1
|
Shero JA, Lindholm ME, Sandri M, Stanford KI. Skeletal Muscle as a Mediator of Interorgan Crosstalk During Exercise: Implications for Aging and Obesity. Circ Res 2025; 136:1407-1432. [PMID: 40403102 PMCID: PMC12101524 DOI: 10.1161/circresaha.124.325614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 05/24/2025]
Abstract
Physical exercise is critical for preventing and managing chronic conditions, such as cardiovascular disease, type 2 diabetes, hypertension, and sarcopenia. Regular physical activity significantly reduces cardiovascular and all-cause mortality. Exercise also enhances metabolic health by promoting muscle growth, mitochondrial biogenesis, and improved nutrient storage while preventing age-related muscle dysfunction. Key metabolic benefits include increased glucose uptake, enhanced fat oxidation, and the release of exercise-induced molecules called myokines, which mediate interorgan communication and improve overall metabolic function. These myokines and other exercise-induced signaling molecules hold promise as therapeutic targets for aging and obesity-related conditions.
Collapse
Affiliation(s)
- Julia A. Shero
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Maléne E. Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
2
|
Curtis M, McGing J, Stubbs B, Ball V, Cochlin L, O'Neill D, Laustsen C, Cole M, Robbins P, Tyler D, Miller J. Hyperpolarized 13C-MRS can Quantify Lactate Production and Oxidative PDH Flux in Murine Skeletal Muscle During Exercise. NMR IN BIOMEDICINE 2025; 38:e70020. [PMID: 40175064 PMCID: PMC11964792 DOI: 10.1002/nbm.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/18/2025] [Accepted: 02/09/2025] [Indexed: 04/04/2025]
Abstract
Existing techniques for the non-invasive in vivo study of dynamic changes in skeletal muscle metabolism are subject to several limitations, for example, poor signal-to-noise ratios which result in long scan times and low temporal resolution. Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy (HP-MRS) allows the real-time visualization of in vivo metabolic processes and has been used extensively to study cardiac metabolism, but has not resolved oxidative phosphorylation in contracting skeletal muscle. Combining HP-MRS with an in vivo muscle hindlimb electrical stimulation protocol that modelled voluntary exercise to exhaustion allows the simultaneous real-time assessment of both metabolism and function. The aim of this work was to validate the sensitivity of the method by assessing pyruvate dehydrogenase (PDH) flux in resting vs. working muscle: measuring the production of bicarbonate (H13CO3 -), a byproduct of the PDH-catalysed conversion of [1-13C]pyruvate to acetyl-CoA. Mice (n = 6) underwent two hyperpolarized [1-13C]pyruvate injections with 13C MR spectra obtained from the gastrocnemius muscle to measure conversion of pyruvate to lactate and bicarbonate, one before the stimulation protocol with the muscle in a resting state and one during the stimulation protocol. The muscle force generated during stimulation was also measured, and 13C MRS undertaken at a point of ~50% fatigue. We observed an increase in the bicarbonate/pyruvate ratio by a factor of ~1.5×, in the lactate/pyruvate ratio of ~2.7×, together with an increase in total carbon (~1.5×) that we attribute to perfusion. This demonstrates profound differences in metabolism between the resting and exercising states. These data therefore serve as preliminary evidence that hyperpolarized 13C MRS is an effective in vivo probe of PDH flux in exercising skeletal muscle and could be used in future studies to examine changes in muscle metabolism in states of disease and altered nutrition.
Collapse
Affiliation(s)
- M. Kate Curtis
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchOxfordUK
| | | | | | - Vicky Ball
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Lowri E. Cochlin
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - David P. O'Neill
- Department of Biomedical Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Mark A. Cole
- University of Nottingham Medical SchoolNottinghamUK
| | - Peter A. Robbins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchOxfordUK
| | - Jack J. Miller
- The MR Research Centre, HealthAarhus UniversityAarhusDenmark
| |
Collapse
|
3
|
Takei N, Muraki R, Girard O, Hatta H. Inter-individual variability in performance benefits from repeated sprint training in hypoxia and associated training parameters. Front Sports Act Living 2025; 7:1524437. [PMID: 40302896 PMCID: PMC12037587 DOI: 10.3389/fspor.2025.1524437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
This study examined whether inter-individual variability exists in repeated sprint training in hypoxia (RSH) and how peripheral oxygen saturation (SpO2) affects physiological demands and mechanical output, and subsequent training outcomes. Sixteen highly-trained sprint runners completed six sessions of RSH consisting of two sets of 5 × 10-s all-out sprints (fraction of inspired oxygen: 0.15), with pre- and post-tests involving 10 × 10-s all-out sprints in normoxia. Average SpO2, training impulse (TRIMP), and relative total work (relative TW; standardized by pre-test TW) during training sessions were calculated. After the intervention, MPO increased by +3.8% (P = 0.001) and sprint decrement score by +6.0% (P = 0.047). However, inter-individual variability in performance improvement observed and nearly 20% of participants did not obtain performance benefit. Average SpO2 during training sessions correlated significantly with relative TW (r = 0.435, P = 0.008), indicating that participants with higher SpO2 performed more work during training. Relative TW was strongly correlated with performance improvement (r = 0.833, P < 0.001), suggesting that those who produced more work during training experienced greater performance gains. TRIMP showed no significant correlation with SpO2 or performance improvement. In summary, greater peripheral deoxygenation leads to lower mechanical work and consequently smaller performance improvement following RSH. The variability in peripheral deoxygenation and relative TW among highly-trained sprint runners may contribute to the heterogeneous training effects observed.
Collapse
Affiliation(s)
- Naoya Takei
- Research Institute of Physical Fitness, Japan Women’s College of Physical Education, Tokyo, Japan
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuji Muraki
- Department of Sports Science, Surugadai University, Saitama, Japan
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Men J, Zhao C, Xiang C, Zhu G, Yu Z, Wang P, Wu S, Zhang Y, Li Y, Wang L, Gong X, Yang X, Zou S, Ma J, Cui C, Li H, Ma X, Wu W, Wang Y. Effects of high-intensity interval training on physical morphology, cardiopulmonary function, and metabolic indicators in older adults: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2025; 16:1526991. [PMID: 40201761 PMCID: PMC11975580 DOI: 10.3389/fendo.2025.1526991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Background Despite the growing attention towards the efficacy of high-intensity interval training (HIIT) on older adult health, a consensus regarding the pleiotropic effects of HIIT in this population is yet to be reached. Previous studies have predominantly focused on specific outcomes or particular groups, lacking comprehensive analysis. Objective We aimed to conduct a systematic evaluation of the impact of HIIT on body composition, cardiopulmonary function, and metabolic parameters in older adults. Methods The databases searched included PubMed, Web of Science, Cochrane Library, Scopus, WanFang, and other relevant sources from the inception of the database until July 2023. Randomized controlled trials (RCTs) on the effects of HIIT on body shape, cardiopulmonary function, and metabolic parameters in the older adult were searched. Results A total of 87 RCTs meeting the criteria were included, involving 4,213 older adult people. Meta-analysis results showed that HIIT significantly improved body fat percentage (BF%) [MD: -1.63%, p = 0.005], maximal oxygen uptake (VO2max) [MD: 2.46 mL min-1 kg-1, p < 0.00001], maximal heart rate (HRmax) [MD: 2.83 beats min-1, p = 0.02], and high-density lipoprotein (HDL) levels [MD: 0.04 mmol L-1, p = 0.002]. However, for systolic blood pressure (SBP) [MD: 0.49 mmHg, p = 0.60], resting heart rate (HRrest) [MD: -0.95 BPM -1, p = 0.24], triglycerides (TG) [tendency for MD: -0.02 mmol L-1, p = 0.61], low-density lipoprotein (LDL) [MD: -0.04 mmol L-1, p = 0.27] had no significant effect. Sensitivity analysis found that HIIT significantly improved waist circumference (WC) [MD: -1.89 cm, p = 0.17], diastolic blood pressure (DBP) [MD: -0.63 mmHg, p = 0.23], respiratory exchange rate (RER) [MD: 0.01, p = 0.20], total cholesterol (TC) [MD: 0.10 mmol L-1, p = 0.14], and fasting plasma glucose (FPG) [MD:-0.20 mmol L-1, p = 0.08], but the results lacked robustness. There was no significant improvement in DBP [MD: -0.63 mmHg, p = 0.23] and body mass index (BMI) [MD: -0.36 kg m-2, p = 0.06]. Conclusions HIIT has shown certain potential and advantages in improving the physical health of the older adult, especially in cardiopulmonary function. However, more high-quality studies are needed to confirm the effects of HIIT on the physical health of the older adult in the future. It also provides a reference for the clinical practice and family health management of HIIT in the older adult and the development of HIIT guidelines. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/myprospero, identifier CRD42023460252.
Collapse
Affiliation(s)
- Jie Men
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Chengrui Zhao
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Chenmin Xiang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guoyu Zhu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhengyang Yu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Pengbo Wang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Simin Wu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Yuxi Zhang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Yishan Li
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Liuliu Wang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xueyan Gong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital Department of Immunology & Rheumatology, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xiang Yang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Shuangling Zou
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Jia Ma
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Chenglong Cui
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Hao Li
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xuedi Ma
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Wenjie Wu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Yaoming Wang
- Fenyang College, Shanxi Medical University, Fenyang, China
| |
Collapse
|
5
|
Lu Y, Baker JS, Ying S, Lu Y. Effects of practical models of low-volume high-intensity interval training on glycemic control and insulin resistance in adults: a systematic review and meta-analysis of randomized controlled studies. Front Endocrinol (Lausanne) 2025; 16:1481200. [PMID: 39917538 PMCID: PMC11798773 DOI: 10.3389/fendo.2025.1481200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Objectives The aim of this systematic review and meta-analysis was to investigate the effects of practical models of low-volume high-intensity interval training protocols (LV-HIIT) on glucose control and insulin resistance compared with moderate-intensity continuous training (MICT) protocols and no-exercise controls (CON). Methods Four databases (PubMed, Web of Science, Scopus, and Cochrane Library) were searched for randomized controlled studies conducted using LV-HIIT interventions (HIIT/SIT protocols involving ≤ 15 min of intense training, within a session lasting ≤ 30 min; < 30 s all-out sprint for SIT additionally). The inclusion criteria required glucose and insulin resistance markers to be evaluated pre- and post-intervention among adults who were not trained athletes. Results As a result, twenty studies were included, and meta-analyses were conducted using sixteen studies employing HIIT protocols. Compared with CON, LV-HIIT with reduced intensity and extended interval duration significantly improved fasting glucose (FPG) (mean difference (MD) in mg/dL=-16.63; 95% confidence interval (CI): -25.30 to -7.96; p<0.001) and HbA1c (MD=-0.70; 95% CI: -1.10 to -0.29; p<0.001). Greater improvements were found in participants who were overweight/obese or having type 2 diabetes (T2D). FPG decreased with every additional second of interval duration (β;=-0.10; 95% CI: -0.19 to -0.00; p=0.046). FPI (β;=-0.65; 95% CI: -1.27 to -0.02; p=0.042) and HOMA-IR (β;=-0.22; 95% CI: -0.36 to -0.09; p=0.001) decreased with every additional minute of interval duration per session. HOMA-IR also decreased with every additional minute of weekly interval duration (β;=-0.06; 95%CI: -0.08 to -0.04; p<0.001). Compared with MICT, LV-HIIT was more effective in improving insulin sensitivity (SMD=-0.40; 95%CI: -0.70 to -0.09; p=0.01), but there were no differences in FPG, FPI, HbA1c or HOMA-IR (p>0.05). The effect of LV-HIIT on FPI was larger compared with MICT among individuals who lost weight. Conclusion Conclusively, a practical model of LV-HIIT with reduced intensity and extended interval was effective in improving glucose control and its effects were similar to MICT. Greater improvements were found in individuals with overweight/obesity or T2D in protocols with longer intervals or accumulated interval duration per session/week. More large-scale, randomized controlled studies with similar intervention protocols in a wide range of population are warranted to confirm these important results. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024516594.
Collapse
Affiliation(s)
- Yining Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Julien S. Baker
- Centre for Population Health and Medical Informatics, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Shanshan Ying
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yichen Lu
- Department of Sport and Physical Education, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
6
|
Siharath C, Biondi O, Peres S. Modelling energy metabolism dysregulations in neuromuscular diseases: A case study of calpainopathy. Heliyon 2024; 10:e40918. [PMID: 39759341 PMCID: PMC11698924 DOI: 10.1016/j.heliyon.2024.e40918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Biological modelling helps understanding complex processes, like energy metabolism, by predicting pathway compensations and equilibrium under given conditions. When deciphering metabolic adaptations, traditional experiments face challenges due to numerous enzymatic activities, needing modelling to anticipate pathway behaviours and orientate research. This paper aims to implement a constraint-based modelling method of muscular energy metabolism, adaptable to individual situations, energy demands, and complex disease-specific metabolic alterations like muscular dystrophy calpainopathy. Our calpainopathy-like model not only confirms the ATP production defect under increasing energy demands, but suggests compensatory mechanisms through anaerobic glycolysis. However, excessive glycolysis indicates a need to enhance mitochondrial respiration, preventing excess lactate production common in several diseases. Our model suggests that moderate-intensity physiotherapy, known to improve aerobic performance and anaerobic buffering, combined with increased carbohydrate and amino acid sources, could be a potent therapeutic approach for calpainopathy.
Collapse
Affiliation(s)
- Camille Siharath
- Laboratoire de Biométrie et de Biologie Évolutive, UMR CNRS 5558 Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
- ERABLE, INRIA Lyon Centre, 69622, Villeurbanne cedex, France
| | - Olivier Biondi
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé (LBEPS), UMR, Université d'Evry, IRBA, Université de Paris Saclay, 91025, Evry-Courcouronnes, France
| | - Sabine Peres
- Laboratoire de Biométrie et de Biologie Évolutive, UMR CNRS 5558 Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
- ERABLE, INRIA Lyon Centre, 69622, Villeurbanne cedex, France
| |
Collapse
|
7
|
Buzaglo GBB, Telles GD, Araújo RB, Junior GDS, Ruberti OM, Ferreira MLV, Derchain SFM, Vechin FC, Conceição MS. The Therapeutic Potential of Physical Exercise in Cancer: The Role of Chemokines. Int J Mol Sci 2024; 25:13740. [PMID: 39769501 PMCID: PMC11678861 DOI: 10.3390/ijms252413740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/11/2025] Open
Abstract
The global increase in cancer cases and mortality has been associated with inflammatory processes, in which chemokines play crucial roles. These molecules, a subfamily of cytokines, are essential for the migration, adhesion, interaction, and positioning of immune cells throughout the body. Chemokines primarily originate in response to pathogenic stimuli and inflammatory cytokines. They are expressed by lymphocytes in the bloodstream and are divided into four classes (CC, CXC, XC, and CX3C), playing multifaceted roles in the tumor environment (TME). In the TME, chemokines regulate immune behavior by recruiting cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which promote tumor survival. Additionally, they directly influence tumor behavior, promoting pathological angiogenesis, invasion, and metastasis. On the other hand, chemokines can also induce antitumor responses by mobilizing CD8+ T cells and natural killer (NK) cells to the tumor, reducing pro-inflammatory chemokines and enhancing essential antitumor responses. Given the complex interaction between chemokines, the immune system, angiogenic factors, and metastasis, it becomes evident how important it is to target these pathways in therapeutic interventions to counteract cancer progression. In this context, physical exercise emerges as a promising strategy due to its role modulating the expression of anti-inflammatory chemokines and enhancing the antitumor response. Aerobic and resistance exercises have been associated with a beneficial inflammatory profile in cancer, increased infiltration of CD8+ T cells in the TME, and improvement of intratumoral vasculature. This creates an environment less favorable to tumor growth and supports the circulation of antitumor immune cells and chemokines. Therefore, understanding the impact of exercise on the expression of chemokines can provide valuable insights for therapeutic interventions in cancer treatment and prevention.
Collapse
Affiliation(s)
- Glenda B. B. Buzaglo
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Guilherme D. Telles
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (G.D.T.); (F.C.V.)
| | - Rafaela B. Araújo
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Gilmar D. S. Junior
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Olivia M. Ruberti
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Marina L. V. Ferreira
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Sophie F. M. Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-881, Brazil;
| | - Felipe C. Vechin
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (G.D.T.); (F.C.V.)
| | - Miguel S. Conceição
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| |
Collapse
|
8
|
Natera AO, Hughes S, Chapman DW, Chapman ND, Keogh JW. Changes in the force-time curve during a repeat power ability assessment using loaded countermovement jumps. PeerJ 2024; 12:e17971. [PMID: 39376225 PMCID: PMC11457872 DOI: 10.7717/peerj.17971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Repeat power ability (RPA) assessments traditionally use discrete variables, such as peak power output, to quantify the change in performance across a series of jumps. Rather than using a discrete variable, the analysis of the entire force-time curve may provide additional insight into RPA performance. The aims of this study were to (1) analyse changes in the force-time curve recorded during an RPA assessment using statistical parametric mapping (SPM) and (2) compare the differences in the force-time curve between participants with low and high RPA scores, as quantified by traditional analysis. Materials and Methods Eleven well-trained field hockey players performed an RPA assessment consisting of 20 loaded countermovement jumps with a 30% one repetition maximum half squat load (LCMJ20). Mean force-time series data was normalized to 100% of the movement duration and analysed using SPM. Peak power output for each jump was also derived from the force-time data and a percent decrement score calculated for jumps 2 to 19 (RPA%dec). An SPM one-way ANOVA with significance accepted at α = 0.05, was used to identify the change in the force-time curve over three distinct series of jumps across the LCMJ20 (series 1 = jumps 2-5, series 2 = jumps 9-12 and series 3 = jumps 16-19). A secondary analysis, using an independent T-test with significance accepted at p < 0.001, was also used to identify differences in the force-time curve between participants with low and high RPA%dec. Results Propulsive forces were significantly lower (p < 0.001) between 74-98% of the movement compared to 0-73% for changes recorded during the LCMJ20. Post hoc analysis identified the greatest differences to occur between jump series 1 and jump series 2 (p < 0.001) at 70-98% of the movement and between jump series 1 and jump series 3 (p < 0.001) at 86-99% of the movement. No significant differences were found between jump series 2 and jump series 3. Significant differences (p < 0.001) in both the braking phase at 44-48% of the jump and the propulsive phase at 74-94% of the jump were identified when participants were classified based on low or high RPA%dec scores (with low scores representing an enhanced ability to maintain peak power output than high scores). Conclusion A reduction in force during the late propulsive phase is evident as the LCMJ20 progresses. SPM analysis provides refined insight into where changes in the force-time curve occur during performance of the LCMJ20. Participants with the lower RPA%dec scores displayed both larger braking and propulsive forces across the LCMJ20 assessment.
Collapse
Affiliation(s)
- Alex O. Natera
- Sport Science, New South Wales Institute of Sport, Sydney Olympic Park, New South Wales, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Steven Hughes
- Sport Science, New South Wales Institute of Sport, Sydney Olympic Park, New South Wales, Australia
| | - Dale W. Chapman
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Neil D. Chapman
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Justin W.L. Keogh
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
- Sports Performance Research Centre New Zealand, Auckland University of Technology, Auckland, New Zealand
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Presti N, Mansouri T, Maloney MK, Hostler D. The Impact Plant-Based Diets Have on Athletic Performance and Body Composition: A Systematic Review. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:636-643. [PMID: 38913935 DOI: 10.1080/27697061.2024.2365755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024]
Abstract
Plant-based diets have gained popularity among athletes in recent years. Some believe that plant-based diets will improve performance owing to higher intakes of carbohydrates and antioxidants. Some believe it that will harm performance due to lower intakes of complete protein and creatine. This systemic review was conducted using Covidence software. A literature search of PubMed, Embase (Elsevier), CINAHL Plus (EBSCO), and Web of Science was completed on 22 March 2022. Following the development of clear objectives and a research question that identified the population, intervention, comparison, and outcomes, initial search criteria and keywords were identified. Extracted results totaled 2249, including 797 duplicates. The initial screening resulted in 1437 articles being excluded. The remaining 15 articles proceeded to full-text screening. A final 8 articles were included in the review, with 7 excluded. This paper will review the impact plant-based diets have on athletic performance and body composition in healthy young adults aged 18 to 45 years.
Collapse
Affiliation(s)
- Nicole Presti
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York, USA
| | - Tegan Mansouri
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York, USA
| | - Molly K Maloney
- University Libraries, University at Buffalo, Buffalo, New York, USA
| | - David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Osses-Rivera A, Yáñez-Sepúlveda R, Jannas-Vela S, Vigh-Larsen JF, Monsalves-Álvarez M. Effects of strength training on repeated sprint ability in team sports players: a systematic review. PeerJ 2024; 12:e17756. [PMID: 39131612 PMCID: PMC11313415 DOI: 10.7717/peerj.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/25/2024] [Indexed: 08/13/2024] Open
Abstract
Objective This systematic review was conducted to analyze the existing evidence on the effects of strength training (ST) and complex/contrast training (CCT) on repeated sprint ability (RSA) in team sports players. Methods A systematic review of the literature was performed following the PRISMA statement. PubMed, Web of Science, and Scopus databases were used. Original full-text articles were analyzed, without date restriction until May 26, 2024, written in English, peer-reviewed, and for eligibility must have included (1) male or female team sports players, amateur or professional category, without age restriction (2) lower extremity ST and/or CCT program (3) active control group (4) running RSA test (e.g., repeated shuttle sprint ability test or straight-line repeated sprint ability test) before and after the intervention period (5) controlled trial. Results A total of 3,376 studies were identified and screened. Finally, 10 articles were included based on the inclusion and exclusion criteria, all with moderate methodological quality according to the PEDro scale. The best time, mean time, and total time presented significant pre and post-test changes, using ST in 3, 2, and 1 experimental groups, respectively, and using CCT in 1, 1, and 1 experimental groups, respectively, with almost no differences in the percentage decrement most commonly reported in RSA tests. There were no changes in the control groups. Conclusion Together, ST performed in a range of maximal power provides benefits in the best time and mean time and performed between 80 to 95% of 1 repetition maximum (RM) provides benefits in the best time, mean time, and total time in RSA tests. CCT performed between 75 to 90% of 1 RM combined with jumps and sprints provides benefits in the best time, mean time, and total time in RSA test, but no unaltered percentage decrement in ST and CCT in elite and semi-professional team sport players.
Collapse
Affiliation(s)
| | | | | | - Jeppe F. Vigh-Larsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Matías Monsalves-Álvarez
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
11
|
Langley JO, Ng SC, Todd EE, Porter MS. V ˙ La max: determining the optimal test duration for maximal lactate formation rate during all-out sprint cycle ergometry. Eur J Appl Physiol 2024; 124:2461-2472. [PMID: 38555335 DOI: 10.1007/s00421-024-05456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE This study aimed to ascertain the optimal test duration to elicit the highest maximal lactate formation rate ( V ˙ Lamax), whilst exploring the underpinning energetics, and identifying the optimal blood lactate sampling period. METHODS Fifteen trained to well-trained males (age 27 ± 6 years; peak power: 1134 ± 174 W) participated in a randomised cross-over design completing three all-out sprint cycling tests of differing test durations (10, 15, and 30 s). Peak and mean power output (W and W.kg-1), oxygen uptake, and blood lactate concentrations were measured. V ˙ Lamax and energetic contributions (phosphagen, glycolytic, and oxidative) were determined using these parameters. RESULTS The shortest test duration of 10 s elicited a significantly (p = 0.003; p < 0.001) higher V ˙ Lamax (0.86 ± 0.17 mmol.L-1.s-1; 95% CI 0.802-0.974) compared with both 15 s (0.68 ± 0.18 mmol.L-1.s-1; 95% CI 0.596-0.794) and 30 s (0.45 ± 0.07 mmol.L-1.s-1; 95% CI 0.410-0.487). Differences in V ˙ Lamax were associated with large effect sizes (d = 1.07, d = 3.15). We observed 81% of the PCr and 53% of the glycolytic work completed over the 30 s sprint duration was attained after 10 s. BLamaxpost were achieved at 5 ± 2 min (ttest 10 s), 6 ± 2 min (ttest 15 s), and 7 ± 2 min (ttest 30 s), respectively. CONCLUSION Our findings demonstrated a 10 s test duration elicited the highest V ˙ Lamax. Furthermore, the 10 s test duration mitigated the influence of the oxidative metabolism during all-out cycling. The optimal sample time to determine peak blood lactate concentration following 10 s was 5 ± 2 min.
Collapse
Affiliation(s)
- J O Langley
- Department of Higher Education Sport, Loughborough College, Radmoor Road, Loughborough, Leicestershire, LE11 3BT, UK.
| | - S C Ng
- Department of Higher Education Sport, Loughborough College, Radmoor Road, Loughborough, Leicestershire, LE11 3BT, UK
| | - E E Todd
- Department of Higher Education Sport, Loughborough College, Radmoor Road, Loughborough, Leicestershire, LE11 3BT, UK
| | - M S Porter
- Department of Higher Education Sport, Loughborough College, Radmoor Road, Loughborough, Leicestershire, LE11 3BT, UK
| |
Collapse
|
12
|
Metcalfe RS, Vollaard NBJ. Reduced-exertion high-intensity interval training (REHIT): a feasible approach for improving health and fitness? Appl Physiol Nutr Metab 2024; 49:984-992. [PMID: 38688037 DOI: 10.1139/apnm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In recent years, research investigating the dose-response to sprint interval training (SIT) has provided evidence that the number and duration of repetitions in a SIT session can be reduced whilst preserving the beneficial health-related adaptations. Together this research has led to the development of protocols involving minimal doses of SIT: regularly performing just two or three 20-30 s all-out sprints in a 10 min training session has been shown to elicit beneficial metabolic and cardiovascular adaptations. These SIT protocols, which we originally termed "reduced-exertion high-intensity interval training" (or REHIT), have the potential to remove many of the common barriers associated with other SIT protocols, as well as with HIT and aerobic exercise. Here, we critically review the evidence on the efficacy, feasibility and acceptability, and effectiveness of REHIT for improving health and fitness.
Collapse
Affiliation(s)
- Richard S Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN Wales, UK
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
13
|
Stöggl TL, Strepp T, Wiesinger HP, Haller N. A training goal-oriented categorization model of high-intensity interval training. Front Physiol 2024; 15:1414307. [PMID: 38957216 PMCID: PMC11218030 DOI: 10.3389/fphys.2024.1414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
There are various categorization models of high-intensity interval training (HIIT) in the literature that need to be more consistent in definition, terminology, and concept completeness. In this review, we present a training goal-oriented categorization model of HIIT, aiming to find the best possible consensus among the various defined types of HIIT. This categorization concludes with six different types of HIIT derived from the literature, based on the interaction of interval duration, interval intensity and interval:recovery ratio. We discuss the science behind the defined types of HIIT and shed light on the possible effects of the various types of HIIT on aerobic, anaerobic, and neuromuscular systems and possible transfer effects into competition performance. We highlight various research gaps, discrepancies in findings and not yet proved know-how based on a lack of randomized controlled training studies, especially in well-trained to elite athlete cohorts. Our HIIT "toolbox" approach is designed to guide goal-oriented training. It is intended to lay the groundwork for future systematic reviews and serves as foundation for meta-analyses.
Collapse
Affiliation(s)
- Thomas L. Stöggl
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Thalgau, Austria
| | - Tilmann Strepp
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
- Institute of General Practice, Family Medicine and Preventive Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Nils Haller
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Drwal A, Pałka T, Tota L, Wiecha S, Čech P, Strzała M, Maciejczyk M. Acute effects of multi-ingredient pre-workout dietary supplement on anaerobic performance in untrained men: a randomized, crossover, single blind study. BMC Sports Sci Med Rehabil 2024; 16:128. [PMID: 38853269 PMCID: PMC11163698 DOI: 10.1186/s13102-024-00918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Multi-ingredient pre-workout dietary supplements (MIPS), which are combinations of different ingredients acting on different physiological mechanisms, can have a synergistic effect and improve performance. The aim of the study was to determine the acute effects of a multi-ingredient pre-workout supplement containing: beta-alanine, taurine, caffeine, L-tyrosine, and cayenne pepper (capsaicin) on anaerobic performance. METHODS A randomized, crossover, single-blind study was designed. Twelve young, healthy, untrained men aged 22.4 ± 1.44 years participated in the study. The participants performed a supramaximal all-out test (20 s Wingate test) twice, day by day, in random order: test after placebo or MIPS consumption. In both trials, the following variables were measured in the exercise test: total work performed, peak power, mean power, time to reach peak power, and power decrease. RESULTS MIPS was found to be effective in improving peak power (p = 0.009, ES = 0.77) and mean power (p = 0.04, ES = 0.62) in the Wingate test. However, the supplement consumption did not affect the amount of total work done (p = 0.10, ES = 0.48) in the test or power decrease (p = 0.07, ES = 0.53). The data indicate, that the improvement in anaerobic power was due to a significant improvement in pedaling speed, which was manifested in a significant improvement (i.e. shortening) in time to peak power (p = 0.003, ES = 0.88). CONCLUSION A multi-ingredient pre-workout dietary supplement was found to be effective in improving Wingate (anaerobic) performance. TRIAL REGISTRATION NCT06363669, retrospectively registered on 11.04.2024 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Aleksander Drwal
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Lukasz Tota
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Szczepan Wiecha
- Department of Physical Education and Health, Faculty in Biala Podlaska, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | - Pavol Čech
- Department of Educology and Sport, University of Presov, Presov, Slovakia
| | - Marek Strzała
- Department of Water Sports, University of Physical Education, Kraków, Poland
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland.
| |
Collapse
|
15
|
McCarthy SF, Jarosz C, Ferguson EJ, Kenno KA, Hazell TJ. Intense interval exercise induces greater changes in post-exercise metabolism compared to submaximal exercise in middle-aged adults. Eur J Appl Physiol 2024; 124:1075-1084. [PMID: 37819613 DOI: 10.1007/s00421-023-05334-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION High-intensity interval training (HIIT) and sprint interval training (SIT) consistently elevate post-exercise metabolism compared to moderate-intensity continuous training (MICT) in young adults (18-25 years), however few studies have investigated this in middle-aged adults. PURPOSE To assess the effect of exercise intensity on post-exercise metabolism following submaximal, near-maximal, and supramaximal exercise protocols in middle-aged adults. METHODS 12 participants (8 females; age: 44 ± 10 years; V ˙ O2max: 35.73 ± 9.97 mL·kg-1 min-1) had their oxygen consumption ( V ˙ O2) measured during and for 2 h following 4 experimental sessions: (1) no-exercise control (CTRL); (2) MICT exercise (30 min at 65% V ˙ O2max); (3) HIIT exercise (10 × 1 min at 90% maximum heart rate with 1 min rest); and (4) modified-SIT exercise (8 × 15 s "all-out" efforts with 2 min rest). Between session differences for V ˙ O2 and fat oxidation were compared. RESULTS O2 consumed post-exercise was elevated during the 1st h and 2nd h following HIIT (15.9 ± 2.6, 14.7 ± 2.3 L; P < 0.036, d > 0.98) and modified-SIT exercise (16.9 ± 3.3, 15.30 ± 3.4 L; P < 0.041, d > 0.96) compared to CTRL (13.3 ± 1.9, 12.0 ± 2.5 L) while modified-SIT was also elevated vs HIIT in the 1st h (P < 0.041, d > 0.96). Total post-exercise O2 consumption was elevated following all exercise sessions (MICT: 27.7 ± 4.1, HIIT: 30.6 ± 4.8, SIT: 32.2 ± 6.6 L; P < 0.027, d > 1.03) compared to CTRL (24.9 ± 4.1 L). Modified-SIT exercise increased fat oxidation (0.103 ± 0.019 g min-1) compared to all sessions post-exercise (CTRL: 0.059 ± 0.025, MICT: 0.075 ± 0.022, HIIT: 0.081 ± 0.021 g·min-1; P < 0.007, d > 1.30) and HIIT exercise increased compared to CTRL (P = 0.046, d = 0.87). CONCLUSION Exercise intensity has an important effect on post-exercise metabolism in middle-aged adults.
Collapse
Affiliation(s)
- Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L3C5, Canada
| | - Claudia Jarosz
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L3C5, Canada
| | - Emily J Ferguson
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L3C5, Canada
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Kenji A Kenno
- Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L3C5, Canada.
| |
Collapse
|
16
|
Yin M, Li H, Bai M, Liu H, Chen Z, Deng J, Deng S, Meng C, Vollaard NBJ, Little JP, Li Y. Is low-volume high-intensity interval training a time-efficient strategy to improve cardiometabolic health and body composition? A meta-analysis. Appl Physiol Nutr Metab 2024; 49:273-292. [PMID: 37939367 DOI: 10.1139/apnm-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The present meta-analysis aimed to assess the effects of low-volume high-intensity interval training (LV-HIIT; i.e., ≤5 min high-intensity exercise within a ≤15 min session) on cardiometabolic health and body composition. A systematic search was performed in accordance with PRISMA guidelines to assess the effect of LV-HIIT on cardiometabolic health and body composition. Twenty-one studies (moderate to high quality) with a total of 849 participants were included in this meta-analysis. LV-HIIT increased cardiorespiratory fitness (CRF, SMD = 1.19 [0.87, 1.50]) while lowering systolic blood pressure (SMD = -1.44 [-1.68, -1.20]), diastolic blood pressure (SMD = -1.51 [-1.75, -1.27]), mean arterial pressure (SMD = -1.55 [-1.80, -1.30]), MetS z-score (SMD = -0.76 [-1.02, -0.49]), fat mass (kg) (SMD = -0.22 [-0.44, 0.00]), fat mass (%) (SMD = -0.22 [-0.41, -0.02]), and waist circumference (SMD = -0.53 [-0.75, -0.31]) compared to untrained control (CONTROL). Despite a total time-commitment of LV-HIIT of only 14%-47% and 45%-94% compared to moderate-intensity continuous training and HV-HIIT, respectively, there were no statistically significant differences observed for any outcomes in comparisons between LV-HIIT and moderate-intensity continuous training (MICT) or high-volume HIIT. Significant inverse dose-responses were observed between the change in CRF with LV-HIIT and sprint repetitions (β = -0.52 [-0.76, -0.28]), high-intensity duration (β = -0.21 [-0.39, -0.02]), and total duration (β = -0.19 [-0.36, -0.02]), while higher intensity significantly improved CRF gains. LV-HIIT can improve cardiometabolic health and body composition and represent a time-efficient alternative to MICT and HV-HIIT. Performing LV-HIIT at a higher intensity drives higher CRF gains. More repetitions, longer time at high intensity, and total session duration did not augment gains in CRF.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Mingyang Bai
- School of Physical Education, Sichuan Agriculture University, Yaan, China
| | - Hengxian Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Shengji Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Chuan Meng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
17
|
Silva de Moura S, de Assis Dias Martins-Júnior F, Cruz de Oliveira E, Coelho DB, Boari D, Lima-Silva AE, Motta-Santos D, Augusto Souza Dos Santos R, Becker LK. Effects of oral HPΒCD-angiotensin-(1-7) supplementation on recreational mountain bike athletes: a crossover study. PHYSICIAN SPORTSMED 2024; 52:65-76. [PMID: 36752064 DOI: 10.1080/00913847.2023.2175587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/29/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Supplementation with Angiotensin-(1-7) [(Ang-1-7)] has received considerable attention due to its possible ergogenic effects on physical performance. The effects of a single dose of Ang-(1-7) on the performance of mountain bike (MTB) athletes during progressive load tests performed until the onset of voluntary fatigue have previously been demonstrated. This study tested the effects of Ang-(1-7) in two different exercise protocols with different metabolic demands: aerobic (time trial) and anaerobic (repeated sprint). METHODS Twenty one male recreational athletes were given capsules containing an oral formulation of HPβCD-Ang-(1-7) (0.8 mg) and HPβCD-placebo (only HPβCD) over a 7-day interval; a double-blind randomized crossover design was used. Physical performance was examined using two protocols: a 20-km cycling time trial or 4 × 30-s repeated all-out sprints on a leg cycle ergometer. Data were collected before and after physical tests to assess fatigue parameters, and included lactate levels, and muscle activation during the sprint protocol as evaluated by electromyography (EMG); cardiovascular parameters: diastolic and systolic blood pressure and heart rate; and performance parameters, time to complete (time trial), maximum power and mean power (repeated sprint). RESULTS Supplementation with an oral formulation of HPβCD-Ang-(1-7) reduced basal plasma lactate levels and promoted the maintenance of plasma glucose levels after repeated sprints. Supplementation with HPβCD-Ang-(1-7) also increased baseline plasma nitrite levels and reduced resting diastolic blood pressure in a time trial protocol. HPβCD-Ang-(1-7) had no effect on the time trial or repeat sprint performance, or on the EMG recordings of the vastus lateralis and vastus medialis. CONCLUSIONS Supplementation with HPβCD-Ang-(1-7) did not improve physical performance in time trial or in repeated sprints; however, it promoted the maintenance of plasma glucose and lactate levels after the sprint protocol and at rest, respectively. In addition, HPβCD-Ang-(1-7) also increased resting plasma nitrite levels and reduced diastolic blood pressure in the time trial protocol. TRIAL REGISTRATION RBR-2nbmpbc, registered January 6th, 2023. The study was prospectively registered.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Boari
- Biomedical Engineering, Federal University of ABC, São Paulo, Brazil
| | | | - Daisy Motta-Santos
- Department of Sports, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Dos Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, and National Institute Science and Technology-NANOBIOPHAR-CNPQ/MCT, Belo Horizonte, Brazil
| | | |
Collapse
|
18
|
Vigh-Larsen JF, Mohr M. The physiology of ice hockey performance: An update. Scand J Med Sci Sports 2024; 34:e14284. [PMID: 36517860 DOI: 10.1111/sms.14284] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Ice hockey is an intense team sport characterized by repeated bursts of fast-paced skating, rapid changes in speed and direction and frequent physical encounters. These are performed in on-ice shifts of ~30-80 s interspersed with longer sequences of passive recovery, resulting in about 15-25 min on-ice time per player. Nearly 50% of the distance is covered at high-intensity skating speeds and with an accentuated intense activity pattern in forwards compared to defensemen. During ice hockey match-play, both aerobic and anaerobic energy systems are significantly challenged, with the heart rate increasing toward maximum levels during each shift, and with great reliance on both glycolytic and phosphagen ATP provision. The high-intensity activity pattern favors muscle glycogen as fuel, leading to pronounced reductions despite the relatively brief playing time, including severe depletion of a substantial proportion of individual fast- and slow-twitch fibers. Player-tracking suggests that the ability to perform high-intensity skating is compromised in the final stages of a game, which is supported by post-game reductions in repeated-sprint ability. Muscle glycogen degradation, in particular in individual fibers, as well as potential dehydration and hyperthermia, may be prime candidates implicated in exacerbated fatigue during the final stages of a game, whereas multiple factors likely interact to impair exercise tolerance during each shift. This includes pronounced PCr degradation, with potential inadequate resynthesis in a proportion of fast-twitch fibers in situations of repeated intense actions. Finally, the recovery pattern is inadequately described, but seems less long-lasting than in other team sports.
Collapse
Affiliation(s)
- Jeppe F Vigh-Larsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Centre of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
19
|
Bostad W, Williams JS, Van Berkel EK, Richards DL, MacDonald MJ, Gibala MJ. Biological sex does not influence the peak cardiac output response to twelve weeks of sprint interval training. Sci Rep 2023; 13:22995. [PMID: 38151488 PMCID: PMC10752867 DOI: 10.1038/s41598-023-50016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Sprint interval training (SIT) increases peak oxygen uptake (V̇O2peak) but the mechanistic basis is unclear. We have reported that 12 wk of SIT increased V̇O2peak and peak cardiac output (Q̇peak) and the changes in these variables were correlated. An exploratory analysis suggested that Q̇peak increased in males but not females. The present study incorporated best practices to examine the potential influence of biological sex on the Q̇peak response to SIT. Male and female participants (n = 10 each; 21 ± 4 y) performed 33 ± 2 sessions of SIT over 12 wk. Each 10-min session involved 3 × 20-s 'all-out' sprints on an ergometer. V̇O2peak increased after SIT (3.16 ± 1.0 vs. 2.89 ± 1.0 L/min, η2p = 0.53, p < 0.001) with no sex × time interaction (p = 0.61). Q̇peak was unchanged after training (15.2 ± 3.3 vs. 15.1 ± 3.0 L/min, p = 0.85), in contrast to our previous study. The peak estimated arteriovenous oxygen difference increased after training (204 ± 30 vs. 187 ± 36 ml/L, p = 0.006). There was no effect of training or sex on measures of endothelial function. We conclude that 12 wk of SIT increases V̇O2peak but the mechanistic basis remains unclear. The capacity of inert gas rebreathing to assess changes in Q̇peak may be limited and invasive studies that use more direct measures are needed.
Collapse
Affiliation(s)
- William Bostad
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jennifer S Williams
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Emily K Van Berkel
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Douglas L Richards
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
20
|
Farra SD. Acute consumption of a branched chain amino acid and vitamin B-6 containing sports drink does not improve multiple sprint exercise performance, but increases post-exercise blood glucose. Front Nutr 2023; 10:1266422. [PMID: 38144425 PMCID: PMC10740374 DOI: 10.3389/fnut.2023.1266422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose The aim of this study was to investigate the ergogenicity of BioSteel High Performance Sports Drink (B-HPSD), a commercially available branched chain amino acid (BCAA) and vitamin B-6 (VitB-6) supplement, on multiple sprint exercise (MSE). Methods Eleven experienced cyclists completed two MSE trials in counterbalanced order, after ingesting either B-HPSD (2,256 mg of BCAA, 300 mcg of VitB-6) or placebo (PLA). The MSE protocol consisted of five maximal effort 1 km sprints on a cycle ergometer separated by 2 min of active recovery. Power output (PO) was continuously measured throughout the cycling protocol. Heart rate (HR) and ratings of perceived exertion (RPE) were monitored following each sprint. Capillary blood samples were collected and analyzed for lactate and glucose before and 2 min post-trial. Cognitive function was assessed before and 15 min after the exercise protocol. Results The PO maintained during each 1 km sprint decreased throughout the protocol (p < 0.05), but the change in PO was similar between conditions. Post-exercise blood glucose was elevated after consuming B-HPSD but not PLA (p < 0.05). Blood lactate (p < 0.05), HR (p < 0.05) and RPE (p < 0.05) increased throughout the trials, however no differences were observed between conditions. Cognitive performance improved after exercise (p < 0.05), but the change was similar between conditions. Conclusion These results demonstrate that acute B-HPSD consumption does not have an ergogenic effect on MSE performance. However, ingestion of B-HPSD increased post-exercise blood glucose concentration when compared to PLA.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Applied Health and Community Studies, Sheridan College, Brampton, ON, Canada
| |
Collapse
|
21
|
Coates AM, Joyner MJ, Little JP, Jones AM, Gibala MJ. A Perspective on High-Intensity Interval Training for Performance and Health. Sports Med 2023; 53:85-96. [PMID: 37804419 PMCID: PMC10721680 DOI: 10.1007/s40279-023-01938-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
Interval training is a simple concept that refers to repeated bouts of relatively hard work interspersed with recovery periods of easier work or rest. The method has been used by high-level athletes for over a century to improve performance in endurance-type sports and events such as middle- and long-distance running. The concept of interval training to improve health, including in a rehabilitative context or when practiced by individuals who are relatively inactive or deconditioned, has also been advanced for decades. An important issue that affects the interpretation and application of interval training is the lack of standardized terminology. This particularly relates to the classification of intensity. There is no common definition of the term "high-intensity interval training" (HIIT) despite its widespread use. We contend that in a performance context, HIIT can be characterized as intermittent exercise bouts performed above the heavy-intensity domain. This categorization of HIIT is primarily encompassed by the severe-intensity domain. It is demarcated by indicators that principally include the critical power or critical speed, or other indices, including the second lactate threshold, maximal lactate steady state, or lactate turnpoint. In a health context, we contend that HIIT can be characterized as intermittent exercise bouts performed above moderate intensity. This categorization of HIIT is primarily encompassed by the classification of vigorous intensity. It is demarcated by various indicators related to perceived exertion, oxygen uptake, or heart rate as defined in authoritative public health and exercise prescription guidelines. A particularly intense variant of HIIT commonly termed "sprint interval training" can be distinguished as repeated bouts performed with near-maximal to "all out" effort. This characterization coincides with the highest intensity classification identified in training zone models or exercise prescription guidelines, including the extreme-intensity domain, anaerobic speed reserve, or near-maximal to maximal intensity classification. HIIT is considered an essential training component for the enhancement of athletic performance, but the optimal intensity distribution and specific HIIT prescription for endurance athletes is unclear. HIIT is also a viable method to improve cardiorespiratory fitness and other health-related indices in people who are insufficiently active, including those with cardiometabolic diseases. Research is needed to clarify responses to different HIIT strategies using robust study designs that employ best practices. We offer a perspective on the topic of HIIT for performance and health, including a conceptual framework that builds on the work of others and outlines how the method can be defined and operationalized within each context.
Collapse
Affiliation(s)
- Alexandra M Coates
- Department of Kinesiology, McMaster University, 1280 Main St West, Hamilton, ON, L8S 4K1, Canada
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, 1280 Main St West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
22
|
Chorley A, Marwood S, Lamb KL. A dynamic model of the bi-exponential reconstitution and expenditure of W' in trained cyclists. Eur J Sport Sci 2023; 23:2368-2378. [PMID: 37470470 DOI: 10.1080/17461391.2023.2238679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
ABSTRACTThe aim of this study was to investigate the effects of different recovery power outputs on the reconstitution of W' and to develop a dynamic bi-exponential model of W' during depletion and reconstitution. Ten trained cyclists (mass 71.7 ± 8.4 kg; V̇O2max 60.0 ± 6.3 ml·kg-1·min-1) completed three incremental ramps (20 W·min-1) to the limit of tolerance on each of six occasions with recovery durations of 30 and 240 s. Recovery power outputs varied between 50 W (LOW); 60% of critical power (CP) (MOD) and 85% of CP (HVY). W' reconstitution was measured following each recovery and fitted to a bi-exponential model. Amplitude and time constant (τ) parameters were then determined via regression analysis accounting for relative intensity and duration to produce a dynamic model of W'. W' reconstitution slowed disproportionately as recovery power output increased (p < 0.001) and increased with recovery duration (p < 0.001). The amplitudes of each recovery component were strongly correlated to W' reconstitution after 240 s at HVY (r = 0.95), whilst τ parameters were found to be related to the fractional difference between recovery power and CP. The predictive capacity of the resultant model was assessed against experimental data with no differences found between predicted and experimental values of W' reconstitution (p > 0.05). The dynamic bi-exponential model of W' accounting for varying recovery intensities closely described W' kinetics in trained cyclists facilitating real-time decisions about pacing and tactics during competition. The model can be customised for individuals from known CP and W' and a single additional test session.HighlightsA dynamic bi-exponential model of W' accounting for both varying power output and duration.Individual customisation of the model can be achieved with a single specific test session.W' reconstitution slows disproportionally with increasing intensity after repeated bouts.
Collapse
Affiliation(s)
- Alan Chorley
- Department of Sport and Exercise Sciences, University of Chester, Chester, UK
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Kevin L Lamb
- Department of Sport and Exercise Sciences, University of Chester, Chester, UK
| |
Collapse
|
23
|
MacDougall KB, McClean ZJ, MacIntosh BR, Fletcher JR, Aboodarda SJ. Ischemic Preconditioning, But Not Priming Exercise, Improves Exercise Performance in Trained Rock Climbers. J Strength Cond Res 2023; 37:2149-2157. [PMID: 37607294 DOI: 10.1519/jsc.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
ABSTRACT MacDougall, KB, McClean, ZJ, MacIntosh, BR, Fletcher, JR, and Aboodarda, SJ. Ischemic preconditioning, but not priming exercise, improves exercise performance in trained rock climbers. J Strength Cond Res 37(11): 2149-2157, 2023-To assess the effects of ischemic preconditioning (IPC) and priming exercise on exercise tolerance and performance fatigability in a rock climbing-specific task, 12 rock climbers completed familiarization and baseline tests, and constant-load hangboarding tests (including 7 seconds on and 3 seconds off at an intensity estimated to be sustained for approximately 5 minutes) under 3 conditions: (a) standardized warm-up (CON), (b) IPC, or (c) a priming warm-up (PRIME). Neuromuscular responses were assessed using the interpolated twitch technique, including maximum isometric voluntary contraction (MVC) of the finger flexors and median nerve stimulation, at baseline and after the performance trial. Muscle oxygenation was measured continuously using near-infrared spectroscopy (NIRS) across exercise. Time to task failure (T lim ) for IPC (316.4 ± 83.1 seconds) was significantly greater than CON (263.6 ± 69.2 seconds) ( p = 0.028), whereas there was no difference between CON and PRIME (258.9 ± 101.8 seconds). At task failure, there were no differences in MVC, single twitch force, or voluntary activation across conditions; however, recovery of MVC and single twitch force after the performance trial was delayed for IPC and PRIME compared with CON ( p < 0.05). Despite differences in T lim , there were no differences in any of the NIRS variables assessed. Overall, despite exercise tolerance being improved by an average of 20.0% after IPC, there were no differences in neuromuscular responses at task failure, which is in line with the notion of a critical threshold of peripheral fatigue. These results indicate that IPC may be a promising precompetition strategy for rock climbers, although further research is warranted to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Keenan B MacDougall
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Zachary J McClean
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
24
|
Przewłócka K, Folwarski M, Kaczmarczyk M, Skonieczna-Żydecka K, Palma J, Bytowska ZK, Kujach S, Kaczor JJ. Combined probiotics with vitamin D 3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Front Nutr 2023; 10:1256226. [PMID: 37885441 PMCID: PMC10599147 DOI: 10.3389/fnut.2023.1256226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Mixed Martial Arts (MMA) is characterized as an interval sport in which the training program focuses on enhancing both aerobic and anaerobic capacities. Therefore, strategies targeting the intestinal microbiome may be beneficial for MMA athletes. Moreover, vitamin D supplementation may amplify the positive effects of certain bacterial strains. We previously demonstrated that the combined of probiotics and vitamin D3 supplementation improved the lactate utilization ratio, total work, and average power achieved during anaerobic tests in MMA. Therefore, this study aimed to investigate whether combined probiotic and vitamin D3 ingestion can modify the composition of the gut microbiome and epithelial cell permeability, influence the inflammatory response, and ultimately enhance aerobic capacity. Methods A 4-week clinical trial was conducted with 23 male MMA athletes randomly assigned to either the probiotic + vitamin D3 (PRO + VIT D) group or the vitamin D3 group (VIT D). The trial employed a double-blind, placebo-controlled design and involved measurements of serum inflammatory markers, gut microbiome composition, epithelial cell permeability, and aerobic performance. Results After 4-week of supplementation, we found a significantly lower concentration of calprotectin in the PRO + VIT D group (34.79 ± 24.38 mmol/L) compared to the value before (69.50 ± 46.91) supplementation (p = 0.030), augmentation of beta diversity after the intervention in the PRO + VIT D group (p = 0.0005) and an extended time to exhaustion to 559.00 ± 68.99; compared to the value before (496.30 ± 89.98; p = 0.023) after combined probiotic and vitamin D3 supplementation in MMA athletes. No effect was observed in the VIT D group. Conclusion Our results indicate that combined treatment of probiotics and vitamin D3 may cause alterations in alpha and beta diversity and the composition of the gut microbiota in MMA athletes. We observed an improvement in epithelial cell permeability and an extended time to exhaustion during exercise in MMA athletes following a 4-week combined probiotic and vitamin D3 treatment.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Joanna Palma
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Zofia Kinga Bytowska
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
25
|
Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023; 143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dean G Campelj
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Medical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
26
|
Przewłócka K, Kujach S, Sawicki P, Berezka P, Bytowska ZK, Folwarski M, Kowalski K, Kaczor JJ. Effects of Probiotics and Vitamin D 3 Supplementation on Sports Performance Markers in Male Mixed Martial Arts Athletes: A Randomized Trial. SPORTS MEDICINE - OPEN 2023; 9:31. [PMID: 37193828 DOI: 10.1186/s40798-023-00576-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Strategies targeted at the intestine microbiome seem to be beneficial for professional athletes. The gut-muscle axis is associated with the inflammatory state, glucose metabolism, mitochondrial function, and central nervous system health. All these mechanisms may affect maximal oxygen uptake, muscle strength, and training adaptation. Moreover, the positive effect of certain bacterial strains may be enhanced by vitamin D. Thus, this study aimed to assess and compare the level of selected markers of sports performance of mixed martial arts (MMA) athletes supplemented with vitamin D3 or probiotics combined with vitamin D3. METHODS A 4-week randomized double-blind placebo-controlled clinical trial was conducted with 23 MMA male athletes assigned to the vitamin D3 group (Vit D; n = 12) or probiotics + vitamin D3 group (PRO + VitD; n = 11). Repeated measures of the creatine kinase level, lactate utilization ratio, and anaerobic performance were conducted. RESULTS After 4 weeks of supplementation, we found lower lactate concentrations 60 min after the acute sprint interval in the PRO + VitD group when compared to the Vit D group (4.73 ± 1.62 and 5.88 ± 1.55 mmol/L; p < 0.05). In addition, the intervention improved the total work (232.00 ± 14.06 and 240.72 ± 13.38 J kg-1; p < 0.05), and mean power following the anaerobic exercise protocol (7.73 ± 0.47 and 8.02 ± 0.45 W kg-1; p < 0.05) only in the PRO + VitD group. Moreover, there was an improvement in the lactate utilization ratio in the PRO + VitD group compared with the Vit D group as shown by the percentage of T60/T3 ratio (73.6 ± 6.9 and 65.1 ± 9.9%, respectively; p < 0.05). We also observed elevated serum 25(OH)D3 concentrations after acute sprint interval exercise in both groups, however, there were no significant differences between the groups. CONCLUSION Four weeks of combined probiotic and vitamin D3 supplementation enhanced lactate utilization and beneficially affected anaerobic performance in MMA athletes.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Division of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336, Gdańsk, Poland
- Department of Human Physiology, Medical University of Gdańsk, Tuwima 15, 80-210, Gdańsk, Poland
| | - Piotr Sawicki
- Department of Gymnastics and Dance, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336, Gdańsk, Poland
| | - Paweł Berezka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zofia Kinga Bytowska
- Division of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | | | - Jan Jacek Kaczor
- Division of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland.
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
27
|
Lu Y, Wiltshire HD, Baker JS, Wang Q, Ying S. The effect of Tabata-style functional high-intensity interval training on cardiometabolic health and physical activity in female university students. Front Physiol 2023; 14:1095315. [PMID: 36923290 PMCID: PMC10008870 DOI: 10.3389/fphys.2023.1095315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 02/28/2023] Open
Abstract
Introduction: The increasing prevalence of metabolic syndrome and physical inactivity enhances exposure to cardiometabolic risk factors in university students. High-intensity interval training (HIIT) improved cardiometabolic health in clinical adults but the evidence in the university setting is limited. Furthermore, few studies examined the effect of low-volume HIIT on habitual physical activity (PA). Therefore, the primary aim of this study was to evaluate the efficacy of 12-week Tabata-style functional HIIT for improving multiple cardiometabolic health outcomes and habitual PA. We also investigated whether changes in habitual PA over the intervention period had an impact on exercise-induced health outcomes. Methods: 122 female freshmen were randomized into the Tabata group (n = 60) and the control (n = 62). The Tabata training protocol involved 8 × 20 s maximal repeated functional exercises followed by 10 s rest with a frequency of 3 times per week for 12 weeks. Body composition, maximal oxygen uptake (VO2max), blood pressure (BP), blood lipids, fasting glucose and insulin, C-reactive protein and PA were objectively measured using standardized methods. Dietary intake was measured using a valid food frequency questionnaire. All variables were measured pre- and post-intervention. Results: Mixed linear modelling results showed that there were large intervention effects on VO2max (p < 0.001, d = 2.53, 95% CI: 2.03 to 3.00 for relative VO2max; p < 0.001, d = 2.24, 95% CI: 1.76 to 2.68 for absolute VO2max), resting heart rate (p < 0.001, d = -1.82, 95% CI: -2.23 to -1.37), systolic BP (p < 0.001, d = -1.24, 95% CI: -1.63 to -0.84), moderate-to-vigorous intensity physical activity (MVPA) (p < 0.001, d = 2.31, 95% CI: 1.83 to 2.77), total PA (p < 0.001, d = 1.98, 95% CI: 1.53 to 2.41); moderate effects on %BF (p < 0.001, d = -1.15, 95% CI: -1.53 to -0.75), FM (p < 0.001, d = -1.08, 95% CI: -1.46 to -0.69), high-density lipoprotein (HDL) (p < 0.001, d = 1.04, 95% CI: 0.65 to 1.42), total cholesterol (p = 0.001, d = -0.64, 95% CI: -1.00 to -0.26); small effects on BMI (p = 0.011, d = -0.48, 95% CI: -0.84 to 0.11), WC (p = 0.043, d = -0.37, 95% CI: -0.74 to -0.01), low-density lipoprotein (p = 0.003, d = -0.57, 95% CI: -0.93 to -0.19), HOMA-IR (p = 0.026, d = -0.42, 95% CI: -0.78 to -0.05) and fasting insulin (p = 0.035, d = -0.40, 95% CI: -0.76 to -0.03). Regression analysis showed that only the percentage change of HDL was associated with the change of MVPA (b = 0.326, p = 0.015) and TPA (b = 0.480, p = 0.001). Conclusion: From the findings of the study we can conclude that 12-week low-volume Tabata-style functional HIIT was highly effective for university female students to improve cardiorespiratory fitness, body fat, some cardiometabolic health outcomes and habitual PA.
Collapse
Affiliation(s)
- Yining Lu
- Faculty of Sport Science, Ningbo University, Ningbo, China.,Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Huw D Wiltshire
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Julien Steven Baker
- Centre for Population Health and Medical Informatics, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Qiaojun Wang
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Shanshan Ying
- Faculty of Sport Science, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Ahsan M, Garneau L, Aguer C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol 2022; 13:1040809. [PMID: 36479347 PMCID: PMC9721351 DOI: 10.3389/fphys.2022.1040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.
Collapse
Affiliation(s)
- Mahdi Ahsan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University—Campus Outaouais, Gatineau, QC, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Fabre M, Mathieu B, Tiollier E, Leduc C, Clauss M, Marchand A, Robineau J, Piscione J, Serenari T, Brasy J, Guerville M, Ligneul A, Bigard X. Effects of Native Whey Protein and Carbohydrate Supplement on Physical Performance and Plasma Markers of Muscle Damage and Inflammation during a Simulated Rugby Sevens Tournament: A Double-Blind, Randomized, Placebo-Controlled, Crossover Study. Nutrients 2022; 14:nu14224780. [PMID: 36432469 PMCID: PMC9694075 DOI: 10.3390/nu14224780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of optimized recovery during a sport competition is undisputed. The objective of this study was to determine the effects of recovery drinks comprising either carbohydrate only, or a mix of native whey proteins and carbohydrate to maintain physical performance and minimize muscle damage during a simulated rugby sevens (rugby 7s) tournament. Twelve well-trained male rugby players participated in three simulated rugby 7s tournament days with a week's interval in between. Each tournament comprised a sequence of three simulated matches, interspersed with 2 h of recovery. Three different recovery drinks were tested: a placebo (PLA, nonenergetic chocolate-flavored drink), a carbohydrate drink (CHO, 80 g of carbohydrate) or an isoenergetic carbohydrate-protein drink (P-CHO, 20 g of Pronativ®, native whey protein and 60 g of carbohydrate). A different recovery drink, consumed after each match, was tested during each simulated tournament. Physical performance, muscle damage and muscle pain were assessed before and after each simulated tournament. Regarding physical performance, both P-CHO and CHO drinks had a positive effect on the maintenance of 50 m sprint time compared to the PLA drink (effect sizes large and moderate, respectively). Regarding muscle damage, the P-CHO supplement attenuated the creatine phosphokinase increase at POST6 compared to PLA (effect size, moderate). Finally, P-CHO and CHO drinks reduced the exercise-induced DOMS (effect size, moderate), compared to the PLA condition (effect size, large), while P-CHO only reduced pain on muscle palpation and pain when descending stairs compared to PLA 24 h post-tournament (effect size, small). This study suggests that consuming a recovery drink containing native whey proteins and carbohydrate or carbohydrate only after each match of a rugby 7s tournament may attenuate the exercise-induced increase in markers of muscle damage and maintain physical performance.
Collapse
Affiliation(s)
- Marina Fabre
- Laboratory Sport, Expertise and Performance (SEP, EA 7370), French Institute of Sport (INSEP), 75012 Paris, France
- French Rugby Federation, 91460 Marcoussis, France
- Correspondence:
| | | | - Eve Tiollier
- Laboratory Sport, Expertise and Performance (SEP, EA 7370), French Institute of Sport (INSEP), 75012 Paris, France
| | - Cédric Leduc
- Carnegie Applied Rugby Research (CARR) Center, Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds LS1 3HE, UK
- Sport Science and Medicine Department, Crystal Palace FC, London SE25 6PU, UK
| | | | | | | | | | - Tanguy Serenari
- Laboratory Sport, Expertise and Performance (SEP, EA 7370), French Institute of Sport (INSEP), 75012 Paris, France
| | - Jacqueline Brasy
- Nutrition Department Lactalis Recherche et Développement, 35134 Retiers, France
| | - Mathilde Guerville
- Nutrition Department Lactalis Recherche et Développement, 35134 Retiers, France
| | - Amandine Ligneul
- Nutrition Department Lactalis Recherche et Développement, 35134 Retiers, France
| | - Xavier Bigard
- Laboratory Sport, Expertise and Performance (SEP, EA 7370), French Institute of Sport (INSEP), 75012 Paris, France
- Union Cycliste Internationale (UCI), 121860 Aigle, Switzerland
| |
Collapse
|
30
|
The Effects of Two Different Rest Intervals on the Repeated Skating Ability of Ice Hockey Forwards and Defensemen. J Hum Kinet 2022; 84:216-223. [DOI: 10.2478/hukin-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
The purpose of this study was to evaluate the effects of two different rest intervals (2 min and 3 min), between two consecutive sets of repeated sprint skating ability (RSSA) tests, on the repeated sprint ability of ice hockey Forwards and Defensemen. Two protocols of RSSA tests, RSSA-2 and RSSA-3, were completed by 16 ice hockey Forwards and 8 Defensemen. Defensemen were heavier (p < 0.05) than Forwards, although their % body fat did not differ significantly. In RSSA-2, athletes performed six sets of 3×80 m sprint skating with 2 min passive recovery between two consecutive sets. In RSSA-3, the rest interval between the sets was 3 min. Average speed, average heart rate (HRaver), blood lactate concentration ([BLa]), and the rate of perceived exertion (RPE) were measured in both RSSA-2 and RSSA-3 tests. Both Forwards and Defensemen skated faster in RSSA-3 than in the corresponding set of RSSA-2. Forwards were faster than Defensemen in both the tests, however, the difference was significant (p < 0.05) only in RSSA-2. In Forwards and Defensemen, HRaver increased gradually from set 1 through set 6 in RSSA-2 and RSSA-3. In most of the sets, RPE was higher in RSSA-2 than in RSSA-3, and Defensemen perceived higher exertion than Forwards. No difference in [BLa] was noted between Forwards and Defensemen, although players of both positions showed higher [BLa] in RSSA-3 than in RSSA-2. This study concludes that (1) Forwards skate faster than Defensemen, (2) average heart rate and [BLa] do not vary between Forwards and Defensemen, and (3) a higher perceived exertion is observed in Defensemen than Forwards during repeated sprint skating tests
Collapse
|
31
|
Vigh‐Larsen JF, Ørtenblad N, Emil Andersen O, Thorsteinsson H, Kristiansen TH, Bilde S, Mikkelsen MS, Nielsen J, Mohr M, Overgaard K. Fibre type- and localisation-specific muscle glycogen utilisation during repeated high-intensity intermittent exercise. J Physiol 2022; 600:4713-4730. [PMID: 36030498 PMCID: PMC9825866 DOI: 10.1113/jp283225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023] Open
Abstract
Glycogen particles are situated in key areas of the muscle cell in the vicinity of the main energy-consumption sites and may be utilised heterogeneously dependent on the nature of the metabolic demands. The present study aimed to investigate the time course of fibre type-specific utilisation of muscle glycogen in three distinct subcellular fractions (intermyofibrillar, IMF; intramyofibrillar, Intra; and subsarcolemmal, SS) during repeated high-intensity intermittent exercise. Eighteen moderately to well-trained male participants performed three periods of 10 × 45 s cycling at ∼105% watt max (EX1-EX3) coupled with 5 × 6 s maximal sprints at baseline and after each period. Muscle biopsies were sampled at baseline and after EX1 and EX3. A higher glycogen breakdown rate in type 2 compared to type 1 fibres was found during EX1 for the Intra (-72 vs. -45%) and IMF (-59 vs. -35%) glycogen fractions (P < 0.001) but with no differences for SS glycogen (-52 vs. -40%). In contrast, no fibre type differences were observed during EX2-EX3, where the utilisation of Intra and IMF glycogen in type 2 fibres was reduced, resulting in depletion of all three subcellular fractions to very low levels post-exercise within both fibre types. Importantly, large heterogeneity in single-fibre glycogen utilisation was present with an early depletion of especially Intra glycogen in individual type 2 fibres. In conclusion, there is a clear fibre type- and localisation-specific glycogen utilisation during high-intensity intermittent exercise, which varies with time course of exercise and is characterised by exacerbated pool-specific glycogen depletion at the single-fibre level. KEY POINTS: Muscle glycogen is the major fuel during high-intensity exercise and is stored in distinct subcellular areas of the muscle cell in close vicinity to the main energy consumption sites. In the present study quantitative electron microscopy imaging was used to investigate the utilisation pattern of three distinct subcellular muscle glycogen fractions during repeated high-intensity intermittent exercise. It is shown that the utilisation differs dependent on fibre type, subcellular localisation and time course of exercise and with large single-fibre heterogeneity. These findings expand on our understanding of subcellular muscle glycogen metabolism during exercise and may help us explain how reductions in muscle glycogen can attenuate muscle function even at only moderately lowered whole-muscle glycogen concentrations.
Collapse
Affiliation(s)
- Jeppe F. Vigh‐Larsen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Ole Emil Andersen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark,Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Hallur Thorsteinsson
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Thea H. Kristiansen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Stine Bilde
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Mads S. Mikkelsen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Magni Mohr
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark,Centre of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Kristian Overgaard
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| |
Collapse
|
32
|
Age-Related Changes in Skeletal Muscle Oxygen Utilization. J Funct Morphol Kinesiol 2022; 7:jfmk7040087. [PMID: 36278748 PMCID: PMC9590092 DOI: 10.3390/jfmk7040087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y). Furthermore, aging prolongs restoration of SmO2 back to baseline by >50% after intense exercise. Regulatory factors that contribute to reduced SmO2 with age include blood flow, capillarization, endothelial cells, nitric oxide, and mitochondrial function. These mechanisms are governed by reactive oxygen species (ROS) at the cellular level. However, mishandling of ROS with age ultimately leads to alterations in structure and function of the regulatory factors tasked with maintaining SmO2. The purpose of this review is to provide an update on the current state of the literature regarding age-related effects in SmO2. Furthermore, we attempt to bridge the gap between SmO2 and associated underlying mechanisms affected by aging.
Collapse
|
33
|
Giovanna M, Solsona R, Sanchez AMJ, Borrani F. Effects of short-term repeated sprint training in hypoxia or with blood flow restriction on response to exercise. J Physiol Anthropol 2022; 41:32. [PMID: 36057591 PMCID: PMC9440585 DOI: 10.1186/s40101-022-00304-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThis study compared the effects of a brief repeated sprint training (RST) intervention performed with bilateral blood flow restriction (BFR) conditions in normoxia or conducted at high levels of hypoxia on response to exercise. Thirty-nine endurance-trained athletes completed six repeated sprints cycling sessions spread over 2 weeks consisting of four sets of five sprints (10-s maximal sprints with 20-s active recovery). Athletes were assigned to one of the four groups and subjected to a bilateral partial blood flow restriction (45% of arterial occlusion pressure) of the lower limbs during exercise (BFRG), during the recovery (BFRrG), exercised in a hypoxic room simulating hypoxia at FiO2 ≈ 13% (HG) or were not subjected to additional stress (CG). Peak aerobic power during an incremental test, exercise duration, maximal accumulated oxygen deficit and accumulated oxygen uptake (VO2) during a supramaximal constant-intensity test were improved thanks to RST (p < 0.05). No significant differences were observed between the groups (p > 0.05). No further effect was found on other variables including time-trial performance and parameters of the force-velocity relationship (p > 0.05). Thus, peak aerobic power, exercise duration, maximal accumulated oxygen deficit, and VO2 were improved during a supramaximal constant-intensity exercise after six RST sessions. However, combined hypoxic stress or partial BFR did not further increase peak aerobic power.
Collapse
|
34
|
Solsona R, Deriaz R, Borrani F, Sanchez AMJ. Muscle Deoxygenation Rates and Reoxygenation Modeling During a Sprint Interval Training Exercise Performed Under Different Hypoxic Conditions. Front Physiol 2022; 13:864642. [PMID: 35923232 PMCID: PMC9340427 DOI: 10.3389/fphys.2022.864642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study compared the kinetics of muscle deoxygenation and reoxygenation during a sprint interval protocol performed under four modalities: blood flow restriction at 60% of the resting femoral artery occlusive pressure (BFR), gravity-induced BFR (G-BFR), simulated hypoxia (FiO2≈13%, HYP) and normoxia (NOR). Thirteen healthy men performed each session composed of five all-out 30-s efforts interspaced with 4 min of passive recovery. Total work during the exercises was 17 ± 3.4, 15.8 ± 2.9, 16.7 ± 3.4, and 18.0 ± 3.0 kJ for BFR, G-BFR, HYP and NOR, respectively. Muscle oxygenation was continuously measured with near-infrared spectroscopy. Tissue saturation index (TSI) was modelled with a linear function at the beginning of the sprint and reoxygenation during recovery with an exponential function. Results showed that both models were adjusted to the TSI (R2 = 0.98 and 0.95, respectively). Greater deoxygenation rates were observed in NOR compared to BFR (p = 0.028). No difference was found between the conditions for the deoxygenation rates relative to sprint total work (p > 0.05). Concerning reoxygenation, the amplitude of the exponential was not different among conditions (p > 0.05). The time delay of reoxygenation was longer in BFR compared to the other conditions (p < 0.05). A longer time constant was found for G-BFR compared to the other conditions (p < 0.05), and mean response time was longer for BFR and G-BFR. Finally, sprint performance was correlated with faster reoxygenation. Hence, deoxygenation rates were not different between the conditions when expressed relatively to total sprint work. Furthermore, BFR conditions impair reoxygenation: BFR delays and G-BFR slows down reoxygenation.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia (UPVD), Font-Romeu, France
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roméo Deriaz
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia (UPVD), Font-Romeu, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Fabio Borrani, ; Anthony M. J. Sanchez, ,
| | - Anthony M. J. Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia (UPVD), Font-Romeu, France
- *Correspondence: Fabio Borrani, ; Anthony M. J. Sanchez, ,
| |
Collapse
|
35
|
Fastman NM, Liu Y, Ramanan V, Merritt H, Ambing E, DePaoli-Roach AA, Roach PJ, Hurley TD, Mellem KT, Ullman JC, Green E, Morgans D, Tzitzilonis C. The structural mechanism of human glycogen synthesis by the GYS1-GYG1 complex. Cell Rep 2022; 40:111041. [PMID: 35793618 DOI: 10.1016/j.celrep.2022.111041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/15/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022] Open
Abstract
Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic. Here, we present the human GYS1:GYG1 complex in multiple conformations representing different functional states. We observe an asymmetric conformation of GYS1 that exposes an interface for close GYG1 association, and propose this state facilitates handoff of the GYG1-associated glycogen chain to a GYS1 subunit for elongation. Full activation of GYS1 widens the GYG1-binding groove, enabling GYG1 release concomitant with glycogen chain growth. This structural mechanism connecting chain nucleation and extension explains the apparent stepwise nature of glycogen synthesis and suggests distinct states to target for GSD-modifying therapeutics.
Collapse
Affiliation(s)
- Nathan M Fastman
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Yuxi Liu
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Vyas Ramanan
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Hanne Merritt
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Eileen Ambing
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Anna A DePaoli-Roach
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220, USA
| | - Peter J Roach
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220, USA
| | - Thomas D Hurley
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220, USA
| | - Kevin T Mellem
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Julie C Ullman
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Eric Green
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - David Morgans
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Christos Tzitzilonis
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA.
| |
Collapse
|
36
|
Ovchinnikov AN, Deryugina AV, Paoli A. Royal Jelly Plus Coenzyme Q10 Supplementation Enhances High-Intensity Interval Exercise Performance via Alterations in Cardiac Autonomic Regulation and Blood Lactate Concentration in Runners. Front Nutr 2022; 9:893515. [PMID: 35811968 PMCID: PMC9263918 DOI: 10.3389/fnut.2022.893515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to examine whether oral royal jelly (RJ) and coenzyme Q10 (CoQ10) co-supplementation could improve high-intensity interval exercise (HIIE) performance in runners, reducing exercise-induced lactic acidosis and decreasing elevated sympathetic tone following exercise. Methods Thirty regional-level runners (age: 19 ± 1 years; height: 173 ± 2 cm; body mass: 68.9 ± 2 kg; body mass index: 23.1 ± 1 kg/m2) were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance expressed as time taken to complete HIIE was evaluated at baseline, and then reassessed at day 10 of intervention. HIIE protocol applied to the runners included three repetitions of 100 m distance at maximum possible speed interspersed with 45 s of recovery periods. Indices of heart rate variability and blood lactate concentration were also measured before and immediately after HIIE in each group. Results HIIE performance significantly improved in RJQ group (p = 0.005) compared to PLA group. Blood lactate levels and sympathetic influence on the heart were significantly lower both before and after the HIIE in athletes who received RJQ (p < 0.05) compared to PLA. Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in blood lactate concentration and enhanced cardiac parasympathetic modulation following exercise compared to PLA. Principal component analysis revealed that runners treated with RJQ are grouped by the first two principal components into a separate cluster compared to PLA. Correlation analysis demonstrated that the improvements in runners' HIIE performance were due in significant part to RJQ-induced reduction of increment in blood lactate levels in response to exercise in combination with a more rapid shift in autonomic activity toward increased parasympathetic control early at post-exercise. Conclusion These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating adverse effects of increased intramuscular acidity and prolonged sympathetic dominance following intense exercise.
Collapse
Affiliation(s)
| | - Anna V. Deryugina
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
37
|
MacDougall KB, Falconer TM, MacIntosh BR. Efficiency of cycling exercise: Quantification, mechanisms, and misunderstandings. Scand J Med Sci Sports 2022; 32:951-970. [PMID: 35253274 DOI: 10.1111/sms.14149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
The energetics of cycling represents a well-studied area of exercise science, yet there are still many questions that remain. Efficiency, broadly defined as the ratio of energy output to energy input, is one key metric that, despite its importance from both a scientific as well as performance perspective, is commonly misunderstood. There are many factors that may affect cycling efficiency, both intrinsic (e.g., muscle fiber type composition) and extrinsic (e.g., cycling cadence, prior exercise, and training), creating a complex interplay of many components. Due to its relative simplicity, the measurement of oxygen uptake continues to be the most common means of measuring the energy cost of exercise (and thus efficiency); however, it is limited to only a small proportion of the range of outputs humans are capable of, further limiting our understanding of the energetics of high-intensity exercise and any mechanistic bases therein. This review presents evidence that delta efficiency does not represent muscular efficiency and challenges the notion that the slow component of oxygen uptake represents decreasing efficiency. It is noted that gross efficiency increases as intensity of exercise increases in spite of the fact that fast-twitch fibers are recruited to achieve this high power output. Understanding the energetics of high-intensity exercise will require critical evaluation of the available data.
Collapse
Affiliation(s)
- Keenan B MacDougall
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tara M Falconer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Danek N, Michalik K, Zatoń M. Warm-Up With Added Respiratory Dead Space Volume Mask Improves the Performance of the Cycling Sprint Interval Exercise: Cross-Over Study. Front Physiol 2022; 13:812221. [PMID: 35370784 PMCID: PMC8964979 DOI: 10.3389/fphys.2022.812221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Special breathing exercises performed during warm-up lead to hypercapnia and stimulation of mechanisms leading to increased exercise performance, but the effect of a device that increases the respiratory dead space volume (ARDSv) during warm-up has not been studied. The purpose of this study was to investigate the effect of 10 min warm-up with ARDSv on performance, physiological and biochemical responses during sprint interval cycling exercise (SIE). During four laboratory visits at least 72 h apart, they completed: (1) an incremental exercise test (IET) on a cycloergometer, (2) a familiarization session, and cross-over SIE sessions conducted in random order on visits (3) and (4). During one of them, 1200 mL of ARDSv was used for breathing over a 10-min warm-up. SIE consisted of 6 × 10-s all-out bouts with 4-min active recovery. Work capacity, cardiopulmonary parameters, body temperature, respiratory muscle strength, blood acid-base balance, lactate concentration, and rating of perceived exertion (RPE) were analyzed. After warm-up with ARDSv, P ET CO2 was 45.0 ± 3.7 vs. 41.6 ± 2.5 (mm Hg) (p < 0.001). Body temperature was 0.6 (°C) higher after this form of warm-up (p < 0.05), bicarbonate concentration increased by 1.8 (mmol⋅L-1) (p < 0.01). As a result, work performed was 2.9% greater (p < 0.01) compared to the control condition. Respiratory muscle strength did not decreased. Warming up with added respiratory dead space volume mask prior to cycling SIE produces an ergogenic effect by increasing body temperature and buffering capacity.
Collapse
Affiliation(s)
- Natalia Danek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Sport and Health Sciences, Wrocław, Poland
| | - Kamil Michalik
- Department of Human Motor Skills, Faculty of Physical Education and Sport, Wrocław University of Sport and Health Sciences, Wrocław, Poland
| | - Marek Zatoń
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Sport and Health Sciences, Wrocław, Poland
| |
Collapse
|
39
|
Bogdanis GC, Nevill ME, Aphamis G, Stavrinou PS, Jenkins DG, Giannaki CD, Lakomy HKA, Williams C. Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients 2022; 14:nu14061140. [PMID: 35334797 PMCID: PMC8950892 DOI: 10.3390/nu14061140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to examine the effects of creatine (Cr) supplementation on power output during repeated sprints on a non-motorized treadmill. Sixteen recreationally active males volunteered for this study (age 25.5 ± 4.8 y, height 179 ± 5 cm, body mass 74.8 ± 6.8 kg). All participants received placebo supplementation (75 mg of glucose·kg-1·day-1) for 5 days and then performed a baseline repeated sprints test (6 × 10 s sprints on a non-motorised treadmill). Thereafter, they were randomly assigned into a Cr (75 mg of Cr monohydrate·kg-1·day-1) or placebo supplementation, as above, and the repeated sprints test was repeated. After Cr supplementation, body mass was increased by 0.99 ± 0.83 kg (p = 0.007), peak power output and peak running speed remained unchanged throughout the test in both groups, while the mean power output and mean running speed during the last 5 s of the sprints increased by 4.5% (p = 0.005) and 4.2% to 7.0%, respectively, during the last three sprints (p = 0.005 to 0.001). The reduction in speed within each sprint was also blunted by 16.2% (p = 0.003) following Cr supplementation. Plasma ammonia decreased by 20.1% (p = 0.037) after Cr supplementation, despite the increase in performance. VO2 and blood lactate during the repeated sprints test remained unchanged after supplementation, suggesting no alteration of aerobic or glycolytic contribution to adenosine triphosphate production. In conclusion, Cr supplementation improved the mean power and speed in the second half of a repeated sprint running protocol, despite the increased body mass. This improvement was due to the higher power output and running speed in the last 5 s of each 10 s sprint.
Collapse
Affiliation(s)
- Gregory C. Bogdanis
- School of P.E. and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
- Correspondence: ; Tel.: +30-2107276115
| | - Mary E. Nevill
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - Pinelopi S. Stavrinou
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - David G. Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christoforos D. Giannaki
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - Henryk K. A. Lakomy
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leics LE11 3TU, UK; (H.K.A.L.); (C.W.)
| | - Clyde Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leics LE11 3TU, UK; (H.K.A.L.); (C.W.)
| |
Collapse
|
40
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
41
|
de Oliveira-Nunes SG, Castro A, Sardeli AV, Cavaglieri CR, Chacon-Mikahil MPT. HIIT vs. SIT: What Is the Better to Improve V˙O 2max? A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13120. [PMID: 34948733 PMCID: PMC8700995 DOI: 10.3390/ijerph182413120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Lack of time is seen as a barrier to maintaining a physically active lifestyle. In this sense, interval training has been suggested as a time-efficient strategy for improving health, mainly due to its potential to increase cardiorespiratory fitness. Currently, the most discussed interval training protocols in the literature are the high-intensity interval training (HIIT) and the sprint interval training (SIT). Objective: We investigated, through a systematic review and meta-analysis, which interval training protocol, HIIT or SIT, promotes greater gain in cardiorespiratory fitness (V˙O2max/peak). The studies were selected from the PubMed (MEDLINE), Scopus and Web of Science databases. From these searches, a screening was carried out, selecting studies that compared the effects of HIIT and SIT protocols on V˙O2max/peak. A total of 19 studies were included in the final analysis. Due to the homogeneity between studies (I2 = 0%), fixed-effects analyses were performed. There was no significant difference in the V˙O2max/peak gains between HIIT and SIT for the standardized mean difference (SMD = 0.150; 95% CI = -0.038 to 0.338; p = 0.119), including studies that presented both measurements in mL·kg-1·min-1 and l·min-1; and raw mean differences (RMD = 0.921 mL·kg-1·min-1; 95% CI = -0.185 to 2.028; p = 0.103) were calculated only with data presented in mL·kg-1·min-1. We conclude that the literature generates very consistent data to confirm that HIIT and SIT protocols promote similar gains in cardiorespiratory fitness. Thus, for this purpose, the choice of the protocol can be made for convenience.
Collapse
Affiliation(s)
- Silas Gabriel de Oliveira-Nunes
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| | - Alex Castro
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
- Nuclear Magnetic Resonance Laboratory, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil
| | - Amanda Veiga Sardeli
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| | - Claudia Regina Cavaglieri
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| | - Mara Patricia Traina Chacon-Mikahil
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| |
Collapse
|
42
|
A Comparative Study of Two-Minute versus Three-Minute Passive Recovery on Sprint Skating Performance of Ice Hockey Forwards and Defensemen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413029. [PMID: 34948639 PMCID: PMC8701228 DOI: 10.3390/ijerph182413029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The impact of two different passive recovery durations, two and three minutes, between sets of repeated sprint skating ability (RSSA) test on skating speed, speed decrement (Sdec), and heart rate (HR) response of ice hockey forwards (n = 12) and defensemen (n = 7) were determined. Six sets of 3 × 80 m sprint, with two-minute passive recovery between two consecutive sets, were performed in RSSA-2. A three-minute passive recovery period between two consecutive sets was allowed in RSSA-3. Skating speed, Sdec, and HR were measured in all tests. Subjects skated faster (p < 0.05) in most of the RSSA-3 sets than the corresponding set of RSSA-2. Defensemen were slower (p < 0.05) than forwards in most of the cases. The Sdec was higher in defensemen than in forwards, although the difference was significant occasionally. No difference in peak HR and minimum HR between forwards and defensemen was found. RSSA-3 is beneficial over RSSA-2 in both forwards and defensemen by increasing speed. Defensemen are slower and show early fatigability than forwards, and no difference in HR response was noted between forwards and defensemen. This study concludes that three-minute recovery is beneficial over two-minute recovery by increasing skating speed, although Sdec and HR response neither vary significantly between RSSA-2 and RSSA-3, nor between forwards and defensemen.
Collapse
|
43
|
Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years' Perspective. Nutrients 2021; 13:4223. [PMID: 34959776 PMCID: PMC8704222 DOI: 10.3390/nu13124223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Emmanouil D. Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Nickos D. Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Tripoli, Greece;
| |
Collapse
|
44
|
Effect of Rest Period Duration between Sets of Repeated Sprint Skating Ability Test on the Skating Ability of Ice Hockey Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010591. [PMID: 34682336 PMCID: PMC8536092 DOI: 10.3390/ijerph182010591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022]
Abstract
The aim of this study was to determine the effects of two different rest periods, 2 min and 3 min, between consecutive sets of a repeated sprint skating ability (RSSA) test, on the skating ability of ice hockey players. Two RSSA tests, RSSA-2 and RSSA-3, were assessed on 24 ice hockey players. In RSSA-2, six sets of 3 × 80 m sprint skating, with 2 min passive recovery between two consecutive sets was allowed. In RSSA-3, the recovery period between the sets was 3 min. Average speed, average heart rate (HRaver), peak heart rate (HRpeak), blood lactate concentration ([BLa]), and rate of perceived exertion (RPE) were measured in both RSSA-2 and RSSA-3 tests. In all the sets, except set 1, the average speed of the subjects was significantly (p < 0.05) higher in RSSA-3 than the respective set in RSSA-2. Average HR and RPE were higher in RSSA-2 than RSSA-3 in most of the sets. For any given set, no difference in HRpeak was noted between RSSA-2 and RSSA-3. Post-sprint (Set 6) [BLa] was significantly (p < 0.05) higher in RSSA-3 than RSSA-2. This study concludes that the 3 min rest period is more beneficial than the 2 min rest period, for (1) increasing skating speed and (2) reducing overall cardiac workload and perceived fatigue.
Collapse
|
45
|
Kataoka R, Vasenina E, Hammert WB, Ibrahim AH, Dankel SJ, Buckner SL. Is there Evidence for the Suggestion that Fatigue Accumulates Following Resistance Exercise? Sports Med 2021; 52:25-36. [PMID: 34613589 DOI: 10.1007/s40279-021-01572-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 12/28/2022]
Abstract
It has been suggested that improper post-exercise recovery or improper sequence of training may result in an 'accumulation' of fatigue. Despite this suggestion, there is a lack of clarity regarding which physiological mechanisms may be proposed to contribute to fatigue accumulation. The present paper explores the time course of the changes in various fatigue-related measures in order to understand how they may accumulate or lessen over time following an exercise bout or in the context of an exercise program. Regarding peripheral fatigue, the depletion of energy substrates and accumulation of metabolic byproducts has been demonstrated to occur following an acute bout of resistance training; however, peripheral accumulation and depletion appear unlikely candidates to accumulate over time. A number of mechanisms may contribute to the development of central fatigue, postulating the need for prolonged periods of recovery; however, a time course is difficult to determine and is dependent on which measurement is examined. In addition, it has not been demonstrated that central fatigue measures accumulate over time. A potential candidate that may be interpreted as accumulated fatigue is muscle damage, which shares similar characteristics (i.e., prolonged strength loss). Due to the delayed appearance of muscle damage, it may be interpreted as accumulated fatigue. Overall, evidence for the presence of fatigue accumulation with resistance training is equivocal, making it difficult to draw the conclusion that fatigue accumulates. Considerable work remains as to whether fatigue can accumulate over time. Future studies are warranted to elucidate potential mechanisms underlying the concept of fatigue accumulation.
Collapse
Affiliation(s)
- Ryo Kataoka
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Ecaterina Vasenina
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - William B Hammert
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Adam H Ibrahim
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Scott J Dankel
- Exercise Physiology Laboratory, Department of Health and Exercise Science, Rowan University, Glassboro, NJ, USA
| | - Samuel L Buckner
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA.
| |
Collapse
|
46
|
Salvadori A, Fanari P, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, Terruzzi I, Ferrulli A, Palmulli P, Brunani A, Lanzi S, Luzi L. Playing around the anaerobic threshold during COVID-19 pandemic: advantages and disadvantages of adding bouts of anaerobic work to aerobic activity in physical treatment of individuals with obesity. Acta Diabetol 2021; 58:1329-1341. [PMID: 34047810 PMCID: PMC8159723 DOI: 10.1007/s00592-021-01747-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Obesity is a condition that generally limits work capacity and predisposes to a number of comorbidities and related diseases, the last being COVID-19 and its complications and sequelae. Physical exercise, together with diet, is a milestone in its management and rehabilitation, although there is still a debate on intensity and duration of training. Anaerobic threshold (AT) is a broad term often used either as ventilatory threshold or as lactate threshold, respectively, detected by respiratory ventilation and/or respiratory gases (VCO2 and VO2), and by blood lactic acid. AIMS AND METHODOLOGY This review outlines the role of AT and of the different variations of growth hormone and catecholamine, in subjects with obesity vs normal weight individuals below and beyond AT, during a progressive increase in exercise training. We present a re-evaluation of the effects of physical activity on body mass and metabolism of individuals with obesity in light of potential benefits and pitfalls during COVID-19 pandemic. Comparison of a training program at moderate-intensity exercise (< AT) with training performed at moderate intensity (< AT) plus a final bout of high-intensity (> AT) exercise at the end of the aerobic session will be discussed. RESULTS Based on our data and considerations, a tailored strategy for individuals with obesity concerning the most appropriate intensity of training in the context of rehabilitation is proposed, with special regard to potential benefits of work program above AT. CONCLUSION Adding bouts of exercise above AT may improve lactic acid and H+ disposal and improve growth hormone. Long-term aerobic exercise may improve leptin reduction. In this way, the propensity of subjects with obesity to encounter a serious prognosis of COVID-19 may be counteracted and the systemic and cardiorespiratory sequelae that may ensue after COVID-19, can be overcome. Individuals with serious comorbidities associated with obesity should avoid excessive exercise intensity.
Collapse
Affiliation(s)
- Alberto Salvadori
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Paolo Fanari
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Paolo Marzullo
- Division of General Medicine, Ospedale S. Giuseppe, Istituto Auxologico Italiano, via Cadorna 90, 28824, Piancavallo Di Oggebbio (VB), Italy
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Franco Codecasa
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Ilaria Tovaglieri
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Mauro Cornacchia
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Patrizia Palmulli
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Amelia Brunani
- Department of Rehabilitation Medicine, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Stefano Lanzi
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, Italy.
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
47
|
Akberdin IR, Kiselev IN, Pintus SS, Sharipov RN, Vertyshev AY, Vinogradova OL, Popov DV, Kolpakov FA. A Modular Mathematical Model of Exercise-Induced Changes in Metabolism, Signaling, and Gene Expression in Human Skeletal Muscle. Int J Mol Sci 2021; 22:10353. [PMID: 34638694 PMCID: PMC8508736 DOI: 10.3390/ijms221910353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.
Collapse
Affiliation(s)
- Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Sergey S. Pintus
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | | | - Olga L. Vinogradova
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Fedor A. Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| |
Collapse
|
48
|
Huang CC, Lee MC, Ho CS, Hsu YJ, Ho CC, Kan NW. Protective and Recovery Effects of Resveratrol Supplementation on Exercise Performance and Muscle Damage following Acute Plyometric Exercise. Nutrients 2021; 13:nu13093217. [PMID: 34579095 PMCID: PMC8469037 DOI: 10.3390/nu13093217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plyometric exercise (PE) is an effective training method to increase muscle mass and strength. However, excessive or inappropriate conditions might cause exercise-induced muscle damage (EIMD). Resveratrol (RES) is a natural polyphenol plant antitoxin, which improves exercise performance, and exhibits anti-oxidation, anti-inflammatory, and anti-cancer effects. Therefore, this study investigated the effect of RES supplementation on the recovery of muscle damage, inflammation, soreness, muscle power, and anaerobic performance following plyometric-exercise-induced muscle damage (PEIMD). The present study was a double-blind, placebo-controlled research trial. Thirty-six young, untrained males were enrolled into the placebo (n = 12), RES-500 (500 mg RES/day, n = 12), or RES-1000 (1000 mg RES/day, n = 12) group by a jumping height-counterbalanced grouping design. At baseline, to pre-PEIMD, supplements were pre-loaded 7 days before they conducted PEIMD, and the exercise performance, delayed-onset muscle soreness (DOMS) and muscle damage biomarkers were measured over the experimental period at baseline, pre-PEIMD, and post-PEIMD at 2, 24, 48, and 72 h. As a result, we found that, at 72 h post-EIMD, the force peak (FP) and rate of force development (RFD) of the counter movement jump (CMJ) in RES groups showed no significant difference compared to that at baseline but was significantly greater than the placebo group. In the Wingate anaerobic test (WAnT), supplementation in the RES group had a better recovery effect on the relative peak power (RPP), relative mean power (RMP) and fatigue index (FI) (p < 0.05), especially in the high-dose group. For the detection of muscle pain after PEIMD, the RES supplement group was significantly better than the placebo group (p < 0.05). In addition, for muscle damage indexes, such as creatine kinase (CK) and lactate dehydrogenase (LDH), after PEIMD, supplementation with RES could significantly reduce and accelerate recovery (p < 0.05). In addition, the blood biochemical indicators of blood count, liver function, and kidney function showed that RES will not cause adverse risks to the human body. Our results suggest that replenishing RES in advance could effectively reduce muscle pain, increase exercise performance, and decrease muscle damage indicators caused by PEIMD, and the recovery was faster. Therefore, plyometric exercises combined with suitable RES supplementation could be an effective candidate for controlling muscle damage, improving physical adaption, and recovering anaerobic capacity.
Collapse
Affiliation(s)
- Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-C.H.); (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-C.H.); (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-C.H.); (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-C.H.); (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Nai-Wen Kan
- Center for General Education, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27399118
| |
Collapse
|
49
|
Martin-Rincon M, Gelabert-Rebato M, Perez-Valera M, Galvan-Alvarez V, Morales-Alamo D, Dorado C, Boushel R, Hallen J, Calbet JAL. Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. J Physiol 2021; 599:3853-3878. [PMID: 34159610 DOI: 10.1113/jp281293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/17/2021] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Females have lower fatigability than males during single limb isometric and dynamic contractions, but whether sex-differences exist during high-intensity whole-body exercise remains unknown. This study shows that males and females respond similarly to repeated supramaximal whole-body exercise, and that at task failure a large functional reserve remains in both sexes. Using post-exercise ischaemia with repeated exercise, we have shown that this functional reserve depends on the glycolytic component of substrate-level phosphorylation and is almost identical in both sexes. Metaboreflex activation during post-exercise ischaemia and the O2 debt per kg of active lean mass are also similar in males and females after supramaximal exercise. Females have a greater capacity to extract oxygen during repeated supramaximal exercise and reach lower P ETC O 2 , experiencing a larger drop in brain oxygenation than males, without apparent negative repercussion on performance. Females had no faster recovery of performance after accounting for sex differences in lean mass. ABSTRACT The purpose of this study was to ascertain what mechanisms explain sex differences at task failure and to determine whether males and females have a functional reserve at exhaustion. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation were determined in 18 males and 18 females (21-36 years old) in two sessions consisting of three bouts of constant-power exercise at 120% of V ̇ O 2 max until exhaustion interspaced by 20 s recovery periods. In one of the two sessions, the circulation of both legs was occluded instantaneously (300 mmHg) during the recovery periods. Females had a higher muscle O2 extraction during fatiguing supramaximal exercise than males. Metaboreflex activation, and lean mass-adjusted O2 deficit and debt were similar in males and females. Compared to males, females reached lower P ETC O 2 and brain oxygenation during supramaximal exercise, without apparent negative consequences on performance. After the occlusions, males and females were able to restart exercising at 120% of V ̇ O 2 max , revealing a similar functional reserve, which depends on glycolytic component of substrate-level phosphorylation and its rate of utilization. After ischaemia, muscle O2 extraction was increased, and muscle V ̇ O 2 was similarly reduced in males and females. The physiological response to repeated supramaximal exercise to exhaustion is remarkably similar in males and females when differences in lean mass are considered. Both sexes fatigue with a large functional reserve, which depends on the glycolytic energy supply, yet females have higher oxygen extraction capacity, but reduced P ETC O 2 and brain oxygenation.
Collapse
Affiliation(s)
- Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jostein Hallen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
50
|
Zhang J, Iannetta D, Alzeeby M, MacInnis MJ, Aboodarda SJ. Exercising muscle mass influences neuromuscular, cardiorespiratory, and perceptual responses during and following ramp-incremental cycling to task failure. Am J Physiol Regul Integr Comp Physiol 2021; 321:R238-R249. [PMID: 34189949 DOI: 10.1152/ajpregu.00286.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuromuscular (NM), cardiorespiratory, and perceptual responses to maximal-graded exercise using different amounts of active muscle mass remain unclear. We hypothesized that during dynamic exercise, peripheral NM fatigue (declined twitch force) and muscle pain would be greater using smaller muscle mass, whereas central fatigue (declined voluntary activation) and ventilatory variables would be greater using larger muscle mass. Twelve males (29.8 ± 4.7 years) performed two ramp-incremental cycling tests until task failure: 1) single-leg (SL) with 10 W·min-1 ramp and 2) double-leg (DL) with 20 W·min-1 ramp. NM fatigue was assessed at baseline, task failure (post), and after 1, 4, and 8 min of recovery. Cardiorespiratory and perceptual variables [i.e., ratings of perceived exertion (RPE), pain, and dyspnea] were measured throughout cycling. Exercise duration was similar between sessions (SL: 857.7 ± 263.6 s; DL: 855.0 ± 218.8 s; P = 0.923), and higher absolute peak power output was attained in DL (SL: 163.2 ± 43.8 W; DL: 307.0 ± 72.0 W; P < 0.001). Although central fatigue did not differ between conditions (SL: -6.6 ± 6.5%; DL: -3.5 ± 4.8%; P = 0.091), maximal voluntary contraction (SL: -41.6 ± 10.9%; DL: -33.7 ± 8.5%; P = 0.032) and single twitch forces (SL: -59.4 ± 18.8%; DL: -46.2 ± 16.2%; P = 0.003) declined more following SL. DL elicited higher peak oxygen uptake (SL: 42.1 ± 10.0 mL·kg-1·min-1; DL: 50.3 ± 9.3 mL·kg-1·min-1; P < 0.001), ventilation (SL: 137.1 ± 38.1 L·min-1; DL: 171.5 ± 33.2 L·min-1; P < 0.001), and heart rate (SL: 167 ± 21 bpm; DL: 187 ± 8 bpm; P = 0.005). Dyspnea (P = 0.025) was higher in DL; however, RPE (P = 0.005) and pain (P < 0.001) were higher in SL. These results suggest that interplay between NM, cardiorespiratory, and perceptual determinants of exercise performance during ramp-incremental cycling to task failure is muscle mass dependent.
Collapse
Affiliation(s)
- Jenny Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Mohammed Alzeeby
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|