1
|
Nebel R. Phase III Cardiac Rehabilitation: Ambulatory Heart Groups - A Model From Germany. Circ Rep 2024; 6:489-494. [PMID: 39525296 PMCID: PMC11541178 DOI: 10.1253/circrep.cr-24-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 7,000 ambulatory (outpatient) heart groups (AHG) with 125,000 patients who are physically active on a regular basis have been established in Germany since the mid-1960s. Following phase II cardiac rehabilitation (CR), patients in an AHG aim to meet their set CR goals in groups of up to 20 participants under the instruction of a competent exercise therapist, and with regular attendance by a physician. Physical activity is the dominant aspect; psychosocial and educative elements are integrated to stabilize secondary cardiovascular prevention. Patients are legally entitled by German rehabilitation law to participate in AHGs. According to current studies, only 13-40% of all patients attend an AHG after phase II CR. In 2019, special AHGs for patients with high cardiovascular risk (chronic heart failure) were established. In the future, special emphasis needs to be placed on the recruitment of more patients into AHGs, particularly for the known under-represented groups (i.e., women, older patients, patients with low socioeconomic status). Furthermore, AHGs have to be established for patients with special needs (e.g., adults with congenital heart diseases). To date, the efficiency of AHG participation has still not been sufficiently investigated. A case-control study analyzing the long-term results of AHG participation reported an improvement in physical performance, as well as a reduction in cardiovascular morbidity (54%) and medical costs (approximately 47%). More superior investigations in this field are needed.
Collapse
Affiliation(s)
- Roland Nebel
- Klinik Roderbirken, German Pension Fund, Cardiac Rehabilitation and Prevention Leichlingen Germany
| |
Collapse
|
2
|
Biernat K, Kuciel N, Mazurek J, Hap K. Is It Possible to Train the Endothelium?-A Narrative Literature Review. Life (Basel) 2024; 14:616. [PMID: 38792637 PMCID: PMC11121998 DOI: 10.3390/life14050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This review provides an overview of current knowledge regarding the adaptive effects of physical training on the endothelium. The endothelium plays a crucial role in maintaining the health of vessel walls and regulating vascular tone, structure, and homeostasis. Regular exercise, known for its promotion of cardiovascular health, can enhance endothelial function through various mechanisms. The specific health benefits derived from exercise are contingent upon the type and intensity of physical training. The review examines current clinical evidence supporting exercise's protective effects on the vascular endothelium and identifies potential therapeutic targets for endothelial dysfunction. There is an urgent need to develop preventive strategies and gain a deeper understanding of the distinct impacts of exercise on the endothelium.
Collapse
Affiliation(s)
| | - Natalia Kuciel
- University Rehabilitation Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.B.); (J.M.); (K.H.)
| | | | | |
Collapse
|
3
|
Shaheen N, Shaheen A, Diab RA, Desouki MT. MicroRNAs (miRNAs) role in hypertension: pathogenesis and promising therapeutics. Ann Med Surg (Lond) 2024; 86:319-328. [PMID: 38222760 PMCID: PMC10783350 DOI: 10.1097/ms9.0000000000001498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024] Open
Abstract
Background MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating various cellular processes, including cell proliferation, differentiation, apoptosis, and disease development. Recent studies have highlighted the importance of miRNAs in the development and progression of essential hypertension, a common form of high blood pressure that affects millions of individuals worldwide. The molecular mechanisms by which miRNAs regulate hypertension are complex and multifaceted. MiRNAs target the 3' untranslated regions of mRNA molecules, thereby regulating the synthesis of specific proteins involved in cardiovascular function. For instance, miRNAs are known to regulate the expression of genes involved in blood vessel tone, cardiac function, and inflammation. The growing body of research on miRNAs in hypertension has highlighted their potential as therapeutic targets for managing this condition. Studies have shown that miRNA-based therapies can modulate the expression of key genes involved in hypertension, leading to improvements in blood pressure and cardiovascular function. However, more research is needed to fully understand the mechanisms of miRNA-mediated hypertension and to develop effective therapeutic strategies. Conclusions In summary, this review highlights the current understanding of the role of miRNAs in essential hypertension, including their molecular mechanisms and potential therapeutic applications. Further research is needed to fully understand the impact of miRNAs on hypertension and to develop new treatments for this common and debilitating condition.
Collapse
Affiliation(s)
- Nour Shaheen
- Faculty of Medicine, Alexandria University, Alexandria
| | - Ahmed Shaheen
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | |
Collapse
|
4
|
Tanaka R, Waki I, Kamikawa S, Yamashita D, Tabita N, Nishimura S, Higashiya S, Yamaji H, Murakami T, Kusachi S. Reproducibility of cardiopulmonary exercise testing between one after and 1-3 weeks after elective percutaneous coronary intervention. J Exerc Rehabil 2023; 19:268-274. [PMID: 37928829 PMCID: PMC10622936 DOI: 10.12965/jer.2346376.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Prompt prescription and early initiation of exercise training are essential for patients undergoing elective percutaneous coronary intervention (PCI). We hypothesized that cardiopulmonary exercise testing (CPET) parameters determined the day after elective PCI during hospitalization would not differ from those obtained 1-3 weeks post-PCI in patients with stable coronary heart disease (CHD). CPET was performed the day after and 1-3 weeks (13±4.6; 7-21 days) after PCI. CPET was performed with a bicycle ergometer up to the ventilatory aerobic threshold (VAT) on the day after PCI. Symptom-limited CPET was conducted 1-3 weeks after PCI. No complications arose from the tests. There were no significant differences in %VAT (next day: 88.6±16.7 vs. 1-3 weeks later: 91.4%±18.7%), the workload at the VAT (51.8±11.0 W vs. 52.9± 11.6 W), heart rate (HR) at the VAT (95.3±105 beats/min vs. 94.1±11.3 beats/min), or metabolic equivalent (METs) at the VAT (3.69±0.69 vs. 3.84±0.78) between the two sessions. The slope of linear regression for two repeated measurements was close to 1 (%VAT, 1.02; workload at the VAT, 0.95; METs at the VAT, 1.03), except for HR (0.70). Bland-Altman plots revealed the reproducibility of all four CPET measurements between the two sessions. In conclusion, CPET up to the VAT can be performed safely 1-day post-PCI in patients with stable CHD. CPET parameters do not significantly differ between testing performed the day after and 1-3 weeks after PCI. Next-day CPET during hospitalization after PCI may enable prompt exercise prescription without the need for another CPET 1-3 weeks later.
Collapse
Affiliation(s)
- Ryou Tanaka
- Division of Cardiovascular Rehabilitation, Okayama Heart Clinic, Okayama,
Japan
| | - Isao Waki
- Division of Cardiovascular Rehabilitation, Okayama Heart Clinic, Okayama,
Japan
| | - Shigeshi Kamikawa
- Division of Cardiovascular Medicine & Intervention, Okayama Heart Clinic, Okayama,
Japan
| | - Daiki Yamashita
- Division of Cardiovascular Rehabilitation, Okayama Heart Clinic, Okayama,
Japan
| | - Natsumi Tabita
- Division of Cardiovascular Rehabilitation, Okayama Heart Clinic, Okayama,
Japan
| | - Saori Nishimura
- Division of Cardiovascular Rehabilitation, Okayama Heart Clinic, Okayama,
Japan
| | | | | | | | - Shozo Kusachi
- Division of Cardiovascular Medicine & Intervention, Okayama Heart Clinic, Okayama,
Japan
- Graduate School of Health Sciences, Okayama University, Okayama,
Japan
| |
Collapse
|
5
|
Kajikawa M, Higashi Y. Obesity and Endothelial Function. Biomedicines 2022; 10:biomedicines10071745. [PMID: 35885049 PMCID: PMC9313026 DOI: 10.3390/biomedicines10071745] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023] Open
Abstract
Obesity is a major public health problem and is related to increasing rates of cardiovascular morbidity and mortality. Over 1.9 billion adults are overweight or obese worldwide and the prevalence of obesity is increasing. Obesity influences endothelial function through obesity-related complications such as hypertension, dyslipidemia, diabetes, metabolic syndrome, and obstructive sleep apnea syndrome. The excess fat accumulation in obesity causes adipocyte dysfunction and induces oxidative stress, insulin resistance, and inflammation leading to endothelial dysfunction. Several anthropometric indices and imaging modalities that are used to evaluate obesity have demonstrated an association between obesity and endothelial function. In the past few decades, there has been great focus on the mechanisms underlying endothelial dysfunction caused by obesity for the prevention and treatment of cardiovascular events. This review focuses on pathophysiological mechanisms of obesity-induced endothelial dysfunction and therapeutic targets of obesity.
Collapse
Affiliation(s)
- Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan;
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan;
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5831
| |
Collapse
|
6
|
Exercise Training and Interventions for Coronary Artery Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9050131. [PMID: 35621842 PMCID: PMC9146277 DOI: 10.3390/jcdd9050131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 12/22/2022] Open
Abstract
Coronary artery disease (CAD) may be considered a main cause of mortality and the prevalence of CAD is increasing nowadays, leading to high health costs in many countries. Despite the fact of the regression of the atherosclerotic plaque, the decrease in blood viscosity and the growth of collateral vessels have been proposed as improvements that CAD patients may obtain under exercise performance. Thus, the present narrative review aimed to carry out a brief specific analysis of the results achieved when performing endurance, strength or inspiratory muscle training. Exercise attenuates certain pathophysiological processes of this disease, such as endothelial dysfunction or the vulnerability of atherosclerotic plaques, and produces improvements in functional capacity and muscle strength, among others. Within the different exercise modalities, the most important parameter to be considered seems to be the total caloric expenditure, and not so much the modality itself. As such, in cardiac rehabilitation, when prescribing exercise, we should possibly focus on the modality that obtains more adherence in patients. To conclude, it must be highlighted that total caloric expenditure is not being taken into account when comparing interventions and this relevant information should be considered in future studies.
Collapse
|
7
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
8
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
9
|
Kaze AD, Santhanam P, Erqou S, Bertoni AG, Ahima RS, Echouffo-Tcheugui JB. Cardiorespiratory Fitness and Atherosclerotic Cardiovascular Outcomes by Levels of Baseline-Predicted Cardiovascular Risk: The Look AHEAD Study. Am J Med 2021; 134:769-776.e1. [PMID: 33607087 PMCID: PMC8176653 DOI: 10.1016/j.amjmed.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND We evaluated the associations of cardiorespiratory fitness with atherosclerotic cardiovascular disease (ASCVD) by levels of baseline-predicted ASCVD risk among adults with type 2 diabetes. METHODS We analyzed data from 4203 adults with type 2 diabetes in the Look AHEAD (Action for Health in Diabetes) study. Cardiorespiratory fitness was assessed using maximal exercise testing and categorized into low, moderate, and high; baseline-predicted. ASCVD risk was calculated using the American College of Cardiology/American Heart Association Pooled Cohort Equation. We used Cox regression models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for ASCVD events (fatal and nonfatal myocardial infarction and stroke). RESULTS Over a median of 9.6 years, there were 295 ASCVD events. The effect of fitness on outcomes was different across levels of 10-year predicted ASCVD risk (P for interaction < .001). Among participants with a baseline-predicted risk of 7.5% to 20%, the HR of low (vs high) fitness group was 1.94 (95% CI, 1.12-3.35) for ASCVD events. Fitness was not significantly associated with ASCVD events in the groups with baseline-predicted risk <7.5% (HR 1.53; 95% CI, 0.49-4.76) or ≥20% (HR 1.40; 95% CI, 0.88-2.24). A similar pattern was observed for myocardial infarction and stroke separately. CONCLUSIONS In a large sample of type 2 diabetes individuals, the association of low fitness with incident ASCVD was modified by the baseline-predicted 10-year ASCVD risk. Our findings suggest the utility of assessing fitness in ASCVD risk stratification in type 2 diabetes, especially among those with intermediate predicted 10-year risk of ASCVD.
Collapse
Affiliation(s)
- Arnaud D Kaze
- Department of Medicine, University of Maryland Medical Center, Baltimore
| | - Prasanna Santhanam
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins School of Medicine, Baltimore, Md
| | - Sebhat Erqou
- Department of Medicine, Providence VA Medical Center and Alpert Medical School of Brown University, Providence, RI
| | - Alain G Bertoni
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins School of Medicine, Baltimore, Md
| | - Justin B Echouffo-Tcheugui
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins School of Medicine, Baltimore, Md.
| |
Collapse
|
10
|
Normann MC, Cox M, Akinbo OI, Watanasriyakul WT, Kovalev D, Ciosek S, Miller T, Grippo AJ. Differential paraventricular nucleus activation and behavioral responses to social isolation in prairie voles following environmental enrichment with and without physical exercise. Soc Neurosci 2021; 16:375-390. [PMID: 33947321 DOI: 10.1080/17470919.2021.1926320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Social stressors produce neurobiological and emotional consequences in social species. Environmental interventions, such as environmental enrichment and exercise, may modulate physiological and behavioral stress responses. The present study investigated the benefits of environmental enrichment and exercise against social stress in the socially monogamous prairie vole. Female prairie voles remained paired with a sibling (control) or were isolated from a sibling for 4 weeks. The isolated groups were assigned to isolated sedentary, isolated with environmental enrichment, or isolated with both enrichment and exercise conditions. Behaviors related to depression, anxiety, and sociality were investigated using the forced swim test (FST), elevated plus maze (EPM), and a social crowding stressor (SCS), respectively. cFos expression was evaluated in stress-related circuitry following the SCS. Both enrichment and enrichment with exercise protected against depression-relevant behaviors in the FST and social behavioral disruptions in the SCS, but only enrichment with exercise protected against anxiety-related behaviors in the EPM and altered cFos expression in the hypothalamic paraventricular nucleus in isolated prairie voles. Enrichment may improve emotion-related and social behaviors, however physical exercise may be an important component of environmental strategies for protecting against anxiety-related behaviors and reducing neural activation as a function of social stress.
Collapse
Affiliation(s)
- Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Miranda Cox
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | | | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Sarah Ciosek
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Thomas Miller
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
11
|
Hansen RK, Samani A, Laessoe U, Handberg A, Larsen RG. Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users: protocol for a randomised controlled trial. BMJ Open 2020; 10:e040727. [PMID: 33067301 PMCID: PMC7569950 DOI: 10.1136/bmjopen-2020-040727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cardiovascular and metabolic diseases are a growing concern for individuals with spinal cord injury (SCI). Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in individuals with SCI. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 min of moderate-to-vigorous intensity aerobic exercise, three times per week, for improvement in cardiometabolic health in individuals with SCI. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12 weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (eg, vascular structure and function) cardiometabolic risk factors in manual wheelchair users with SCI. METHODS AND ANALYSIS A randomised controlled trial will compare 12 weeks of upper-body rowing exercise, 30 min three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks of training (post) and 6 months after the termination of the intervention period (follow-up). Outcomes will include inflammatory (eg, C reactive protein) and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood pressure, cardiorespiratory fitness level, brachial artery vascular structure and function and autonomic nervous system function. ETHICS AND DISSEMINATION This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (J.nr. N-20190053). The principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication. TRIAL REGISTRATION NUMBER NCT04390087.
Collapse
Affiliation(s)
- Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Afshin Samani
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Uffe Laessoe
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
- Physical Therapy Department, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Ahmadi A, Dabidi Roshan V, Jalali A. Coronary vasomotion and exercise-induced adaptations in coronary artery disease patients: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:76. [PMID: 33088313 PMCID: PMC7554544 DOI: 10.4103/jrms.jrms_580_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
Background: Exercise can improve coronary blood flow in a healthy heart, but the vascular response of patients with coronary artery disease (CAD) is different. The aim of this study was to systematically review the chronic effects of exercise on coronary arterial function in CAD patients. Materials and Methods: Six electronic databases (PubMed, ScienceDirect, “Scopus,” Web of Science, EMBASE, and Google Scholar) covering publications from 1986 to 2019 were systematically searched with related keywords. Studies were included if they investigated changes in blood flow and coronary artery diameter in response to chronic exercise training in patients with CAD. A total of 5421 studies were assessed for quality and outcomes, and finally five studies met criteria for inclusion. For metaanalysis, the results of the studies were pooled using the randomeffects model. The heterogeneity between the studies was checked using I2 index. Results: The total sample population consisted of 108 CAD patients. According to the findings of this study, coronary artery function in adaptation with exercise showed that a period of exercise leads to statistically significant improvement in coronary flow velocity reserve (z = 3.15, P = 0.002; standardized mean difference [SMD] =2.33, 95% confidence interval [CI]: 0.88–3.78) (containing six trials). In addition, vasodilatory response of coronary arteries in response to endothelium-independent vasodilator nitroglycerin was investigated in three studies (containing four trials). A meta-analysis showed that performing chronic aerobic exercises did not make a significant change in the endothelium-independent vasodilator (z = 0.83, P = 0.40; SMD = −0.36, 95% CI: −1.21–0.49). Conclusion: Based on the results of the present study, aerobic exercises improve the endothelial function of coronary arteries and thereby the vascular vasomotion function, while the results of this meta-analysis showed no change in arterial smooth muscle's function by chronic aerobic exercises. This study reflects the lack of high- and medium-quality reports about the chronic effects of anaerobic and resistance exercises and the various methods of aerobic exercise on cardiovascular function.
Collapse
Affiliation(s)
- Azra Ahmadi
- Department of Sport Physiology, College of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Valiollah Dabidi Roshan
- Department of Sport Physiology, College of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Arash Jalali
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants (Basel) 2020; 9:antiox9060498. [PMID: 32517297 PMCID: PMC7346155 DOI: 10.3390/antiox9060498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity represents a powerful tool to achieve optimal health. The overall activation of several molecular pathways is associated with many beneficial effects, mainly converging towards a reduced systemic inflammation. Not surprisingly, regular activity can contribute to lowering the “epigenetic age”, acting as a modulator of risk toward several diseases and enhancing longevity. Behind this, there are complex molecular mechanisms induced by exercise, which modulate gene expression, also through epigenetic modifications. The exercise-induced epigenetic imprint can be transient or permanent and contributes to the muscle memory, which allows the skeletal muscle adaptation to environmental stimuli previously encountered. Nutrition, through key macro- and micronutrients with antioxidant properties, can play an important role in supporting skeletal muscle trophism and those molecular pathways triggering the beneficial effects of physical activity. Nutrients and antioxidant food components, reversibly altering the epigenetic imprint, have a big impact on the phenotype. This assigns a role of primary importance to nutri(epi)genomics, not only in optimizing physical performance, but also in promoting long term health. The crosstalk between physical activity and nutrition represents a major environmental pressure able to shape human genotypes and phenotypes, thus, choosing the right combination of lifestyle factors ensures health and longevity.
Collapse
|
14
|
Boulenouar H, Hetraf SAL, Djellouli HO, Meroufel DN, Fodil FZ, Hammani-Medjaoui I, Mehtar NS, Houti L, Benchekor SM. Lack of association between genetic variants in the 19q13.32 region and CHD risk in the Algerian population: a population-based nested case-control study. Afr Health Sci 2020; 20:735-744. [PMID: 33163038 PMCID: PMC7609110 DOI: 10.4314/ahs.v20i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Coronary Heart Disease (CHD) is a major cause of morbidity and mortality over the world; intermediate traits associated with CHD commonly studied can be influenced by a combination of genetic and environmental factors. OBJECTIVE We found previously significant association between three genetic polymorphisms, and the lipid profile variations in the Algerian population. Considering these findings, we therefore decided to assess the relationships between these polymorphisms and CHD risk. METHODS We performed a population-based, cross-sectional study, of 787 individuals recruited in the city of Oran, in which, a nested case-control study for MetS, T2D, HBP, obesity and CHD were performed. Subjects were genotyped for four SNP rs7412, rs429358 rs4420638 and rs439401 located in the 19q13.32 region. RESULTS The T allele of rs439401 confers a high risk of hypertension with an odds ratio (OR) of 1.46 (95% CI [1.12-1.9], p = 0.006) and the G allele of rs4420638 was significantly associated with a decreased risk of obesity, OR 0.48 (95% CI [0.29-0.81], p = 0.004). No associations were found for MetS, T2D and CHD. CONCLUSION Although the studied genetic variants were not associated with the risk of CHD, the 19q13.32 locus was associated with some of the cardiometabolic disorders in Algerian subjects.
Collapse
Affiliation(s)
- Houssam Boulenouar
- Laboratoire de recherche Cancer Lab N°30, Faculté de Médecine « Dr Benzerdjeb Benaouda », Université Aboubekr Belkaid-Tlemcen 13000, Algérie
- Département de Médecine, Faculté de Médecine « Dr Benzerdjeb Benaouda », Université Aboubekr Belkaid-Tlemcen 13000, Algérie
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
- Corresponding author: Houssam Boulenouar, Département de Médecine, Faculté de Médecine « Dr Benzerdjeb Benaouda », Université Aboubekr Belkaid-Tlemcen 13000, Algérie. Tel : +213 771 447 897 / +213 550 376 034 /
| | - Sarah Aicha Lardjam Hetraf
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
| | - Hadjira Ouhaibi Djellouli
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
| | - Djabaria Naima Meroufel
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
| | - Faouzia Zemani Fodil
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
| | - Imane Hammani-Medjaoui
- Caisse Nationale des Assurances Sociales des travailleurs salariés, Clinique Spécialisée en Orthopédie et Rééducation des Victimes des Accidents de Travail, Oran 31000, Algérie
| | - Nadhira Saidi Mehtar
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
| | - Leila Houti
- Faculté de Médecine, Université d'Oran 1 and LABoratoire des Systèmes d'Information en Santé, Université d'Oran 1, Oran 31000, Algérie
| | - Sounnia Mediene Benchekor
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des sciences et de la technologie d'Oran-Mohamed BOUDIAF, Oran 31000, Algérie
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Oran 31000, Algérie
| |
Collapse
|
15
|
Torlasco C, D'Silva A, Bhuva AN, Faini A, Augusto JB, Knott KD, Benedetti G, Jones S, Zalen JV, Scully P, Lobascio I, Parati G, Lloyd G, Hughes AD, Manisty CH, Sharma S, Moon JC. Age matters: differences in exercise-induced cardiovascular remodelling in young and middle aged healthy sedentary individuals. Eur J Prev Cardiol 2020; 28:738-746. [PMID: 34247225 DOI: 10.1177/2047487320926305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
AIMS Remodelling of the cardiovascular system (including heart and vasculature) is a dynamic process influenced by multiple physiological and pathological factors. We sought to understand whether remodelling in response to a stimulus, exercise training, altered with healthy ageing. METHODS A total of 237 untrained healthy male and female subjects volunteering for their first time marathon were recruited. At baseline and after 6 months of unsupervised training, race completers underwent tests including 1.5T cardiac magnetic resonance, brachial and non-invasive central blood pressure assessment. For analysis, runners were divided by age into under or over 35 years (U35, O35). RESULTS Injury and completion rates were similar among the groups; 138 runners (U35: n = 71, women 49%; O35: n = 67, women 51%) completed the race. On average, U35 were faster by 37 minutes (12%). Training induced a small increase in left ventricular mass in both groups (3 g/m2, P < 0.001), but U35 also increased ventricular cavity sizes (left ventricular end-diastolic volume (EDV)i +3%; left ventricular end-systolic volume (ESV)i +8%; right ventricular end-diastolic volume (EDV)i +4%; right ventricular end-systolic volume (ESV)i +5%; P < 0.01 for all). Systemic aortic compliance fell in the whole sample by 7% (P = 0.020) and, especially in O35, also systemic vascular resistance (-4% in the whole sample, P = 0.04) and blood pressure (systolic/diastolic, whole sample: brachial -4/-3 mmHg, central -4/-2 mmHg, all P < 0.001; O35: brachial -6/-3 mmHg, central -6/-4 mmHg, all P < 0.001). CONCLUSION Medium-term, unsupervised physical training in healthy sedentary individuals induces measurable remodelling of both heart and vasculature. This amount is age dependent, with predominant cardiac remodelling when younger and predominantly vascular remodelling when older.
Collapse
Affiliation(s)
- Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Andrew D'Silva
- Cardiovascular Sciences Research Centre, St George's University of London, UK
| | - Anish N Bhuva
- Institute of Cardiovascular Science, University College London, UK.,Barts Heart Centre, St Bartholomew's Hospital, UK
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Italy
| | - Joao B Augusto
- Institute of Cardiovascular Science, University College London, UK.,Barts Heart Centre, St Bartholomew's Hospital, UK
| | - Kristopher D Knott
- Institute of Cardiovascular Science, University College London, UK.,Barts Heart Centre, St Bartholomew's Hospital, UK
| | | | - Siana Jones
- Institute of Cardiovascular Science, University College London, UK
| | - Jet Van Zalen
- Institute of Cardiovascular Science, University College London, UK
| | - Paul Scully
- Institute of Cardiovascular Science, University College London, UK.,Barts Heart Centre, St Bartholomew's Hospital, UK
| | | | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Guy Lloyd
- Institute of Cardiovascular Science, University College London, UK
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, UK.,MRC Unit for Lifelong Health and Ageing, University College London, UK
| | - Charlotte H Manisty
- Institute of Cardiovascular Science, University College London, UK.,Barts Heart Centre, St Bartholomew's Hospital, UK
| | - Sanjay Sharma
- Cardiovascular Sciences Research Centre, St George's University of London, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, UK.,Barts Heart Centre, St Bartholomew's Hospital, UK
| |
Collapse
|
16
|
Effects of an Acute Pilates Program under Hypoxic Conditions on Vascular Endothelial Function in Pilates Participants: A Randomized Crossover Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072584. [PMID: 32283854 PMCID: PMC7178013 DOI: 10.3390/ijerph17072584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to compare the effects of an acute Pilates program under hypoxic vs. normoxic conditions on the metabolic, cardiac, and vascular functions of the participants. Ten healthy female Pilates experts completed a 50-min tubing Pilates program under normoxic conditions (N trial) and under 3000 m (inspired oxygen fraction = 14.5%) hypobaric hypoxia conditions (H trial) after a 30-min exposure in the respective environments on different days. Blood pressure, branchial ankle pulse wave velocity, and flow-mediated dilation (FMD) in the branchial artery were measured before and after the exercise. Metabolic parameters and cardiac function were assessed every minute during the exercise. Both trials showed a significant increase in FMD; however, the increase in FMD was significantly higher after the H trial than that after the N trial. Furthermore, FMD before exercise was significantly higher in the H trial than in the N trial. In terms of metabolic parameters, minute ventilation, carbon dioxide excretion, respiratory exchange ratio, and carbohydrate oxidation were significantly higher but fat oxidation was lower during the H trial than during the N trial. In terms of cardiac function, heart rate was significantly increased during the H trial than during the N trial. Our results suggested that, compared to that under normoxic conditions, Pilates exercise under hypoxic conditions led to greater metabolic and cardiac responses and also elicited an additive effect on vascular endothelial function.
Collapse
|
17
|
Abstract
Coronary artery disease (CAD) can be obstructive or nonobstructive. Patients with nonobstructive and stable angina pectoris are usually women. Nonobstructive CAD is caused by endothelial dysfunction at the microvascular level, such as cardiac syndrome X and coronary slow flow syndrome. Even if coronary anatomy is nonobstructive, the presence of myocardial ischemia is a major determinant for the exercise program. CAD is a chronic inflammatory disease, and the progression of the disease can lead to a rapid change in the functional capacity of CAD patients. Exercise training is a major component of cardiac rehabilitation and reduces cardiovascular mortality, morbidity, and rehospitalization as well as improves psychological stress and controls risk factors of CAD, such as diabetes mellitus, hypertension, and obesity. It is possible that the quality of life of patients with CAD can be improved by using appropriate exercise therapy. However, the exercise programs among CAD patients are highly underutilized. This chapter will summarize the research progress of exercise in the prevention and treatment of CAD as well as how to create safe exercise programs and the importance of exercise for patients with CAD. In addition, exercise training has fundamental beneficial effects on ischemic and nonischemic heart failure.
Collapse
Affiliation(s)
- Aydin Akyuz
- Faculty of Medicine, Department of Cardiology, University Hospital, Namık Kemal University, Tekirdag, Turkey.
| |
Collapse
|
18
|
Willis SJ, Peyrard A, Rupp T, Borrani F, Millet GP. Vascular and oxygenation responses of local ischemia and systemic hypoxia during arm cycling repeated sprints. J Sci Med Sport 2019; 22:1151-1156. [PMID: 31104973 DOI: 10.1016/j.jsams.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the acute vascular and oxygenation responses to repeated sprint exercise during arm cycling with either blood flow restriction (BFR) or systemic hypoxia alone or in combination. DESIGN The study design was a single-blinded repeated-measures assessment of four conditions with two levels of normobaric hypoxia (400 m and 3800 m) and two levels of BFR (0% and 45% of total occlusion). METHODS Sixteen active participants (eleven men and five women; mean ± SD; 26.4 ± 4.0 years old; 73.8 ± 9.8 kg; 1.79 ± 0.07 m) completed 5 sessions (1 familiarization, 4 conditions). During each test visit, participants performed a repeated sprint arm cycling test to exhaustion (10 s maximal sprints with 20 s recovery until exhaustion) to measure power output, metabolic equivalents, blood flow, as well as oxygenation (near-infrared spectroscopy) of the biceps brachii muscle tissue. RESULTS Repeated sprint performance was decreased with both BFR and systemic hypoxia conditions. Greater changes between minimum-maximum of sprints in total hemoglobin concentration (Δ[tHb]) were demonstrated with BFR (400 m, 45% and 3800 m, 45%) than without (400 m, 0% and 3800 m, 0%) (p < 0.001 for both). Additionally, delta tissue saturation index (ΔTSI) decreased more with both BFR conditions than without (p < 0.001 for both). The absolute maximum TSI was progressively reduced with both BFR and systemic hypoxia (p < 0.001). CONCLUSIONS By combining high-intensity, repeated sprint exercise with BFR and/or systemic hypoxia, there is a robust stimulus detected by increased changes in blood perfusion placed on specific vascular mechanisms, which were more prominent in BFR conditions.
Collapse
Affiliation(s)
- Sarah J Willis
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.
| | - Arthur Peyrard
- Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424 LIBM Chambéry), Université Savoie Mont Blanc, Campus Scientifique Technolac, France
| | - Thomas Rupp
- Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424 LIBM Chambéry), Université Savoie Mont Blanc, Campus Scientifique Technolac, France
| | - Fabio Borrani
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| |
Collapse
|
19
|
Tryfonos A, Green DJ, Dawson EA. Effects of Catheterization on Artery Function and Health: When Should Patients Start Exercising Following Their Coronary Intervention? Sports Med 2019; 49:397-416. [PMID: 30719682 DOI: 10.1007/s40279-019-01055-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide, and percutaneous transluminal coronary angiography (PTCA) and/or percutaneous coronary intervention (PCI; angioplasty) are commonly used to diagnose and/or treat the obstructed coronaries. Exercise-based rehabilitation is recommended for all CAD patients; however, most guidelines do not specify when exercise training should commence following PTCA and/or PCI. Catheterization can result in arterial dysfunction and acute injury, and given the fact that exercise, particularly at higher intensities, is associated with elevated inflammatory and oxidative stress, endothelial dysfunction and a pro-thrombotic milieu, performing exercise post-PTCA/PCI may transiently elevate the risk of cardiac events. This review aims to summarize extant literature relating to the impacts of coronary interventions on arterial function, including the time-course of recovery and the potential deleterious and/or beneficial impacts of acute versus long-term exercise. The current literature suggests that arterial dysfunction induced by catheterization recovers 4-12 weeks following catheterization. This review proposes that a period of relative arterial vulnerability may exist and exercise during this period may contribute to elevated event susceptibility. We therefore suggest that CAD patients start an exercise training programme between 2 and 4 weeks post-PCI, recognizing that the literature suggest there is a 'grey area' for functional recovery between 2 and 12 weeks post-catheterization. The timing of exercise onset should take into consideration the individual characteristics of patients (age, severity of disease, comorbidities) and the intensity, frequency and duration of the exercise prescription.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
20
|
Kemps H, Kränkel N, Dörr M, Moholdt T, Wilhelm M, Paneni F, Serratosa L, Ekker Solberg E, Hansen D, Halle M, Guazzi M. Exercise training for patients with type 2 diabetes and cardiovascular disease: What to pursue and how to do it. A Position Paper of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2019; 26:709-727. [PMID: 30642190 DOI: 10.1177/2047487318820420] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with type 2 diabetes mellitus suffer from dysregulation of a plethora of cardiovascular and metabolic functions, including dysglycaemia, dyslipidaemia, arterial hypertension, obesity and a reduced cardiorespiratory fitness. Exercise training has the potential to improve many of these functions, such as insulin sensitivity, lipid profile, vascular reactivity and cardiorespiratory fitness, particularly in type 2 diabetes mellitus patients with cardiovascular comorbidities, such as patients that suffered from an acute myocardial infarction, or after a coronary intervention such as percutaneous coronary intervention or coronary artery bypass grafting. The present position paper aims to provide recommendations for prescription of exercise training in patients with both type 2 diabetes mellitus and cardiovascular disease. The first part discusses the relevance and practical applicability of treatment targets that may be pursued, and failure to respond to these targets. The second part provides recommendations on the contents and methods to prescribe exercise training tailored to these treatment targets as well as to an optimal preparation and dealing with barriers and risks specific to type 2 diabetes mellitus and cardiac comorbidity.
Collapse
Affiliation(s)
- Hareld Kemps
- 1 Department of Cardiology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Nicolle Kränkel
- 2 Charité - Universitätsmedizin Berlin, Klinik für Kardiologie, Campus Benjamin Steglitz, Germany.,3 DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Marcus Dörr
- 4 University Medicine Greifswald, Department of Internal Medicine B, Germany.,5 DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Trine Moholdt
- 6 Department of Circulation and Medical Imaging, Norwegian University of Science and Technology Trondheim, Norway.,7 St Olav's Hospital, Trondheim, Norway
| | - Matthias Wilhelm
- 8 Department of Cardiology, Bern University Hospital and University of Bern, Switzerland
| | - Francesco Paneni
- 9 Centre for Molecular Cardiology and Cardiology, Zurich University Hospital, University of Zurich, Switzerland
| | - Luis Serratosa
- 10 Hospital Universitario Quironsalud, Madrid, Spain.,11 Ripoll & De Prado Sport Clinic, FIFA Medical Centre of Excellence, Murcia, Spain
| | | | - Dominique Hansen
- 13 Hasselt University, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium.,14 Heart Centre Hasselt, Jessa Hospital, Belgium
| | - Martin Halle
- 15 Technical University Munich, Department of Prevention, Rehabilitation and Sports Medicine, Germany.,16 DZHK (German Centre for Cardiovascular Research), partner site Munich, Germany
| | - Marco Guazzi
- 17 University Cardiology Department and Heart Failure Unit and Cardiopulmonary Laboratory, Cardiology, I.R.C.C.S., Milan, Italy.,18 Policlinico San Donato University Hospital, Milan, Italy
| |
Collapse
|
21
|
Lopes S, Mesquita-Bastos J, Alves AJ, Ribeiro F. Exercise as a tool for hypertension and resistant hypertension management: current insights. Integr Blood Press Control 2018; 11:65-71. [PMID: 30288097 PMCID: PMC6159802 DOI: 10.2147/ibpc.s136028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although there has been an observed progress in the treatment of hypertension, its prevalence remains elevated and constitutes a leading cause of cardiovascular disease development. Resistant hypertension is a challenge for clinicians, as the available treatment options have reduced success. Physical activity and exercise training play an important role in the management of blood pressure. The importance of physical activity and exercise training as part of a comprehensive lifestyle intervention is acknowledged by several professional organizations in their recommendations/guidelines for the management of arterial hypertension. Aerobic exercise, dynamic resistance exercise, and concurrent training - the combination of dynamic resistance and aerobic exercise training in the same exercise session or on separate days - has been demonstrated to reduce blood pressure and help in the management of hypertension. The present review draws attention to the importance of exercise training in the management of blood pressure in both hypertension and resistant hypertension individuals.
Collapse
Affiliation(s)
- Susana Lopes
- School of Health Sciences, University of Aveiro, Aveiro, Portugal,
- Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal,
| | - José Mesquita-Bastos
- School of Health Sciences, University of Aveiro, Aveiro, Portugal,
- Cardiology Department, Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| | - Alberto J Alves
- Research Center in Sports Sciences, Health and Human Development, CIDESD, University Institute of Maia, Maia, Portugal
| | - Fernando Ribeiro
- School of Health Sciences, University of Aveiro, Aveiro, Portugal,
- Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal,
| |
Collapse
|
22
|
Aerobic Exercise Prevents Insulin Resistance Through the Regulation of miR-492/Resistin Axis in Aortic Endothelium. J Cardiovasc Transl Res 2018; 11:450-458. [DOI: 10.1007/s12265-018-9828-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
|
23
|
Lino ADDS, Vianna D, Oishi JC, Souza MVC, Ruffoni LD, Marin CT, de Avó LRDS, Perez SEDA, Rodrigues GJ, Tirapegui J, Shiguemoto GE. Resistance training and caloric restriction prevent systolic blood pressure rise by improving the nitric oxide effect on smooth muscle and morphological changes in the aorta of ovariectomized rats. PLoS One 2018; 13:e0201843. [PMID: 30133537 PMCID: PMC6104970 DOI: 10.1371/journal.pone.0201843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/22/2018] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the effects of resistance training (RT), caloric restriction (CR), and the association of both interventions in aortic vascular reactivity and morphological alterations, matrix metalloproteinase-2 (MMP-2) activity, insulin resistance and systolic blood pressure (SBP) in ovariectomized rats. Fifty female Holtzman rats were subjected to ovariectomy and Sham surgery and distributed into the following groups: Sham-sedentary, ovariectomized-sedentary, ovariectomized-resistance training, ovariectomized-caloric restriction, and ovariectomized-resistance training and caloric restriction groups. RT and 30% CR protocols were performed for 13 weeks. Analyses were conducted to evaluate the following: acetylcholine and sodium nitroprusside-induced relaxation of aortic rings, MMP-2 activity, insulin tolerance test, highlighting of the aorta wall cross-sectional area by hematoxylin-eosin stain, aorta vessel remodeling and SBP. We observed that ovariectomy decreased the potency of dependent and independent endothelium relaxation and MMP-2 activity, prevented insulin resistance, promoted aorta vessel remodeling in the cross-sectional area, and promoted the media-to-lumen ratio, the collagen content, and the alteration of the structure and elastic fibers of the vessel. The effects of the ovariectomy could contribute to SBP increases. However, the association of exercise and diet improved the relaxation potency in dependent and independent endothelium relaxation, elevated MMP-2 activity, ameliorate insulin sensitivity, increased the aorta cross-sectional area and media-to-lumen ratio, decreased collagen content and promoted histological parameters of the aorta vessel wall, preventing the increase of SBP. CONCLUSION Our study revealed that the RT and CR separately, and even associatively, improved vascular function, activated MMP-2, and produced a beneficial hypertrophic remodeling, preventing the elevation of SBP in ovariectomized rats.
Collapse
Affiliation(s)
- Anderson Diogo de Souza Lino
- Laboratory of Exercise Physiology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program in Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Daiana Vianna
- Laboratory of Nutritional Biochemistry, Department of Food and Experimental Nutrition, University of São Paulo - USP, São Paulo, Brazil
| | - Jorge Camargo Oishi
- Laboratory of Pharmacology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Markus Vinicius Campos Souza
- Physical Education Course, Department of Sports Science, Post-Graduate Program in Physical Education, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Leandro Dias Ruffoni
- Laboratory of Neuroendocrinology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Cecília Tardivo Marin
- Laboratory of Exercise Physiology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program in Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Lucimar Retto da Silva de Avó
- Medical Department, Center of Biological and Health Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Sérgio Eduardo de Andrade Perez
- Laboratory of Exercise Physiology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program in Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Gerson Jhonatan Rodrigues
- Laboratory of Pharmacology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Júlio Tirapegui
- Laboratory of Nutritional Biochemistry, Department of Food and Experimental Nutrition, University of São Paulo - USP, São Paulo, Brazil
| | - Gilberto Eiji Shiguemoto
- Laboratory of Exercise Physiology, Department of Physiological Sciences, Center of Biological and Health Sciences, Interinstitutional Post-Graduate Program in Physiological Sciences, Federal University of São Carlos – UFSCar, São Carlos, Brazil
- * E-mail:
| |
Collapse
|
24
|
Szekeres M, Nádasy GL, Dörnyei G, Szénási A, Koller A. Remodeling of Wall Mechanics and the Myogenic Mechanism of Rat Intramural Coronary Arterioles in Response to a Short-Term Daily Exercise Program: Role of Endothelial Factors. J Vasc Res 2018; 55:87-97. [PMID: 29444520 DOI: 10.1159/000486571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Exercise elicits early adaptation of coronary vessels enabling the coronary circulation to respond adequately to higher flow demands. We hypothesized that short-term daily exercise induces biomechanical and functional remodeling of the coronary resistance arteries related to pressure. METHODS Male rats were subjected to a progressively increasing 4-week treadmill exercise program (over 60 min/day, 1 mph in the final step). In vitro pressure-diameter measurements were performed on coronary segments (119 ± 5 μm in diameter at 50 mm Hg) with microarteriography. The magnitude of the myogenic response and contribution of endogenous nitric oxide and prostanoid production to the wall mechanics and pressure-diameter relationship were assessed. RESULTS Arterioles isolated from exercised ani mals - compared to the sedentary group - had thicker walls, increased distensibility, and a decreased elastic modulus as a result of reduced wall stress in the low pressure range. The arterioles of exercised rats exhibited a more powerful myogenic response and less endogenous vasoconstrictor prostanoid modulation at higher pressures, while vasodilator nitric oxide modulation of diameter was augmented at low pressures (< 60 mm Hg). CONCLUSIONS A short-term daily exercise program induces remodeling of rat intramural coronary arterioles, likely resulting in a greater range of coronary autoregulatory function (constrictor and dilator reserves) and more effective protection against great changes in intraluminal pressure, contributing thereby to the optimization of coronary blood flow during exercise.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary.,Department of Physiology, Semmelweis University, Budapest, Hungary
| | - György L Nádasy
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Annamária Szénási
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary.,Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, New York, USA.,Research Group of Sportgenetics and Sportgerontology, Institute of Natural Sciences, University of Physical Education, Budapest, Hungary
| |
Collapse
|
25
|
Tremblay JC, Pyke KE. Flow-mediated dilation stimulated by sustained increases in shear stress: a useful tool for assessing endothelial function in humans? Am J Physiol Heart Circ Physiol 2017; 314:H508-H520. [PMID: 29167121 DOI: 10.1152/ajpheart.00534.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Investigations of human conduit artery endothelial function via flow-mediated vasodilation (FMD) have largely been restricted to the reactive hyperemia (RH) technique, wherein a transient increase in shear stress after the release of limb occlusion stimulates upstream conduit artery vasodilation (RH-FMD). FMD can also be assessed in response to sustained increases in shear stress [sustained stimulus (SS)-FMD], most often created with limb heating or exercise. Exercise in particular creates a physiologically relevant stimulus because shear stress increases, and FMD occurs, during typical day-to-day activity. Several studies have identified that various conditions and acute interventions have a disparate impact on RH-FMD versus SS-FMD, sometimes with only the latter demonstrating impairment. Indeed, evidence suggests that transient (RH) and sustained (SS) shear stress stimuli may be transduced via different signaling pathways, and, as such, SS-FMD and RH-FMD appear to offer unique insights regarding endothelial function. The present review describes the techniques used to assess SS-FMD and summarizes the evidence regarding 1) SS-FMD as an index of endothelial function in humans, highlighting comparisons with RH-FMD, and 2) potential differences in shear stress transduction and vasodilator production stimulated by transient versus sustained shear stress stimuli. The evidence suggests that SS-FMD is a useful tool to assess endothelial function and that further research is required to characterize the mechanisms involved and its association with long-term cardiovascular outcomes. NEW & NOTEWORTHY Sustained increases in peripheral conduit artery shear stress, created via distal skin heating or exercise, provide a physiologically relevant stimulus for flow-mediated dilation (FMD). Sustained stimulus FMD and FMD stimulated by transient, reactive hyperemia-induced increases in shear stress provide distinct assessments of conduit artery endothelial function.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
26
|
NO Signaling in the Cardiovascular System and Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:211-245. [DOI: 10.1007/978-981-10-4304-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|
28
|
Cardiac rehabilitation reduces salivary levels of interleukin-6 in post coronary artery bypass graft patients. Indian J Thorac Cardiovasc Surg 2017. [DOI: 10.1007/s12055-017-0578-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
29
|
van Petersen AS, Kolkman JJ, Gerrits DG, van der Palen J, Zeebregts CJ, Geelkerken RH, Bruno M, van Dijk L, Moelker A, Peppelenbosch M, Verhagen H, Blauw J, Geelkerken R, Kolkman J, van Petersen A, Bakker O. Clinical significance of mesenteric arterial collateral circulation in patients with celiac artery compression syndrome. J Vasc Surg 2017; 65:1366-1374. [DOI: 10.1016/j.jvs.2016.11.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
30
|
Abstract
INTRODUCTION Angina pectoris is the most prevalent symptomatic manifestation of ischemic heart disease, frequently leads to a poor quality of life, and is a major cause of medical resource consumption. Since the early descriptions of nitrite and nitrate in the 19th century, there has been considerable advancement in the pharmacologic management of angina. Areas covered: Management of chronic angina is often challenging for clinicians. Despite introduction of several pharmacological agents in last few decades, a significant proportion of patients continue to experience symptoms (i.e., refractory angina) with subsequent disability. For the purpose of this review, we searched PubMed and Cochrane databases from inception to August 2016 for the most clinically relevant publications that guide current practice in angina therapy and its development. In this article, we briefly review the pathophysiology of angina and mechanism-based classification of current therapy. This is followed by evidence-based insight into the traditional and novel pharmacotherapeutic agents, highlighting their clinical usefulness. Expert opinion: Considering the wide array of available therapies with different mechanism efficacy and limiting factors, a personalized approach is essential, particularly for patients with refractory angina. Ongoing research with novel pharmacologic modalities is likely to provide new options for management of angina.
Collapse
Affiliation(s)
- Ankur Jain
- a Department of Medicine , University of Florida , Gainesville , FL , USA
| | - Islam Y Elgendy
- a Department of Medicine , University of Florida , Gainesville , FL , USA
| | - Mohammad Al-Ani
- a Department of Medicine , University of Florida , Gainesville , FL , USA
| | - Nayan Agarwal
- a Department of Medicine , University of Florida , Gainesville , FL , USA
| | - Carl J Pepine
- a Department of Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
31
|
Physical Exercise Is a Potential "Medicine" for Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:269-286. [PMID: 29022268 DOI: 10.1007/978-981-10-4307-9_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise's beneficial effects and its potential clinical use.
Collapse
|
32
|
Amara A, Mrad M, Sayeh A, Lahideb D, Layouni S, Haggui A, Fekih-Mrissa N, Haouala H, Nsiri B. The Effect of ACE I/D Polymorphisms Alone and With Concomitant Risk Factors on Coronary Artery Disease. Clin Appl Thromb Hemost 2016; 24:157-163. [PMID: 27895197 DOI: 10.1177/1076029616679505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Coronary artery disease (CAD), also known as atherosclerotic heart disease, is a leading cause of mortality and morbidity throughout the world. The role of insertion/deletion (I/D) polymorphisms of the angiotensin-converting enzyme (ACE) gene in the etiology of CAD remains to be more completely clarified. The aim of this study was to determine the role of the ACE I/D polymorphism in patients with CAD and to study the association together with traditional risk factors in assessing the risk of CAD. METHODS Our study population included 145 Tunisian patients with symptomatic CAD and a control group of 300 people matched for age and sex. All participants in the study were genotyped for the ACE I/D polymorphisms obtained by polymerase chain reaction amplification on genomic DNA. RESULTS Our analysis showed that the ACE D allele frequency ( P < 10-3; odds ratio [OR] = 5.2; 95% confidence interval [CI] = 3.6-7.6) and DD genotype ( P < 10-3; OR = 6.8; 95% CI = 4.4-10) are significantly more prevalent among patients with CAD than in controls and may be predisposing to CAD. We further found that the risk of CAD is greatly potentiated by several concomitant risk factors (smoking, diabetes, hypertension, dyslipidemia, and a family history of CAD). CONCLUSION The ACE D allele may be predictive in individuals who may be at risk of developing CAD. Further investigations of these polymorphisms and their possible synergisms with traditional risk factors for CAD could help to ascertain better predictability for CAD susceptibility.
Collapse
Affiliation(s)
- Ahmed Amara
- 1 Laboratoire de Biologie Moléculaire, Service d'Hématologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,2 Faculté des Sciences de Tunis, Université Tunis el Manar, Tunis, Tunisie
| | - Meriem Mrad
- 1 Laboratoire de Biologie Moléculaire, Service d'Hématologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,2 Faculté des Sciences de Tunis, Université Tunis el Manar, Tunis, Tunisie
| | - Aicha Sayeh
- 1 Laboratoire de Biologie Moléculaire, Service d'Hématologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,2 Faculté des Sciences de Tunis, Université Tunis el Manar, Tunis, Tunisie
| | - Dhaker Lahideb
- 3 Service de Cardiologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,4 Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Samy Layouni
- 1 Laboratoire de Biologie Moléculaire, Service d'Hématologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,5 Faculté de Pharmacie, Université de Monastir, Monastir, Tunisie
| | - Abdeddayem Haggui
- 3 Service de Cardiologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,4 Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Najiba Fekih-Mrissa
- 1 Laboratoire de Biologie Moléculaire, Service d'Hématologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,6 Académie Militaire Fondouk Jédid, Nabeul, Tunisie
| | - Habib Haouala
- 3 Service de Cardiologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,4 Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Brahim Nsiri
- 1 Laboratoire de Biologie Moléculaire, Service d'Hématologie, Hôpital Militaire de Tunis, Montfleury, Tunisie.,5 Faculté de Pharmacie, Université de Monastir, Monastir, Tunisie
| |
Collapse
|
33
|
Abstract
Historically, the relationship between exercise and the cardiovascular system was viewed as unidirectional, with a disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercise-induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome.
Collapse
|
34
|
Kang SJ, Kim EH, Ko KJ. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome. J Phys Ther Sci 2016; 28:1764-8. [PMID: 27390411 PMCID: PMC4932052 DOI: 10.1589/jpts.28.1764] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/28/2016] [Indexed: 12/24/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome.
Collapse
Affiliation(s)
- Seol-Jung Kang
- Department of Physical Education, Changwon National University, Republic of Korea
| | - Eon-Ho Kim
- Department of Sport Science, Korea Institute of Sport Science, Republic of Korea
| | - Kwang-Jun Ko
- Department of Sports Medicine, National Fitness Center, Republic of Korea
| |
Collapse
|
35
|
Murphy MO, Petriello MC, Han SG, Sunkara M, Morris AJ, Esser K, Hennig B. Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2201-11. [PMID: 25586614 PMCID: PMC4503535 DOI: 10.1007/s11356-014-4062-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 04/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB-induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE(-/-) mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12-week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 h before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12-week exercise intervention significantly reduced these proatherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
| | - Michael C Petriello
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Sung Gu Han
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Manjula Sunkara
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew J Morris
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Karyn Esser
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Chen CC, Kuo CY, Chen RF. Role of CAPE on cardiomyocyte protection via connexin 43 regulation under hypoxia. Int J Med Sci 2016; 13:754-758. [PMID: 27766024 PMCID: PMC5069410 DOI: 10.7150/ijms.15847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/22/2016] [Indexed: 01/26/2023] Open
Abstract
Background: Cardiomyocyte under hypoxia cause cell death or damage is associated with heart failure. Gap junction, such as connexin 43 play a role in regulation of heart function under hypoxia. Caffeic acid phenethyl ester (CAPE) has been reported as an active component of propolis, has antioxidative, anti-inflammatory antiproliferative and antineoplastic biological properties. Aims: Connexin 43 appear to have a critical role in heart failure under hypoxia, there has been considerable interest in identifying the candidate component or compound to reduce cell death. Methods: In this study, we used human cardiomyocyte as a cell model to study the role of connexin 43 in hypoxia- incubated human cardiomyocyte in absence or presence of CAPE treatment. Results: Results showed that hypoxia induced connexin 43 expression, but not altered in connexin 40. Interestingly, CAPE attenuates hypoxia-caused connexin 43 down-regulation and cell death or cell growth inhibition. Conclusion: We suggested that reduction of cell death in cardiomyocytes by CAPE is associated with an increase in connexin 43 expression.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Cardiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chan-Yen Kuo
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chung-li, Taiwan, 32001, Republic of China
| | - Rong-Fu Chen
- Research Assistant Center, Show Chwan Health Care System, Changhua, Taiwan
| |
Collapse
|
37
|
Endothelial function does not improve with high-intensity continuous exercise training in SHR: implications of eNOS uncoupling. Hypertens Res 2015; 39:70-8. [PMID: 26537830 DOI: 10.1038/hr.2015.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/30/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Exercise training is a well-recognized way to improve vascular endothelial function by increasing nitric oxide (NO) bioavailability. However, in hypertensive subjects, unlike low- and moderate-intensity exercise training, the beneficial effects of continuous high-intensity exercise on endothelial function are not clear, and the underlying mechanisms remain unknown. The aim of this study was to investigate the impact of high-intensity exercise on vascular function, especially on the NO pathway, in spontaneous hypertensive rats (SHR). These effects were studied on WKY, sedentary SHR and SHR that exercised at moderate (SHR-MOD) and high intensity (SHR-HI) on a treadmill (1 h per day; 5 days per week for 6 weeks at 55% and 80% of their maximal aerobic velocity, respectively). Endothelial function and specific NO contributions to acetylcholine-mediated relaxation were evaluated by measuring the aortic ring isometric forces. Endothelial nitric oxide synthase (eNOS) expression and phosphorylation (ser1177) were evaluated by western blotting. The total aortic and eNOS-dependent reactive oxygen species (ROS) production was assessed using electron paramagnetic resonance in aortic tissue. Although the aortas of SHR-HI had increased eNOS levels without alteration of eNOS phosphorylation, high-intensity exercise had no beneficial effect on endothelium-dependent vasorelaxation, unlike moderate exercise. This result was associated with increased eNOS-dependent ROS production in the aortas of SHR-HI. Notably, the use of the recoupling agent BH4 or a thiol-reducing agent blunted eNOS-dependent ROS production in the aortas of SHR-HI. In conclusion, the lack of a positive effect of high-intensity exercise on endothelial function in SHR was mainly explained by redox-dependent eNOS uncoupling, resulting in a switch from NO to O2(-) generation.
Collapse
|
38
|
Choure N, Chandrawanshi HK, Rajput MS, Sehgal S, Patliya ME, Sarkar PD. The effectiveness of self instructional module on cardiac rehabilitation. Int J Nurs Sci 2015. [DOI: 10.1016/j.ijnss.2015.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction. Neural Plast 2015; 2015:265967. [PMID: 26266053 PMCID: PMC4526216 DOI: 10.1155/2015/265967] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/25/2015] [Indexed: 02/02/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise.
Collapse
|
40
|
Arce-Esquivel AA, Bunker AK, Simmons GH, Yang HT, Laughlin MH, Terjung RL. Impaired Coronary Endothelial Vasorelaxation in a Preclinical Model of Peripheral Arterial Insufficiency. ACTA ACUST UNITED AC 2015; 1. [PMID: 26726316 PMCID: PMC4696773 DOI: 10.15436/2378-6914/15/010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study was designed to determine whether adult swine with peripheral artery insufficiency (PAI) would exhibit vascular dysfunction in vessels distinct from the affected distal limbs, the coronary conduit arteries. Moreover, we sought to evaluate the effect of exercise training on coronary vasomotor function in PAI. Eighteen female healthy young Yucatan miniature swine were randomly assigned to either occluded exercise trained (Occl-Ex, n=7), or occluded-sedentary (Occl-Sed, n=5), or non-occluded, non-exercised control (Non-Occl-Con, n=6) groups. Occl-Ex pigs were progressively trained by running on a treadmill (5days/week, 12 weeks). The left descending artery (LAD) and left circumflex (LCX) coronary arteries were harvested. Vasorelaxation to adenosine diphosphate (ADP), bradykinin (BK), and sodium nitro-prusside (SNP) were assessed in LAD’s; while constrictor responses to phenylephrine (PE), angiotensin II (Ang II), and endothelin-1 (ET-1) were assessed in LCX’s. Vasorelaxation to ADP was reduced in LADs from Occl-Sed and Occl-Ex pigs (P<0.001) as compared to Non-Occl-Con pigs; however, Occl-Ex pigs exhibited partial recovery (P<0.001) intermediate to the other two groups. BK induced relaxation was reduced in LADs from Occl-Ex and Occl-Sed pigs (P<0.001), compared to Non-Occl-Con, and exercise modestly increased responses to BK (P<0.05). In addition, SNP, PE, Ang II, and ET-1 responses were not significantly different among the groups. Our results indicate that ‘simple’ occlusion of the femoral arteries induces vascular dysfunction in conduit vessels distinct from the affected hindlimbs, as evident in blunted coronary vasorelaxation responses to ADP and BK. These findings imply that PAI, even in the absence of frank atherogenic vascular disease, contributes to vascular dysfunction in the coronary arteries that could exacerbate disease outcome in patients with peripheral artery disease. Further, regular daily physical activity partially recovered the deficit observed in the coronary arteries.
Collapse
Affiliation(s)
- A A Arce-Esquivel
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri ; Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, Texas
| | | | - G H Simmons
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - H T Yang
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - M H Laughlin
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri ; Department of Medical Pharmacology and Physiology, College of Medicine, University of Missouri, Columbia, Missouri ; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - R L Terjung
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri ; Department of Medical Pharmacology and Physiology, College of Medicine, University of Missouri, Columbia, Missouri ; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
41
|
Shi L, Liao J, Liu B, Zeng F, Zhang L. Mechanisms and therapeutic potential of microRNAs in hypertension. Drug Discov Today 2015; 20:1188-204. [PMID: 26004493 DOI: 10.1016/j.drudis.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
Abstract
Hypertension is the major risk factor for the development of stroke, coronary artery disease, heart failure and renal disease. The underlying cellular and molecular mechanisms of hypertension are complex and remain largely elusive. MicroRNAs (miRNAs) are short, noncoding RNA fragments of 22-26 nucleotides and regulate protein expression post-transcriptionally by targeting the 3'-untranslated region of mRNA. A growing body of recent research indicates that miRNAs are important in the pathogenesis of arterial hypertension. Herein, we summarize the current knowledge regarding the mechanisms of miRNAs in cardiovascular remodeling, focusing specifically on hypertension. We also review recent progress of the miRNA-based therapeutics including pharmacological and nonpharmacological therapies (such as exercise training) and their potential applications in the management of hypertension.
Collapse
Affiliation(s)
- Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China.
| | - Jingwen Liao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Bailin Liu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
42
|
Ribeiro F, Costa R, Mesquita-Bastos J. Exercise training in the management of patients with resistant hypertension. World J Cardiol 2015; 7:47-51. [PMID: 25717352 PMCID: PMC4325301 DOI: 10.4330/wjc.v7.i2.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a very prevalent risk factor for cardiovascular disease. The prevalence of resistant hypertension, i.e., uncontrolled hypertension with 3 or more antihypertensive agents including 1 diuretic, is between 5% and 30% in the hypertensive population. The causes of resistant hypertension are multifactorial and include behavioral and biological factors, such as non-adherence to pharmacological treatment. All current treatment guidelines highlight the positive role of physical exercise as a non-pharmacological tool in the treatment of hypertension. This paper draws attention to the possible role of physical exercise as an adjunct non-pharmacological tool in the management of resistant hypertension. A few studies have investigated it, employing different methodologies, and taken together they have shown promising results. In summary, the available evidence suggests that aerobic physical exercise could be a valuable addition to the optimal pharmacological treatment of patients with resistant hypertension.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Fernando Ribeiro, Rui Costa, School of Health Sciences, University of Aveiro, Portugal and CINTESIS.UA, 3810-193 Aveiro, Portugal
| | - Rui Costa
- Fernando Ribeiro, Rui Costa, School of Health Sciences, University of Aveiro, Portugal and CINTESIS.UA, 3810-193 Aveiro, Portugal
| | - José Mesquita-Bastos
- Fernando Ribeiro, Rui Costa, School of Health Sciences, University of Aveiro, Portugal and CINTESIS.UA, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Manou-Stathopoulou V, Goodwin CD, Patterson T, Redwood SR, Marber MS, Williams RP. The effects of cold and exercise on the cardiovascular system. Heart 2015; 101:808-20. [DOI: 10.1136/heartjnl-2014-306276] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
44
|
de Carvalho EEV, Santi GL, Crescêncio JC, de Oliveira LFL, dos Reis DCC, Figueiredo AB, Pintya AO, Lima-Filho MO, Gallo-Júnior L, Marin-Neto JA, Simões MV. Pilot study testing the effect of physical training over the myocardial perfusion and quality of life in patients with primary microvascular angina. J Nucl Cardiol 2015; 22:130-7. [PMID: 25080872 DOI: 10.1007/s12350-014-9949-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/12/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary microvascular angina (PMA) is a common clinical condition associated to negative impact on quality of life (QOL) and reduced physical capacity. This study aimed at evaluating the effects of aerobic physical training (APT) on myocardial perfusion, physical capacity, and QOL in patients with PMA. METHODS We investigated 12 patients (53.8 ± 9.7 years old; 7 women) with PMA, characterized by angina, angiographycally normal coronary arteries, and reversible perfusion defects (RPDs) detected on (99m)Tc-sestamibi-SPECT myocardial perfusion scintigraphy (MPS). At baseline and after 4 month of APT, the patients underwent MPS, cardiopulmonary test, and QOL questionnaire. Stress-rest MPS images were visually analyzed by attributing semi-quantitative scores (0 = normal; 4 = absent uptake), using a 17-segment left ventricular model. Summed stress, rest, and difference scores (SDS) were calculated. RESULTS In comparison to the baseline, in the post-training we observed a significant increase in peak-VO2 (19.4 ± 4.8 and 22.1 ± 6.2 mL·kg(-1)·minute(-1), respectively, P = .01), reduction of SDS (10.1 ± 8.8 and 2.8 ± 4.9, P = .008), and improvement in QOL scores. CONCLUSIONS Physical training in patients with PMA is associated with reduction of myocardial perfusion abnormalities, increasing of physical capacity, and improvement in QOL. The findings of this hypothesis-generating study suggest that APT can be a valid therapeutic option for patients with PMA.
Collapse
Affiliation(s)
- Eduardo Elias Vieira de Carvalho
- Cardiology Division, Internal Medicine Department, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal 2015; 11:139-53. [PMID: 25563726 DOI: 10.1007/s11302-014-9442-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial cells that are in direct contact with blood flow are exposed to fluid shear stress and regulate vascular homeostasis. Studies report endothelial cells to release ATP in response to shear stress that in turn modulates cellular functions via P2 receptors with P2X4 mediating shear stress-induced calcium signaling and vasodilation. A recent study shows that a loss-of-function polymorphism in the human P2X4 resulting in a Tyr315>Cys variant is associated with increased pulse pressure and impaired endothelial vasodilation. Although the importance of shear stress-induced Krüppel-like factor 2 (KLF2) expression in atheroprotection is well studied, whether ATP regulates KLF2 remains unanswered and is the objective of this study. Using an in vitro model, we show that in human umbilical vein endothelial cells (HUVECs), apyrase decreased shear stress-induced KLF2, KLF4, and NOS3 expression but not that of NFE2L2. Exposure of HUVECs either to shear stress or ATPγS under static conditions increased KLF2 in a P2X4-dependent manner as was evident with both the receptor antagonist and siRNA knockdown. Furthermore, transient transfection of static cultures of human endothelial cells with the Tyr315>Cys mutant P2X4 construct blocked ATP-induced KLF2 expression. Also, P2X4 mediated the shear stress-induced phosphorylation of extracellular regulated kinase-5, a known regulator of KLF2. This study demonstrates a major physiological finding that the shear-induced effects on endothelial KLF2 axis are in part dependent on ATP release and P2X4, a previously unidentified mechanism.
Collapse
|
46
|
Kuster DW, Merkus D, Blonden LA, Kremer A, van IJcken WF, Verhoeven AJ, Duncker DJ. Gene reprogramming in exercise-induced cardiac hypertrophy in swine: A transcriptional genomics approach. J Mol Cell Cardiol 2014; 77:168-74. [DOI: 10.1016/j.yjmcc.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
47
|
Gielen S, Laughlin MH, O'Conner C, Duncker DJ. Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations. Prog Cardiovasc Dis 2014; 57:347-55. [PMID: 25459973 DOI: 10.1016/j.pcad.2014.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized.
Collapse
Affiliation(s)
- Stephan Gielen
- Martin-Luther-University Halle/Wittenberg, University Hospital, Dept. of Int. Medicine III, Halle/Saale, Germany.
| | - M Harold Laughlin
- Dalton Cardiovascular Research Center, Departments of Biomedical Sciences and Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000, Rotterdam, CA, The Netherlands
| |
Collapse
|
48
|
Erekat NS, Al-Jarrah MD, Al Khatib AJ. Treadmill Exercise Training Improves Vascular Endothelial Growth Factor Expression in the Cardiac Muscle of Type I Diabetic Rats. Cardiol Res 2014; 5:23-29. [PMID: 28392871 PMCID: PMC5358275 DOI: 10.14740/cr314w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2013] [Indexed: 12/31/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) expression is a potent mitogen for endothelial cells that is involved in angiogenesis. Cardiac VEGF is decreased in many pathologic conditions, including diabetes mellitus and aging. Exercise training has improved VEGF expression in the aging heart. Thus, the aim of our study is to illustrate the impact of treadmill exercise training on the cardiac VEGF expression in type I diabetic rats. Methods Twenty normal Sprague-Dawley rats and Sprague-Dawley rats with streptozotocin-induced diabetes were divided into the following equal groups: sedentary control (SC), exercised control (EC), sedentary diabetic rats (SD) and exercised diabetic rats (ED). Immunohistochemistry was used to investigate VEGF expression in the cardiac tissue in each of the four different groups. Results Cardiac VEGF expression was significantly (P < 0.05) lower in SD compared with that in SC. However, exercise training significantly (P < 0.01) enhanced VEGF expression in the cardiac tissue in ED compared with that in SD. Conclusion Our present data suggest that treadmill exercise training improved diabetes-induced downregulation in the cardiac VEGF expression.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, JUST, Irbid, Jordan
| | - Ahed J Al Khatib
- Department of Pathology, Faculty of Medicine, JUST, Irbid, Jordan
| |
Collapse
|
49
|
Duncker DJ, van Deel ED, de Waard MC, de Boer M, Merkus D, van der Velden J. Exercise training in adverse cardiac remodeling. Pflugers Arch 2014; 466:1079-91. [PMID: 24573174 DOI: 10.1007/s00424-014-1464-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/14/2022]
Abstract
Cardiac remodeling in response to a myocardial infarction or chronic pressure-overload is an independent risk factor for the development of heart failure. In contrast, cardiac remodeling produced by regular physical exercise is associated with a decreased risk for heart failure. There is evidence that exercise training has a beneficial effect on disease progression and survival in patients with cardiac remodeling and dysfunction, but concern has also been expressed that exercise training may aggravate pathological remodeling and dysfunction. Here we present studies from our laboratory into the effects of exercise training on pathological cardiac remodeling and dysfunction in mice. The results indicate that even in the presence of a large infarct, exercise training exerts beneficial effects on the heart. These effects were mimicked in part by endothelial nitric oxide synthase (eNOS) overexpression and abrogated by eNOS deficiency, demonstrating the importance of nitric oxide signaling in mediating the cardiac effects of exercise. Exercise prior to a myocardial infarction was also cardioprotective. In contrast, exercise tended to aggravate pathological cardiac remodeling and dysfunction in the setting of pressure-overload produced by an aortic stenosis. These observations emphasize the critical importance of the underlying pathological stimulus for cardiac hypertrophy and remodeling, in determining the effects of exercise training. Future studies are needed to define the influence of exercise type, intensity and duration in different models and severities of pathological cardiac remodeling. Together such studies will aid in optimizing the therapy of exercise training in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands,
| | | | | | | | | | | |
Collapse
|
50
|
Dedieu N, Fernández L, Garrido-Lestache E, Sánchez I, Jesus Lamas M. Effects of a Cardiac Rehabilitation Program in Patients with Congenital Heart Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojim.2014.41004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|