepsis and cell therapy, septic shock, and cell therapy). Results: After the inclusion of criteria, we reviewed 301 original articles. Few articles were found for phase II and phase III clinical trials. Eighty-three articles were included in the current review article. Besides problems with infection source control, the host immune response to the infection enumerated for primary underlying pathophysiologic dysregulation of sepsis and complicated the treatment. Mesenchymal stem cells (MSCs) therapy offers a promising treatment option for sepsis. Indeed, immunomodulatory properties, antimicrobial activity, the capacity of protection against organ failure, enhance the resolution of tissue injury, tissue repair, and restoration after sepsis confer MSCs with a significant advantage to treat the immune and inflammatory dysfunctions associated with severe sepsis and septic shock. Conclusions: It seems that MSCs therapy exhibits an appropriate safety index. Future trials should focus on strengthening study quality, reporting MSCs’ therapeutic effects and adverse events. Although early clinical trials seem promising and have beneficial effects, we need more controlled clinical studies, especially in phases II and III.
Collapse
|
8
|
Wang P, Wang J, Li YH, Wang L, Shang HC, Wang JX. Phenotypical Changes of Hematopoietic Stem and Progenitor Cells in Sepsis Patients: Correlation With Immune Status? Front Pharmacol 2021; 11:640203. [PMID: 33542693 PMCID: PMC7850983 DOI: 10.3389/fphar.2020.640203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Sepsis is life-threatening organ dysfunction associated with high risk of death. The immune response of sepsis is complex and varies over time. The immune cells are derived from hematopoietic stem and progenitor cells (HSPCs) which can respond to many infections. Our previous study found that sepsis causes HSPC dysregulation in mouse. But few studies have previously investigated the kinetics of HSPC and its contribution to immune system in sepsis patients. Purpose: We aimed to identify the kinetics of HSPCs and their contribution to immune system in sepsis patients. Methods: We enrolled eight sepsis patients and five healthy control subjects. Peripheral blood (PB) samples from each patient were collected three times: on the first, fourth, and seventh days, once from each healthy control subject. Peripheral blood mononuclear cells (PBMCs) were isolated by density centrifugation and stained with cocktails of antibodies. Populations of HSPCs and their subpopulation were analyzed by flow cytometry. Immune cells were characterized by flow cytometry and blood cell analysis. Correlations between HSPCs and immune cells were analyzed using the Pearson correlation test. Results: We found that the frequency of HSPCs (CD34+ cells and CD34+CD38+ cells) in sepsis patients on day 4 was significantly higher than that in the healthy controls. The most pronounced change in subpopulation analysis is the frequency of common myeloid progenitors (CMPs; CD34+CD38+CD135+CD45RA−). But no difference in the immunophenotypically defined hematopoietic stem cells (HSCs; CD34+CD38−CD90+CD45RA−) in sepsis patients was observed due to rare HSC numbers in PB. The number of PBMCs and lymphocytes are decreased, whereas the white blood cell (WBC) and neutrophil counts were increased in sepsis patients. Importantly, we found a negative correlation between CD34+ on day 1 and WBC and lymphocytes on day 4 from correlation analysis in sepsis patients. Conclusion: The present study demonstrated that the HSPC and its subpopulation in sepsis patients expanded. Importantly, the changes in HSPCs at early time points in sepsis patients have negative correlations with later immune cells. Our results may provide a novel diagnostic indicator and a new therapeutic approach.
Collapse
Affiliation(s)
- Ping Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Hao Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Wang
- Department of Critical Care Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Xun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
High mobilization of CD133+/CD34+ cells expressing HIF-1α and SDF-1α in septic abdominal surgical patients. BMC Anesthesiol 2020; 20:158. [PMID: 32593288 PMCID: PMC7320250 DOI: 10.1186/s12871-020-01068-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
Background The control of endothelial progenitor cells (CD133+/CD34+ EPCs) migrating from bone marrow to peripheral blood is not completely understood. Emerging evidence suggests that stromal cell-derived factor-1α (SDF-1α) mediates egression of EPCs from bone marrow, while the hypoxia inducible factor (HIF) transcriptional system regulates SDF-1α expression. Our study aimed to investigate the time course of circulating CD133+/CD34+ EPCs and its correlation with the expression of HIF-1α protein and SDF-1α in postoperative laparoscopic abdominal septic patients. Methods Postoperative patients were divided in control (C group) and septic group (S group) operated immediately after the diagnosis of sepsis/septic shock. Blood samples were collected at baseline (0), 1, 3 and 7 postoperative days for CD133+/CD34+ EPCs count expressing or not the HIF-1α and SDF-1α analysis. Results Thirty-two patients in S group and 39 in C group were analyzed. In C group CD133+/CD34+ EPCs count remained stable throughout the study period, increasing on day 7 (173 [0–421] /μl vs baseline: P = 0.04; vs day 1: P = 0.002). In S group CD133+/CD34+ EPCs count levels were higher on day 3 (vs day 1: P = 0.006 and day 7: P = 0.026). HIF-1α expressing CD133+/CD34+ EPCs count decreased on day 1 as compared with the other days in C group (day 0 vs 1: P = 0.003, days 3 and 7 vs 1: P = 0.008), while it was 321 [0–1418] /μl on day 3 (vs day 1; P = 0.004), and 400 [0–587] /μl on day 7 in S group. SDF-1α levels were higher not only on baseline but also on postoperative day 1 in S vs C group (219 [124–337] pg/ml vs 35 [27–325] pg/ml, respectively; P = 0.01). Conclusion Our results indicate that sepsis in abdominal laparoscopic patients might constitute an additional trigger of the EPCs mobilization as compared with non-septic surgical patients. A larger mobilization of CD133+/CD34+ EPCs, preceded by enhanced plasmatic SDF-1α, occurs in septic surgical patients regardless of HIF-1α expression therein. Trial registration ClinicalTrials.gov no. NCT02589535. Registered 28 October 2015.
Collapse
|
10
|
Hu X, Qin X, Gu X, Wang H, Zhou W. Effect of lymphocyte-to-monocyte ratio on survival in septic patients: an observational cohort study. Arch Med Sci 2020; 20:790-797. [PMID: 39050157 PMCID: PMC11264070 DOI: 10.5114/aoms.2020.92692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2019] [Indexed: 07/27/2024] Open
Abstract
Introduction The purpose of the present study was to evaluate the potential relationship of lymphocyte-to-monocyte ratio (LMR) with outcomes of septic patients at intensive care unit (ICU) admission. Material and methods 3087 septic patients were included in the final cohort by using the Medical Information Mart for Intensive Care (MIMIC) database. We evaluated the association of different groups of LMRmax with 28-day survival and 1-year survival via Kaplan-Meier (K-M) analysis and Cox regression analysis. Subgroups analysis of LMRmax was performed to further explore the effect of LMRmax on survival. Results According to the optimal cut-off value, the cohort was divided into low-LMRmax and high-LMRmax groups. The 28-day and 1-year survival rates were 47.9% and 19.9%, respectively, in the low-LMRmax group, and 60.4% and 25.9%, respectively, in the high-LMRmax group. Univariate logistic regression and K-M analyses revealed that the 28-day and 1-year survival rates of the high-LMRmax group were higher than those of the low-LMRmax group (both p < 0.001). A subgroup analysis of LMRmax identified a significant stepwise decrease in the risk of death at 28 days and 1 year from group 1 to group 4 (LMRmax increased gradually) after adjustment for multiple variables. Conclusions We report for the first time that a lower LMRmax value is independently predictive of a poor prognosis in septic patients. Therefore, as an inexpensive and readily available indicator, LMRmax may facilitate stratification of prognosis in septic patients.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyi Qin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Gu
- Department of Pneumology, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hailong Wang
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zhou
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Mobilization of Stem and Progenitor Cells in Septic Shock Patients. Sci Rep 2019; 9:3289. [PMID: 30824730 PMCID: PMC6397313 DOI: 10.1038/s41598-019-39772-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Septic shock is associated with multiple injuries to organs and tissues. These events may induce the regenerative response of adult stem cells. However, little is known about how endogenous stem cells are modulated by sepsis. This study analyzed the circulation of hematopoietic stem cells (HSCs), endothelial progenitor cells (EPCs) and very small embryonic-like stem cells (VSELs) in the peripheral blood of patients with septic shock. Thirty-three patients with septic shock and twenty-two healthy control subjects were enrolled in this prospective observational study. Blood samples were collected on the first, third and seventh days of septic shock. Populations of stem cells were analyzed by flow cytometry. Chemotactic mediators were analyzed by HPLC and ELISA. Populations of early HSCs (Lin-CD133+CD45+ and CD34+CD38−) were mobilized to the peripheral blood after an initial decrease. Mobilized HSCs showed significantly increased expression of Ki-67, a marker of cell proliferation. Circulating EPCs and VSELs were mobilized to the blood circulation upon the first day of sepsis. Patients with a greater number of Lin-CD133+CD45+ HSCs and Lin-CD34+CD45− VSELs had a significantly lower probability of 60-day survival. The concentration of CXCL12 was elevated in the blood of septic patients, while the concentration of sphingosine-1-phosphate was significantly decreased. As an emergency early response to sepsis, VSELs and EPCs were mobilized to the peripheral blood, while the HSCs showed delayed mobilization. Differential mobilization of stem cell subsets reflected changes in the concentration of chemoattractants in the blood. The relationship between the probability of death and a large number of HSCs and VSELs in septic shock patients can be used as a novel prognostic marker and may provide new therapeutic approaches.
Collapse
|
12
|
Leung KT, Lam HS, Chan KYY, Sit T, Wong RPO, Yu JWS, Li K, Ng PC. Regulation of Circulating Hematopoietic Stem/Progenitor Cells in Preterm Infants with Septicemia. Stem Cells Dev 2016; 25:1780-1787. [PMID: 27596606 DOI: 10.1089/scd.2016.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Preterm infants are at high risk of developing severe sepsis. Circulating hematopoietic stem and progenitor cells (HSPCs; CD45+CD34+) have been suggested to play a vital role in the host immunological defense against invading pathogens. The objectives were to investigate the regulation of circulating HSPCs in preterm infants during infection episodes, and to assess the relationship of CD45+CD34+ cells with immunological mediators and differential leukocyte populations. First, we conducted a cross-sectional case-control study comparing these parameters among infected infants (n = 23), gestational and postnatal age-matched noninfected infants (n = 46), and "healthy" control (CTL) infants (n = 12). Second, we investigated the longitudinal change of CD45+CD34+ cell concentrations in infected infants before, during, and after an infection episode, and compared them with the other two groups. Our cross-sectional results showed that CD45+CD34+ cell count and percentage were significantly reduced in infected infants during systemic infection, compared with the noninfected or CTL infants. There were significant positive correlation between levels of CD45+CD34+ cells and lymphocytes or monocytes, and significant negative correlation between CD45+CD34+ cells and neutrophils or interleukin (IL)-6 in infected infants. Longitudinal analysis showed that changes of CD45+CD34+ cells at the onset of sepsis relative to levels 1 week prior and 1 week postsepsis in infected infants were significantly different from those changes in the corresponding time points for the other two groups. Our findings suggested that circulating HSPCs were dynamically regulated during septicemia and could play an important role in the defense mechanism, plausibly contributing to replenishment of leukocytes during sepsis in preterm infants.
Collapse
Affiliation(s)
- Kam Tong Leung
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Hugh Simon Lam
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Kathy Yuen Yee Chan
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Tony Sit
- 2 Department of Statistics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Raymond Pui On Wong
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Jasmine Wai Sum Yu
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Karen Li
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| | - Pak Cheung Ng
- 1 Department of Pediatrics, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| |
Collapse
|
13
|
Koutroumpi M, Dimopoulos S, Psarra K, Kyprianou T, Nanas S. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects. World J Cardiol 2012; 4:312-326. [PMID: 23272272 PMCID: PMC3530787 DOI: 10.4330/wjc.v4.i12.312] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 02/06/2023] Open
Abstract
Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations.
Collapse
Affiliation(s)
- Matina Koutroumpi
- Matina Koutroumpi, Stavros Dimopoulos, Serafim Nanas, Cardiopulmonary Exercise Testing and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | | | | | | | | |
Collapse
|
14
|
The role of plasma granulocyte colony stimulating factor and bone marrow dysfunction after severe trauma. J Am Coll Surg 2012; 216:57-64. [PMID: 23063381 DOI: 10.1016/j.jamcollsurg.2012.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bone marrow dysfunction is common in severely injured trauma patients, with release of hematopoietic progenitor cells (HPC) into the peripheral blood. Granulocyte colony stimulating factor (G-CSF) is a potent stimulator of HPC mobilization. We hypothesized that plasma G-CSF levels are elevated after trauma and correlate with postinjury anemia and infection. STUDY DESIGN Blood from 83 severely injured patients was collected at several time points for determination of G-CSF levels and HPC mobilization and compared with that from healthy volunteers. Data were categorized by age, sex, Injury Severity Score (ISS), and whether the patient was in shock. Hemoglobin and transfusion requirements and hospital-acquired infection data were recorded. Data are expressed as mean ± SEM. RESULTS After trauma, there is a 50-fold increase in plasma levels of G-CSF in trauma patients compared with controls (1,640.4 ± 304.3 pg/mL vs 33.0 ± 6.8 pg/mL, p < 0.001). Patients who presented in shock had 5-times higher G-CSF levels than nonshock trauma patients and a 75-fold increase compared with controls (2,528.7 ± 536.4 pg/mL vs 728.0 ± 191.0 pg/mL vs 33.0 ± 6.8 pg/mL, p < 0.001). Age, sex, and ISS had no effect on G-CSF levels. Mobilization of HPC was sustained for up to 10 days after injury and involved multiple cells types. Higher G-CSF levels were also associated with lower hemoglobin levels and greater transfusion requirements 3 weeks after injury and a higher incidence of hospital-acquired pneumonia and bacteremia. CONCLUSIONS Plasma G-CSF is markedly elevated after injury and is greater in patients who present in shock. The rise in G-CSF was also associated with prolonged mobilization of HPC. Elevation of G-CSF in humans after severe trauma may play a significant role in the development of post-traumatic bone marrow dysfunction, anemia, and infection.
Collapse
|
15
|
Abstract
During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.
Collapse
|
16
|
Ghaly T, Rabadi MM, Weber M, Rabadi SM, Bank M, Grom JM, Fallon JT, Goligorsky MS, Ratliff BB. Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia. Am J Physiol Renal Physiol 2011; 301:F802-12. [PMID: 21775481 DOI: 10.1152/ajprenal.00124.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.
Collapse
Affiliation(s)
- Tammer Ghaly
- Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
INTRODUCTION Critical illnesses continue to be major causes of morbidity and mortality worldwide. Recent investigations show that stem cells may be beneficial as prognostic biomarkers and novel therapeutic strategies in these syndromes. This article reviews the use of stem cells in sepsis and acute lung injury as prognostic biomarkers and also as a potential for exogenous cell-based therapy. METHODS A directed search of the medical literature was done using PubMed and OVID to evaluate topics related to pathophysiology of sepsis and acute lung injury, in addition to the characterization and utilization of stem cells in these diseases. CONCLUSIONS Stem cells have shown significant promise in the field of critical care medicine both for prognostication and treatment strategies. Although recent studies have been done to describe the mechanistic pathways of stem cells in critical illness, further investigation is necessary to fully delineate the mechanisms behind a stem cell's immunomodulatory characteristics and its ability to mobilize and engraft in tissues.
Collapse
|
18
|
Abstract
OBJECTIVE Sepsis and acute lung injury continue to be major causes of morbidity and mortality worldwide despite advances in our understanding of pathophysiology and the discovery of new management strategies. Recent investigations show that stem cells may be beneficial as prognostic biomarkers and novel therapeutic strategies in these syndromes. This article reviews the potential use of endogenous adult tissue-derived stem cells in sepsis and acute lung injury as prognostic markers and also as exogenous cell-based therapy. DATA SOURCES A directed systematic search of the medical literature using PubMed and OVID, with particular emphasis on the time period after 2002, was done to evaluate topics related to 1) the epidemiology and pathophysiology of sepsis and acute lung injury; and 2) the definition, characterization, and potential use of stem cells in these diseases. DATA SYNTHESIS AND FINDINGS: When available, preferential consideration was given to prospective nonrandomized clinical and preclinical studies. CONCLUSIONS Stem cells have shown significant promise in the field of critical care both for 1) prognostic value and 2) treatment strategies. Although several recent studies have identified the potential benefit of stem cells in sepsis and acute lung injury, further investigations are needed to more completely understand stem cells and their potential prognostic and therapeutic value.
Collapse
|
19
|
Monitoring of endothelial dysfunction in critically ill patients: the role of endothelial progenitor cells. Curr Opin Crit Care 2008; 14:354-60. [PMID: 18467899 DOI: 10.1097/mcc.0b013e3282fc216d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of sepsis as a prototypical critical illness and discusses the role of the endothelium in the pathophysiology of sepsis and sepsis-related organ dysfunction, the characterization and functions of endothelial progenitor cells, and investigates these cells both as a prognostic and therapeutic strategy in critically ill patients. RECENT FINDINGS Sepsis continues to be a major cause of morbidity and mortality worldwide. Preclinical and clinical sepsis studies have shown that the acute systemic inflammatory and procoagulant response results in structural and functional alterations in the endothelium, which may lead to organ failure and ultimately, death. In the last decade, the concept of postnatal vasculogenesis has been revolutionized to include angiogenesis by mature endothelial cells and vasculogenesis by endothelial progenitor cells. These cells are recruited from the bone marrow to areas of endothelial injury, at which point they differentiate and promote revascularization of the endothelium, which has been shown to have significant prognostic and therapeutic implications in a variety of ischemic vascular disorders. SUMMARY Circulating endothelial progenitor cells may be an important mechanism of vascular repair, and thus shows significant promise for prognostic and therapeutic strategies in critical illness, namely sepsis and sepsis-related organ dysfunction.
Collapse
|
20
|
Seguin T, Braun T, Mira JP. [Endothelial progenitor cells: new biomarkers and potential therapy in intensive care]. Med Mal Infect 2007; 37:305-11. [PMID: 17512151 DOI: 10.1016/j.medmal.2007.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 11/25/2022]
Abstract
One of the most important breakthroughs in the field of vascular biology in the last decade was the discovery of endothelial progenitor cells (EPCs). These angiogenic cells dwell in bone marrow, and may be found in the general circulation spontaneously or in response to various stimuli such as ischemia, growth factor, pro-inflammatory cytokines, and drugs such as statins. There is growing evidence that EPCs can differentiate into mature endothelial cells and facilitate endothelial repair and angiogenesis in vivo. In recent years, consistent publications have shown that EPCs provide both diagnostic and prognostic information with respect to cardiovascular diseases, acute lung injury, and sepsis. Activation of EPCs from the bone marrow or injection of these cells may be used as a therapeutic option for the treatment of ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- T Seguin
- Service de réanimation médicale, CHU de Cochin-Saint-Vincent-de-Paul, Assistance publique - Hôpitaux de Paris, université Paris-Descartes, 27, rue du Faubourg-Saint-Jacques, 75679 Paris cedex 14, France
| | | | | |
Collapse
|