1
|
Li P, Wang S, Li J, Xiao Z, Zhu H, Sheng D, Liu W, Xiao B, Zhou L. Appraising the Effects of Gut Microbiota on Insomnia Risk Through Genetic Causal Analysis. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33021. [PMID: 39754389 DOI: 10.1002/ajmg.b.33021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
BackgroundInsomnia is a common neurological disorder that exhibits connections with the gut microbiota; however, the exact causal relationship remains unclear. MethodsWe conducted a Mendelian randomization (MR) study to systematically evaluate the causal effects of genus-level gut microbiota on insomnia risk in individuals of European ancestry. Summary-level datasets on gut microbiota were sourced from the genome-wide association study (GWAS) of MiBioGen, while datasets on insomnia were obtained from the GWAS of Neale Lab and FinnGen. The primary analytical approach used was the inverse-variance weighted (IVW) method, supplemented by MR-Egger, maximum likelihood, MR-robust adjusted profile score, and weighted median. Sensitivity analyses were conducted to ensure robustness. ResultsThe microbial taxa Enterorhabdus, Family XIII AD3011 group, Paraprevotella, and Lachnospiraceae UCG004 were associated with an increased risk of insomnia, whereas Coprococcus1, Coprobacter, Desulfovibrio, Flavonifractor, Olsenella, Odoribacter, and Oscillibacter were linked to a decreased risk. Regarding the insomnia phenotype characterized by trouble falling asleep, the microbial taxon Eisenbergiella was correlated with an increased risk, while Haemophilus and the Eubacterium brachy group were associated with a reduced risk. Furthermore, for the insomnia phenotype characterized by waking too early, the microbial taxa Family XIII UCG001, Lachnospiraceae FCS020 group, and Olsenella were linked to an increased risk, whereas the Eubacterium brachy group and Victivallis were associated with a lower risk. The results remained robust across all sensitivity analyses. ConclusionOur MR study identified multiple genus-level gut microbial taxa that may exhibit potential causal effects on insomnia from a genetic perspective. These findings provide evidence supporting the theory of the microbiota-gut-brain axis and offer new insights into potential prevention and therapeutic targets for insomnia.
Collapse
Affiliation(s)
- Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Song Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dandan Sheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiping Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Li J, Chen S, Yang S, Zhang W, Huang X, Zhou L, Liu Y, Li M, Guo Y, Yin J, Xu K. Hypercoagulable state and gut microbiota dysbiosis as predictors of poor functional outcomes in acute ischemic stroke patients. mSystems 2025; 10:e0149224. [PMID: 40202300 PMCID: PMC12090755 DOI: 10.1128/msystems.01492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Stroke is the second leading cause of death worldwide. Acute ischemic stroke (AIS) patients often exhibit hypercoagulable state and gut microbiota dysbiosis. However, the association between coagulation abnormalities and gut microbiota dysbiosis in AIS patients and their predictive value for poor functional outcomes in AIS has not been investigated. Our study enrolled 95 AIS patients and 81 healthy controls, using 16S rRNA sequencing to analyze gut microbiota composition. Baseline fibrinogen level was found to be an independent risk factor for poor functional outcomes at 90-day follow-up (odds ratio = 2.16, 95% confidence interval: 1.02-4.59, P = 0.044). AIS patients showed significant gut microbiota dysbiosis, with significantly increased Parabacteroides and Alistipes, and decreased Prevotella and Roseburia, associated with coagulation indices. Furthermore, compared with AIS patients with normal coagulation function, those in a hypercoagulable state exhibited a significant increase in Alistipes and a decrease in Prevotella. We identified gut microbial biomarkers consisting of 15 bacteria that predicted poor functional outcome in AIS patients at 90-day follow-up. Coagulation indices improved the predictive performance of these biomarkers. In training and validation cohorts, area under the curve (AUC) values were 0.930 and 0.890 for microbial biomarkers alone, 0.691 and 0.751 for coagulation indices alone, and 0.943 and 0.944 for coagulation indices combined with gut microbial biomarkers. Our study showed that AIS patients with hypercoagulable state had gut microbiota dysbiosis, with Alistipes and Prevotella significantly associated with coagulation indices. A classification model based on coagulation indices and gut microbial biomarkers accurately predicted poor functional outcome in AIS patients at 90-day follow-up. IMPORTANCE Acute ischemic stroke (AIS) patients often exhibit hypercoagulable state and gut microbiota dysbiosis. However, the relationship between hypercoagulable state and gut microbiota dysbiosis in AIS patients and their predictive value for poor functional outcomes has not been fully explored. Our study of 95 AIS patients showed that baseline fibrinogen level was an independent risk factor for poor functional outcome at 90-day follow-up in AIS patients. Hypercoagulable state in AIS patients correlates with gut microbiota dysbiosis. AIS patients with hypercoagulable state had increased Alistipes abundance and decreased Prevotella abundance. A classification model based on coagulation indices and gut microbial biomarkers accurately predicted poor functional outcome in AIS patients at 90-day follow-up.
Collapse
Affiliation(s)
- Jie Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengnan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siqi Yang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqi Huang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lang Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanchao Liu
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxi Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghui Guo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiyu Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Liu M, Han M, Fu Y, Zhang DD, Zhao YL, Li QY, Hu H, Guo HH, Huang LY, Tan CC, Xu W, Tan L. Associations between dietary index for gut microbiota and stroke, and the mediating role of inflammation: a prospective cohort study. Food Funct 2025. [PMID: 40357750 DOI: 10.1039/d5fo01041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Background: There has been a growing focus on the link between diet, gut microbiota, and stroke. The dietary index for gut microbiota (DI-GM), a novel indicator reflecting the effect of diet on gut microbiota diversity, has not been extensively studied in relation to stroke. This study aimed to examine the association between DI-GM and stroke, and to explore the potential mediating role of inflammatory biomarkers. Methods: We included 124 943 participants from the UK Biobank without stroke at baseline. The DI-GM was calculated using 24-hour dietary assessments. Cox proportional hazard models were employed to analyze the longitudinal associations of DI-GM with stroke and its subtypes. Restricted cubic spline (RCS) and subgroup analyses were also performed. Additionally, mediation analyses were conducted to explore the potential mediating role of inflammatory biomarkers between DI-GM and stroke risk. Results: During a median follow-up of 11.08 years, 3741 participants experienced a stroke, including 1626 ischemic strokes and 536 hemorrhagic strokes. After adjusting for covariates in the main model, higher DI-GM was significantly associated with reduced risks of stroke (HR = 0.97, 95% CI, 0.95-0.99, P < 0.001) and ischemic stroke (HR = 0.96, 95% CI, 0.94-0.99, P = 0.008), but not hemorrhagic stroke. No significant non-linear association was observed in the RCS analysis. Mediation analyses indicated that inflammatory biomarkers, including C-reactive protein, neutrophils, monocytes, leukocytes, neutrophil-to-lymphocyte ratio, and INFLA-score, partially mediated the association, accounting for 2.82% to 10.40% of the total effect. Conclusions: Higher DI-GM was associated with a reduced risk of stroke, particularly ischemic stroke. This protective association may be partially mediated by reductions in serum inflammatory biomarkers.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Meng Han
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Dan-Dan Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Hai-Hua Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Bai J, Zhao Y, Wang Z, Qin P, Huang J, Cheng Y, Wang C, Chen Y, Liu L, Zhang Y, Wu B. Stroke-Associated Pneumonia and the Brain-Gut-Lung Axis: A Systematic Literature Review. Neurologist 2025:00127893-990000000-00191. [PMID: 40331253 DOI: 10.1097/nrl.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BACKGROUND Stroke-associated pneumonia (SAP), a highly lethal complication following stroke, is closely linked to dysregulation of the "brain-gut-lung axis." Accumulating evidence indicates that stroke triggers intestinal alterations through the brain-gut axis, while multiple studies confirm that gut-derived changes can mediate pneumonia through the gut-lung axis. However, the mechanisms connecting stroke-induced intestinal dyshomeostasis to SAP remain incompletely elucidated, and the multiorgan interaction mechanisms of the "brain-gut-lung axis" in SAP pathogenesis require further exploration. REVIEW SUMMARY This systematic literature review systematically searched databases, including PubMed, using the keywords "stroke," "gastrointestinal microbiome," and "bacterial pneumonia," incorporating 80 mechanistic studies. Key findings reveal that stroke initiates a cascade of "neuro-microbial-immune" pathway interactions along the brain-gut-lung axis, leading to intestinal dyshomeostasis characterized by microbiota and metabolite alterations, barrier disruption, immune dysregulation, inflammatory responses, and impaired gut motility. These intestinal perturbations ultimately disrupt pulmonary immune homeostasis, promoting SAP development. In addition, stroke directly induces vagus nerve injury through the brain-gut axis, resulting in impaired swallowing and cough reflexes that exacerbate aspiration-related pulmonary infection risks. CONCLUSIONS Elucidating the role of the brain-gut-lung axis in SAP pathogenesis provides critical insights into its underlying mechanisms. This paradigm highlights intestinal homeostasis modulation and vagus nerve stimulation as promising therapeutic strategies for SAP prevention and management, advancing a multitargeted approach to mitigate poststroke complications.
Collapse
Affiliation(s)
- Jing Bai
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yusheng Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zihe Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Longxiao Liu
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxing Zhang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Gao X, Zhang F, Zhang J, Ma Y, Deng Y, Chen J, Ren Y, Wang H, Zhao B, He Y, Yin J. Host-Microbial Cometabolite Ursodeoxycholic Acid Protects Against Poststroke Cognitive Impairment. J Am Heart Assoc 2025; 14:e038862. [PMID: 40265603 DOI: 10.1161/jaha.124.038862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Poststroke cognitive impairment (PSCI) is a common residual disability after stroke, often underestimated and underdiagnosed. We previously found that ursodeoxycholic acid (UDCA), a host-microbiota cometabolite, ameliorates brain damage in stroke mice. Based on these findings, we aimed to evaluate the predictive value of UDCA for PSCI risk in a prospective cohort study. METHODS AND RESULTS We recruited 202 patients with mild acute ischemic stroke and 63 patients with symptomatic large-artery atherosclerotic stenosis as the modeling and external validation cohorts, respectively. Mice were subjected to transient middle cerebral artery occlusion, and cognitive function was assessed using the Morris water maze test. Patients with mild acute ischemic stroke who developed PSCI exhibited significant alterations in gut microbiota and plasma bile acid profiles during the acute stroke phase, including a notable reduction in UDCA level. Through feature selection and machine learning, we constructed a predictive model for PSCI incorporating plasma UDCA level, the relative abundance of Clostridia, Bacilli, and Bacteroides, as well as age, educational level, and the presence of moderate to severe white matter lesions. This model exhibited robust predictive performance in both internal (area under the curve, 0.904 [95% CI, 0.808-1.000]) and external (area under the curve, 0.838 [95% CI, 0.742-0.934]) validations. Animal studies in mice also showed reduced UDCA levels in plasma and brain tissue following stroke. UDCA administration improved cognitive function in stroke mice by reducing hippocampal microglial activation and neuronal apoptosis. CONCLUSIONS Our findings indicate that UDCA has potential as a biomarker for predicting PSCI risk and plays a neuroprotective role in the progression of PSCI. This suggests that early identification and intervention targeting UDCA could represent a promising strategy for the prevention and treatment of PSCI.
Collapse
Affiliation(s)
- Xuxuan Gao
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Feng Zhang
- Department of Neurosurgery, Huzhou Central Hospital Zhejiang University School of Medicine Huzhou Zhejiang People's Republic of China
| | - Jiafeng Zhang
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yu Ma
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yiting Deng
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Jiaying Chen
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Comprehensive Medical Treatment Ward, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Huidi Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Clinical Pharmacy Center Nanfang Hospital, Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine Guangzhou Guangdong People's Republic of China
- State Key Laboratory of Multi-organ Injury Prevention and Treatment Guangzhou Guangdong People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education Guangzhou Guangdong People's Republic of China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
6
|
Liu J, Ge P, Luo Y, Sun Z, Luo X, Li H, Pei B, Xun L, Zhang X, Jiang Y, Wen H, Liu J, Yang Q, Ma S, Chen H. Decoding TMAO in the Gut-Organ Axis: From Biomarkers and Cell Death Mechanisms to Therapeutic Horizons. Drug Des Devel Ther 2025; 19:3363-3393. [PMID: 40322030 PMCID: PMC12049683 DOI: 10.2147/dddt.s512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of an "axis" connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of human diseases in the "Gut-Organ" axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Huijuan Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Lu Xun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xuetao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yunfei Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
7
|
Fang Z, Chang S, Niu P, Wang C, Zhang J. Multidimensional-based exploration of gut microbial and metabolite differences in patients with recurrent stroke. Neuroscience 2025; 572:35-48. [PMID: 39914520 DOI: 10.1016/j.neuroscience.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 03/11/2025]
Abstract
This study aims to explore the differences in gut microbes and their metabolites between patients with original and recurrent stroke, providing insights and justification for the diagnosis and prevention of ischemic stroke progression from the perspective of the gut microbiota-metabolite-brain axis. In this study, fecal samples were collected from patients with Original stroke (Os) and patients with Recurrent stroke (Rs) to assess differences in gut microbiota and to screen for different metabolites that reveal the physiological changes related to the recurrent of ischemic stroke. The results found that there was no significant change in Alpha diversity between the two groups. Beta diversity analysis revealed slight changes in community composition between two groups (Bray-Curtis), although their overall microbial abundance may not have changed (UniFrac). Compared with Os patients, Prevotella, Lachnospiraceae_UCG-010, Holdemanella, and Coprococcus were significantly depleted in the Rs group. Correlation analysis showed that the risk of stroke recurrence was negatively correlated with Lachnospiraceae_UCG-010. In Rs group, metabolites such as carbohydrates and terpene lactones were up-regulated, while those of sesquiterpenoids, triterpenoids, and fatty acids and their couplings were down-regulated. These metabolites are significantly enriched in the pathways of arachidonic acid metabolism, betaine biosynthesis, and linoleic acid metabolism. Compared with the Os, Rs was mainly characterized by minor destruction of anaerobic bacteria and significant depletion of SCFAs-producing bacteria. In addition, the related compounds involved in arachidonic acid metabolism and linoleic acid metabolism pathway may be associated with the progression of ischemic stroke.
Collapse
Affiliation(s)
- Zongwei Fang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Sijie Chang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Yu M, Liu G, Chen W, Qiu Y, You N, Chen S, Wei Z, Ji L, Han M, Qin Z, Sun T, Wang D. Choline metabolism in ischemic stroke: An underappreciated "two-edged sword". Pharmacol Res 2025; 214:107685. [PMID: 40054542 DOI: 10.1016/j.phrs.2025.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025]
Abstract
Ischemic stroke (IS) is an important cause of death and disability worldwide, but the molecular mechanisms involved are not fully understood. In this context, choline metabolism plays an increasingly important role in IS due to its multifaceted mechanisms involving neuroprotection, neuroregeneration, inflammatory response, immune regulation, and long-term health effects. With the deepening of the research on choline and its metabolites, such as trimethylamine-N-oxide (TMAO), scientists have gradually realized its key role in the occurrence, development and potential treatment of IS. This review summarizes the importance of choline in neuroprotection and long-term disease management, highlighting the complexity of choline metabolism affecting cerebrovascular health through gut microbes. Although choline and its metabolites exhibit a protective effect, excessive intake and increases in some metabolites may confer risk, suggesting the need to carefully balance dietary choline intake. The purpose of this review is to integrate the existing research results and provide a theoretical basis for further exploring the mechanism, prognosis evaluation and clinical intervention of choline metabolism in ischemic IS, hoping to provide a new perspective and enlightenment for the formulation of effective stroke prevention and treatment strategies, and promote a comprehensive understanding of heart and brain health and optimize intervention methods.
Collapse
Affiliation(s)
- Mengchen Yu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Wenbo Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Nanlin You
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Sui Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhaosheng Wei
- Department of Neurosurgery, Qilu Hospital (Qingdao), Shandong University, Qingdao 266035, China
| | - Longxin Ji
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Mengtao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Zhen Qin
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China; Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253000, China.
| |
Collapse
|
9
|
Chen L, Wang X, Wang S, Liu W, Song Z, Liao H. The impact of gut microbiota on the occurrence, treatment, and prognosis of ischemic stroke. Neurobiol Dis 2025; 207:106836. [PMID: 39952411 DOI: 10.1016/j.nbd.2025.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease that predominantly affects middle-aged and elderly populations, exhibiting high mortality and disability rates. At present, the incidence of IS is increasing annually, with a notable trend towards younger affected individuals. Recent discoveries concerning the "gut-brain axis" have established a connection between the gut and the brain. Numerous studies have revealed that intestinal microbes play a crucial role in the onset, progression, and outcomes of IS. They are involved in the entire pathophysiological process of IS through mechanisms such as chronic inflammation, neural regulation, and metabolic processes. Although numerous studies have explored the relationship between IS and intestinal microbiota, comprehensive analyses of specific microbiota is relatively scarce. Therefore, this paper provides an overview of the typical changes in gut microbiota following IS and investigates the role of specific microorganisms in this context. Additionally, it presents a comprehensive analysis of post-stroke microbiological therapy and the relationship between IS and diet. The aim is to identify potential microbial targets for therapeutic intervention, as well as to highlight the benefits of microbiological therapies and the significance of dietary management. Overall, this paper seeks to provide key strategies for the treatment and management of IS, advocating for healthy diets and health programs for individuals. Meanwhile, it may offer a new perspective on the future interdisciplinary development of neurology, microbiology and nutrition.
Collapse
Affiliation(s)
- Liying Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiqi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weili Liu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Huiling Liao
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Li J, Xu Q, Xu X, He W, Zhang H, Ren H, Wang Y, Wang X, Zhao D. Apigenin protects ischemic stroke by regulating intestinal microbiota homeostasis, regulates brain metabolic profile. Front Pharmacol 2025; 16:1553081. [PMID: 40124778 PMCID: PMC11925864 DOI: 10.3389/fphar.2025.1553081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Background and Objective Ischemic stroke is a cerebrovascular disease with highly incidence. Previous research has demonstrated that apigenin provides protective effects against ischemic stroke. However, it remains unclear whether apigenin can regulate intestinal flora against ischemic stroke. Methods In this study, we evaluated the regulatory effects of apigenin on intestinal microbiota using a middle cerebral artery occlusion rat model. The protective impact of apigenin on brain damage in ischemic stroke rats was assessed through Nissl staining, hematoxylin and eosin staining, and immunohistochemistry. Additionally, we employed 16S rRNA sequencing to analyze intestinal contents and utilized non-targeted metabolomics to investigate the effects of apigenin on brain metabolites, thereby exploring its mechanism of action. AMPK levels were detected by Western blot and immunohistochemistry. The kit was used to detect oxidative stress and inflammation. Results The intervention with apigenin resulted in significant alterations in the intestinal flora, characterized by an increase in the abundance of probiotic species and a decrease in harmful flora, alongside notable changes in brain metabolite profiles. This protective effect is attributed to apigenin's promotion of AMPK expression and enhancement of energy metabolism in the context of ischemic stroke. In addition, apigenin improved oxidative stress and inflammation in ischemic stroke. Conclusion These findings suggest that apigenin exerts a protective effect on ischemic stroke through the AMPK signaling pathway by modulating intestinal flora and associated metabolites. Consequently, apigenin emerges as a therapeutic candidate warranting further investigation.
Collapse
Affiliation(s)
- Jinjian Li
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qiaoli Xu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaoming Xu
- Department of Encephalopathy, Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei He
- Department of Encephalopathy, Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Hui Zhang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Haoxu Ren
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yue Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Xu FH, Sun X, Zhu J, Kong LY, Chang Y, Li N, Hui WX, Zhang CP, Cheng YM, Han WX, Tian ZM, Qiao YN, Chen DF, Liu L, Feng DY, Han J. Significance of the gut tract in the therapeutic mechanisms of polydopamine for acute cerebral infarction: neuro-immune interaction through the gut-brain axis. Front Cell Infect Microbiol 2025; 14:1413018. [PMID: 40104260 PMCID: PMC11913817 DOI: 10.3389/fcimb.2024.1413018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/25/2024] [Indexed: 03/20/2025] Open
Abstract
Background Recent research has made significant progress in elucidating gastrointestinal complications following acute cerebral infarction (ACI), which includes disorders in intestinal motility and dysbiosis of the gut microbiota. Nevertheless, the role of the gut (which is acknowledged as being the largest immune organ) in the immunoreactive effects of polydopamine nanoparticles (PDA) on acute ischemic stroke remains inadequately understood. In addition to its function in nutrient absorption, the gut acts as a protective barrier against microbes. Systemic immune responses, which are triggered by the disruption of gut barrier integrity, are considered as one of the mechanisms underlying acute ischemic stroke, with the gut-brain axis (GBA) playing a pivotal role in this process. Methods In this study, we used a PDA intervention in an ACI model to investigate ACI-like behavior, intestinal barrier function, central and peripheral inflammation, and hippocampal neuron excitability, thus aiming to elucidate the mechanisms through which PDA improves ACI via the GBA. Results Our findings indicated that as ACI mice experienced dysbiosis of the gut microbiota and intestinal barrier damage, the levels of proinflammatory factors in the serum and brain significantly increased. Additionally, the activation of astrocytes in the hippocampal region and neuronal apoptosis were observed in ACI mice. Importantly, our study is the first to provide evidence demonstrating that PDA effectively suppresses the neuroimmune interactions of the gut-brain axis and significantly improves intestinal epithelial barrier integrity. Conclusion We hope that our discoveries will serve as a foundation for further explorations of the therapeutic mechanisms of PDA in ACI, particularly in elucidating the protective roles of gut microbiota and intestinal barrier function, as well as in the development of more targeted clinical interventions for ACI.
Collapse
Affiliation(s)
- Feng-Hua Xu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Xiao Sun
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Jun Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Ling-Yang Kong
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Yuan Chang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Ning Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen-Xiang Hui
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Cong-Peng Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Yi-Ming Cheng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- College of life sciences, Shaanxi Normal University, Xi’an, China
| | - Wen-Xin Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Zhi-Min Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Yan-Ning Qiao
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| | - Dong-feng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Da-Yun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
12
|
Li Y, Lyu L, Ding H. The potential roles of gut microbiome in porto-sinusoidal vascular disease: an under-researched crossroad. Front Microbiol 2025; 16:1556667. [PMID: 40099185 PMCID: PMC11911366 DOI: 10.3389/fmicb.2025.1556667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Accumulating evidence indicates that patients with liver diseases exhibit distinct microbiological profiles, which can be attributed to the bidirectional relationship of the gut-liver axis. Porto-sinusoidal vascular disease (PSVD) has recently been introduced to describe a group of vascular diseases of the liver, involving the portal venules and sinusoids. Although the pathophysiology of PSVD is not yet fully understood, several predisposing conditions, including immunodeficiency, inflammatory bowel disease, abdominal bacterial infections are associated with the increasing in intestinal permeability and microbial translocation, supporting the role of altered gut microbiota and gut-derived endotoxins in PSVD etiopathogenesis. Recent studies have proposed that the gut microbiome may play a crucial role in the pathophysiology of intrahepatic vascular lesions, potentially influencing the onset and progression of PSVD in this context. This review aims to summarize the current understanding of the gut microbiome's potential role in the pathogenesis of hepatic microvascular abnormalities and thrombosis, and to briefly describe their interactions with PSVD. The insights into gut microbiota and their potential influence on the onset and progression of PSVD may pave the way for new diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital Affiliated with Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
14
|
Wu J, Ji K, Kang G, Zhang M, Wang J, Wang L, Gao M, Jia X, Lu X, Wang Y, Gao X, Guo Y, Zhu Z, Wang Q, Zhao Z, Liu Q, Huang H. Butyrate-engineered yeast activates Nppa and Sgcg genes and reduces radiation-induced heart damage via the gut-heart axis. Pharmacol Res 2025; 213:107642. [PMID: 39909125 DOI: 10.1016/j.phrs.2025.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Radiotherapy is a method of treating cancer through radiation aimed at killing cancer cells or inhibiting their growth. However, radiotherapy has numerous side effects because it kills tumors while causing damage to normal cells or tissues. The literature shows that radiation can cause damage to heart tissue. This study found that engineered yeast that produced butyrate can maintain small intestinal barrier function by recovering GPR109A to reduce intestinal damage caused by abdominal irradiation in mice. We unexpectedly found that engineered yeast could mitigate irradiation-induced heart damage via the gut-heart axis. Mechanistically, engineered yeast enhanced taurine and nicotinamide metabolism by increasing the relative abundance of Akkermansia and Lachnospiraceae_NK4A136; then, yeast modulated cardiac function by activating the Sgcg and Nppa genes to attenuate cardiac damage induced by abdominal irradiation. Finally, we confirmed that engineered yeast mitigated cardiac damage caused by total body irradiation, which protected other vital organs through the intestinal tract. This study has a profound impact on cancer treatment, the emergence of engineered yeast will alleviate radiotherapy side effects and benefit patients.
Collapse
Affiliation(s)
- Jiahao Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lina Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Mengxue Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoxiao Jia
- Department of Anatomy, Shandong Second Medical University, Weifang 261053, China
| | - Xinran Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Xinran Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Yufei Guo
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhixin Zhu
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghua Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhenyu Zhao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - He Huang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
15
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
16
|
Arslan S, Kaya MK, Aydin S, Aydin S. Trimethylamine N-oxide, S-equol, and indoxyl sulfate inflammatory microbiota players in ocular Behçet’s disease. TURKISH JOURNAL OF BIOCHEMISTRY 2025; 50:73-79. [DOI: 10.1515/tjb-2024-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Abstract
Objectives
The aims of the study were to assess the levels of serum TMAO, S-equol, and indoxyl sulfate in subjects with ocular active Behçet’s disease (OABD) and ocular inactive Behçet’s disease (OIBD).
Methods
The study involved 22 patients with OABD, 22 patients with OIBD, and thwentythree control participants. 5 mL venous blood was taken from the participants. The TMAO, S-equol, and indoxyl sulfate in the serum were measured using the ELISA method.
Results
When compared to the TMAO levels of the control group, the TMAO levels of the participants with OABD and OIBD were considerably greater (p<0.05). Similarly, when compared to the S-equol levels of the control group, the S-equol levels of the participants with OABD and OIBD were significantly higher (p<0.05). Additionally, when compared to the indoxyl sulfate of the control group, the indoxyl sulfate amounts of the participants OABD and OIBD were significantly higher (p<0.05).
Conclusions
It was first time shown that microbiota molecules could have an impact on Behçet’s disease (BD) pathogenesis. Additionally, measuring these molecules in addition to the BD Ocular Attack Score 24 (BOS24) might offer advice to medical professionals regarding the diagnosis and treatment of the illness.
Collapse
Affiliation(s)
| | | | - Suna Aydin
- Department of Cardiovacular Surgery , Fethi Sekin City Hospital , Elazig , Türkiye
- Department of Veterinary Histology and Embriology , Firat University , Elazig , Türkiye
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School , Firat University , Elazig , Türkiye
| |
Collapse
|
17
|
Lu Y, Li Z, Xu R, Xu Y, Zhang W, Zhang Y, Fang Z, Pan C, Wang X. Impact of fracture fixation surgery on cognitive function and the gut microbiota in mice with a history of stroke. Open Life Sci 2025; 20:20221061. [PMID: 40026365 PMCID: PMC11868713 DOI: 10.1515/biol-2022-1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025] Open
Abstract
Perioperative cognitive dysfunction is a common complication in stroke patients undergoing secondary surgeries. This study investigated the effects of tibial fracture internal fixation (TFIF) surgery on cognitive function and the gut microbiota in mice with a history of stroke. Using the middle cerebral artery occlusion method to induce stroke, we assessed cognitive function via the fear conditioning test and analyzed the gut microbiota through 16S rRNA sequencing. Compared with those in the normal and stroke groups, the cognitive function of the mice in the stroke group that underwent TFIF surgery was significantly impaired. Gut microbiota analysis revealed significant changes in beta diversity, but not in alpha diversity, in these mice. Additionally, TFIF surgery increased microglial activation and IL-1β and lipopolysaccharide (LPS) levels in the brain while reducing α-defensin levels and increasing IL-1β and LPS levels in the colon. These results suggest that TFIF surgery exacerbates cognitive impairment in stroke mice, possibly through alterations in the gut microbiota that impair intestinal defense and promote inflammation. This study highlights the critical role of the gut microbiome in cognitive function and perioperative outcomes, offering insights into potential therapeutic strategies for perioperative cognitive dysfunction in stroke patients.
Collapse
Affiliation(s)
- Yu Lu
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Zixuan Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Rukun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Yajie Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Wenwen Zhang
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Yong Zhang
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Zhaojing Fang
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| | - Cailong Pan
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Xiaoliang Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210029, China
| |
Collapse
|
18
|
Chen Y, Zhang J, Hou X, Cai S, Zhang J, Gou Y, Zhang H, Zhai Y, Yuan H. Xingnao Jiutan tablets modulate gut microbiota and gut microbiota metabolism to alleviate cerebral ischemia/reperfusion injury. Front Cell Infect Microbiol 2025; 14:1497563. [PMID: 40051840 PMCID: PMC11882549 DOI: 10.3389/fcimb.2024.1497563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
Introduction Xingnao Jiutan tablets (XNJT), a compound Chinese medicine, have been applied to the treatment of the sequelae of cerebral thrombosis or cerebral hemorrhage, transient cerebral ischemia, and central retinal vein obstruction, etc., but the underlying mechanisms are not yet clear. This research focused on examining the impact of XNJT for cerebral ischemia/reperfusion (MCAO/R) injury, utilizing gut microbiota and metabolomic studies. Methods The primary components of XNJT were identified through the application of the HPLC technique. We established a MCAO/ R model in mice and conducted behavioral evaluations, cerebral blood flow measurements, and TTC staining. We used ELISA, high-throughput 16S rDNA gene sequencing, and metabolomics techniques to detect inflammatory factors, microbial populations, and metabolites, respectively. Finally, we performed Spearman correlation analysis to investigate the relationships among gut microbiota and metabolites, comprehensively exploring the mechanisms of XNJT to alleviate cerebral ischemia-reperfusion injury. Results We discovered that XNJT effectively enhanced neurological performance, alleviated cerebral infarction, diminished neuronal cell death, and increased cerebral blood flow. Moreover, XNJT downregulated the secretion of pro-inflammatory cytokines like TNF, IL-6, and IL-1b. Additionally, XNJT improved gut microbiota levels in MCAO/R mice, particularly Bacteroides, Firmicutes, Escherichia-Shigella, and Ligilactobacillus. Furthermore, XNJT primarily modulated differential metabolites in the gut through Glycerophospholipid, Linoleic acid, and Sphingolipid metabolism pathways. Spearman correlation analysis revealed significant associations among intestinal microbiota and various metabolites. Discussion In summary, our findings suggest that XNJT can improve cerebral ischemia/reperfusion injury outcomes, reduce inflammatory responses, and regulate gut microbiota and differential metabolites. It's possible that the potential mechanisms are connected to controlling gut microbiota and metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital,
Tianjin, China
| |
Collapse
|
19
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Peng S, Yu L, Jiang M, Cao S, Wang H, Lu X, Tao Y, Zhou J, Sun L, Zuo D. Canthaxanthin ameliorates atopic dermatitis in mice by suppressing Th2 immune response. Int Immunopharmacol 2025; 147:113975. [PMID: 39787760 DOI: 10.1016/j.intimp.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder characterized by intense pruritus and complex immunopathogenic mechanisms. Recent evidence has highlighted the critical link between dysregulated intestinal microecology and altered immune responses in AD progression. As essential components of the intestinal microenvironment, metabolites play pivotal roles in various physiological processes. Through metabolomic profiling in an AD mouse model, we identified a significant reduction in canthaxanthin (CTX), a bacterial-derived metabolite naturally present in many foods, in AD mice compared to healthy controls. To investigate the therapeutic potential of CTX, we established an AD model by repeatedly applying 2,4-dinitrochlorobenzene (DNCB) to the ears and dorsal skin of mice, successfully inducing AD-like symptoms and lesions. Notably, oral administration of CTX significantly attenuated skin inflammation and reduced serum IgE levels in this DNCB-induced AD model. Both in vivo and in vitro studies demonstrated that CTX treatment effectively suppressed Th2 immune responses. Mechanistically, we found that CTX significantly inhibited the activation of the JAK2-STAT6 signaling pathway in Th2-polarized T cells. Our findings not only demonstrate the therapeutic efficacy of CTX in AD but also elucidate its molecular mechanism in modulating T helper cell subset balance. These insights suggest that CTX could serve as a promising therapeutic agent for AD and potentially other Th2 response-mediated immune disorders.
Collapse
Affiliation(s)
- Shuying Peng
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Yu
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Mingxin Jiang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sihang Cao
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hong Wang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yihao Tao
- Veritas Collegiate Academy, 935 23rd St S, Arlington, VA 22202-2422, United States
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ledong Sun
- Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.
| | - Daming Zuo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
21
|
Thirupathi K, Ghozy S, Reda A, Ranatunga WK, Ruben MA, Armin Z, Mereuta OM, Prabhjot S, Dai D, Brinjikji W, Kallmes DF, Kadirvel R. Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Brain Sci 2025; 15:157. [PMID: 40002490 PMCID: PMC11853128 DOI: 10.3390/brainsci15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Variability in recanalization success during endovascular treatment for acute ischemic stroke (AIS) has led to increased interests in thrombus composition and associated cellular materials. While evidence suggests that bacteria may influence thrombus characteristics, limited data exist on microbiological profiles of thrombi in stroke patients. Objectives: Characterization of bacterial communities present in thrombi of AIS patients undergoing mechanical thrombectomy, providing insights into microbial contributions to stroke pathogenesis and treatment outcomes. Methods: Thrombi were collected from 20 AIS patients. After extracting metagenome, 16S rDNA sequencing was performed. Bioinformatic analysis included taxonomy and diversity assessments. The presence of bacterial DNA and viable bacteria in thrombi was validated using polymerase chain reaction (PCR) and bacterial culturing followed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis, respectively. Results: 16S rDNA was amplified in 19/20 thrombi (95%). Analysis identified a diverse microbial community, with Corynebacterium spp. as the most prevalent genus, followed by Staphylococcus spp., Bifidobacterium spp., Methylobacterium spp., and Anaerococcus spp. Alpha diversity analyses (Shannon index: 4.0-6.0 and Simpson index: 0.8-1.0) revealed moderate to high microbial diversity across samples; beta diversity demonstrated distinct clustering, indicating inter-patient variability in microbial profiles. PCR confirmed the presence of DNA specific to dominant bacterial taxa identified through sequencing. Culturing showed the presence of Staphylococcus epidermidis and Enterococcus faecalis in some clots as identified through MALDI analysis. Conclusions: This study shows bacterial communities present in AIS patients' thrombi, suggesting a potential link between microbial signatures and thrombus characteristics.
Collapse
Affiliation(s)
- Kasthuri Thirupathi
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Sherief Ghozy
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Abdullah Reda
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Wasantha K. Ranatunga
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Mars A. Ruben
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA (S.P.)
| | - Zarrintan Armin
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Oana M. Mereuta
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Sekhon Prabhjot
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA (S.P.)
| | - Daying Dai
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - David F. Kallmes
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Ramanathan Kadirvel
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| |
Collapse
|
22
|
Jiang H, Zeng W, Zhu F, Zhang X, Cao D, Peng A, Wang H. Exploring the associations of gut microbiota with inflammatory and the early hematoma expansion in intracerebral hemorrhage: from change to potential therapeutic objectives. Front Cell Infect Microbiol 2025; 15:1462562. [PMID: 39963412 PMCID: PMC11830820 DOI: 10.3389/fcimb.2025.1462562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
Background Although a great deal of research has explored the possibility of a systemic inflammatory response and dysbiosis of the gut microbiota after an intracerebral hemorrhage (ICH), the relationships between gut microbiota and blood inflammatory indicators as well as their role in the hematoma expansion following an early-stage mild-to-moderate ICH (emICH) remain unknown. This study analyzes these changes and associations in order to predict and prevent hematoma expansion after emICH. Methods The study included 100 participants, with 70 individuals diagnosed with emICH (30 with hematoma expansion and 40 without hematoma expansion, referred to as the HE and NE groups) and 30 healthy controls matched in terms of age and gender (HC). We used 16S rRNA gene sequencing to explore the gut microbial structure and its underlying associations with blood inflammatory parameters in the HE group. Results Our findings showed a significant decrease in the diversity and even distribution of microorganisms in the HE group when compared to the HC and NE groups. The composition of the gut microbiota experienced notable alterations in the emICH group, especially in HE. These changes included a rise in the number of gram-negative pro-inflammatory bacteria and a decline in the level of probiotics. Furthermore, we observed strong positive connections between bacteria enriched in the HE group and levels of systemic inflammation. Several microbial biomarkers (e.g. Escherichia_Shigella, Enterobacter, and Porphyromonas) were revealed in disparateiating HE from HC and NE. Analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) exposed disturbances in essential physiological pathways, especially those related to inflammation (such as the Toll-like receptor signaling pathway), in the HE group. Conclusions Our exploration indicated that individuals with emICH, especially those with HE, demonstrate notably different host-microbe interactions when compared to healthy individuals. We deduced that emICH could rapidly trigger the dysbiosis of intestinal flora, and the disturbed microbiota could, in turn, exacerbate inflammatory response and increase the risk of hematoma expansion. Our comprehensive research revealed the potential of intestinal flora as a potent diagnostic tool, emphasizing its significance as a preventive target for HE.
Collapse
Affiliation(s)
- Haixiao Jiang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wei Zeng
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Fei Zhu
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaoli Zhang
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Demao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Aijun Peng
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hongsheng Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Khuu MP, Paeslack N, Dremova O, Benakis C, Kiouptsi K, Reinhardt C. The gut microbiota in thrombosis. Nat Rev Cardiol 2025; 22:121-137. [PMID: 39289543 DOI: 10.1038/s41569-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
The gut microbiota has emerged as an environmental risk factor that affects thrombotic phenotypes in several cardiovascular diseases. Evidence includes the identification of marker species by sequencing studies of the gut microbiomes of patients with thrombotic disease, the influence of antithrombotic therapies on gut microbial diversity, and preclinical studies in mouse models of thrombosis that have demonstrated the functional effects of the gut microbiota on vascular inflammatory phenotypes and thrombus formation. In addition to impaired gut barrier function promoting low-grade inflammation, gut microbiota-derived metabolites have been shown to act on vascular cell types and promote thrombus formation. Therefore, these meta-organismal pathways that link the metabolic capacities of gut microorganisms with host immune functions have emerged as potential diagnostic markers and novel drug targets. In this Review, we discuss the link between the gut microbiota, its metabolites and thromboembolic diseases.
Collapse
Affiliation(s)
- My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
24
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Indrio F, Salatto A. Gut Microbiota-Bone Axis. ANNALS OF NUTRITION & METABOLISM 2025:1-10. [PMID: 39848230 DOI: 10.1159/000541999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest. SUMMARY Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis. The major role on gut-bone axis is due to short-chain fatty acids (SCFAs). They have the ability to influence regulatory T-cell (Tregs) development and activate bone metabolism through the action of Wnt10. SCFA production may be a mechanism by which the microbial community, by increasing the serum level of insulin-like growth factor 1 (IGF-1), leads to the growth and regulation of bone homeostasis. A specific SCFA, butyrate, diffuses into the bone marrow where it expands Tregs. The Tregs induce production of the Wnt ligand Wnt10b by CD8+ T cells, leading to activation of Wnt signaling and stimulation of bone formation. At the hormonal level, the effect of the gut microbiota on bone homeostasis is expressed through the biphasic action of serotonin. Some microbiota, such as spore-forming microbes, regulate the level of serotonin in the gut, serum, and feces. Another group of bacterial species (Lactococcus, Mucispirillum, Lactobacillus, and Bifidobacterium) can increase the level of peripheral/vascular leptin, which in turn manages bone homeostasis through the action of brain serotonin.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
27
|
Ren Y, Chen G, Hong Y, Wang Q, Lan B, Huang Z. Novel Insight into the Modulatory Effect of Traditional Chinese Medicine on Cerebral Ischemia-Reperfusion Injury by Targeting Gut Microbiota: A Review. Drug Des Devel Ther 2025; 19:185-200. [PMID: 39810832 PMCID: PMC11731027 DOI: 10.2147/dddt.s500505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is clinically characterized by high rates of morbidity, disability, mortality, and recurrence as well as high economic burden. The clinical manifestations of CIRI are often accompanied by gastrointestinal symptoms such as intestinal bacterial dysbiosis and gastrointestinal bleeding. Gut microbiota plays an important role in the pathogenesis of CIRI, and its potential biological effects have received extensive attention. The gut microbiota not only affects intestinal barrier function but also regulates gastrointestinal immunity and host homeostasis. Traditional Chinese medicine (TCM), a multi-component and multi-targeted drug, has shown remarkable effects and few adverse reactions in the prevention and treatment of CIRI. Notably, the effect of TCM on CIRI by regulating gut microbiota and maintaining gastrointestinal homeostasis has gradually become a hot topic. This review summarizes the functional role of the gut microbiota in the development and progression of CIRI and the therapeutic effects of TCM on CIRI by improving gut microbiota dysbiosis, affecting gut microbiota metabolism, and maintaining host immunity. The active ingredients of TCM used for the treatment of CIRI in relevant studies were saponins, triterpenoids, phenolics, and alkaloids. In addition, the clinical effects of TCM used to treat CIRI were briefly discussed. This review established the clinical significance and development prospects of TCM-based CIRI treatments and provided the necessary theoretical support for the further development of TCM resources for the treatment of CIRI.
Collapse
Affiliation(s)
- Yisong Ren
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Gang Chen
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Ying Hong
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Qianying Wang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Bo Lan
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Zhaozhao Huang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| |
Collapse
|
28
|
Cui J, Liu Y, Fu H, Cui M, Li J, Bai Z, Li J. Etiology, Risk Factors, and Antimicrobial Resistance in Recurrent Pyogenic Liver Abscesses: A Six-Year Analysis. Infect Drug Resist 2025; 18:15-23. [PMID: 39776754 PMCID: PMC11705988 DOI: 10.2147/idr.s492544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Aim To perform a comparative analysis of the clinical data of patients with and without recurrent pyogenic liver abscess and explore the influencing factors, clinical characteristics, and pathogenic bacteria associated with the recurrence of liver abscesses. Patients and Methods A retrospective analysis was conducted on 436 recently diagnosed patients with pyogenic liver abscess admitted to the Affiliated Hospital of Chengde Medical College between June 2017 and June 2023. Patients with recurrence comprised the observation group, whereas those without recurrence comprised the control group.This analysis included the examination of clinical characteristics, pathogens, drug resistance patterns, and treatment modalities. Additionally, regression analysis was employed to investigate the factors influencing liver abscess recurrence. Results Of 436 patients initially diagnosed with pyogenic liver abscess, 58 experienced recurrence. The proportion of Escherichia coli infection was 23.3% in the observation group and 10.3% in the control group, indicating a statistically significant difference. Multivariate analysis identified diabetes mellitus and cerebral infarction as significant risk factors for recurrent pyogenic liver abscess. Conclusion In comparison with patients without recurrence, those who experienced recurrent pyogenic liver abscess following initial diagnosis exhibited a higher prevalence of E. coli as a pathogenic bacterium. In addition, a history of diabetes mellitus and cerebral infarction are high-risk factors for with pyogenic liver abscess recurrence for the first time.
Collapse
Affiliation(s)
- JinHua Cui
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| | - YaMan Liu
- Department of Gynaecology, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| | - Hua Fu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| | - MiaoHang Cui
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| | - JiZhong Li
- Department of Operating Room, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| | - ZiYu Bai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| | - Jian Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde City, Hebei Province, People’s Republic of China
| |
Collapse
|
29
|
Zhang Y, Dou Z, Li S, Zhang H, Zeng S, Zuo X, Xiao Y, Zhang L, Li Z, Zhu Q, Zhang W, Niu H, Duan Q, Chen X, Li Z, Zhou H, Wang Q. An ultrasonic degraded polysaccharide extracted from Pueraria lobata ameliorate ischemic brain injury in mice by regulating the gut microbiota and LPS-TLR4 pathway. ULTRASONICS SONOCHEMISTRY 2025; 112:107200. [PMID: 39675265 PMCID: PMC11713736 DOI: 10.1016/j.ultsonch.2024.107200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Ischemia brain injury is closely associated with the gut microbiota. Polysaccharides, as a typical prebiotic, have been extensively employed in stroke treatment. In our previous study, Pueraria lobata polysaccharide (PLP-3) with antioxidant activity was prepared via water extraction and alcohol precipitation combined with ultrasonic degradation. In this study, the effects of PLP-3 on ischemia brain injury and its regulatory effects on the gut microbiota were further investigated. The results demonstrated that PLP-3 effectively reduced the infarct area, improves neurological function, and alleviates neuronal damage of cerebral ischemia injury. Mechanistically, PLP-3 significantly reduces serum LPS levels in MCAO mice, inhibiting TLR-4 activation in brain tissue and thereby reducing IL-1β and TNF-α levels. Meanwhile, PLP-3 significantly repaired the intestinal barrier injury by increasing the expression of tight junction proteins (ZO-1 and Occludin) and increasing the number of goblet cells. Additionally, the structure and composition of gut microbiota in MCAO mice after PLP-3 intervention, were also significantly changed, especially the enrichment of Lactobacillus and the reduction of Corynebacterium and Staphylococcus. At the same time, short chain fatty acid, metabolites of gut microbiota, were also significantly increased and significantly correlated with the abundance of Lactobacillus. Moreover, LC-MS untargeted metabolomics revealed that PLP-3 significantly improves the intestinal metabolic profile after cerebral ischemia injury, upregulating the amino acid biosynthesis pathway and enriching amino acids such as glutamine and arginine, as well as neuroprotective flavonoids such as fisetin and liquiritigenin. These results suggested that PLP-3 could protect mice from cerebral ischemia-reperfusion injury by regulating gut microbiota and repairing gut barrier, inhibiting brain LPS/TLR4/MyD88 inflammatory pathway, therefore we provide a theoretical basis for PLP-3 as a functional food to prevent ischemic brain injury.
Collapse
Affiliation(s)
- Yulong Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Shanshan Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaying Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shanshui Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyu Zuo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yu Xiao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lingling Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhixin Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qingfeng Zhu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenyang Zhang
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Hui Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxia Chen
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Qian Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
30
|
Cheng S, Zheng H, Wei Y, Lin X, Gu Y, Guo X, Fan Z, Li H, Cheng S, Liu S. Gut Microbiome and Stroke: a Bidirectional Mendelian Randomisation Study in East Asian and European Populations. Stroke Vasc Neurol 2024; 9:623-630. [PMID: 38296585 PMCID: PMC11791640 DOI: 10.1136/svn-2023-002717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/03/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND AND AIMS Observational studies have implicated the involvement of gut microbiome in stroke development. Conversely, stroke may disrupt the gut microbiome balance, potentially causing systemic infections exacerbated brain infarction. However, the causal relationship remains controversial or unknown. To investigate bidirectional causality and potential ethnic differences, we conducted a bidirectional two-sample Mendelian randomisation (MR) study in both East Asian (EAS) and European (EU) populations. METHODS Leveraging the hitherto largest genome-wide association study (GWAS) summary data from the MiBioGen Consortium (n=18 340, EU) and BGI (n=2524, EAS) for the gut microbiome, stroke GWAS data from the GIGASTROKE Consortium(264 655 EAS and 1 308 460 EU), we conducted bidirectional MR and sensitivity analyses separately for the EAS and EU population. RESULTS We identified nominally significant associations between 85 gut microbiomes taxa in EAS and 64 gut microbiomes taxa in EU with stroke or its subtypes. Following multiple testing, we observed that genetically determined 1 SD increase in the relative abundance of species Bacteroides pectinophilus decreased the risk of cardioembolic stroke onset by 28% (OR 0.72 (95% CI 0.62 to 0.84); p=4.22e-5), and that genetically determined 1 SD increase in class Negativicutes resulted in a 0.76% risk increase in small vessel stroke in EAS. No significant causal association was identified in the EU population and the reverse MR analysis. CONCLUSION Our study revealed subtype-specific and population-specific causal associations between gut microbiome and stroke risk among EAS and EU populations. The identified causality holds promise for developing a new stroke prevention strategy, warrants further mechanistic validation and necessitates clinical trial studies.
Collapse
Affiliation(s)
- Shiyao Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Hao Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuandan Wei
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xingchen Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Zhe Fan
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Changping Laboratory, Beijing 100000, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Changping Laboratory, Beijing 100000, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing 100069, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
31
|
Qu J, Meng F, Wang Z, Xu W. Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies. J Microbiol Biotechnol 2024; 34:2413-2424. [PMID: 39467697 PMCID: PMC11729380 DOI: 10.4014/jmb.2405.05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 10/30/2024]
Abstract
The microbial community inhabiting the human gut resembles a bustling metropolis, wherein beneficial bacteria play pivotal roles in regulating our bodily functions. These microorganisms adeptly break down resilient dietary fibers to fuel our energy, synthesize essential vitamins crucial for our well-being, and maintain the delicate balance of our immune system. Recent research indicates a potential correlation between alterations in the composition and activities of these gut microbes and the development of coronary artery disease (CAD). Consequently, scientists are delving into the intriguing realm of manipulating these gut inhabitants to potentially mitigate disease risks. Various promising strategies have emerged in this endeavor. Studies have evidenced that probiotics can mitigate inflammation and enhance the endothelial health of our blood vessels. Notably, strains such as Lactobacilli and Bifidobacteria have garnered substantial attention in both laboratory settings and clinical trials. Conversely, prebiotics exhibit anti-inflammatory properties and hold potential in managing conditions like hypertension and hypercholesterolemia. Synbiotics, which synergistically combine probiotics and prebiotics, show promise in regulating glucose metabolism and abnormal lipid profiles. However, uncertainties persist regarding postbiotics, while antibiotics are deemed unsuitable due to their potential adverse effects. On the other hand, TMAO blockers, such as 3,3-dimethyl-1-butanol, demonstrate encouraging outcomes in laboratory experiments owing to their anti-inflammatory and tissue-protective properties. Moreover, fecal transplantation, despite yielding mixed results, warrants further exploration and refinement. In this comprehensive review, we delve into the intricate interplay between the gut microbiota and CAD, shedding light on the multifaceted approaches researchers are employing to leverage this understanding for therapeutic advancements.
Collapse
Affiliation(s)
- Jun Qu
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| | - Fantao Meng
- Department of Internal Medicine-Cardiovascular, LinYi Central Hospital, LinYi, Shandong, P.R. China
| | - Zhen Wang
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| | - Wenhao Xu
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| |
Collapse
|
32
|
Granados-Martinez C, Alfageme-Lopez N, Navarro-Oviedo M, Nieto-Vaquero C, Cuartero MI, Diaz-Benito B, Moro MA, Lizasoain I, Hernandez-Jimenez M, Pradillo JM. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines 2024; 12:2781. [PMID: 39767686 PMCID: PMC11673227 DOI: 10.3390/biomedicines12122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Stroke is one of the most devastating pathologies in terms of mortality, cause of dementia, major adult disability, and socioeconomic burden worldwide. Despite its severity, treatment options remain limited, with no pharmacological therapies available for hemorrhagic stroke (HS) and only fibrinolytic therapy or mechanical thrombectomy for ischemic stroke (IS). In the pathophysiology of stroke, after the acute phase, many patients develop systemic immunosuppression, which, combined with neurological dysfunction and hospital management, leads to the onset of stroke-associated infections (SAIs). These infections worsen prognosis and increase mortality. Recent evidence, particularly from experimental studies, has highlighted alterations in the microbiota-gut-brain axis (MGBA) following stroke, which ultimately disrupts the gut flora and increases intestinal permeability. These changes can result in bacterial translocation (BT) from the gut to sterile organs, further contributing to the development of SAIs. Given the novelty and significance of these processes, especially the role of BT in the development of SAIs, this review summarizes the latest advances in understanding these phenomena and discusses potential therapeutic strategies to mitigate them, ultimately reducing post-stroke complications and improving treatment outcomes.
Collapse
Affiliation(s)
- Cristina Granados-Martinez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Nuria Alfageme-Lopez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
| | - Manuel Navarro-Oviedo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Carmen Nieto-Vaquero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Isabel Cuartero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Blanca Diaz-Benito
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Maria Angeles Moro
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ignacio Lizasoain
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Macarena Hernandez-Jimenez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- AptaTargets S.L. Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Jesus Miguel Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| |
Collapse
|
33
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
34
|
Liang J, Xiong Z, Lei Q, Jiang Z, Wei J, Ouyang F, Chen Y, Zeng J. Sleep dysfunction and gut dysbiosis related amino acids metabolism disorders in cynomolgus monkeys after middle cerebral artery occlusion. Exp Neurol 2024; 382:114970. [PMID: 39321863 DOI: 10.1016/j.expneurol.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION This study aimed to explore the characteristics of post-stroke sleep dysfunction and verify their association with gut dysbiosis and the related amino acid metabolism disorders. This was achieved by using fecal microbiota transplantation (FMT) in a non-human primate stroke model. METHODS Twenty adult male cynomolgus monkeys were divided into the sham (n = 4), middle cerebral artery occlusion (MCAO, n = 5), MCAO + FMT (n = 3), and donor (n = 8) groups. The MCAO+FMT group received FMT at post-MCAO week 4. Sleep parameters, gut microbiota, gamma-aminobutyric acid (GABA), and glutamine (Gln) in the cerebrospinal fluid (CSF) were measured at baseline and postoperative weeks 4, 8, and 12. RESULTS At postoperative weeks 4, 8, and 12, the MCAO group showed decreased sleep efficiency, measured as the percentage of sleep during the whole night (82.3 ± 3.2 % vs 91.3 ± 2.5 %, 79.0 ± 3.75 % vs 90.8 ± 3.2 %, and 69.5 ± 4.8 % vs 90.5 ± 2.7 %; all P < 0.05), lower relative abundance of Lactobacillus (all P < 0.05), and reduced GABA concentrations in the CSF (317.3 ± 30.6 nmol/L vs 437.7 ± 25.6 nmol/L, 303.1 ± 48.9 nmol/L vs 4 40.9 ± 37.8 nmol/L, and 337.9 ± 49.4 nmol/L vs 457.4 ± 39.2 nmol/L; all P < 0.05) compared with the sham group. Sleep efficiency at post-FMT weeks 4 and 8 (84.7 ± 1.1 % vs 79.0 ± 3.75 %, and 84.1 ± 2.0 % vs 69.5 ± 4.8 %; both P < 0.05) and GABA concentration in the CSF at post-FMT week 4 (403.1 ± 25.4 nmol/L vs 303.1 ± 48.9 nmol/L, P < 0.05) was higher in the MCAO+FMT group than in the MCAO group. CONCLUSIONS Post-stroke sleep dysfunction in monkeys is characterized by impaired sleep coherence, associated with decreased levels of probiotics such as Lactobacillus, GABA, and Gln in the CSF and can be ameliorated using FMT.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangdong 510060, China
| | - Zhiyi Xiong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qingfeng Lei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China; Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China
| | - Zimu Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jiating Wei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Fubing Ouyang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yicong Chen
- Section II, Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
35
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
37
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
38
|
Yu S, Shi J, Yu G, Xu J, Dong Y, Lin Y, Xie H, Liu J, Sun J. Specific gut microbiome signatures predict the risk of acute ischemic stroke. Front Aging Neurosci 2024; 16:1451968. [PMID: 39582952 PMCID: PMC11582031 DOI: 10.3389/fnagi.2024.1451968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Numerous studies have reported alterations in the composition of gut microbiota in patients with acute ischemic stroke (AIS), with changes becoming more pronounced as the disease progresses. However, the association between the progression of transient ischemic attack (TIA) and AIS remains unclear. This study aims to elucidate the microbial differences among TIA, AIS, and healthy controls (HC) while exploring the associations between disease progression and gut microbiota. Methods Fecal samples were collected from acute TIA patients (n = 28), AIS patients (n = 235), and healthy controls (n = 75) and analyzed using 16 s rRNA gene sequencing. We determined characteristic microbiota through linear discriminant analysis effect size and used the receiver operating characteristic (ROC) curve to assess their predictive value as diagnostic biomarkers. Results Our results showed significant gut microbial differences among the TIA, AIS, and HC groups. Patients with AIS exhibited higher abundances of Lactobacillus and Streptococcus, along with lower abundances of Butyricicoccaceae and Lachnospiraceae_UCG-004. Further analysis revealed that the abundance of characteristic bacteria, such as Lactobacillus and Streptococcus, was negatively correlated with HDL levels, while Lactobacillus was positively correlated with risk factors such as homocysteine (Hcy). In contrast, the abundance of Lachnospiraceae_UCG-004 was negatively correlated with both Hcy and D-dimer levels. ROC models based on the characteristic bacteria Streptococcus and Lactobacillus effectively distinguished TIA from AIS, yielding areas under the curve of 0.699 and 0.626, respectively. Conclusion We identified distinct changes in gut bacteria associated with the progression from TIA to AIS and highlighted specific characteristic bacteria as predictive biomarkers. Overall, our findings may promote the development of microbiome-oriented diagnostic methods for the early detection of AIS.
Collapse
Affiliation(s)
- Shicheng Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Shi
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojie Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Xu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyao Dong
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Lin
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
Jiang H, Zeng W, Zhang X, Peng A, Cao D, Zhu F. Gut Microbiome variation in patients with early-stage mild-to-moderate intracerebral hemorrhage: A pilot study exploring therapeutic targets. J Stroke Cerebrovasc Dis 2024; 33:108001. [PMID: 39265858 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The significant morbidity and mortality rates of acute intracerebral hemorrhage (ICH) are well-known around the world. The link between gut microbiota and different types of strokes is becoming more studied. The goal of this study was to look at the relationships between intestinal flora and early-stage mild-to-moderate ICH (emICH), and to provide a new perspective for adjunctive treatment of emICH. METHODS Fecal samples from 100 participants with emICH (n=50) and healthy individuals (n=50) in this study were collected as well as analyzed utilizing 16S rRNA gene amplicon sequencing in order to characterize the gut microbial community. RESULTS Distinct microbial communities are present within each group, with emICH patients exhibiting a diminished diversity and uniformity in their microbial profiles. A notable shift in the gut microbiota composition of emICH patients has been observed, characterized by an upsurge in pro-inflammatory microbes belonging to the Euryarchaeota phylum and a concurrent decline in beneficial Bacteroidetes species. Concurrently, significant associations and patterns among operational taxonomic units (OTUs) were identified in emICH patients. A panel of biomarkers (WAL_1855D, Methanobrevibacter, Streptococcus, Bacteroides, Coprococcus, Lachnospira) has been effectively utilized to distinguish emICH patients from healthy individuals, with an area under the curve (AUC) of 0.845. Additionally, an analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation uncovered several perturbed pathways in emICH patients, predominantly those related to metabolic processes and the inflammatory response. Moreover, predictive profiling of the microbiome's phenotypic traits suggests that emICH patients are likely to harbor a higher prevalence of Gram-negative bacteria and potential opportunistic pathogens compared to healthy controls. CONCLUSIONS The gut microbiota ecosystem of emICH patients is disrupted, characterized primarily by an increase in pro-inflammatory microbiota, elevated inflammatory signaling pathways, and metabolic dysregulation. Furthermore, microbiota modulation may be seen as a novel approach for the adjunctive treatment of emICH.
Collapse
Affiliation(s)
- Haixiao Jiang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Wei Zeng
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaoli Zhang
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Aijun Peng
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Demao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Fei Zhu
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
40
|
Hasegawa-Ishii S, Komaki S, Asano H, Imai R, Osaki T. Chronic nasal inflammation early in life induces transient and long-term dysbiosis of gut microbiota in mice. Brain Behav Immun Health 2024; 41:100848. [PMID: 39280089 PMCID: PMC11402449 DOI: 10.1016/j.bbih.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiota begins to colonize the host body following birth, develops during the suckling period and changes to the adult type after weaning. The early gut microbiota during the suckling period is thought to have profound effects on the host physiology throughout life but it is still unclear whether early dysbiosis is retained lifelong. Our previous study indicated that chronic nasal inflammation induces dysbiosis of gut microbiota in adult mice. In the present study, we addressed the question as to whether early exposure to chronic nasal inflammation induces dysbiosis, and if so, whether the dysbiosis is retained until adulthood and the sex differences in this effect. Male and female mice received repeated intranasal administration of lipopolysaccharide (LPS) or saline twice a week from P7 to P24 and were weaned at P24. The cecal contents were obtained for 16S rRNA analysis at 2 time points: at 4 weeks (wks), just after weaning, and at maturation to adulthood at 10 wks. The body weight did not differ between saline- and LPS-treated mice till around weaning, suggesting that the mothers' milk was given similarly to all mice. At 4 wks, the beta diversity was significantly different between saline- and LPS-treated male and female mice and the composition of the gut microbiota changed in LPS-treated mice. The abundance of phylum Bacteroidota tended to decrease and that of Firmicutes increased in LPS-treated male mice, while the abundance of Deferribacterota increased in LPS-treated female mice. At 10 wks, the beta diversity was not different between saline- and LPS-treated mice, but the abundance of family Lachnospiraceae significantly decreased in LPS-treated male and female mice by LEfSe analysis. Together, chronic nasal inflammation early in life caused transient and long-term dysbiosis of gut microbiota, which may contribute to the onset and progress of metabolic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Suzuho Komaki
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Hinami Asano
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Ryuichi Imai
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
41
|
Mitrică M, Lorusso L, Badea AA, Sîrbu CA, Pleșa A, Stănescu AMA, Pleșa FC, Sîrbu OM, Munteanu AE. The Hidden Heart: Exploring Cardiac Damage Post-Stroke: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1699. [PMID: 39459486 PMCID: PMC11509537 DOI: 10.3390/medicina60101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Stroke-heart syndrome (SHS), a critical yet underrecognized condition, encompasses a range of cardiac complications that arise following an ischemic stroke. This narrative review explores the pathophysiology, clinical manifestations, and implications of SHS, focusing on the complex interplay between the brain and the heart. Acute ischemic stroke (AIS) triggers autonomic dysfunction, leading to a surge in catecholamines and subsequent myocardial injury. Our review highlights the five cardinal manifestations of SHS: elevated cardiac troponin (cTn) levels, acute myocardial infarction, left ventricular dysfunction, arrhythmias, and sudden cardiac death. Despite the significant impact of these complications on patient outcomes, there is a notable absence of specific guidelines for their management. Through a comprehensive literature search, we synthesized findings from recent studies to elucidate the mechanisms underlying SHS and identified gaps in the current understanding. Our findings underscore the importance of early detection and multidisciplinary management of cardiac complications post-stroke. Future research should focus on establishing evidence-based protocols to improve clinical outcomes for stroke patients with SHS. Addressing this unmet need will enhance the care of stroke survivors and reduce mortality rates associated with cardiac complications.
Collapse
Affiliation(s)
- Marian Mitrică
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
| | - Lorenzo Lorusso
- Neurology Unit, Neuroscience Department A.S.S.T. Lecco, Merate Hospital, 23807 Merate, Italy;
| | - Alexandru-Andrei Badea
- Department of Cardiology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania; (A.-A.B.); (A.E.M.)
| | - Carmen-Adella Sîrbu
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Andreea Pleșa
- Doctoral School, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Florentina Cristina Pleșa
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
| | - Octavian Mihai Sîrbu
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
- Doctoral School, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alice Elena Munteanu
- Department of Cardiology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania; (A.-A.B.); (A.E.M.)
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| |
Collapse
|
42
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2-Secondary Immunodeficiencies. Healthcare (Basel) 2024; 12:1977. [PMID: 39408157 PMCID: PMC11477378 DOI: 10.3390/healthcare12191977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are among the most common chronic diseases, generating high social and economic costs. Secondary immunodeficiencies occur more often than primary ones and may result from the co-occurrence of specific diseases, treatment, nutrient deficiencies and non-nutritive bio-active compounds that result from the industrial nutrient practices. OBJECTIVES The aim of this article is to present selected secondary immunodeficiencies and their impact on the cardiovascular system. RESULTS The treatment of a patient with cardiovascular disease should include an assess-ment for immunodeficiencies, because the immune and cardiovascular systems are closely linked. CONCLUSIONS Immune system dysfunctions can significantly affect the course of cardiovascular diseases and their treatment. For this reason, comprehensive care for a patient with cardiovascular disease requires taking into account potential immunodeficiencies, which can have a significant impact on the patient's health.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
43
|
Qiu J, Ye B, Feng L. Improvement of intestinal microbial structure in patients with cerebral infarction through in vitro fermentation of anthocyanins from Lycium ruthenicum Murray. Food Sci Nutr 2024; 12:7481-7491. [PMID: 39479706 PMCID: PMC11521701 DOI: 10.1002/fsn3.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 11/02/2024] Open
Abstract
Anthocyanins in Lycium ruthenicum Murray can be degraded into metabolites by intestinal microorganisms and have a wide range of biological functions. However, there are limited studies on the effect of anthocyanins on the intestinal flora structure in patients with cerebral infarction. To explore the new probiotic effects of ACN, the gut microbiota present in fecal samples obtained from healthy volunteers and patients with acute cerebral infarction underwent in vitro fermentation analysis. The in vitro fermentation product of ACN with L. ruthenicum Murray can significantly increase the diversity of the gut flora in patients with cerebral infarction. It can also promote beneficial bacteria (e.g., Bifidobacterium) in the guts of patients with acute cerebral infarction (e.g. Bifidobacterium, Allisonella, and Prevotell), reduce the growth of potentially harmful bacteria (Dialister, Megamonas, and Clostridium), and increase the levels of SCFAs. This investigation demonstrated the capability of ACN in vitro fermentation to improve the gut microbiota structure in patients with cerebral infarction. This, in turn, furnishes new theoretical underpinnings for its potential development as a functional food component.
Collapse
Affiliation(s)
- Jun Qiu
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Bin Ye
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Lei Feng
- Department of NeurosurgeryThe First People's Hospital of JiningJiningShandongChina
- Jining Key Laboratory of Stroke and Nerve RepairJiningShandongChina
| |
Collapse
|
44
|
Dean YE, Shebl MA, Doma M, Elmezayen RW, Loayza Pintado JJ, Rouzan SS, Hassan NAIF, Yaqout YE, Tokunaga A, Anozie C, ElKoumi O, Elawady SS, Mady T, Nizam SN, Etman Y, Nizam R, Hazimeh Y, Alazmy M, Aiash H. Intestinal microbiome as a diagnostic marker of coronary artery disease: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:6105-6120. [PMID: 39359774 PMCID: PMC11444608 DOI: 10.1097/ms9.0000000000002516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The intestinal microbiome has been recently linked to several metabolic and chronic disorders, one of which is coronary artery disease (CAD). Our study aimed to analyze the intestinal microbiome of CAD patients and assess the eligibility of dysbiosis as a diagnostic marker of CAD. METHODS PubMed, Scopus, Embase, and Web of Science were searched using terms, such as 'CAD' and 'microbiome'. Only observational controlled studies were included. R version 4.2.2 was used for the analysis. RESULTS A significant association was found between the CAD group and increased Simpson and Shannon Indices compared with the control group (MD=0.04, 95% CI=0.03-0.05, and MD=0.11, 95% CI=0.01-0.22, respectively). Our analysis yielded a statistically significant association between the CAD group and increased Prevotella genus (MD=13.27, 95% CI=4.12-22.42, P-value=0.004), Catenibacterium genus (MD=0.09, 95% CI=0.09-0.10), Pseudomonas genus (MD=0.54, 95% CI=0.29-0.78, P-value), and Subdoligranulum (MD=-0.06, 95% CI=-0.06 to -0.06) compared with the control group. Another significant association was detected between the CAD group and decreased Bacteroides vulgatus and Bacteroides dorei (MD=-10.31, 95% CI=-14.78 to -5.84, P-value <0.00001). CONCLUSION Dysbiosis is an acceptable diagnostic marker of CAD. Decreased B. dorei and B. vulgatus among CAD patients suggests a protective role of these bacteria. Future clinical trials are necessary to investigate the potential benefit of supplementation of these bacteria in treating or preventing CAD.
Collapse
Affiliation(s)
- Yomna E. Dean
- Alexandria University, Faculty of Medicine, Alexandria
| | | | - Mohamed Doma
- Alexandria University, Faculty of Medicine, Alexandria
| | | | | | | | | | | | | | | | - Omar ElKoumi
- Suez Universtiy, Faculty of Medicine, Suez, Egypt
| | | | - Tamer Mady
- International American University, College of Medicine, Saint Lucia
| | | | - Yasser Etman
- Texas Health Hospital Rockwall, Director of Intensive Care Unit, Rockwall, Texas, USA
| | | | - Yusef Hazimeh
- Lebanese University
- Zahraa Hospital, University Medical Center, Lebanon
| | | | - Hani Aiash
- Suez Universtiy, Faculty of Medicine, Suez, Egypt
- SUNY Upstate Medical University, Syracuse
| |
Collapse
|
45
|
Gong H, Huang S. Associations of overactive bladder (OAB) with suicidal ideation incidence and all-cause mortality among the U.S. population. BMC Psychiatry 2024; 24:641. [PMID: 39350063 PMCID: PMC11443948 DOI: 10.1186/s12888-024-06107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Few studies have explored the correlation between overactive bladder (OAB) and suicidal ideation. This study aims to investigate the association between OAB and suicidal ideation, as well as the relationship between OAB and all-cause mortality among individuals with suicidal ideation. METHODS Data from the 2005-2018 National Health and Nutrition Examination Survey (NHANES) were analyzed using cross-sectional and cohort study designs. Weighted multivariable logistic regression models were used to examine the association between OAB and suicidal ideation. Kaplan-Meier curves and weighted multivariable Cox proportional hazards models assessed the relationship between OAB and all-cause mortality among those with suicidal ideation. Interaction analyses on subgroups were conducted to validate the findings. Mediation analysis was performed to examine the effect of depression on the relationship between OAB and suicidal ideation. RESULTS Among 33,426 participants aged ≥ 20 years, 1,290 (3.8%) reported suicidal ideation. After adjusting for potential confounders, participants with OAB were 2.57 times more likely to have suicidal ideation (P < 0.001). Over an average follow-up of 87 months, 197 participants with suicidal ideation died. The Cox model revealed that participants with OAB had a 3.08 times higher risk of death (P = 0.006). Kaplan-Meier curves indicated higher survival rates for non-OAB participants. Mediation analysis indicates that depression significantly mediates the relationship between OAB and suicidal ideation, with a mediation proportion of 75.25% (P < 0.001). CONCLUSIONS OAB is positively associated with the incidence of suicidal ideation and all-cause mortality among participants with suicidal ideation. Additionally, the association between OAB and suicidal ideation is mediated by depression.
Collapse
Affiliation(s)
- Hongyang Gong
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, No.102 Gudong Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Shaoqun Huang
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, No.102 Gudong Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
46
|
Pan W, Wang F, Xu J, Li J, Gao J, Zhao Y, Wang Q. Betaine Supplementation Into High-Carbohydrate Diets Improves Feed Efficiency and Liver Health of Megalobrama amblycephala by Increasing Taurine Synthesis. AQUACULTURE NUTRITION 2024; 2024:9632883. [PMID: 39555516 PMCID: PMC11469934 DOI: 10.1155/2024/9632883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 11/19/2024]
Abstract
Dietary betaine supplementation has been reported to alleviate the adverse effects of high-carbohydrate diets on Megalobrama amblycephala, while the regulatory mechanism remains largely unknown. In the present study, a 79-day feeding trial was conducted with 450 juvenile Megalobrama amblycephala (average weight 6.75 ± 0.10 g), which were fed with five high-carbohydrate diets (43%) supplementing betaine at 0% (CD group), 0.2% (0.2Bet group), 0.4% (0.4Bet group), 0.8% (0.8Bet group), and 1.6% (1.6Bet group), respectively. Results showed M. amblycephala in 0.8Bet group exhibited the best growth performance, indicated by the largest weight gain ratio (142.88%) and least feed conversion ratio (1.63). Moreover, liver health was promoted in 0.8Bet group, with decreased number of non-nucleated cells and less lipid accumulation, which was accompanied by the lowest hepatosomatic index (1.38%). In order to further illustrate the regulatory mechanism, metabolites assay indicated that dietary betaine supplementation significantly increased plasma contents of methionine, serine, hypotaurine, and taurine, but did not affect plasma contents of cystathionine, cystine, or cysteic acid. Accordingly, the mRNA expressions of cysteine sulfinate decarboxylase in cysteine sulfinic acid pathway and cysteamine dioxygenase (ADO) in sulfinic acid (CS) pathway, which were both involved in taurine synthesis, were also upregulated in the liver. Meanwhile, the microbial communities in M. amblycephala intestine were more stable and uniform with betaine supplementation. Therefore, dietary betaine supplementation may exert its protective roles in improving feed efficiency and liver health of M. amblycephala via promoting de novo taurine synthesis and stabilizing intestinal microbial communities.
Collapse
Affiliation(s)
- Wenbo Pan
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Fan Wang
- Guangxi Key Laboratory of Marine Environmental ScienceGuangxi Academy of Marine SciencesGuangxi Academy of Sciences, Nanning 530012, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental ScienceGuangxi Academy of Marine SciencesGuangxi Academy of Sciences, Nanning 530012, China
| | - Juntao Li
- Institute of Tropical Bioscience and BiotechnologyHainan Institute for Tropical Agricultural ResourcesChinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Jian Gao
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Zhao
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Qingchao Wang
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
47
|
Xian L, Xu X, Mai Y, Guo T, Chen Z, Deng X. Dissecting causal relationships between gut microbiome, immune cells, and brain injury: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39740. [PMID: 39312332 PMCID: PMC11419422 DOI: 10.1097/md.0000000000039740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Increasing literature has affirmed that changes in the gut microbiome (GM) composition were linked to distinct brain injury (BI) through the gut-brain axis, but it is uncertain if such links reflect causality. Further, the immune cell changes mediating the impact of GM on BI are not completely understood. We made use of the summary statistics of 211 GM (MiBioGen consortium), 731 immune cells, and 2 different BIs (FinnGen consortium), namely traumatic BI (TBI) and focal BI (FBI), from the extensive genome-wide association studies to date. We executed bidirectional Mendelian randomization (MR) analyses to ascertain the causal relationships between the GM and BI, and 2-step MR to validate possible mediating immune cells. Additionally, thorough sensitivity analyses verified the heterogeneity, robustness, as well as horizontal pleiotropy of the results. Based on the results of inverse-variance weighted (IVW) and sensitivity analyses, in MR analyses, 5 specific GM taxa and 6 specific GM taxa were causally associated with FBI and TBI, respectively; 27 immunophenotypes and 39 immunophenotypes were causally associated with FBI and TBI, respectively. Remarkably, Anaerofilum, LachnospiraceaeNC2004group, RuminococcaceaeUCG004, CCR2 on myeloid dendritic cell (DC), CD123 on CD62L+ plasmacytoid DC, and CD123 on plasmacytoid DC were causally associated with TBI and FBI (all P < .040). However, our reverse MR did not indicate any influence of TBI and FBI on the specific GM. In mediation analysis, we found that the associations between Escherichia.Shigella and FBI were mediated by CD123 on CD62L + plasmacytoid DC in addition to CD123 on plasmacytoid DC, each accounting for 4.21% and 4.21%; the association between FamilyXIIIAD3011group and TBI was mediated by CCR2 on myeloid DC, with mediated proportions of 5.07%. No remarkable horizontal pleiotropy or heterogeneity of instrumental variables was detected. Our comprehensive MR analysis first provides insight into potential causal links between several specific GM taxa with FBI/TBI. Additionally, CD123 on plasmacytoid DC in conjunction with CCR2 on myeloid DC may function in gut microbiota-host crosstalk in FBI and TBI, correspondingly. Further studies are critical to unravel the underlying mechanisms of the links between GM and BI.
Collapse
Affiliation(s)
- Lina Xian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Unit, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Xiaochen Xu
- Department of Intensive Care Unit, Emergency and Trauma College, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Yongmeng Mai
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Unit, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Tongwu Guo
- Department of Intensive Care Unit, Emergency and Trauma College, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (the First people’s hospital of Shunde), Foshan, Guangdong Province, PR China
| | - Xiaoyan Deng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Unit, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, PR China
| |
Collapse
|
48
|
Wang R, Huang G, Li S, Huang H, Zhu G, Wang L, Yang J, Yang S, Jiang Z, Zhang W. Blueberry extract for the treatment of ischaemic stroke through regulating the gut microbiota and kynurenine metabolism. Phytother Res 2024; 38:4792-4814. [PMID: 39140343 DOI: 10.1002/ptr.8300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Although the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.
Collapse
Affiliation(s)
- Raoqiong Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Shuangyang Li
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hanlin Huang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinrui Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
49
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
50
|
He Q, Li G, Zhao J, Zhu H, Mo H, Xiong Z, Zhao Z, Chen J, Ning W. The impact of dysbiosis in oropharyngeal and gut microbiota on systemic inflammatory response and short-term prognosis in acute ischemic stroke with preceding infection. Front Microbiol 2024; 15:1432958. [PMID: 39238889 PMCID: PMC11374613 DOI: 10.3389/fmicb.2024.1432958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Background Stroke is a devastating disease and ranks as the second leading cause of death and disability globally. Several studies have shown that preceding infection (PI) of upper respiratory tract are strongly associated with acute ischemic stroke (AIS). However, the clinical implications and underlying pathological mechanisms remain unclear. Methods In this study, 16S rRNA gene sequencing was employed to compare the structural characteristics of oropharyngeal and gut microbiota in AIS patients with or without PI and normal controls (NCs; 30 cases each), and systemic inflammatory markers were detected to explore the relationship between upper respiratory tract infections (URTIs) and subsequent stroke severity and functional outcome and the potential mechanism. Results We found that patients with AIS-PI exhibited elevated serum WBC, NE, CRP, and Hcy levels, as well as a higher 90-day mRS score. Oropharyngeal and gut microbiota analysis showed that AIS and AIS-PI patients exhibited increased microbial richness in sequence. Principal coordinate analysis of the microbiota demonstrated significant differences in microbiota composition among the three groups. In AIS-PI patients, Megamonas, Megasphaera, Ruminococcaceae UCG 004, Rothia, and Streptococcus were significantly enriched in the gut. Opportunistic pathogens, including Thermus, uncultured Veillonella sp., and Oribacterium sinu, were found to be significantly enriched in the oropharynx. The dysregulated microbiota were positively correlated with systemic inflammatory markers, stroke severity, and poor prognosis. In contrast, short-chain fatty acid-producing bacteria Eisenbergiella, bacterium NLAE, Fusicatenibacter, Ruminococcaceae, and Faecalibacterium were enriched in NCs. Their abundances were negatively correlated with systemic inflammatory markers, stroke severity and poor prognosis. Conclusion Our findings suggest that PIs of the upper respiratory tract may contribute to poor short-term functional outcome in AIS patients by causing disturbance of the oropharyngeal and gut microbiota and promoting elevated systemic inflammation levels.
Collapse
Affiliation(s)
- Qiuxing He
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoshun Li
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jiasheng Zhao
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Huishan Zhu
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Huanhao Mo
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Zhanshi Xiong
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhan Zhao
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jingyi Chen
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Weimin Ning
- Department of Neurology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|