1
|
Anti-inflammatory potential of simvastatin loaded nanoliposomes in 2D and 3D foam cell models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102434. [PMID: 34214684 DOI: 10.1016/j.nano.2021.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a multifactorial disease triggered and sustained by risk factors such as high cholesterol, high blood pressure and unhealthy lifestyle. Inflammation plays a pivotal role in atherosclerosis pathogenesis. In this study, we developed a simvastatin (STAT) loaded nanoliposomal formulation (LIPOSTAT) which can deliver the drug into atherosclerotic plaque, when administered intravenously. This formulation is easily prepared, stable, and biocompatible with minimal burst release for effective drug delivery. 2D and 3D in vitro models were examined towards anti-inflammatory effects of STAT, both free and in combination with liposomes. LIPOSTAT induced greater cholesterol efflux in the 2D foam cells and significantly reduced inflammation in both 2D and 3D models. LIPOSTAT alleviated inflammation by reducing the secretion of early and late phase pro-inflammatory cytokines, monocyte adherence marker, and lipid accumulation cytokines. Additionally, the 3D foam cell spheroid model is a convenient and practical approach in testing various anti-atherosclerotic drugs without the need for human tissue.
Collapse
|
2
|
Jiang F, Zhu Y, Gong C, Wei X. Atherosclerosis and Nanomedicine Potential: Current Advances and Future Opportunities. Curr Med Chem 2020; 27:3534-3554. [PMID: 30827225 DOI: 10.2174/0929867326666190301143952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.
Collapse
Affiliation(s)
- Fan Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Darwitan A, Wong YS, Nguyen LTH, Czarny B, Vincent A, Nedumaran AM, Tan YF, Muktabar A, Tang JK, Ng KW, Venkatraman S. Liposomal Nanotherapy for Treatment of Atherosclerosis. Adv Healthc Mater 2020; 9:e2000465. [PMID: 32543010 DOI: 10.1002/adhm.202000465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is a chronic disease that can lead to life-threatening events such as myocardial infarction and stroke, is characterized by the build-up of lipids and immune cells within the arterial wall. It is understood that inflammation is a hallmark of atherosclerosis and can be a target for therapy. In support of this concept, an injectable nanoliposomal formulation encapsulating fluocinolone acetonide (FA), a corticosteroid, is developed that allows for drug delivery to atherosclerotic plaques while reducing the systemic exposure to off-target tissues. In this study, FA is successfully incorporated into liposomal nanocarriers of around 100 nm in size with loading efficiency of 90% and the formulation exhibits sustained release up to 25 d. The anti-inflammatory effect and cholesterol efflux capability of FA-liposomes are demonstrated in vitro. In vivo studies carried out with an apolipoprotein E-knockout (Apoe-/- ) mouse model of atherosclerosis show accumulation of liposomes in atherosclerotic plaques, colocalization with plaque macrophages and anti-atherogenic effect over 3 weeks of treatment. This FA-liposomal-based nanocarrier represents a novel potent nanotherapeutic option for atherosclerosis.
Collapse
Affiliation(s)
- Anastasia Darwitan
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Yee Shan Wong
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus OH 43210 USA
| | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Anita Vincent
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Yang Fei Tan
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Aristo Muktabar
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Jin Kai Tang
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Kee Woei Ng
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Subbu Venkatraman
- Materials Science and EngineeringNational University of Singapore Singapore 117575 Singapore
| |
Collapse
|
4
|
Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydr Polym 2020; 245:116457. [PMID: 32718599 DOI: 10.1016/j.carbpol.2020.116457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Early detection of thrombotic events remains a big medical challenge. Dextran-based submicronic particles bearing Gd(DOTA) groups and functionalized with fucoidan have been produced via a simple and green water-in-oil emulsification/co-crosslinking process. Their capacity to bind to human activated platelets was evidenced in vitro as well as their cytocompatibility with human endothelial cells. The presence of Gd(DOTA) moieties was confirmed by elemental analysis and total reflection X-ray fluorescence (TRXF) spectrometry. Detailed characterization of particles was performed in terms of size distribution, morphology, and relaxation rates. In particular, longitudinal and transversal proton relaxivities were respectively 1.7 and 5.0 times higher than those of DOTAREM. This study highlights their potential as an MRI diagnostic platform for atherothrombosis.
Collapse
|
5
|
Mass Spectrometry Imaging of atherosclerosis-affine Gadofluorine following Magnetic Resonance Imaging. Sci Rep 2020; 10:79. [PMID: 31919465 PMCID: PMC6952459 DOI: 10.1038/s41598-019-57075-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging of atherosclerosis by Magnetic Resonance Imaging (MRI) has been impaired by a lack of validation of the specific substrate responsible for the molecular imaging signal. We therefore aimed to investigate the additive value of mass spectrometry imaging (MSI) of atherosclerosis-affine Gadofluorine P for molecular MRI of atherosclerotic plaques. Atherosclerotic Ldlr−/− mice were investigated by high-field MRI (7 T) at different time points following injection of atherosclerosis-affine Gadofluorine P as well as at different stages of atherosclerosis formation (4, 8, 16 and 20 weeks of HFD). At each imaging time point mice were immediately sacrificed after imaging and aortas were excised for mass spectrometry imaging: Matrix Assisted Laser Desorption Ionization (MALDI) Imaging and Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS) imaging. Mass spectrometry imaging allowed to visualize the localization and measure the concentration of the MR imaging probe Gadofluorine P in plaque tissue ex vivo with high spatial resolution and thus adds novel and more target specific information to molecular MR imaging of atherosclerosis.
Collapse
|
6
|
Shi M, Zhang J, Li J, Fan Y, Wang J, Sun W, Yang H, Peng C, Shen M, Shi X. Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal cancer theranostics. J Mater Chem B 2019; 7:368-372. [DOI: 10.1039/c8tb03021a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polydopamine-coated mesoporous silica nanoparticles loaded with ultrasmall Fe3O4 nanoparticles can be prepared for multimodal imaging and combination therapy of tumors.
Collapse
|
7
|
Dweck MR, Robson PM, Rudd JH, Fayad ZA. Atherosclerotic Plaque Imaging. CARDIOVASCULAR MAGNETIC RESONANCE 2019:335-342.e3. [DOI: 10.1016/b978-0-323-41561-3.00028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Molecular imaging of myocardial infarction with Gadofluorine P - A combined magnetic resonance and mass spectrometry imaging approach. Heliyon 2018; 4:e00606. [PMID: 29862367 PMCID: PMC5968177 DOI: 10.1016/j.heliyon.2018.e00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/09/2018] [Accepted: 04/11/2018] [Indexed: 01/26/2023] Open
Abstract
Background Molecular MRI is becoming increasingly important for preclinical research. Validation of targeted gadolinium probes in tissue however has been cumbersome up to now. Novel methodology to assess gadolinium distribution in tissue after in vivo application is therefore needed. Purpose To establish combined Magnetic Resonance Imaging (MRI) and Mass Spectrometry Imaging (MSI) for improved detection and quantification of Gadofluorine P deposition in scar formation and myocardial remodeling. Materials and methods Animal studies were performed according to institutionally approved protocols. Myocardial infarction was induced by permanent ligation of the left ascending artery (LAD) in C57BL/6J mice. MRI was performed at 7T at 1 week and 6 weeks after myocardial infarction. Gadofluorine P was used for dynamic T1 mapping of extracellular matrix synthesis during myocardial healing and compared to Gd-DTPA. After in vivo imaging contrast agent concentration as well as distribution in tissue were validated and quantified by spatially resolved Matrix-Assisted Laser Desorption Ionization (MALDI) MSI and Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS) imaging. Results Both Gadofluorine P enhancement as well as local tissue content in the myocardial scar were highest at 15 minutes post injection. R1 values increased from 1 to 6 weeks after MI (1.62 s−1 vs 2.68 s−1, p = 0.059) paralleled by an increase in Gadofluorine P concentration in the infarct from 0.019 mM at 1 week to 0.028 mM at 6 weeks (p = 0.048), whereas Gd-DTPA enhancement showed no differences (3.95 s−1 vs 3.47 s−1, p = 0.701). MALDI-MSI results were corroborated by elemental LA-ICP-MS of Gadolinium in healthy and infarcted myocardium. Histology confirmed increased extracellular matrix synthesis at 6 weeks compared to 1 week. Conclusion Adding quantitative MSI to MR imaging enables a quantitative validation of Gadofluorine P distribution in the heart after MI for molecular imaging.
Collapse
|
9
|
Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, Najafi M, Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Jung C, Christiansen S, Kaul MG, Koziolek E, Reimer R, Heeren J, Adam G, Heine M, Ittrich H. Quantitative and qualitative estimation of atherosclerotic plaque burden in vivo at 7T MRI using Gadospin F in comparison to en face preparation evaluated in ApoE KO mice. PLoS One 2017; 12:e0180407. [PMID: 28771481 PMCID: PMC5542445 DOI: 10.1371/journal.pone.0180407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 06/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background The aim of the study was to quantify atherosclerotic plaque burden by volumetric assessment and T1 relaxivity measurement at 7T MRI using Gadospin F (GDF) in comparison to en face based measurements. Methods and results 9-weeks old ApoE-/- (n = 5 for each group) and wildtype mice (n = 5) were set on high fat diet (HFD). Progression group received MRI at 9, 13, 17 and 21 weeks after HFD initiation. Regression group was reswitched to chow diet (CD) after 13 weeks HFD and monitored with MRI for 12 weeks. MRI was performed before and two hours after iv injection of GDF (100 μmol/kg) at 7T (Clinscan, Bruker) acquiring a 3D inversion recovery gradient echo sequence and T1 Mapping using Saturation Recovery sequences. Subsequently, aortas were prepared for en face analysis using confocal microscopy. Total plaque volume (TPV) and T1 relaxivity were estimated using ImageJ (V. 1.44p, NIH, USA). 2D and 3D en face analysis showed a strong and exponential increase of plaque burden over time, while plaque burden in regression group was less pronounced. Correspondent in vivo MRI measurements revealed a more linear increase of TPV and T1 relaxivity for regression group. A significant correlation was observed between 2D and 3D en face analysis (r = 0.79; p<0.001) as well as between 2D / 3D en face analysis and MRI (r = 0.79; p<0.001; r = 0.85; p<0.001) and delta R1 (r = 0.79; p<0.001; r = 0.69; p<0.01). Conclusion GDF-enhanced in vivo MRI is a powerful non-invasive imaging technique in mice allowing for reliable estimation of atherosclerotic plaque burden, monitoring of disease progression and regression in preclinical studies.
Collapse
Affiliation(s)
- Caroline Jung
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Sabine Christiansen
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Gerhard Kaul
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Koziolek
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Nuclear Medicine, Berlin Experimental Radionuclide Imaging Center (BERIC), University Medical Center Charité, Berlin, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Meloni MM, Barton S, Xu L, Kaski JC, Song W, He T. Contrast agents for cardiovascular magnetic resonance imaging: an overview. J Mater Chem B 2017; 5:5714-5725. [DOI: 10.1039/c7tb01241a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Contrast agents for Cardiovascular Magnetic Resonance (CMR) play a major role in research and clinical cardiology.
Collapse
Affiliation(s)
- Marco M. Meloni
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- School of Pharmacy and Chemistry
| | - Stephen Barton
- School of Pharmacy and Chemistry
- Kingston University
- London
- UK
| | - Lei Xu
- Department of Radiology
- Beijing Anzhen Hospital
- Beijing
- China
| | - Juan C. Kaski
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
| | - Wenhui Song
- UCL Centre for Biomaterials
- Division of surgery & Interventional Science
- University College of London
- London
- UK
| | - Taigang He
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- Royal Brompton Hospital
| |
Collapse
|
12
|
Olin JW, Jang J, Jaff MR, Beckman JA, Rooke T. Vascular Imaging: An Unparalleled Decade. J Endovasc Ther 2016; 11 Suppl 2:II21-31. [PMID: 15760260 DOI: 10.1177/15266028040110s618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vascular imaging techniques, such as catheter angiography, ultrasound, computed tomography (CT), and magnetic resonance (MR), have all undergone unprecedented innovation and incredible technological leaps in the last 10 years. Ultrasound, CT, and MR have progressed in acquisition speed, resolution, and accuracy to the point that they have now supplanted the former mainstay, invasive catheter-based angiography, despite the advent of digitized angiographic image recording. This review explores the advantages and shortcomings of each technique and how they have changed the diagnosis and assessment of the cardiovascular system for endovascular intervention.
Collapse
Affiliation(s)
- Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
13
|
Jung C, Dučić T, Reimer R, Koziolek E, Kording F, Heine M, Adam G, Ittrich H, Kaul MG. Gadospin F-enhanced magnetic resonance imaging for diagnosis and monitoring of atherosclerosis: validation with transmission electron microscopy and x-ray fluorescence imaging in the apolipoprotein e-deficient mouse. Mol Imaging 2015; 13. [PMID: 25342533 DOI: 10.2310/7290.2014.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the feasibility of noninvasive monitoring of plaque burden in apolipoprotein E-deficient (ApoE-/-) mice by Gadospin F (GDF)-enhanced magnetic resonance imaging (MRI). Gadolinium uptake in plaques was controlled using transmission electron microscopy (TEM) and x-ray fluorescence (XRF) microscopy. To monitor the progression of atherosclerosis, ApoE-/- (n = 5) and wild-type (n = 2) mice were fed a Western diet and imaged at 5, 10, 15, and 20 weeks. Contrast-enhanced MRI was performed at 7 T Clinscan (Bruker, Ettlingen, Germany) before and 2 hours after intravenous injection of GDF (100 μmol/kg) to determine the blood clearance. Plaque size and contrast to noise ratio (CNR) were calculated for each time point using region of interest measurements to evaluate plaque progression. Following MRI, aortas were excised and GDF uptake was cross-validated by TEM and XRF microscopy. The best signal enhancement in aortic plaque was achieved 2 hours after application of GDF. No signal differences between pre- and postcontrast MRI were detectable in wild-type mice. We observed a gradual and considerable increase in plaque CNR and size for the different disease stages. TEM and XRF microscopy confirmed the localization of GDF within the plaque. GDF-enhanced MRI allows noninvasive and reliable estimation of plaque burden and monitoring of atherosclerotic progression in vivo.
Collapse
|
14
|
MRI for Crohn's Disease: Present and Future. BIOMED RESEARCH INTERNATIONAL 2015; 2015:786802. [PMID: 26413543 PMCID: PMC4564596 DOI: 10.1155/2015/786802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/09/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory condition with relapsing-remitting behavior, often causing strictures or penetrating bowel damage. Its lifelong clinical course necessitates frequent assessment of disease activity and complications. Computed tomography (CT) enterography has been used as primary imaging modality; however, the concern for radiation hazard limits its use especially in younger population. Magnetic resonance (MR) imaging has advantages of avoiding radiation exposure, lower incidence of adverse events, ability to obtain dynamic information, and good soft-tissue resolution. MR enterography (MRE) with oral contrast agent has been used as primary MR imaging modality of CD with high sensitivity, specificity, and interobserver agreement. The extent of inflammation as well as transmural ulcers and fibrostenotic diseases can be detected with MRE. Novel MR techniques such as diffusion-weighted MRI (DWI), motility study, PET-MRI, and molecular imaging are currently investigated for further improvement of diagnosis and management of CD. MR spectroscopy is a remarkable molecular imaging tool to analyze metabolic profile of CD with human samples such as plasma, urine, or feces, as well as colonic mucosa itself.
Collapse
|
15
|
Cho HR, Lee Y, Doble P, Bishop D, Hare D, Kim YJ, Kim KG, Jung HS, Park KS, Choi SH, Moon WK. Magnetic resonance imaging of the pancreas in streptozotocin-induced diabetic rats: Gadofluorine P and Gd-DOTA. World J Gastroenterol 2015; 21:5831-5842. [PMID: 26019447 PMCID: PMC4438017 DOI: 10.3748/wjg.v21.i19.5831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/01/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the performance of Gadofluorine P-enhanced magnetic resonance imaging (MRI) on the diagnosis of diabetes in a streptozotocin (STZ) -induced diabetic rat model.
METHODS: Fischer 344 rats were treated with STZ. Rats not treated with STZ served as controls. T1-weighted MRI was performed using a 3T scanner before and after the injection of Gd-DOTA or Gadofluorine P (6 diabetic rats, 5 controls). The normalized signal intensity (SI) and the enhancement ratio (ER) of the pancreas were measured at each time point, and the values were compared between the normal and diabetic rats using the Mann-Whitney test. In addition, the values were correlated with the mean islet number. Optimal cut-off values were calculated using a positive test based on receiver operating characteristics. Intrapancreatic Gd concentration after the injection of each contrast media was measured using laser ablation-inductively coupled plasma-mass spectrometry in a separate set of rats (4 diabetic rats, 4 controls for Gadofluorine P; 2, 2 for Gd-DOTA).
RESULTS: The normalized SI and ER of the pancreas using Gd-DOTA were not significantly different between diabetic rats and controls. With Gadofluorine P, the values were significantly higher in the diabetic rats than in the control rats 30 min after injection (P < 0.05). The area under the receiver operating characteristic curve that differentiated diabetic rats from the control group was greater for Gadofluorine P than for Gd-DOTA (0.967 vs 0.667, P = 0.085). An increase in normalized SI 30 min after Gadofluorine P was correlated with a decrease in the mean number of islets (r2 = 0.510, P = 0.014). Intra-pancreatic Gd was higher in rats with Gadofluorine P injection than Gd-DOTA injection (Gadofluorine P vs Gd-DOTA, 7.37 vs 0.00, P < 0.01). A significant difference in the concentration of intrapancreatic Gd was observed between the control and diabetic animals that were sacrificed 30 min after Gadofluorine P injection (control vs diabetic, 3.25 ng/g vs 10.55 ng/g, P < 0.05)
CONCLUSION: In this STZ-induced diabetes rat model, Gadofluorine P-enhanced MRI of the pancreas showed high accuracy in the diagnosis of diabetes.
Collapse
|
16
|
Aichler M, Huber K, Schilling F, Lohöfer F, Kosanke K, Meier R, Rummeny EJ, Walch A, Wildgruber M. Spatially Resolved Quantification of Gadolinium(III)-Based Magnetic Resonance Agents in Tissue by MALDI Imaging Mass Spectrometry after In Vivo MRI. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Aichler M, Huber K, Schilling F, Lohöfer F, Kosanke K, Meier R, Rummeny EJ, Walch A, Wildgruber M. Spatially resolved quantification of gadolinium(III)-based magnetic resonance agents in tissue by MALDI imaging mass spectrometry after in vivo MRI. Angew Chem Int Ed Engl 2015; 54:4279-83. [PMID: 25689595 DOI: 10.1002/anie.201410555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 11/06/2022]
Abstract
Gadolinium(III)-based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.
Collapse
Affiliation(s)
- Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bennett KM, Jo JI, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014; 74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/02/2014] [Accepted: 04/20/2014] [Indexed: 11/25/2022]
Abstract
The advent of nanoparticle DDSs (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells or fibrosis in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of "seeing" the nanoparticle distribution and therapeutic effects. We introduce the concept of "nano-pathophysiological imaging" as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.
Collapse
|
19
|
Kim J, Kang HW, Oh J, Milner TE. Thermoelastic displacement measured by DP-OCT for detecting vulnerable plaques. BIOMEDICAL OPTICS EXPRESS 2014; 5:474-84. [PMID: 24575342 PMCID: PMC3920878 DOI: 10.1364/boe.5.000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/01/2013] [Accepted: 01/08/2014] [Indexed: 05/04/2023]
Abstract
The detection of thermoelastic displacement by differential phase optical coherence tomography (DP-OCT) was analytically evaluated for identifying atherosclerotic plaques. Analytical solutions were developed to understand the dynamics of physical distribution of point hear sources during/after laser irradiation on thermoelastic responses of MION-injected tissue. Both analytical and experimental results demonstrated a delayed peak displacement along with slow decay after laser pulse due to heterogeneous distribution of the point heat sources. Detailed description of the heat sources in tissue as well as integration of a scanning mirror can improve computational accuracy as well as clinical applicability of DP-OCT for diagnosing vulnerable plaque.
Collapse
Affiliation(s)
- Jihoon Kim
- Fundamental Technology Group, Samsung-Electro Mechanics, Suwon 443-743, South Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 608-737, South Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737, South Korea
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan 608-737, South Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737, South Korea
| | - Thomas E. Milner
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
20
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
21
|
Wildgruber M, Swirski FK, Zernecke A. Molecular imaging of inflammation in atherosclerosis. Am J Cancer Res 2013; 3:865-84. [PMID: 24312156 PMCID: PMC3841337 DOI: 10.7150/thno.5771] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 01/13/2023] Open
Abstract
Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic.
Collapse
|
22
|
You DG, Saravanakumar G, Son S, Han HS, Heo R, Kim K, Kwon IC, Lee JY, Park JH. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr Polym 2013; 101:1225-33. [PMID: 24299895 DOI: 10.1016/j.carbpol.2013.10.068] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/16/2013] [Accepted: 10/21/2013] [Indexed: 01/14/2023]
Abstract
The hallmark of atherosclerosis in its early pathogenic process is the overexpression of class A scavenger receptors (SR-A) by activated macrophages. In this study, dextran sulfate-coated superparamagnetic iron oxide nanoparticles (DS-SPIONs), as a magnetic resonance (MR) imaging contrast agent of atherosclerosis, was prepared via the facile co-precipitation method using a versatile double-hydrophilic block copolymer comprising of a DS segment (ligand for SR-A) and a poly(glyclerol methacrylate) segment (SPIONs surface-anchoring unit). The physicochemical properties of the DS-SPIONs were investigated using various instruments. DS-SPIONs exhibited high aqueous stability compared to dextran-coated SPIONs (Dex-SPIONs), which were used as controls. The cellular uptake behaviors of DS-SPIONs and Dex-SPIONs were evaluated using Prussian blue assay. Interestingly, the DS-SPIONs were effectively taken up by activated macrophages compared to Dex-SPIONs. However, the cellular uptake of DS-SPIONs by activated macrophages was remarkably reduced in the presence of free DS. These results suggest that activated macrophages internalize DS-SPIONs via receptor (SR-A)-mediated endocytosis. T2-weighted MR imaging of the cells demonstrated that activated macrophages treated with DS-SPIONs showed a significantly lower signal intensity compared to those treated with Dex-SPIONs. Overall, these results suggest that DS-SPIONs may be utilized as a potential contrast agent for atherosclerosis MR imaging.
Collapse
Affiliation(s)
- Dong Gil You
- Departments of Polymer Science and Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
den Adel B, van der Graaf LM, Que I, Strijkers GJ, Löwik CW, Poelmann RE, van der Weerd L. Contrast enhancement by lipid-based MRI contrast agents in mouse atherosclerotic plaques; a longitudinal study. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:63-71. [PMID: 23109394 DOI: 10.1002/cmmi.1496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of two differently sized gadolinium-based contrast agents to enhance atherosclerotic plaques in ApoE(-/-) mice was evaluated with MRI. We obtained a kinetic profile for contrast enhancement, as the literature data on optimal imaging time points is scarce, and assessed the longer-term kinetics. Signal enhancement in the wall of the aortic arch, following intravenous injection of paramagnetic micelles and liposomes, was followed for 1 week. In vivo T(1)-weighted MRI plaque enhancement characteristics were complemented by fluorescence microscopy of NIR(664) incorporated in the contrast agents and quantification of tissue and blood Gd-DTPA. Both micelles and liposomes enhanced contrast in T(1)-weighted MR images of plaques in the aortic arch. The average contrast-to-noise ratio increased after liposome or micelle injection to 260 or 280% respectively, at 24 h after injection, compared with a pre-scan. A second wave of maximum contrast enhancement was observed around 60-72 h after injection, which only slowly decreased towards the 1 week end-point. Confocal fluorescence microscopy and whole body fluorescence imaging confirmed MRI-findings of accumulation of micelles and liposomes. Plaque permeation of contrast agents was not strongly dependent on the contrast agent size in this mouse model. Our results show that intraplaque accumulation over time of both contrast agents leads to good plaque visualization for a long period. This inherent intraplaque accumulation might make it difficult to discriminate passive from targeted accumulation. This implies that, in the development of targeted contrast agents on a lipid-based backbone, extensive timing studies are required.
Collapse
Affiliation(s)
- Brigit den Adel
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Imaging Atherosclerotic Plaques with MRI: Role of Contrast Agents. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9179-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:11-24. [PMID: 23539505 DOI: 10.1007/s12410-012-9177-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.
Collapse
|
26
|
Lee JY, Choi BI, Son KR, Lee JM, Kim SJ, Park HS, Chang JM, Choi SH, Kim MA, Moon WK. Lymph node metastases from gastric cancer: gadofluorine M and gadopentetate dimeglumine MR imaging in a rabbit model. Radiology 2012; 263:391-400. [PMID: 22517957 DOI: 10.1148/radiol.000102431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare the diagnostic performance of gadofluorine M with that of gadopentetate dimeglumine in the diagnosis of lymph node metastases with magnetic resonance (MR) imaging in a rabbit model of gastric cancer. MATERIALS AND METHODS The study protocol was approved by the institutional animal care committee. VX2 carcinomas were inoculated into the wall of the stomach in 20 rabbits. Gadopentetate dimeglumine-enhanced MR imaging was performed 4-6 weeks after inoculation, and gadofluorine M-enhanced MR imaging was performed approximately 24 hours later. Both MR imaging sets were analyzed separately and independently by four radiologists with respect to confidence level regarding the presence of metastases in lymph nodes and lymph node conspicuity. Statistical analysis was performed by using multiple-reader multiple-case (MRMC) receiver operating characteristic curve analysis and the Wilcoxon signed rank test. RESULTS Metastases were confirmed at pathologic analysis in 32 of 104 lymph nodes from 16 rabbits. The area under the receiver operating characteristic curve (AUC) for confidence regarding the presence of metastases in lymph nodes was significantly greater for gadofluorine M than for gadopentetate dimeglumine (AUC, 0.947 vs 0.894; P = .009). However, most (81%, 25 of 32) metastatic nodes were necrotic, and no significant difference was obtained in nonnecrotic nodes. For lymph node conspicuity, the gadofluorine M MR imaging set was assigned a significantly higher score than was the gadopentetate dimeglumine MR imaging set by all readers (P < .001). CONCLUSION Gadofluorine M showed significantly higher accuracy and better conspicuity than gadopentetate dimeglumine in the diagnosis of metastatic nodes, most of which were necrotic, in this animal model of gastric cancer.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ransohoff JD, Wu JC. Imaging stem cell therapy for the treatment of peripheral arterial disease. Curr Vasc Pharmacol 2012; 10:361-73. [PMID: 22239638 PMCID: PMC3683543 DOI: 10.2174/157016112799959404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/28/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
Arteriosclerotic cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Therapeutic angiogenesis aims to treat ischemic myocardial and peripheral tissues by delivery of recombinant proteins, genes, or cells to promote neoangiogenesis. Concerns regarding the safety, side effects, and efficacy of protein and gene transfer studies have led to the development of cell-based therapies as alternative approaches to induce vascular regeneration and to improve function of damaged tissue. Cell-based therapies may be improved by the application of imaging technologies that allow investigators to track the location, engraftment, and survival of the administered cell population. The past decade of investigations has produced promising clinical data regarding cell therapy, but design of trials and evaluation of treatments stand to be improved by emerging insight from imaging studies. Here, we provide an overview of pre-clinical and clinical experience using cell-based therapies to promote vascular regeneration in the treatment of peripheral arterial disease. We also review four major imaging modalities and underscore the importance of in vivo analysis of cell fate for a full understanding of functional outcomes.
Collapse
Affiliation(s)
- Julia D. Ransohoff
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Regenerative Medicine and Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Bonnet CS, Tóth É. Magnetic Resonance Imaging Contrast Agents. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Liao CD, Zhang F, Guo RM, Zhong XM, Zhu J, Wen XH, Shen J. Peripheral nerve repair: monitoring by using gadofluorine M-enhanced MR imaging with chitosan nerve conduits with cultured mesenchymal stem cells in rat model of neurotmesis. Radiology 2012; 262:161-171. [PMID: 22056686 DOI: 10.1148/radiol.11110911] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
PURPOSE To observe the longitudinal changes of nerve repair in rats after tissue-engineered construct implantation at magnetic resonance (MR) imaging and to determine whether the enhanced nerve regeneration with use of tissue-engineered constructs could be monitored with gadofluorine M-enhanced MR imaging or nerve T2 relaxation time measurement. MATERIALS AND METHODS All experimental protocols were approved by the institutional Animal Use and Care Committee. Tissue-engineered constructs were prepared by seeding mesenchymal stem cells (MSCs) into chitosan nerve tubes. Thirty-six rats with sciatic nerve transection injury underwent nerve tube implantation with (n = 18) or without (n = 18) MSC seeding. Sequential T2 measurement, gadofluorine M-enhanced MR imaging, and sciatic function index measurement were performed over an 8-week follow-up period, with histologic assessments performed at regular intervals. T2 relaxation times and signal intensity at gadofluorine M-enhanced T1-weighted imaging were measured and were compared by using repeated-measures analysis of variance followed by the Student-Neuman-Keuls post-hoc test for multiple pairwise comparisons. RESULTS Nerve T2 relaxation times and gadofluorine M enhancement, as well as functional changes, showed a similar time course. Nerves implanted with MSC-seeded tubes achieved slightly better functional recovery and enhanced nerve regeneration while showing a slower return to baseline T2 relaxation time and a more rapid decline in gadofluorine M enhancement compared with nerves implanted with chitosan tubes alone. T2 values of the distal portion of transected nerves showed a more rapid return to baseline level than did gadofluorine M enhancement. CONCLUSION Peripheral nerve repair with use of tissue-engineered constructs can be monitored by using gadofluorine M-enhanced MR imaging and T2 relaxation time measurements. T2 relaxation time seems more sensitive than gadofluorine M-enhanced MR imaging for detecting nerve regeneration.
Collapse
Affiliation(s)
- Cheng-De Liao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Long-term assessment of contrast effects of gadofluorine M and gadofluorine P in magnetic resonance imaging of mice. Jpn J Radiol 2011; 30:86-91. [PMID: 22135114 DOI: 10.1007/s11604-011-0009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/07/2011] [Indexed: 01/13/2023]
Abstract
PURPOSE To investigate the long-term time course of the contrast effects after the intravenous injection of gadofluorine M or gadofluorine P in mice. MATERIALS AND METHODS Magnetic resonance images were acquired longitudinally after intravenous injection of 0.1 μmol Gd/g gadofluorine M into BALB/c mice. The contrast effects were also assessed in C57BL/6J mice injected with gadofluorine M, BALB/c mice injected with gadofluorine P, and BALB/c mice injected with a double dose of gadopentetate dimeglumine. RESULTS The injection of gadofluorine M into BALB/c mice caused prolonged contrast effects in the blood and other organs. The liver enhancement was especially long-lasting and still evident 6 days after injection. Strain-related differences in contrast kinetics of gadofluorine M were not observed between BALB/c mice and C57BL/6J mice. In comparison with gadofluorine M, clearances from the blood, liver, and kidney were more rapid and contrast enhancement in the spleen was generally lower for gadofluorine P. The enhancement in the gallbladder cavity, indicating biliary excretion, was evident only after gadofluorine P injection. Blood enhancement at 10 min was much weaker for gadopentetate dimeglumine. CONCLUSION Both gadofluorine M and gadofluorine P appear to be applicable to blood pool imaging and liver imaging in mice.
Collapse
|
31
|
Gadofluorine M-enhanced magnetic resonance imaging of inflammatory bowel disease: quantitative analysis and histologic correlation in a rat model. Invest Radiol 2011; 46:478-85. [PMID: 21512398 DOI: 10.1097/rli.0b013e31821459ff] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES : To determine the colonic mural enhancement in a rat model of inflammatory bowel disease (IBD) using gadofluorine M- and diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced magnetic resonance (MR) imaging, and to correlate the degree of enhancement with the histopathologic severity of the disease. MATERIALS AND METHODS : This study was approved by our hospital's institutional animal care and use committee. A total of 44 rats with 2 grades (mild, n = 17; and severe, n = 27) of dinitrobenzene sulfonic acid (DNBS)-induced IBD and 13 rats without IBD, were examined using a 2.4-T, small animal MR scanner. T2- and T1-weighted MR images were acquired, and sequential T1-weighted MR imaging was then performed immediately and again 15, 45, 60, and 90 minutes, and 24 hours after intravenous -injection of either gadofluorine M- or Gd-DTPA (0.1 mmol Gd/kg body weight). The signal-to-noise ratios and enhancement ratios (ER) of the colon wall were measured. For paired and group comparisons of the histopathology and MR imaging data, the Wilcoxon- and the Mann-Whitney U tests were used, and the multifactorial analysis of variance test was used to compare the time courses of the ERs. RESULTS : Gadofluorine M injection resulted in significant differences in the ER of noninflamed, mildly inflamed, and severely inflamed colon wall at any time up to 24 hours after contrast injection (ER at 24 hours 2.0 ± 1.2; 10.1 ± 4.3; and 49.7 ± 10.8, respectively; P < 0.01). After Gd-DTPA injection, significant differences were observed in the ER of inflamed and noninflamed bowel at 15, 45, and 60 minutes (P < 0.01); however, no significant differences in mildly and severely inflamed bowel were observed at any time. In contrast to Gadofluorine M, there was no prolonged contrast enhancement in the inflamed colon wall after intravenous injection of Gd-DTPA (ER at 24 hours 1.6 ± 1.3; 3.4 ± 2.7; and 3.3 ± 1.6, respectively; n.s.). CONCLUSIONS : Gadofluorine M-enhanced MR imaging shows a higher correlation of the wall enhancement and histopathology grading in an IBD rat model than does Gd-DTPA-enhanced imaging.
Collapse
|
32
|
te Boekhorst BC, van Tilborg GA, Strijkers GJ, Nicolay K. Molecular MRI of Inflammation in Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2011; 5:60-68. [PMID: 22308200 PMCID: PMC3261392 DOI: 10.1007/s12410-011-9114-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inflammatory activity in atherosclerotic plaque is a risk factor for plaque rupture and atherothrombosis and may direct interventional therapy. Inflammatory activity can be evaluated at the (sub)cellular level using in vivo molecular MRI. This paper reviews recent progress in contrast-enhanced molecular MRI to visualize atherosclerotic plaque inflammation. Various MRI contrast agents, among others ultra-small particles of iron oxide, low-molecular-weight Gd-chelates, micelles, liposomes, and perfluorocarbon emulsions, have been used for in vivo visualization of various inflammation-related targets, such as macrophages, oxidized LDL, endothelial cell expression, plaque neovasculature, MMPs, apoptosis, and activated platelets/thrombus. An enzyme-activatable magnetic resonance contrast agent has been developed to study myeloperoxidase activity in inflamed plaques. Agents creating contrast based on the chemical exchange saturation transfer mechanism were used for thrombus imaging. Transfer of these molecular MRI techniques to the clinic will critically depend on the safety profiles of these newly developed magnetic resonance contrast agents.
Collapse
Affiliation(s)
- Bernard C. te Boekhorst
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Geralda A. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
33
|
Jestaedt L, Lemke D, Weiler M, Pfenning PN, Heiland S, Wick W, Bendszus M. Gadofluorine M enhanced MRI in experimental glioma: superior and persistent intracellular tumor enhancement compared with conventional MRI. J Magn Reson Imaging 2011; 35:551-60. [PMID: 22045630 DOI: 10.1002/jmri.22869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To compare conventional magnetic resonance imaging (MRI) techniques (T2-w and Gadolinium-DTPA-enhanced T1-w images) and Gadofluorine-M (GfM), a novel contrast agent in MRI, in murine gliomas. MATERIALS AND METHODS Growth monitoring of murine gliomas (induced in mice) was performed on a 2.3 Tesla Bruker Biospec MRI unit. First all animals were investigated with conventional MRI techniques. In group I GfM was applied at an early stage of disease, in group II at a later stage. After injection of GfM follow-up MRI was performed without further injection of contrast agent. On MR images tumor size and signal intensities were assessed. Animals were killed for histological evaluation. RESULTS In both groups GfM delineated tumor extents larger and more precisely than conventional MRI techniques. The difference between GfM and conventional MRI techniques reached level of significance at both tumor stages. Follow-up MRI after singular injection of GfM showed persistence of GfM in tumor tissue. On tissue sections GfM-enhancing areas corresponded closely to vital tumor tissue. GfM showed a mainly intracellular accumulation. CONCLUSION Application of GfM resulted in superior delineation of experimental glioma compared with conventional MRI techniques. Thus, GfM bears a high potential in clinical application.
Collapse
Affiliation(s)
- Leonie Jestaedt
- Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sharif F, Lohan DG, Wijns W. Non-invasive detection of vulnerable coronary plaque. World J Cardiol 2011; 3:219-29. [PMID: 21860703 PMCID: PMC3158870 DOI: 10.4330/wjc.v3.i7.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 02/06/2023] Open
Abstract
Critical coronary stenoses have been shown to contribute to only a minority of acute coronary syndromes and sudden cardiac death. Autopsy studies have identified a subgroup of high-risk patients with disrupted vulnerable plaque and modest stenosis. Consequently, a clinical need exists to develop methods to identify these plaques prospectively before disruption and clinical expression of disease. Recent advances in invasive and non-invasive imaging techniques have shown the potential to identify these high-risk plaques. Non-invasive imaging with magnetic resonance imaging, computed tomography and positron emission tomography holds the potential to differentiate between low- and high-risk plaques. There have been significant technological advances in non-invasive imaging modalities, and the aim is to achieve a diagnostic sensitivity for these technologies similar to that of the invasive modalities. Molecular imaging with the use of novel targeted nanoparticles may help in detecting high-risk plaques that will ultimately cause acute myocardial infarction. Moreover, nanoparticle-based imaging may even provide non-invasive treatments for these plaques. However, at present none of these imaging modalities are able to detect vulnerable plaque nor have they been shown to definitively predict outcome. Further trials are needed to provide more information regarding the natural history of high-risk but non-flow-limiting plaque to establish patient specific targeted therapy and to refine plaque stabilizing strategies in the future.
Collapse
Affiliation(s)
- Faisal Sharif
- Faisal Sharif, Department of Cardiology, Regional Hospital Galway, and Regenerative Medicine Institute, National University of Ireland Galway, County Galway, Ireland
| | | | | |
Collapse
|
35
|
Young VEL, Degnan AJ, Gillard JH. Advances in contrast media for vascular imaging of atherosclerosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.11.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
In vivo MR imaging of plaque disruption and thrombus formation in an atherosclerotic rabbit model. Int J Cardiovasc Imaging 2011; 28:577-86. [PMID: 21461662 DOI: 10.1007/s10554-011-9854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Our aim is to introduce an atherosclerotic rabbit model for inducing atherosclerosis lesions in rabbits, and to validate the model in vivo with 3T high resolution magnetic resonance imaging of the thrombosis followed a pharmacologically triggered plaque disruption. Twenty male New Zealand White rabbits were randomly allocated into an experimental group (n = 16) and a control group (n = 4). The aortic wall injuries were induced by an intravascular balloon in the experimental group rabbits after feeding them with a high cholesterol diet for 2 weeks. The pharmacological triggering with Russell's viper venom and histamine was performed after totally 16 weeks of intermittent cholesterol feeding. All of the animals underwent both the pre-trigger and post-trigger MR examinations including TOF, T1WI, T2WI and post contrast T1WI. Euthanasia was performed in all rabbits; gross anatomy and histological specimen of aorta were obtained. MR images were analyzed and compared with histological results. Compared with the control group rabbits, the aorta of the experimental group rabbits in the pre-triggered MR images showed an increased vessel wall thickening, luminal narrowing, and vessel wall enhancement. Fourteen rabbits survived the triggering, and 8 of them developed thrombosis (58.1%). No thrombus was found in the control group. The accuracy of the multi-sequences MR including TOF, T1WI, T2WI and post contrast T1WI was 87.1% (27/31) for detecting thrombus. MR data significantly correlated with the histopathology data for both thrombus length (r = 0.94, P < 0.01) and thrombus location (r = 0.85, P < 0.01), respectively. The study demonstrated that MR reliably determined the plaque disruption and thrombus formation in the atherosclerotic rabbit model.
Collapse
|
37
|
te Boekhorst BCM, Bovens SM, Rodrigues-Feo J, Sanders HMHF, van de Kolk CWA, de Kroon AIPM, Cramer MJM, Doevendans PAFM, ten Hove M, Pasterkamp G, van Echteld CJA. Characterization and in vitro and in vivo testing of CB2-receptor- and NGAL-targeted paramagnetic micelles for molecular MRI of vulnerable atherosclerotic plaque. Mol Imaging Biol 2011; 12:635-51. [PMID: 20376565 DOI: 10.1007/s11307-010-0323-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Atherosclerotic plaque macrophages express the peripheral cannabinoid receptor (CB2-R) and promote fibrous cap degradation by secretion of neutrophil gelatinase-associated lipocalin 2 (NGAL). In this study, we report the preparation, characterization, and in vitro and in vivo testing of double-labeled (MR and fluorescent) CB2-R- and NGAL-targeted micelles. PROCEDURES/RESULTS Specific CB2-R agonists or antibodies directed to 24p3 (mouse homolog of NGAL) were incorporated into di-oleoyl-polyethylene glycol-phosphatidylethanolamine 1000 (DOPE-PEG1000) micelles or di-stearoyl-polyethylene glycol-phosphatidylethanolamine 2000 (DSPE-PEG2000) micelles. The hydrodynamic diameter, determined by dynamic light scattering, was 16.5 and 19.0 nm for CB2-R-targeted DOPE-PEG1000 and DSPE-PEG2000 micelles, respectively, and 23.0 nm for Ab-conjugated DSPE-PEG2000 micelles. In vitro and in vivo MRI and fluorescence microscopy showed specific binding of CB2-R-targeted and 24p3-targeted micelles to in vitro systems and to aortic plaque in apoE(-/-)/eNOS(-/-) mice, respectively. CONCLUSIONS CB2-R- and NGAL-targeted micelles show promise as tools for in vivo characterization of vulnerable plaque.
Collapse
|
38
|
Pedersen SF, Thrysøe SA, Paaske WP, Thim T, Falk E, Ringgaard S, Kim WY. CMR assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset. J Cardiovasc Magn Reson 2011; 13:10. [PMID: 21269470 PMCID: PMC3036628 DOI: 10.1186/1532-429x-13-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endothelial damage and angiogenesis are essential for atherosclerotic plaque development and destabilization. We sought to examine whether contrast enhanced cardiovascular magnetic resonance (CMR) using gadofosveset could show endothelial damage and neovessel formation in balloon injured porcine coronary arteries. METHODS AND RESULTS Data were obtained from seven pigs that all underwent balloon injury of the left anterior descending coronary artery (LAD) to induce endothelial damage and angiogenesis. Between one - 12 days (average four) after balloon injury, in vivo and ex vivo T1-weighted coronary CMR was performed after intravenous injection of gadofosveset. Post contrast, CMR showed contrast enhancement of the coronary arteries with a selective and time-dependent average expansion of the injured LAD segment area of 45% (p = 0.04; CI95 = [15%-75%]), indicating local extravasation of gadofosveset. Vascular and perivascular extravasation of albumin (marker of endothelial leakiness) and gadofosveset was demonstrated with agreement between Evans blue staining and ex vivo CMR contrast enhancement (p = 0.026). Coronary MRI contrast enhancement and local microvessel density determined by microscopic examination correlated (ρ = 0.82, p < 0.001). CONCLUSION Contrast enhanced coronary CMR with gadofosveset can detect experimentally induced endothelial damage and angiogenesis in the porcine coronary artery wall.
Collapse
Affiliation(s)
- Steen F Pedersen
- Dept. of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Samuel A Thrysøe
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - William P Paaske
- Dept. of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Troels Thim
- Dept. of Cardiology, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Erling Falk
- Dept. of Cardiology, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Steffen Ringgaard
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Won Y Kim
- Dept. of Cardiology, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
39
|
van Bochove GS, Paulis LEM, Segers D, Mulder WJM, Krams R, Nicolay K, Strijkers GJ. Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 6:35-45. [PMID: 20882509 DOI: 10.1002/cmmi.402] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/27/2010] [Accepted: 05/29/2010] [Indexed: 01/31/2023]
Abstract
Interest in the use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of three differently sized gadolinium-based contrast agents to permeate different mouse plaque phenotypes was evaluated with MRI. A tapered cast was implanted around the right carotid artery of apoE(-/-) mice to induce two different plaque phenotypes: a thin cap fibroatheroma (TCFA) and a non-TCFA lesion. Both plaques were allowed to develop over 6 and 9 weeks, leading to an intermediate and advanced lesion, respectively. Signal enhancement in the carotid artery wall, following intravenous injection of Gd-HP-DO3A as well as paramagnetic micelles and liposomes was evaluated. In vivo T(1) -weighted MRI plaque enhancement characteristics were complemented by fluorescence microscopy and correlated to lesion phenotype. The two smallest contrast agents, i.e. Gd-HP-DO3A and micelles, were found to enhance contrast in T(1) -weighted MR images of all investigated plaque phenotypes. Maximum contrast enhancement ranged between 53 and 70% at 6 min after injection of Gd-HP-DO3A with highest enhancement and longest retention in the non-TCFA lesion. Twenty-four hours after injection of micelles maximum contrast enhancement ranged between 24 and 35% in all plaque phenotypes. Administration of the larger liposomes did not cause significant contrast enhancement in the atherosclerotic plaques. Confocal fluorescence microscopy confirmed the MRI-based differences in plaque permeation between micelles and liposomes. Plaque permeation of contrast agents was strongly dependent on size. Our results implicate that, when equipped with targeting ligands, liposomes are most suitable for the imaging of plaque-associated endothelial markers due to low background enhancement, whereas micelles, which accumulate extravascularly on a long timescale, are suited for imaging of less abundant markers inside plaques. Low molecular weight compounds may be employed for target-specific imaging of highly abundant extravascular plaque-associated targets.
Collapse
Affiliation(s)
- Glenda S van Bochove
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Vessel wall imaging of large vessels has the potential to identify culprit atherosclerotic plaques that lead to cardiovascular events. Comprehensive assessment of atherosclerotic plaque size, composition, and biological activity is possible with magnetic resonance imaging (MRI). Magnetic resonance imaging of the atherosclerotic plaque has demonstrated high accuracy and measurement reproducibility for plaque size. The accuracy of in vivo multicontrast MRI for identification of plaque composition has been validated against histological findings. Magnetic resonance imaging markers of plaque biological activity such as neovasculature and inflammation have been demonstrated. In contrast to other plaque imaging modalities, MRI can be used to study multiple vascular beds noninvasively over time. In this review, we compare the status of in vivo plaque imaging by MRI to competing imaging modalities. Recent MR technological improvements allow fast, accurate, and reproducible plaque imaging. An overview of current MRI techniques required for carotid plaque imaging including hardware, specialized pulse sequences, and processing algorithms are presented. In addition, the application of these techniques to coronary, aortic, and peripheral vascular beds is reviewed.
Collapse
|
42
|
Utility of contrast-enhanced ultrasonography for qualitative imaging of atherosclerosis in Watanabe heritable hyperlipidemic rabbits: initial experimental study. Jpn J Radiol 2010; 28:656-62. [DOI: 10.1007/s11604-010-0487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/07/2010] [Indexed: 12/27/2022]
|
43
|
Use of Contrast Enhancement and High-Resolution 3D Black-Blood MRI to Identify Inflammation in Atherosclerosis. JACC Cardiovasc Imaging 2010; 3:1127-35. [DOI: 10.1016/j.jcmg.2010.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 02/07/2023]
|
44
|
Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT. Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflammation 2010; 7:70. [PMID: 20955604 PMCID: PMC2978145 DOI: 10.1186/1742-2094-7-70] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/18/2010] [Indexed: 01/06/2023] Open
Abstract
Background Circumventricular organs (CVO) are cerebral areas with incomplete endothelial blood-brain barrier (BBB) and therefore regarded as "gates to the brain". During inflammation, they may exert an active role in determining immune cell recruitment into the brain. Methods In a longitudinal study we investigated in vivo alterations of CVO during neuroinflammation, applying Gadofluorine M- (Gf) enhanced magnetic resonance imaging (MRI) in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. SJL/J mice were monitored by Gadopentate dimeglumine- (Gd-DTPA) and Gf-enhanced MRI after adoptive transfer of proteolipid-protein-specific T cells. Mean Gf intensity ratios were calculated individually for different CVO and correlated to the clinical disease course. Subsequently, the tissue distribution of fluorescence-labeled Gf as well as the extent of cellular inflammation was assessed in corresponding histological slices. Results We could show that the Gf signal intensity of the choroid plexus, the subfornicular organ and the area postrema increased significantly during experimental autoimmune encephalomyelitis, correlating with (1) disease severity and (2) the delay of disease onset after immunization. For the choroid plexus, the extent of Gf enhancement served as a diagnostic criterion to distinguish between diseased and healthy control mice with a sensitivity of 89% and a specificity of 80%. Furthermore, Gf improved the detection of lesions, being particularly sensitive to optic neuritis. In correlated histological slices, Gf initially accumulated in the extracellular matrix surrounding inflammatory foci and was subsequently incorporated by macrophages/microglia. Conclusion Gf-enhanced MRI provides a novel highly sensitive technique to study cerebral BBB alterations. We demonstrate for the first time in vivo the involvement of CVO during the development of neuroinflammation.
Collapse
Affiliation(s)
- Eva Wuerfel
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
45
|
te Boekhorst BCM, Bovens SM, van de Kolk CWA, Cramer MJM, Doevendans PAFM, ten Hove M, van der Weerd L, Poelmann R, Strijkers GJ, Pasterkamp G, van Echteld CJA. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo. NMR IN BIOMEDICINE 2010; 23:939-951. [PMID: 20878972 DOI: 10.1002/nbm.1514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for inversion-recovery fast spin echo is limited. Study aims were: evaluation of (1) timing of MRI after intravenous injection of cannabinoid-2 receptor (CB2-R) (expressed by human and mouse plaque macrophages) targeted micelles; (2) inter-scan variability of inversion-recovery fast spin echo and fast spin echo; (3) relation between NER(plaque) and gadolinium content for inversion-recovery fast spin echo and fast spin echo. Inversion-recovery fast spin echo/fast spin echo imaging was performed before and every 15 min up to 48 h after injection of CB2-R targeted or control micelles using several groups of mice measured in an interleaved fashion. NER(plaque) (determined on inversion-recovery fast spin echo images) remained high (∼2) until 48 h after injection of CB2-R targeted micelles, whereas NER(plaque) decreased after 36 h in the control group. The inter-scan variability and relation between NER(plaque) and gadolinium (assessed with inductively coupled plasma- mass spectrometry) were compared between inversion-recovery fast spin echo and fast spin echo. Inter-scan variability was higher for inversion-recovery fast spin echo than for fast spin echo. Although gadolinium and NER(plaque) correlated well for both techniques, the NER of plaque was higher for inversion-recovery fast spin echo than for fast spin echo. In mice injected with CB2-R targeted micelles, NER(plaque) can be best evaluated at 36-48 h post-injection. Because NER(plaque) was higher for inversion-recovery fast spin echo than for fast spin echo, but with high inter-scan variability, repeated inversion-recovery fast spin echo imaging and averaging of the obtained NER(plaque) values is recommended.
Collapse
Affiliation(s)
- B C M te Boekhorst
- Department of Cardiology, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Current clinical techniques that rely on stenosis measurement alone appear to be insufficient for risk prediction in atherosclerosis patients. Many novel imaging methods have been developed to study atherosclerosis progression and to identify new features that can predict future clinical risk. MRI of atherosclerotic vessel walls is one such method. It has the ability to noninvasively evaluate multiple biomarkers of the disease such as luminal stenosis, plaque burden, tissue composition and plaque activity. In addition, the accuracy of in vivo MRI has been validated against histology with high reproducibility, thus paving the way for application to epidemiological studies of disease pathogenesis and, by serial MRI, in monitoring the efficacy of therapeutic intervention. In this review, we describe the various MR techniques used to evaluate aspects of plaque progression, discuss imaging-based measurements (imaging biomarkers), and also detail their validation. The application of plaque MRI in clinical trials as well as emerging imaging techniques used to evaluate plaque compositional features and biological activities are also discussed.
Collapse
Affiliation(s)
- Jinnan Wang
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, 10510
- Department of Radiology, University of Washington, Seattle, WA, 98109
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, 98109
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, WA, 98109
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, 98109
| |
Collapse
|
47
|
Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis 2010; 13:87-99. [DOI: 10.1007/s10456-010-9172-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
|
48
|
Abstract
Molecular MRI plays an important role in studying molecular and cellular processes associated with heart disease. Targeted probes that recognize important biomarkers of atherosclerosis, apoptosis, necrosis, angiogenesis, thrombosis and inflammation have been developed. This review discusses the properties of chemically different contrast agents including iron oxide nanoparticles, gadolinium-based nanoparticles or micelles, discrete peptide conjugates and activatable probes. Numerous examples of contrast agents based on these approaches have been used in preclinical MRI of cardiovascular diseases. Clinical applications are still under investigation for some selected agents with highly promising initial results. Molecular MRI shows great potential for the detection and characterization of a wide range of cardiovascular diseases, as well as for monitoring response to therapy.
Collapse
Affiliation(s)
- Ritika Uppal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
49
|
Abstract
Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize, and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the past 5 years.
Collapse
|
50
|
Haller S, Pereira VM, Lalive PH, Chofflon M, Vargas MI, Lövblad KO. Magnetic resonance imaging in multiple sclerosis. Top Magn Reson Imaging 2009; 20:313-323. [PMID: 21187724 DOI: 10.1097/rmr.0b013e318207a390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVES multiple sclerosis (MS) is an inflammatory disease of unknown origin affecting the central nervous system. Magnetic resonance imaging (MRI) plays an increasingly important role in its diagnosis and further monitoring of disease progress. METHODS the typical MRI appearance of MS on conventional MRI sequences and current diagnostic criteria for MS are discussed. Advanced imaging techniques are reviewed with respect to application in MS. Finally, the atypical variants of MS are briefly reviewed. CONCLUSIONS although MRI is not intended and will not replace clinical assessment in MS, the recognized MRI criteria may aid in establishing an earlier and more accurate diagnosis of MS in the context of a clinical suspicion or clinically isolated syndrome. In addition, MRI might contribute to rule out differential diagnoses for MS. Moreover, MRI may be used to monitor the evolution of MS and in pharmaceutical trials. Advanced imaging techniques might, in the future, further characterize MS lesion subtypes and potentially guide tailored therapy.
Collapse
Affiliation(s)
- Sven Haller
- ServiceNeuro-Diagnostique et Neuro-Interventionnel DISIM, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|