1
|
Nakamori S, Amyar A, Fahmy AS, Ngo LH, Ishida M, Nakamura S, Omori T, Moriwaki K, Fujimoto N, Imanaka-Yoshida K, Sakuma H, Dohi K, Manning WJ, Nezafat R. Cardiovascular Magnetic Resonance Radiomics to Identify Components of the Extracellular Matrix in Dilated Cardiomyopathy. Circulation 2024; 150:7-18. [PMID: 38808522 PMCID: PMC11216881 DOI: 10.1161/circulationaha.123.067107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Current cardiovascular magnetic resonance sequences cannot discriminate between different myocardial extracellular space (ECSs), including collagen, noncollagen, and inflammation. We sought to investigate whether cardiovascular magnetic resonance radiomics analysis can distinguish between noncollagen and inflammation from collagen in dilated cardiomyopathy. METHODS We identified data from 132 patients with dilated cardiomyopathy scheduled for an invasive septal biopsy who underwent cardiovascular magnetic resonance at 3 T. Cardiovascular magnetic resonance imaging protocol included native and postcontrast T1 mapping and late gadolinium enhancement (LGE). Radiomic features were computed from the midseptal myocardium, near the biopsy region, on native T1, extracellular volume (ECV) map, and LGE images. Principal component analysis was used to reduce the number of radiomic features to 5 principal radiomics. Moreover, a correlation analysis was conducted to identify radiomic features exhibiting a strong correlation (r>0.9) with the 5 principal radiomics. Biopsy samples were used to quantify ECS, myocardial fibrosis, and inflammation. RESULTS Four histopathological phenotypes were identified: low collagen (n=20), noncollagenous ECS expansion (n=49), mild to moderate collagenous ECS expansion (n=42), and severe collagenous ECS expansion (n=21). Noncollagenous expansion was associated with the highest risk of myocardial inflammation (65%). Although native T1 and ECV provided high diagnostic performance in differentiating severe fibrosis (C statistic, 0.90 and 0.90, respectively), their performance in differentiating between noncollagen and mild to moderate collagenous expansion decreased (C statistic: 0.59 and 0.55, respectively). Integration of ECV principal radiomics provided better discrimination and reclassification between noncollagen and mild to moderate collagen (C statistic, 0.79; net reclassification index, 0.83 [95% CI, 0.45-1.22]; P<0.001). There was a similar trend in the addition of native T1 principal radiomics (C statistic, 0.75; net reclassification index, 0.93 [95% CI, 0.56-1.29]; P<0.001) and LGE principal radiomics (C statistic, 0.74; net reclassification index, 0.59 [95% CI, 0.19-0.98]; P=0.004). Five radiomic features per sequence were identified with correlation analysis. They showed a similar improvement in performance for differentiating between noncollagen and mild to moderate collagen (native T1, ECV, LGE C statistic, 0.75, 0.77, and 0.71, respectively). These improvements remained significant when confined to a single radiomic feature (native T1, ECV, LGE C statistic, 0.71, 0.70, and 0.64, respectively). CONCLUSIONS Radiomic features extracted from native T1, ECV, and LGE provide incremental information that improves our capability to discriminate noncollagenous expansion from mild to moderate collagen and could be useful for detecting subtle chronic inflammation in patients with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Shiro Nakamori
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Cardiology and Nephrology, University Graduate School of Medicine, Tsu, Mie, Japan
| | - Amine Amyar
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ahmed S Fahmy
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Long H. Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Masaki Ishida
- Department of Radiology, and University Graduate School of Medicine, Tsu, Mie, Japan
| | - Satoshi Nakamura
- Department of Radiology, and University Graduate School of Medicine, Tsu, Mie, Japan
| | - Taku Omori
- Department of Cardiology and Nephrology, University Graduate School of Medicine, Tsu, Mie, Japan
| | - Keishi Moriwaki
- Department of Cardiology and Nephrology, University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoki Fujimoto
- Department of Cardiology and Nephrology, University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, and University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, University Graduate School of Medicine, Tsu, Mie, Japan
| | - Warren J Manning
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Reza Nezafat
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Nakata K, Kucukseymen S, Cai X, Yankama T, Rodriguez J, Sai E, Pierce P, Ngo L, Nakamori S, Tung N, Manning WJ, Nezafat R. Cardiovascular magnetic resonance characterization of myocardial tissue injury in a miniature swine model of cancer therapy-related cardiovascular toxicity. J Cardiovasc Magn Reson 2024; 26:101033. [PMID: 38460840 PMCID: PMC11126930 DOI: 10.1016/j.jocmr.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Left ventricular ejection fraction (LVEF) is the most commonly clinically used imaging parameter for assessing cancer therapy-related cardiac dysfunction (CTRCD). However, LVEF declines may occur late, after substantial injury. This study sought to investigate cardiovascular magnetic resonance (CMR) imaging markers of subclinical cardiac injury in a miniature swine model. METHODS Female Yucatan miniature swine (n = 14) received doxorubicin (2 mg/kg) every 3 weeks for 4 cycles. CMR, including cine, tissue characterization via T1 and T2 mapping, and late gadolinium enhancement (LGE) were performed on the same day as doxorubicin administration and 3 weeks after the final chemotherapy cycle. In addition, magnetic resonance spectroscopy (MRS) was performed during the 3 weeks after the final chemotherapy in 7 pigs. A single CMR and MRS exam were also performed in 3 Yucatan miniature swine that were age- and weight-matched to the final imaging exam of the doxorubicin-treated swine to serve as controls. CTRCD was defined as histological early morphologic changes, including cytoplasmic vacuolization and myofibrillar loss of myocytes, based on post-mortem analysis of humanely euthanized pigs after the final CMR exam. RESULTS Of 13 swine completing 5 serial CMR scans, 10 (77%) had histological evidence of CTRCD. Three animals had neither histological evidence nor changes in LVEF from baseline. No absolute LVEF <40% or LGE was observed. Native T1, extracellular volume (ECV), and T2 at 12 weeks were significantly higher in swine with CTRCD than those without CTRCD (1178 ms vs. 1134 ms, p = 0.002, 27.4% vs. 24.5%, p = 0.03, and 38.1 ms vs. 36.4 ms, p = 0.02, respectively). There were no significant changes in strain parameters. The temporal trajectories in native T1, ECV, and T2 in swine with CTRCD showed similar and statistically significant increases. At the same time, there were no differences in their temporal changes between those with and without CTRCD. MRS myocardial triglyceride content substantially differed among controls, swine with and without CTRCD (0.89%, 0.30%, 0.54%, respectively, analysis of variance, p = 0.01), and associated with the severity of histological findings and incidence of vacuolated cardiomyocytes. CONCLUSION Serial CMR imaging alone has a limited ability to detect histologic CTRCD beyond LVEF. Integrating MRS myocardial triglyceride content may be useful for detection of early potential CTRCD.
Collapse
MESH Headings
- Animals
- Female
- Swine, Miniature
- Doxorubicin
- Cardiotoxicity
- Myocardium/pathology
- Myocardium/metabolism
- Swine
- Disease Models, Animal
- Magnetic Resonance Imaging, Cine
- Ventricular Function, Left/drug effects
- Predictive Value of Tests
- Stroke Volume/drug effects
- Time Factors
- Magnetic Resonance Spectroscopy
- Antibiotics, Antineoplastic/adverse effects
- Contrast Media
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/metabolism
Collapse
Affiliation(s)
- Kei Nakata
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Selcuk Kucukseymen
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Cai
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Siemens Medical Solutions USA, Inc., Boston, Massachusetts, USA
| | - Tuyen Yankama
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Eiryu Sai
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Pierce
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shiro Nakamori
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Nadine Tung
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren J Manning
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Axel L. Modeling of factors affecting late gadolinium enhancement kinetics in MRI of cardiac amyloid. J Cardiovasc Magn Reson 2023; 25:46. [PMID: 37563646 PMCID: PMC10413700 DOI: 10.1186/s12968-023-00952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Late gadolinium enhancement (LGE) is a valuable part of cardiac magnetic resonance imaging (CMR). In particular, inversion-recovery imaging of LGE, with nulling of the signal from reference areas of myocardium, can have a distinctive pattern in some patients with cardiac amyloid, including both diffuse (relatively faint) subendocardial LGE and a relatively dark appearance of the blood. However, the underlying reasons for this distinctive appearance have not previously been well investigated. Pharmacokinetic modeling of myocardial contrast enhancement kinetics can potentially provide insight into the mechanisms of the distinctive LGE appearance that can be seen in cardiac amyloid, as well as why it may be unreliable in some patients. METHODS An interactive three-compartment pharmacokinetic model of the dynamics of myocardial contrast enhancement in CMR was implemented, and used to simulate LGE dynamics in normal, scar, and cardiac amyloid myocardium; the results were compared with previously published values. RESULTS The three-compartment model is able to capture the qualitative features of LGE, in patients with cardiac amyloid. In particular, the characteristic "dark blood" appearance of PSIR images of LGE in cardiac amyloid is seen to likely primarily reflect expansion of the extravascular extracellular space (EES) by amyloid in the "reference" myocardium; the cardiac amyloid contrast enhancement dynamics also reflect expansion of the body EES. CONCLUSION The distinctive appearance of LGE in cardiac amyloid is likely due to a combination of diffuse expansion by amyloid of the EES of the reference myocardium and of the body EES.
Collapse
Affiliation(s)
- Leon Axel
- Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, Room 411, New York, NY, 1016, USA.
- Department of Internal Medicine, Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, 660 First Avenue, Room 411, NY, 1016, New York, USA.
| |
Collapse
|
4
|
Yuan J, Wen Q, Wang H, Wang J, Liu K, Zhan S, Liu M, Gong Z, Tan W. The use of quantitative T1-mapping to identify cells and collagen fibers in rectal cancer. Front Oncol 2023; 13:1189334. [PMID: 37546428 PMCID: PMC10399696 DOI: 10.3389/fonc.2023.1189334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Aim This study aimed to explore the value of T1 mapping in assessing the grade and stage of rectal adenocarcinoma and its correlation with tumor tissue composition. Methods Informed consent was obtained from all rectal cancer patients after approval by the institutional review board. Twenty-four patients (14 women and 10 men; mean age, 64.46 years; range, 35 - 82 years) were enrolled in this prospective study. MRI examinations were performed using 3.0T MR scanner before surgery. HE, immunohistochemical, and masson trichrome-staining was performed on the surgically resected tumors to assess the degree of differentiation, stage, and invasion. Two radiologists independently analyzed native T1 and postcontrast T1 for each lesion, and calculated the extracellular volume (ECV) was calculated from T1 values. Intraclass correlation coefficient (ICC) and Bland-Altman plots were applied to analyze the interobserver agreement of native T1 values and postcontrast T1 values. Student's t-test and one-way analysis of variance (ANOVA) were used to test the differences between T1 mapping parameters and differentiation types, T and N stages, and venous and neural invasion. Pearson correlation coefficients were used to analyze the correlation of T1 mapping extraction parameters with caudal type homeobox 2 (CDX-2), Ki-67 index, and collagen expression. Results Both the native and postcontrast T1 values had an excellent interobserver agreement (ICC 0.945 and 0.942, respectively). Postcontrast T1 values indicated significant differences in venous invasion (t=2.497, p=0.021) and neural invasion (t=2.254, p=0.034). Pearson's correlation analysis showed a significant positive correlation between native T1 values and Ki-67 (r=-0.407, p=0.049). There was a significant positive correlation between ECV and collagen expression (r=0.811, p=.000) and a significant negative correlation between ECV and CDX-2 (r=-0.465, p=0.022) and Ki-67 (r=-0.549, p=0.005). Conclusion Postcontrast T1 value can be used to assess venous and neural invasion in rectal cancer. ECV measurements based on T1 mapping can be used to identify cells and collagen fibers in rectal cancer.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Wen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoyan Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liu
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxiao Liu
- MR Scientific Marketing, Diagnostic Imaging, Siemens Healthineers Ltd, Shanghai, China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - WenLi Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Alkhalil M, De Maria GL, Akbar N, Ruparelia N, Choudhury RP. Prospects for Precision Medicine in Acute Myocardial Infarction: Patient-Level Insights into Myocardial Injury and Repair. J Clin Med 2023; 12:4668. [PMID: 37510783 PMCID: PMC10380764 DOI: 10.3390/jcm12144668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The past decade has seen a marked expansion in the understanding of the pathobiology of acute myocardial infarction and the systemic inflammatory response that it elicits. At the same time, a portfolio of tools has emerged to characterise some of these processes in vivo. However, in clinical practice, key decision making still largely relies on assessment built around the timing of the onset of chest pain, features on electrocardiograms and measurements of plasma troponin. Better understanding the heterogeneity of myocardial injury and patient-level responses should provide new opportunities for diagnostic stratification to enable the delivery of more rational therapies. Characterisation of the myocardium using emerging imaging techniques such as the T1, T2 and T2* mapping techniques can provide enhanced assessments of myocardial statuses. Physiological measures, which include microcirculatory resistance and coronary flow reserve, have been shown to predict outcomes in AMI and can be used to inform treatment selection. Functionally informative blood biomarkers, including cellular transcriptomics; microRNAs; extracellular vesicle analyses and soluble markers, all give insights into the nature and timing of the innate immune response and its regulation in acute MI. The integration of these and other emerging tools will be key to developing a fuller understanding of the patient-level processes of myocardial injury and repair and should fuel new possibilities for rational therapeutic intervention.
Collapse
Affiliation(s)
- Mohammad Alkhalil
- Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | | | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Neil Ruparelia
- Cardiology Department, Hammersmith Hospital, Imperial College London, London W12 0HS, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
6
|
Automatic development of 3D anatomical models of border zone and core scar regions in the left ventricle. Comput Med Imaging Graph 2023; 103:102152. [PMID: 36525769 DOI: 10.1016/j.compmedimag.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/17/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Patients with myocardial infarction are at elevated risk of sudden cardiac death, and scar tissue arising from infarction is known to play a role. The accurate identification of scars therefore is crucial for risk assessment, quantification and guiding interventions. Typically, core scars and grey peripheral zones are identified by radiologists and clinicians based on cardiac late gadolinium enhancement magnetic resonance images (LGE-MRI). Scar regions from LGE-MRI vary in size, shape, heterogeneity, artifacts, and image resolution. Thus, manual segmentation is time consuming, and influenced by the observer's experience (bias effect). We propose a fully automatic framework that develops 3D anatomical models of the left ventricle with border zone and core scar regions that are free from bias effect. Our myocardium (SOCRATIS), border scar and core scar (BZ-SOCRATIS) segmentation pipelines were evaluated using internal and external validation datasets. The automatic myocardium segmentation framework performed a Dice score of 81.9% and 70.0% in the internal and external validation dataset. The automatic scar segmentation pipeline achieved a Dice score of 60.9% for the core scar segmentation and 43.7% for the border zone scar segmentation in the internal dataset and in the external dataset a Dice score of 44.2% for the core scar segmentation and 54.8% for the border scar segmentation respectively. To the best of our knowledge, this is the first study outlining a fully automatic framework to develop 3D anatomical models of the left ventricle with border zone and core scar regions. Our method exhibits high performance without the need for training or tuning in an unseen cohort (unsupervised).
Collapse
|
7
|
Han P, Zhang R, Wagner S, Xie Y, Cingolani E, Marban E, Christodoulou AG, Li D. Electrocardiogram-less, free-breathing myocardial extracellular volume fraction mapping in small animals at high heart rates using motion-resolved cardiovascular magnetic reesonance multitasking: a feasibility study in a heart failure with preserved ejection fraction rat model. J Cardiovasc Magn Reson 2021; 23:8. [PMID: 33568177 PMCID: PMC7877086 DOI: 10.1186/s12968-020-00699-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Extracellular volume fraction (ECV) quantification with cardiovascular magnetic resonance (CMR) T1 mapping is a powerful tool for the characterization of focal or diffuse myocardial fibrosis. However, it is technically challenging to acquire high-quality T1 and ECV maps in small animals for preclinical research because of high heart rates and high respiration rates. In this work, we developed an electrocardiogram (ECG)-less, free-breathing ECV mapping method using motion-resolved CMR Multitasking on a 9.4 T small animal CMR system. The feasibility of characterizing diffuse myocardial fibrosis was tested in a rat heart failure model with preserved ejection fraction (HFpEF). METHODS High-salt fed rats diagnosed with HFpEF (n = 9) and control rats (n = 9) were imaged with the proposed ECV Multitasking technique. A 25-min exam, including two 4-min T1 Multitasking scans before and after gadolinium injection, were performed on each rat. It allows a cardiac temporal resolution of 20 ms for a heart rate of ~ 300 bpm. Myocardial ECV was calculated from the hematocrit (HCT) and fitted T1 values of the myocardium and the blood pool. Masson's trichrome stain was used to measure the extent of fibrosis. Welch's t-test was performed between control and HFpEF groups. RESULTS ECV was significantly higher in the HFpEF group (22.4% ± 2.5% vs. 18.0% ± 2.1%, P = 0.0010). A moderate correlation between the ECV and the extent of fibrosis was found (R = 0.59, P = 0.0098). CONCLUSIONS Motion-resolved ECV Multitasking CMR can quantify ECV in the rat myocardium at high heart rates without ECG triggering or respiratory gating. Elevated ECV found in the HFpEF group is consistent with previous human studies and well correlated with histological data. This technique has the potential to be a viable imaging tool for myocardial tissue characterization in small animal models.
Collapse
Affiliation(s)
- Pei Han
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Eduardo Marban
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Anthony G. Christodoulou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Debiao Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| |
Collapse
|
8
|
Yuan C, Miller Z, Zhao XQ. Magnetic Resonance Imaging: Cardiovascular Applications for Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, Salerno M, Teague SD, Valsangiacomo-Buechel E, van der Geest RJ, Bluemke DA. Reference ranges ("normal values") for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson 2020; 22:87. [PMID: 33308262 PMCID: PMC7734766 DOI: 10.1186/s12968-020-00683-3] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) enables assessment and quantification of morphological and functional parameters of the heart, including chamber size and function, diameters of the aorta and pulmonary arteries, flow and myocardial relaxation times. Knowledge of reference ranges ("normal values") for quantitative CMR is crucial to interpretation of results and to distinguish normal from disease. Compared to the previous version of this review published in 2015, we present updated and expanded reference values for morphological and functional CMR parameters of the cardiovascular system based on the peer-reviewed literature and current CMR techniques. Further, databases and references for deep learning methods are included.
Collapse
Affiliation(s)
- Nadine Kawel-Boehm
- Department of Radiology, Kantonsspital Graubuenden, Loestrasse 170, 7000, Chur, Switzerland
- Institute for Diagnostic, Interventional and Pediatric Radiology (DIPR), Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, InselspitalBern, Switzerland
| | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 610 Walnut St, Madison, WI, 53726, USA
| | - Bharath Ambale-Venkatesh
- Department of Radiology, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD, 21287, USA
| | - Gabriella Captur
- MRC Unit of Lifelong Health and Ageing At UCL, 5-19 Torrington Place, Fitzrovia, London, WC1E 7HB, UK
- Inherited Heart Muscle Conditions Clinic, Royal Free Hospital NHS Foundation Trust, Hampstead, London, NW3 2QG, UK
| | - Christopher J Francois
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Michael Jerosch-Herold
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Michael Salerno
- Cardiovascular Division, University of Virginia Health System, 1215 Lee Street, Charlottesville, VA, 22908, USA
| | - Shawn D Teague
- Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA
| | - Emanuela Valsangiacomo-Buechel
- Division of Paediatric Cardiology, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - David A Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
10
|
Omori T, Nakamori S, Fujimoto N, Ishida M, Kitagawa K, Ichikawa Y, Kumagai N, Kurita T, Imanaka-Yoshida K, Hiroe M, Sakuma H, Ito M, Dohi K. Myocardial Native T 1 Predicts Load-Independent Left Ventricular Chamber Stiffness In Patients With HFpEF. JACC Cardiovasc Imaging 2020; 13:2117-2128. [PMID: 32771571 DOI: 10.1016/j.jcmg.2020.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This study sought to evaluate the potential of cardiac magnetic resonance T1 mapping to detect load-independent left ventricular (LV) chamber stiffness by histological confirmation. BACKGROUND Accurate noninvasive diagnosis of LV diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF) remains challenging. METHODS Nineteen HFpEF patients (14 female, 65 ± 16 years of age) without primary cardiomyopathy were prospectively enrolled. Cine, late gadolinium enhancement cardiac magnetic resonance, and triple-slice T1 mapping using a modified Look-Locker inversion recovery sequence were performed at 3-T. Extracellular volume (ECV) was quantified from pre- and post-contrast T1 values of the blood and myocardium with hematocrit correction. LV stiffness constant (beta) was assessed by calculating the slope of the end-diastolic pressure-volume relationship curve during vena cava occlusion. Biopsy samples were used for quantification of collagen volume fraction (CVF) and myocardial cell size. RESULTS Six patients showed focal scar on late gadolinium enhancement. There was no significant difference in histological CVF between patients with and without focal myocardial scarring (p = 0.2). Septal ECV rather than native T1 was a better surrogate marker for detecting histological CVF (r = 0.54; p = 0.02, and r = 0.44; p = 0.06, respectively). Global native T1 and ECV, but not native T1 and ECV in the septal myocardium, correlated well with the beta of passive LV stiffness, and had similar ability for predicting LV stiffness to histological CVF (r = 0.54, 0.50, 0.53, all p < 0.05, respectively). When the beta ≥0.054 was considered as moderately increased LV stiffness, global native T1 ≥1,362 ms provided 88% sensitivity and 64% specificity with the C-statistic of 0.81 (95% confidence interval: 0.56 to 0.95). CONCLUSIONS Myocardial native T1 provides comparable ability in predicting LV stiffness to ECV and histological CVF and may be useful for monitoring patients with HFpEF who have renal dysfunction, allergy to gadolinium, or wheezing that can simulate asthma. Our feasibility study shows the potential of native T1 to allow for insight of heterogeneous pathophysiology and better risk stratification of HFpEF.
Collapse
Affiliation(s)
- Taku Omori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan.
| | - Naoki Fujimoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yasutaka Ichikawa
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Naoto Kumagai
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | | | - Michiaki Hiroe
- Research Center for Matrix Biology, Mie University, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
11
|
Colli-Franzone P, Gionti V, Pavarino L, Scacchi S, Storti C. Role of infarct scar dimensions, border zone repolarization properties and anisotropy in the origin and maintenance of cardiac reentry. Math Biosci 2019; 315:108228. [DOI: 10.1016/j.mbs.2019.108228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
|
12
|
Nordlund D, Xanthis C, Bidhult S, Jablonowski R, Kanski M, Kopic S, Carlsson M, Engblom H, Aletras AH, Arheden H. Measuring extracellular volume fraction by MRI: First verification of values given by clinical sequences. Magn Reson Med 2019; 83:662-672. [PMID: 31418490 PMCID: PMC6900009 DOI: 10.1002/mrm.27938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Purpose To verify MR measurements of myocardial extracellular volume fraction (ECV) based on clinically applicable T1‐mapping sequences against ECV measurements by radioisotope tracer in pigs and to relate the results to those obtained in volunteers. Methods Between May 2016 and March 2017, 8 volunteers (25 ± 4 years, 3 female) and 8 pigs (4 female) underwent ECV assessment with SASHA, MOLLI5(3b)3, MOLLI5(3s)3, and MOLLI5s(3s)3s. Myocardial ECV was measured independently in pigs using a radioisotope tracer method. Results In pigs, ECV in normal myocardium was not different between radioisotope (average ± standard deviation; 19 ± 2%) and SASHA (21 ± 2%; P = 0.086). ECV was higher by MOLLI5(3b)3 (26 ± 2%), MOLLI5(3s)3 (25 ± 2%), and MOLLI5s(3s)3s (25 ± 2%) compared with SASHA or radioisotope (P ≤ 0.001 for all). ECV in volunteers was higher by MOLLI5(3b)3 (26 ± 3%) and MOLLI5(3s)3 (26 ± 3%) than by SASHA (22 ± 3%; P = 0.022 and P = 0.033). No difference was found between MOLLI5s(3s)3s (25 ± 3%) and SASHA (P = 0.225). Native T1 of blood and myocardium as well as postcontrast T1 of myocardium was consistently lower using MOLLI compared with SASHA. ECV increased over time as measured by MOLLI5(3b)3 and MOLLI5(3s)3 for pigs (0.08% and 0.07%/min; P = 0.004 and P = 0.013) and by MOLLI5s(3s)3s for volunteers (0.07%/min; P = 0.032) but did not increase as measured by SASHA. Conclusion Clinically available MOLLI and SASHA techniques can be used to accurately estimate ECV in normal myocardium where MOLLI‐sequences show minor overestimation driven by underestimation of postcontrast T1 when compared with SASHA. The timing of imaging after contrast administration affected the measurement of ECV using some variants of the MOLLI sequence.
Collapse
Affiliation(s)
- David Nordlund
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Christos Xanthis
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden.,Laboratory of Computing and Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sebastian Bidhult
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden.,Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Robert Jablonowski
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Mikael Kanski
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Sascha Kopic
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Henrik Engblom
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden.,Laboratory of Computing and Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Håkan Arheden
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Tada Y, Heidary S, Tachibana A, Zaman J, Neofytou E, Dash R, Wu JC, Yang PC. Myocardial viability of the peri-infarct region measured by T1 mapping post manganese-enhanced MRI correlates with LV dysfunction. Int J Cardiol 2019; 281:8-14. [PMID: 30739802 DOI: 10.1016/j.ijcard.2019.01.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Manganese-enhanced MRI (MEMRI) detects viable cardiomyocytes based on the intracellular manganese uptake via L-type calcium-channels. This study aimed to quantify myocardial viability based on manganese uptake by viable myocardium in the infarct core (IC), peri-infarct region (PIR) and remote myocardium (RM) using T1 mapping before and after MEMRI and assess their association with cardiac function and arrhythmogenesis. METHODS Fifteen female swine had a 60-minute balloon ischemia-reperfusion injury in the LAD. MRI (Signa 3T, GE Healthcare) and electrophysiological study (EPS) were performed 4 weeks later. MEMRI and delayed gadolinium-enhanced MRI (DEMRI) were acquired on LV short axis. The DEMRI positive total infarct area was subdivided into the regions of MEMRI-negative non-viable IC and MEMRI-positive viable PIR. T1 mapping was performed to evaluate native T1, post-MEMRI T1, and delta R1 (R1post-R1pre, where R1 equals 1/T1) of each territory. Their correlation with LV function and EPS data was assessed. RESULTS PIR was characterized by intermediate native T1 (1530.5 ± 75.2 ms) compared to IC (1634.7 ± 88.4 ms, p = 0.001) and RM (1406.4 ± 37.9 ms, p < 0.0001). Lower post-MEMRI T1 of PIR (1136.3 ± 99.6 ms) than IC (1262.6 ± 126.8 ms, p = 0.005) and higher delta R1 (0.23 ± 0.08 s-1) of PIR than IC (0.18 ± 0.09 s-1, p = 0.04) indicated higher myocardial manganese uptake of PIR compared to IC. Post-MEMRI T1 (r = -0.57, p = 0.02) and delta R1 (r = 0.51, p = 0.04) of PIR correlated significantly with LVEF. CONCLUSIONS PIR is characterized by higher manganese uptake compared to the infarct core. In the subacute phase post-IR, PIR viability measured by post-MEMRI T1 correlates with cardiac function.
Collapse
Affiliation(s)
- Yuko Tada
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shahriar Heidary
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Atsushi Tachibana
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Junaid Zaman
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Evgenios Neofytou
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Rajesh Dash
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Joseph C Wu
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Phillip C Yang
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America.
| |
Collapse
|
14
|
Assessment of the extracellular volume fraction for the grading of clear cell renal cell carcinoma: first results and histopathological findings. Eur Radiol 2019; 29:5832-5843. [PMID: 30887194 DOI: 10.1007/s00330-019-06087-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To assess the potential of T1 mapping-based extracellular volume fraction (ECV) for the identification of higher grade clear cell renal cell carcinoma (cRCC), based on histopathology as the reference standard. METHODS For this single-center, institutional review board-approved prospective study, 27 patients (17 men, median age 62 ± 12.4 years) with pathologic diagnosis of cRCC (nucleolar International Society of Urological Pathology (ISUP) grading) received abdominal MRI scans at 1.5 T using a modified Look-Locker inversion recovery (MOLLI) sequence between January 2017 and June 2018. Quantitative T1 values were measured at different time points (pre- and postcontrast agent administration) and quantification of the ECV was performed on MRI and histological sections (H&E staining). RESULTS Reduction in T1 value after contrast agent administration and MR-derived ECV were reliable predictors for differentiating higher from lower grade cRCC. Postcontrast T1diff values (T1diff = T1 difference between the native and nephrogenic phase) and MR-derived ECV were significantly higher for higher grade cRCC (ISUP grades 3-4) compared with lower grade cRCC (ISUP grades 1-2) (p < 0.001). A cutoff value of 700 ms could distinguish higher grade from lower grade tumors with 100% (95% CI 0.69-1.00) sensitivity and 82% (95% CI 0.57-0.96) specificity. There was a positive and strong correlation between MR-derived ECV and histological ECV (p < 0.01, r = 0.88). Interobserver agreement for quantitative longitudinal relaxation times in the T1 maps was excellent. CONCLUSIONS T1 mapping with ECV measurement could represent a novel in vivo biomarker for the classification of cRCC regarding their nucleolar grade, providing incremental diagnostic value as a quantitative MR marker. KEY POINTS • Reduction in MRI T1 relaxation times after contrast agent administration and MR-derived extracellular volume fraction are useful parameters for grading of clear cell renal cell carcinoma (cRCC). • T1 differences between the native and the nephrogenic phase are higher for higher grade cRCC compared with lower grade cRCC and MRI-derived extracellular volume fraction (ECV) and histological ECV show a strong correlation. • T1 mapping with ECV measurement may be helpful for the noninvasive assessment of cRCC pathology, being a safe and feasible method, and it has potential to optimize individualized treatment options, e.g., in the decision of active surveillance.
Collapse
|
15
|
Xanthis CG, Nordlund D, Jablonowski R, Arheden H. Comparison of short axis and long axis acquisitions of T1 and extracellular volume mapping using MOLLI and SASHA in patients with myocardial infarction and healthy volunteers. BMC Med Imaging 2019; 19:18. [PMID: 30795746 PMCID: PMC6387479 DOI: 10.1186/s12880-019-0320-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
Background Although previous studies have examined the impact of slice position in volumetric measurements in Cardiovascular Magnetic Resonance (CMR) imaging, very limited data are available today comparing T1 and Extra-Cellular Volume (ECV) measurements from short and long axis acquisitions. The purpose of this study was to investigate the impact of slice position and orientation on T1 and ECV measurements using the MOdified Look-Locker Inversion recovery (MOLLI) and Saturation recovery single-shot acquisition (SASHA) sequence in patients with myocardial infarction and in healthy volunteers. Methods Eight (8) healthy volunteers with no medical history and eight (8) patients with myocardial infarction were included in this study. MOLLI and SASHA were utilized and short-axis and long-axis images were acquired. T1 and ECV measurements were performed by drawing same size regions of interest on the myocardium as well in the blood pool at the intersections of the short axis and long axis images. Results In healthy volunteers, there were no statistically significant differences in native T1 and ECV values between short axis and long axis acquisitions using MOLLI (two-chamber, three-chamber and four-chamber) and SASHA (three-chamber). In patients, there were no statistically significant differences in native T1 and ECV values between short axis and 3-chamber long axis acquisitions in both remote and affected myocardium using MOLLI and SASHA. Conclusions Long axis measurements of myocardial T1 and ECV using MOLLI and SASHA exhibit good agreement with the corresponding short axis measurements allowing for fast and reliable myocardial tissue characterization in cases where shortening of the overall imaging acquisition is required.
Collapse
Affiliation(s)
- Christos G Xanthis
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden. .,Laboratory of Computing, Medical Informatics and Biomedical - Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - David Nordlund
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Robert Jablonowski
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Cha MJ, Kim SM, Kim HS, Kim Y, Choe YH. Association of cardiovascular risk factors on myocardial perfusion and fibrosis in asymptomatic individuals: cardiac magnetic resonance study. Acta Radiol 2018; 59:1300-1308. [PMID: 29433344 DOI: 10.1177/0284185118757274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Myocardial perfusion reserve index (MPRI) and extracellular volume fraction (ECV) on cardiac magnetic resonance (CMR) are known to quantify coronary microvascular dysfunction and myocardial fibrosis, respectively. Purpose To demonstrate that cardiovascular risk factors such as hypertension, diabetes, hyperlipidemia, and smoking are correlated with MPRI and ECV on CMR in asymptomatic individuals. Material and Methods Between October 2013 and July 2014, 196 individuals underwent CMR. After excluding those with chest pain, arrhythmia, and obstructive coronary artery disease, participants were divided into five groups: those without risk factor (n = 26) and those with one (n = 43), two (n = 35), three (n = 24), or four (n = 6) risk factors. MPRI and ECV were obtained on perfusion CMR and pre- and post-T1 mapping, respectively. Results A total of 134 asymptomatic individuals (109 men, 25 women; mean age = 54.4 ± 7.08 years; body mass index [BMI] = 24.96 ± 2.76 kg/m2; Framingham risk score [FRS] = 7.71 ± 5.21) were included. The Jonckheere-Terpstra test demonstrated trends of increasing BMI, FRS, and left ventricular mass index (all P values < 0.001), but decreasing MPRI ( P = 0.001) with increasing numbers of risk factors. Stepwise multiple linear regression demonstrated that an increasing number of cardiovascular risk factors was an independent predictor of MPRI ( P = 0.001). However, there was no significant association between the number of risk factors and ECV ( P = 0.99). Conclusion We demonstrated that an increasing number of cardiovascular risk factors is significantly associated with reduced MPRI, but not with ECV on CMR.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Currently, Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung Mok Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Cardiovascular Imaging Center, Heart Vascular and Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yiseul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Cardiovascular Imaging Center, Heart Vascular and Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
17
|
Engblom H, Kanski M, Kopic S, Nordlund D, Xanthis CG, Jablonowski R, Heiberg E, Aletras AH, Carlsson M, Arheden H. Importance of standardizing timing of hematocrit measurement when using cardiovascular magnetic resonance to calculate myocardial extracellular volume (ECV) based on pre- and post-contrast T1 mapping. J Cardiovasc Magn Reson 2018; 20:46. [PMID: 29950178 PMCID: PMC6022290 DOI: 10.1186/s12968-018-0464-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/24/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) can be used to calculate myocardial extracellular volume fraction (ECV) by relating the longitudinal relaxation rate in blood and myocardium before and after contrast-injection to hematocrit (Hct) in blood. Hematocrit is known to vary with body posture, which could affect the calculations of ECV. The aim of this study was to test the hypothesis that there is a significant increase in calculated ECV values if the Hct is sampled after the CMR examination in supine position compared to when the patient arrives at the MR department. METHODS Forty-three consecutive patients including various pathologies as well as normal findings were included in the study. Venous blood samples were drawn upon arrival to the MR department and directly after the examination with the patient remaining in supine position. A Modified Look-Locker Inversion recovery (MOLLI) protocol was used to acquire mid-ventricular short-axis images before and after contrast injection from which motion-corrected T1 maps were derived and ECV was calculated. RESULTS Hematocrit decreased from 44.0 ± 3.7% before to 40.6 ± 4.0% after the CMR examination (p < 0.001). This resulted in a change in calculated ECV from 24.7 ± 3.8% before to 26.2 ± 4.2% after the CMR examination (p < 0.001). All patients decreased in Hct after the CMR examination compared to before except for two patients whose Hct remained the same. CONCLUSION Variability in CMR-derived myocardial ECV can be reduced by standardizing the timing of Hct measurement relative to the CMR examination. Thus, a standardized acquisition of blood sample for Hct after the CMR examination, when the patient is still in supine position, would increase the precision of ECV measurements.
Collapse
Affiliation(s)
- Henrik Engblom
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Mikael Kanski
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Sascha Kopic
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - David Nordlund
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Christos G. Xanthis
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Robert Jablonowski
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Einar Heiberg
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical – Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marcus Carlsson
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Getingevägen 3, 221 85 Lund, Sweden
| |
Collapse
|
18
|
Visualization of Myocardial Infarction in Postmortem Multiphase Computed Tomography Angiography: A Feasibility Study. Am J Forensic Med Pathol 2018; 39:106-113. [PMID: 29438137 DOI: 10.1097/paf.0000000000000372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have indicated that multiphase postmortem computed tomography angiography (MPMCTA) allows detection of a pathological enhancement of the myocardium in regions that correlate with the localization of the infarction at histology. The aim of this study was to verify this hypothesis by examining MPMCTA images in cases of myocardial infarction. Therefore, we investigated 10 autopsy cases where death was attributed to myocardial infarction or which showed cardiovascular pathology. As a control group, we selected 10 cases of non-natural (namely, not cardiac) death. The MPMCTA was performed in both groups to ascertain whether a pathological enhancement could be observed. We detected a myocardial enhancement in all cardiac death cases, in the same region that showed infarction at histology. No enhancement was observed in control cases. These results have important implications in the routine management of sudden cardiac death cases. In fact, MPMCTA can not only orient about the cause of death before autopsy, but can especially help to identify affected regions for guiding and improving the sampling for microscopic examination.
Collapse
|
19
|
Myocardial Salvage Imaging: Where Are We and Where Are We Heading? A Cardiac Magnetic Resonance Perspective. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018. [DOI: 10.1007/s12410-018-9448-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Native T1 Mapping and Extracellular Volume Mapping for the Assessment of Diffuse Myocardial Fibrosis in Dilated Cardiomyopathy. JACC Cardiovasc Imaging 2018. [DOI: 10.1016/j.jcmg.2017.04.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Duan AQ, Lock MC, Perumal SR, Darby JR, Soo JY, Selvanayagam JB, Macgowan CK, Seed M, Morrison JL. Feasibility of detecting myocardial infarction in the sheep fetus using late gadolinium enhancement CMR imaging. J Cardiovasc Magn Reson 2017; 19:69. [PMID: 28903760 PMCID: PMC5598048 DOI: 10.1186/s12968-017-0383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging has enabled the accurate assessment of myocardial infarction (MI). However, LGE CMR has not been performed successfully in the fetus, where it could be useful for animal studies of interventions to promote cardiac regeneration. We believe that LGE imaging could allow us to document the presence, extent and effect of MI in utero and would thereby expand our capacity for conducting fetal sheep MI research. We therefore aimed to investigate the feasibility of using LGE to detect MI in sheep fetuses. METHODS Six sheep fetuses underwent a thoracotomy and ligation of a left anterior descending (LAD) coronary artery branch; while two fetuses underwent a sham surgery. LGE CMR was performed in a subset of fetuses immediately after the surgery and three days later. Early gadolinium enhancement (EGE) CMR was also performed in a subset of fetuses on both days. Cine imaging of the heart was performed to measure ventricular function. RESULTS The imaging performed immediately after LAD ligation revealed no evidence of infarct on LGE (n=3). Two of four infarcted fetuses (50%) showed hypoenhancement at the infarct site on the EGE images. Three days after the ligation, LGE images revealed a clear, hyper-enhanced infarct zone in four of the five infarcted fetuses (80%). No hyper-enhanced infarct zone was seen on the one sham fetus that underwent LGE CMR. No hypoenhancement could be seen in the EGE images in either the sham (n=1) or the infarcted fetus (n=1). No regional wall motion abnormalities were apparent in two of the five infarcted fetuses. CONCLUSION LGE CMR detected the MI three days after LAD ligation, but not immediately after. Using available methods, EGE imaging was less useful for detecting deficits in perfusion. Our study provides evidence for the ability of a non-invasive tool to monitor the progression of cardiac repair and damage in fetuses with MI. However, further investigation into the optimal timing of LGE and EGE scans and improvement of the sequences should be pursued with the aim of expanding our capacity to monitor cardiac regeneration after MI in fetal sheep.
Collapse
Affiliation(s)
- An Qi Duan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON M5S 1A8 Canada
| | - Mitchell C. Lock
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, 101 Blacks Road, Gilles Plains, Adelaide, South Australia 5086 Australia
| | - Jack R. Darby
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health & Medical Research Institute, and Flinders University, GPO Box 2100, Adelaide, South Australia 5001 Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Room 08.9714, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| |
Collapse
|
22
|
Aquaro GD, Di Bella G, Castelletti S, Maestrini V, Festa P, Ait-Ali L, Masci PG, Monti L, di Giovine G, De Lazzari M, Cipriani A, Guaricci AI, Dellegrottaglie S, Pepe A, Marra MP, Pontone G. Clinical recommendations of cardiac magnetic resonance, Part I: ischemic and valvular heart disease: a position paper of the working group 'Applicazioni della Risonanza Magnetica' of the Italian Society of Cardiology. J Cardiovasc Med (Hagerstown) 2017; 18:197-208. [PMID: 28072628 DOI: 10.2459/jcm.0000000000000498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cardiac magnetic resonance (CMR) has emerged as a reliable and accurate diagnostic tool for the evaluation of patients with cardiac disease in several clinical settings and with proven additional diagnostic and prognostic value compared with other imaging modalities. This document has been developed by the working group on the 'application of CMR' of the Italian Society of Cardiology to provide a perspective on the current state of technical advances and clinical applications of CMR and to inform cardiologists on how to implement their clinical and diagnostic pathways with the inclusion of this technique in clinical practice. The writing committee consisted of members of the working group of the Italian Society of Cardiology and two external peer reviewers with acknowledged experience in the field of CMR.
Collapse
Affiliation(s)
- Giovanni Donato Aquaro
- aU.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa bUO Cardiologia, Università di Messina, Messina cIstituto Auxologico Italiano, Milano dDepartment of Cardiovascular, Respiratory, Geriatric, Anesthesiologic and Nephrologic Sciences, Sapienza University of Rome, Rome, Italy eCentre for Cardiac MR, Cardiology Unit, University Hospital Lausanne, Lausanne, Switzerland fU.O. Radiologia Diagnostica, Humanitas Hospital, Milan gDivision of Cardiology, Azienda Ospedaliera-Universitaria 'Maggiore della Carità', Eastern Piemont University, Novara hU.O. Clinica Cardiologica, Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari, Università di Padova, Padua iUnità Operativa di Cardiologia Universitaria Dipartimento di Emergenze e Trapianti di Organi (D.E.T.O.) Azienda Ospedaliera Policlinico Consorziale di Bari, Bari jLaboratorio di RM Cardiovascolare Divisione di Cardiologia Clinica Villa dei Fiori, Acerra kU.O. Cardiologia, Centro Cardiologico Monzino, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Palma R, Sörensson P, Verouhis D, Pernow J, Saleh N. Quantification of myocardium at risk in ST- elevation myocardial infarction: a comparison of contrast-enhanced steady-state free precession cine cardiovascular magnetic resonance with coronary angiographic jeopardy scores. J Cardiovasc Magn Reson 2017; 19:55. [PMID: 28750637 PMCID: PMC5530997 DOI: 10.1186/s12968-017-0359-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clinical outcome following acute myocardial infarction is predicted by final infarct size evaluated in relation to left ventricular myocardium at risk (MaR). Contrast-enhanced steady-state free precession (CE-SSFP) cardiovascular magnetic resonance imaging (CMR) is not widely used for assessing MaR. Evidence of its utility compared to traditional assessment methods and as a surrogate for clinical outcome is needed. METHODS Retrospective analysis within a study evaluating post-conditioning during ST elevation myocardial infarction (STEMI) treated with coronary intervention (n = 78). CE-SSFP post-infarction was compared with angiographic jeopardy methods. Differences and variability between CMR and angiographic methods using Bland-Altman analyses were evaluated. Clinical outcomes were compared to MaR and extent of infarction. RESULTS MaR showed correlation between CE-SSFP, and both BARI and APPROACH scores of 0.83 (p < 0.0001) and 0.84 (p < 0.0001) respectively. Bias between CE-SSFP and BARI was 1.1% (agreement limits -11.4 to +9.1). Bias between CE-SSFP and APPROACH was 1.2% (agreement limits -13 to +10.5). Inter-observer variability for the BARI score was 0.56 ± 2.9; 0.42 ± 2.1 for the APPROACH score; -1.4 ± 3.1% for CE-SSFP. Intra-observer variability was 0.15 ± 1.85 for the BARI score; for the APPROACH score 0.19 ± 1.6; and for CE-SSFP -0.58 ± 2.9%. CONCLUSION Quantification of MaR with CE-SSFP imaging following STEMI shows high correlation and low bias compared with angiographic scoring and supports its use as a reliable and practical method to determine myocardial salvage in this patient population. TRIAL REGISTRATION Clinical trial registration information for the parent clinical trial: Karolinska Clinical Trial Registration (2008) Unique identifier: CT20080014. Registered 04th January 2008.
Collapse
Affiliation(s)
- Rodney De Palma
- Karolinska Institutet, Department of Medicine, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peder Sörensson
- Karolinska Institutet, Department of Medicine, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Dinos Verouhis
- Karolinska Institutet, Department of Medicine, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Karolinska Institutet, Department of Medicine, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Nawzad Saleh
- Karolinska Institutet, Department of Medicine, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.003951. [PMID: 28611116 DOI: 10.1161/circimaging.116.003951] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications.
Collapse
Affiliation(s)
- Michael Salerno
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.).
| | - Behzad Sharif
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Håkan Arheden
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Andreas Kumar
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Leon Axel
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Debiao Li
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Stefan Neubauer
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| |
Collapse
|
25
|
Kawel-Boehm N, McClelland RL, Zemrak F, Captur G, Hundley WG, Liu CY, Moon JC, Petersen SE, Ambale-Venkatesh B, Lima JAC, Bluemke DA. Hypertrabeculated Left Ventricular Myocardium in Relationship to Myocardial Function and Fibrosis: The Multi-Ethnic Study of Atherosclerosis. Radiology 2017; 284:667-675. [PMID: 28418811 DOI: 10.1148/radiol.2017161995] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine if excess greater left ventricle (LV) trabeculation is associated with decreased average regional myocardial function, diffuse fibrosis, or both. Materials and Methods This was a HIPAA-compliant institutional board approved multicenter study, and all participants provided written informed consent. Participants in the Multi-Ethnic Study of Atherosclerosis (MESA) underwent a comprehensive cardiac magnetic resonance (MR) examination. LV trabeculation was measured with the maximal apical fractal dimension (FD), which is a marker of endocardial complexity. Demographic covariates, cardiovascular risk factors, and cardiac MR measurements were compared across quartiles of FD. Associations between FD and peak regional systolic circumferential strain (Ecc) and T1 time, a surrogate for diffuse myocardial fibrosis, were assessed with multivariable linear regression models. Results A total of 1123 subjects (593 [52.8%] female; mean age, 67.1 years ± 8.7 [standard deviation]) underwent FD and Ecc measurement, and 992 (521 [52.5%] female; mean age, 67.1 years ± 8.7) underwent FD and T1 measurement. Mean FD was 1.2 ± 0.07 in both groups, and mean Ecc was -18.3 ± 2.27 in the subjects who underwent FD and Ecc measurement. Global volumes and ejection fraction showed no differences between FD quartiles. However, with increasing FD quartile, Ecc was greater (indicating worse average regional function) (P < .001). After adjustment, greater trabeculation was associated with 21% worse myocardial strain (relative to the mean) per unit change in FD (regression coefficient = 4.0%; P < .001). There was no association between the degree of trabeculation and diffuse fibrosis measured with T1 mapping. Conclusion Average regional LV function was worse in individuals with greater LV trabeculation, supporting the concept of hypertrabeculation being an epiphenomenon of disease. © RSNA, 2017.
Collapse
Affiliation(s)
- Nadine Kawel-Boehm
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Robyn L McClelland
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Filip Zemrak
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Gabriella Captur
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - W Gregory Hundley
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Chia-Ying Liu
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - James C Moon
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Steffen E Petersen
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - Bharath Ambale-Venkatesh
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - João A C Lima
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| | - David A Bluemke
- From the Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md (N.K., C.Y.L., D.A.B.); Department of Biostatistics, University of Washington, Seattle, Wash (R.L.M.); William Harvey Research Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit at Barts, Queen Mary University of London, London, England (F.Z., S.E.P.); Institute of Cardiovascular Science, University College London and The Barts Heart Centre, St. Bartholomew's Hospital, London, England (G.C., J.C.M.); Department of Internal Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, NC (W.G.H.); Department of Radiology (B.A.) and Department of Medicine, Division of Cardiology (J.A.C.L.), Johns Hopkins University, Baltimore, Md
| |
Collapse
|
26
|
Hammer-Hansen S, Leung SW, Hsu LY, Wilson JR, Taylor J, Greve AM, Thune JJ, Køber L, Kellman P, Arai AE. Early Gadolinium Enhancement for Determination of Area at Risk: A Preclinical Validation Study. JACC Cardiovasc Imaging 2017; 10:130-139. [PMID: 27665165 PMCID: PMC5384795 DOI: 10.1016/j.jcmg.2016.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/14/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of this study was to determine whether early gadolinium enhancement (EGE) by cardiac magnetic resonance (CMR) in a canine model of reperfused myocardial infarction depicts the area at risk (AAR) as determined by microsphere blood flow analysis. BACKGROUND It remains controversial whether only the irreversibly injured myocardium enhances when CMR is performed in the setting of acute myocardial infarction. Recently, EGE has been proposed as a measure of the AAR in acute myocardial infarction because it correlates well with T2-weighted imaging of the AAR, but this still requires pathological validation. METHODS Eleven dogs underwent 2 h of coronary artery occlusion and 48 h of reperfusion before imaging at 1.5-T. EGE imaging was performed 3 min after contrast administration with coverage of the entire left ventricle. Late gadolinium enhancement imaging was performed between 10 and 15 min after contrast injection. AAR was defined as myocardium with blood flow <2 SD from remote myocardium determined by microspheres during occlusion. The size of infarction was determined with triphenyltetrazolium chloride. RESULTS There was no significant difference in the size of enhancement by EGE compared with the size of AAR by microspheres (44.1 ± 15.8% vs. 42.7 ± 9.2%; p = 0.61), with good correlation (r = 0.88; p < 0.001) and good agreement by Bland-Altman analysis (mean bias 1.4 ± 17.4%). There was no difference in the size of enhancement by EGE compared with enhancement on native T1 and T2 maps. The size of EGE was significantly greater than the infarct by triphenyltetrazolium chloride (44.1 ± 15.8% vs. 20.7 ± 14.4%; p < 0.001) and late gadolinium enhancement (44.1 ± 15.8% vs. 23.5 ± 12.7%; p < 0.001). CONCLUSIONS At 3 min post-contrast, EGE correlated well with the AAR by microspheres and CMR and was greater than infarct size. Thus, EGE enhances both reversibly and irreversibly injured myocardium.
Collapse
Affiliation(s)
- Sophia Hammer-Hansen
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Steve W Leung
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Department of Medicine and Radiology, Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Li-Yueh Hsu
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Joel R Wilson
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Department of Medicine and Radiology, Division of Cardiovascular Medicine, University of California-San Diego, San Diego, California
| | - Joni Taylor
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Anders M Greve
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Jens Jakob Thune
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Lars Køber
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Peter Kellman
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
27
|
Nordlund D, Kanski M, Jablonowski R, Koul S, Erlinge D, Carlsson M, Engblom H, Aletras AH, Arheden H. Experimental validation of contrast-enhanced SSFP cine CMR for quantification of myocardium at risk in acute myocardial infarction. J Cardiovasc Magn Reson 2017; 19:12. [PMID: 28132648 PMCID: PMC5278574 DOI: 10.1186/s12968-017-0325-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/12/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Accurate assessment of myocardium at risk (MaR) after acute myocardial infarction (AMI) is necessary when assessing myocardial salvage. Contrast-enhanced steady-state free precession (CE-SSFP) is a recently developed cardiovascular magnetic resonance (CMR) method for assessment of MaR up to 1 week after AMI. Our aim was to validate CE-SSFP for determination of MaR in an experimental porcine model using myocardial perfusion single-photon emission computed tomography (MPS) as a reference standard and to test the stability of MaR-quantification over time after injecting gadolinium-based contrast. METHODS Eleven pigs were subjected to either 35 or 40 min occlusion of the left anterior descending artery followed by six hours of reperfusion. A technetium-based perfusion tracer was administered intravenously ten minutes before reperfusion. In-vivo and ex-vivo CE-SSFP CMR was performed followed by ex-vivo MPS imaging. MaR was expressed as % of left ventricular mass (LVM). RESULTS There was good agreement between MaR by ex-vivo CMR and MaR by MPS (bias: 1 ± 3% LVM, r 2 = 0.92, p < 0.001), between ex-vivo and in-vivo CMR (bias 0 ± 2% LVM, r 2 = 0.94, p < 0.001) and between in-vivo CMR and MPS (bias -2 ± 3% LVM, r 2 = 0.87, p < 0.001. No change in MaR was seen over the first 30 min after contrast injection (p = 0.95). CONCLUSIONS Contrast-enhanced SSFP cine CMR can be used to measure MaR, both in vivo and ex vivo, in a porcine model with good accuracy and precision over the first 30 min after contrast injection. This offers the option to use the less complex ex-vivo imaging when determining myocardial salvage in experimental studies.
Collapse
Affiliation(s)
- David Nordlund
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Mikael Kanski
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Robert Jablonowski
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Sasha Koul
- Department of Cardiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Henrik Engblom
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
- Laboratory of Computing and Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Håkan Arheden
- Department of Clinical Physiology, Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| |
Collapse
|
28
|
Jablonowski R, Engblom H, Kanski M, Nordlund D, Koul S, van der Pals J, Englund E, Heiberg E, Erlinge D, Carlsson M, Arheden H. Contrast-Enhanced CMR Overestimates Early Myocardial Infarct Size: Mechanistic Insights Using ECV Measurements on Day 1 and Day 7. JACC Cardiovasc Imaging 2016; 8:1379-1389. [PMID: 26699107 DOI: 10.1016/j.jcmg.2015.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to investigate whether an overestimation of infarct size on cardiac magnetic resonance (CMR) versus triphenyltetrazolium chloride (TTC) exists acutely and whether it remains after 7 days in an experimental pig model and to elucidate possible mechanisms. BACKGROUND Overestimation of infarct size (IS) on late gadolinium enhancement CMR early after acute myocardial infarction has been debated. METHODS Pigs were subjected to 40 min of left anterior descending artery occlusion and 6 h (n = 9) or 7 days (n = 9) reperfusion. IS by in vivo and ex vivo CMR was compared with TTC staining. Extracellular volume (ECV) was obtained from biopsies using technetium 99m diethylenetriamine pentaacetic acid (99mTc-DTPA) and light microscopy. TTC slices were rescanned on CMR enabling slice-by-slice comparison. RESULTS IS did not differ between in vivo and ex vivo CMR (p = 0.77). IS was overestimated by 27.3% with ex vivo CMR compared with TTC (p = 0.008) acutely with no significant difference at 7 days (p = 0.39). Slice-by-slice comparison showed similar results. A significant decrease in ECV was seen in biopsies of myocardium at risk (MaR) close to the infarct (sometimes referred to as the peri-infarction zone) over 7 days (48.3 ± 4.4% vs. 29.2 ± 2.4%; p = 0.0025). The ECV differed between biopsies of MaR close to the infarct and the rest of the salvaged MaR acutely (48.3 ± 4.4% vs. 32.4 ± 3.2%; p = 0.013) but not at 7 days (29.2 ± 2.4% vs 25.7 ± 1.4%; p = 0.23). CONCLUSIONS CMR overestimates IS compared with TTC acutely but not at 7 days. This difference may be explained by higher ECV in MaR closest to the infarct acutely that decreases during 7 days to the same level as the rest of the salvaged MaR. The increased ECV in the MaR closest to the infarct day 1 could be due to severe edema or an admixture of infarcted and salvaged myocardium (partial volume) or both. Nonetheless, this could not be reproduced at 7 days. These results have implications for timing of magnetic resonance infarct imaging early after acute myocardial infarction.
Collapse
Affiliation(s)
- Robert Jablonowski
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Henrik Engblom
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Mikael Kanski
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - David Nordlund
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Sasha Koul
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Elisabet Englund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Einar Heiberg
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden; Centre for Mathematical Sciences, Lund University, Lund, Sweden; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
29
|
Cardiovascular Imaging: The Past and the Future, Perspectives in Computed Tomography and Magnetic Resonance Imaging. Invest Radiol 2016; 50:557-70. [PMID: 25985464 DOI: 10.1097/rli.0000000000000164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Today's noninvasive imaging of the cardiovascular system has revolutionized the approach to various diseases and has substantially affected prognostic information. Cardiovascular magnetic resonance (MR) and computed tomographic (CT) imaging are at center stage of these approaches, although 5 decades ago, these technologies were unheard of. Both modalities had their inception in the 1970s with a primary focus on noncardiovascular applications. The technical development of the various decades, however, substantially pushed the envelope for cardiovascular MR and CT applications. Within the past 10-15 years, MR and CT technologies have pushed each other in cardiac applications; and without the "rival" modality, neither one would likely not have reached its potential today. This view on the history of MR and CT in the field of cardiovascular applications provides insight into the story of success of applications that once have been ideas only but are at prime time today.
Collapse
|
30
|
Goldfarb JW, Zhao W. Effects of transcytolemmal water exchange on the assessment of myocardial extracellular volume with cardiovascular MRI. NMR IN BIOMEDICINE 2016; 29:499-506. [PMID: 26866306 DOI: 10.1002/nbm.3488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/13/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Quantitative analysis of the myocardial interstitial space is gaining increased interest as a biomarker in the MRI and clinical cardiovascular communities. To investigate the effect of water exchange on the calculation of myocardial extracellular volume (ECV), we employed two tissue models: the standard ECV two-point model (SM) and the shutter speed model (SSM). Twenty individuals (18 men and two women; age 61.9 ± 10.3 years) underwent MRI at 1.5 T with pre-contrast and post-contrast dynamic T1 quantification. Means, standard deviations and ranges for SM and SSM model parameters were calculated. Infarct and viable myocardial model parameters as well as apparent ECV values calculated with the SM and SSM were statistically compared. Viable ECV(SM) remained temporally constant (27.3-28.0%: P = 0.5) and infarcted myocardial ECV(SM) changed significantly (49.3-58.8%; P < 0.001), reaching a steady-state value after 15 min. The intracellular lifetime of water was three times greater in infarcted myocardium when compared with viable myocardium (τi: 66.6 ± 115 versus 208.7 ± 72.7 ms) and accompanied a twofold increase in ECV (ECV(SSM) : 30.3 ± 11.1 versus 71.0 ± 13.1%; P < 0.001). There was a consistent significant difference in ECV values of infarcted myocardium at different timepoints between the SM and SSM, but not viable myocardium, presumably due to slower water exchange. In summary, we found a significant change in apparent ECV and water exchange in infarcted myocardium when compared with viable myocardium. This was visualized by changes in dynamic contrast enhanced curve shapes and quantified using the SSM as not only an increase in apparent ECV but also a decrease in water exchange.
Collapse
Affiliation(s)
- James W Goldfarb
- Department of Research and Education, Saint Francis Hospital, Roslyn, New York, USA
- Program in Biomedical Engineering, SUNY Stony Brook, Stony Brook, New York, USA
| | - Wenguo Zhao
- Department of Research and Education, Saint Francis Hospital, Roslyn, New York, USA
| |
Collapse
|
31
|
Nordlund D, Klug G, Heiberg E, Koul S, Larsen TH, Hoffmann P, Metzler B, Erlinge D, Atar D, Aletras AH, Carlsson M, Engblom H, Arheden H. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction. Eur Heart J Cardiovasc Imaging 2016; 17:744-53. [PMID: 27002140 PMCID: PMC4907382 DOI: 10.1093/ehjci/jew027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Myocardial salvage, determined by cardiac magnetic resonance imaging (CMR), is used as end point in cardioprotection trials. To calculate myocardial salvage, infarct size is related to myocardium at risk (MaR), which can be assessed by T2-short tau inversion recovery (T2-STIR) and contrast-enhanced steady-state free precession magnetic resonance imaging (CE-SSFP). We aimed to determine how T2-STIR and CE-SSFP perform in determining MaR when applied in multicentre, multi-vendor settings. METHODS AND RESULTS A total of 215 patients from 17 centres were included after percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction. CMR was performed within 1-8 days. These patients participated in the MITOCARE or CHILL-MI cardioprotection trials. Additionally, 8 patients from a previous study, imaged 1 day post-CMR, were included. Late gadolinium enhancement, T2-STIR, and CE-SSFP images were acquired on 1.5T MR scanners (Philips, Siemens, or GE). In 65% of the patients, T2-STIR was of diagnostic quality compared with 97% for CE-SSFP. In diagnostic quality images, there was no difference in MaR by T2-STIR and CE-SSFP (bias: 0.02 ± 6%, P = 0.96, r(2) = 0.71, P < 0.001), or between treatment and control arms. No change in size or quality of MaR nor ability to identify culprit artery was seen over the first week after the acute event (P = 0.44). CONCLUSION In diagnostic quality images, T2-STIR and CE-SSFP provide similar estimates of MaR, were constant over the first week, and were not affected by treatment. CE-SSFP had a higher degree of diagnostic quality images compared with T2 imaging for sequences from two out of three vendors. Therefore, CE-SSFP is currently more suitable for implementation in multicentre, multi-vendor clinical trials.
Collapse
Affiliation(s)
- David Nordlund
- Department of Clinical Physiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Gert Klug
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Einar Heiberg
- Department of Clinical Physiology, Clinical Sciences, Lund University, Lund, Sweden Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - Sasha Koul
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Terje H Larsen
- Department of Heart Disease, Haukeland University Hospital, Bergen Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Pavel Hoffmann
- Section for Interventional Cardiology, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Dan Atar
- Department of Cardiology B, Oslo University Hospital Ullevål, University of Oslo, Oslo, Norway
| | - Anthony H Aletras
- Department of Clinical Physiology, Clinical Sciences, Lund University, Lund, Sweden Laboratory of Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marcus Carlsson
- Department of Clinical Physiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik Engblom
- Department of Clinical Physiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Physiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Engblom H, Heiberg E, Erlinge D, Jensen SE, Nordrehaug JE, Dubois-Randé JL, Halvorsen S, Hoffmann P, Koul S, Carlsson M, Atar D, Arheden H. Sample Size in Clinical Cardioprotection Trials Using Myocardial Salvage Index, Infarct Size, or Biochemical Markers as Endpoint. J Am Heart Assoc 2016; 5:e002708. [PMID: 26961520 PMCID: PMC4943247 DOI: 10.1161/jaha.115.002708] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Cardiac magnetic resonance (CMR) can quantify myocardial infarct (MI) size and myocardium at risk (MaR), enabling assessment of myocardial salvage index (MSI). We assessed how MSI impacts the number of patients needed to reach statistical power in relation to MI size alone and levels of biochemical markers in clinical cardioprotection trials and how scan day affect sample size. Methods and Results Controls (n=90) from the recent CHILL‐MI and MITOCARE trials were included. MI size, MaR, and MSI were assessed from CMR. High‐sensitivity troponin T (hsTnT) and creatine kinase isoenzyme MB (CKMB) levels were assessed in CHILL‐MI patients (n=50). Utilizing distribution of these variables, 100 000 clinical trials were simulated for calculation of sample size required to reach sufficient power. For a treatment effect of 25% decrease in outcome variables, 50 patients were required in each arm using MSI compared to 93, 98, 120, 141, and 143 for MI size alone, hsTnT (area under the curve [AUC] and peak), and CKMB (AUC and peak) in order to reach a power of 90%. If average CMR scan day between treatment and control arms differed by 1 day, sample size needs to be increased by 54% (77 vs 50) to avoid scan day bias masking a treatment effect of 25%. Conclusion Sample size in cardioprotection trials can be reduced 46% to 65% without compromising statistical power when using MSI by CMR as an outcome variable instead of MI size alone or biochemical markers. It is essential to ensure lack of bias in scan day between treatment and control arms to avoid compromising statistical power.
Collapse
Affiliation(s)
- Henrik Engblom
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| | - Einar Heiberg
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Skåne University Hospital and Lund University, Lund, Sweden
| | | | | | | | - Sigrun Halvorsen
- Department of Cardiology B, Oslo University Hospital Ullevål, University of Oslo, Norway Faculty of Medicine, University of Oslo, Norway
| | - Pavel Hoffmann
- Section for Interventional Cardiology, Department of Cardiology, Oslo University Hospital, Ullevål, Norway
| | - Sasha Koul
- Department of Cardiology, Skåne University Hospital and Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| | - Dan Atar
- Department of Cardiology B, Oslo University Hospital Ullevål, University of Oslo, Norway Faculty of Medicine, University of Oslo, Norway
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Wakabayashi H, Taki J, Inaki A, Shiba K, Matsunari I, Kinuya S. Correlation between apoptosis and left ventricular remodeling in subacute phase of myocardial ischemia and reperfusion. EJNMMI Res 2015; 5:72. [PMID: 26660543 PMCID: PMC4674630 DOI: 10.1186/s13550-015-0152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022] Open
Abstract
Background To investigate whether an apoptotic process demonstrated by 99mTc-annexin-V (99mTc-AV) uptake correlates with left ventricular remodeling (LVR) after myocardial infarction, we assessed 99mTc-AV uptake in rat model of myocardial ischemia and reperfusion. Methods The left coronary artery (LCA) of 15 rats was occluded for 20 to 30 min, followed by reperfusion. After 2 weeks, 99mTc-AV was injected, and then 1 h later, 201Tl was injected after reocclusion of the LCA. Dual-tracer autoradiography was performed to assess 99mTc-AV uptake and the area at risk (AAR) by 201Tl defect. 99mTc-AV uptake ratio was calculated by dividing the count density of the AAR by that of the normally perfused area. In short-axis LV slices, LV cavity dilation index (DI) was calculated by dividing the area of LV cavity by that of the whole LV area. LV wall-thinning ratio (WTR) was calculated by dividing the LV wall thickness in the AAR by that of the normally perfused area. Results Significant 99mTc-AV uptake in the AAR was observed in 10 rats. DI was significantly higher in rats with positive 99mTc-AV uptake than in rats without uptake. WTR was smaller in rats with positive 99mTc-AV uptake than in rats without uptake. Conclusions The data suggest 99mTc-AV uptake in injured myocardium might correlate with LVR at 2 weeks after myocardial ischemia and reperfusion.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Ichiro Matsunari
- The Medical and Pharmacological Research Centre Foundation, Wo 32, Inoyama, Hakui, 925-0613, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
34
|
Ipek EG, Nazarian S. Cardiac magnetic resonance for prediction of arrhythmogenic areas. Trends Cardiovasc Med 2015; 25:635-42. [PMID: 25937045 PMCID: PMC4559491 DOI: 10.1016/j.tcm.2015.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
Catheter ablation has been widely used to manage recurrent atrial and ventricular arrhythmias. It has been established that contrast-enhanced magnetic resonance can accurately characterize the myocardium. In this review, we summarize the role of cardiac magnetic resonance in identification of arrhythmogenic substrates, and the potential utility of cardiac magnetic resonance for catheter ablation of complex atrial and ventricular arrhythmias.
Collapse
Affiliation(s)
- Esra Gucuk Ipek
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Saman Nazarian
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
35
|
Saeed M, Van TA, Krug R, Hetts SW, Wilson MW. Cardiac MR imaging: current status and future direction. Cardiovasc Diagn Ther 2015; 5:290-310. [PMID: 26331113 DOI: 10.3978/j.issn.2223-3652.2015.06.07] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Coronary artery disease is currently a worldwide epidemic with increasing impact on healthcare systems. Magnetic resonance imaging (MRI) sequences give complementary information on LV function, regional perfusion, angiogenesis, myocardial viability and orientations of myocytes. T2-weighted short-tau inversion recovery (T2-STIR), fat suppression and black blood sequences have been frequently used for detecting edematous area at risk (AAR) of infarction. T2 mapping, however, indicated that the edematous reaction in acute myocardial infarct (AMI) is not stable and warranted the use of edematous area in evaluating therapies. On the other hand, cine MRI demonstrated reproducible data on LV function in healthy volunteers and LV remodeling in patients. Noninvasive first pass perfusion, using exogenous tracer (gadolinium-based contrast media) and arterial spin labeling MRI, using endogenous tracer (water), are sensitive and useful techniques for evaluating myocardial perfusion and angiogenesis. Recently, new strategies have been developed to quantify myocardial viability using T1-mapping and equilibrium contrast enhanced MR techniques because existing delayed contrast enhancement MRI (DE-MRI) sequences are limited in detecting patchy microinfarct and diffuse fibrosis. These new techniques were successfully used for characterizing diffuse myocardial fibrosis associated with myocarditis, amyloidosis, sarcoidosis heart failure, aortic hypertrophic cardiomyopathy, congenital heart disease, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia and hypertension). Diffusion MRI provides information regarding microscopic tissue structure, while diffusion tensor imaging (DTI) helps to characterize the myocardium and monitor the process of LV remodeling after AMI. Novel trends in hybrid imaging, such as cardiac positron emission tomography (PET)/MRI and optical imaging/MRI, are recently under intensive investigation. With the promise of higher spatial-temporal resolution and 3D coverage in the near future, cardiac MRI will be an indispensible tool in the diagnosis of cardiac diseases, coronary intervention and myocardial therapeutic delivery.
Collapse
Affiliation(s)
- Maythem Saeed
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Tu Anh Van
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Roland Krug
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Steven W Hetts
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Mark W Wilson
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| |
Collapse
|
36
|
Rodríguez-Palomares JF, Ortiz-Pérez JT, Lee DC, Bucciarelli-Ducci C, Tejedor P, Bonow RO, Wu E. Time elapsed after contrast injection is crucial to determine infarct transmurality and myocardial functional recovery after an acute myocardial infarction. J Cardiovasc Magn Reson 2015; 17:43. [PMID: 26024662 PMCID: PMC4449586 DOI: 10.1186/s12968-015-0139-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In acute myocardial infarction (MI), late Gadolinium enhancement (LGE) has been proposed to include the infarcted myocardium and area at risk. However, little information is available on the optimal timing after contrast injection to differentiate these 2 areas. Our aim was to determine in acute and chronic MI whether imaging time after contrast injection influences the LGE size that better predicts infarct size and functional recovery. METHODS Subjects were evaluated by cardiovascular magnetic resonance (CMR) the first week (n = 60) and 3 months (n = 47) after a percutaneously revascularized STEMI. Inversion-recovery single-shot (ss-IR) imaging was acquired at multiple time points following contrast administration and compared to segmented inversion-recovery (seg-IR) sequences. Inversion time was properly adjusted and images were blinded, randomized and measured for LGE volumes. RESULTS In acute MI, LGE volume decreased over several minutes (p = 0.005) with the greatest volume occurring at 3 minutes and the smallest at 25 minutes post-contrast injection; however, LGE volume remained constant over time in chronic MI (p = 0.886). Depending on the imaging time, in acute phase, a change in the transmurality index was also observed. A transmural infarction (>75%) at 25 minutes better predicted the absence of improvement in the wall motion score index (WMSI), a higher increase in left ventricular volumes and a lower ejection fraction compared to 10 minutes. CONCLUSIONS A change was observed in LGE volume in the minutes following contrast administration in acute but not in chronic MI. Infarct transmurality 25 minutes post-contrast injection better predicted infarct size and functional recovery at follow-up.
Collapse
Affiliation(s)
- José F Rodríguez-Palomares
- Department of Cardiology, Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - José T Ortiz-Pérez
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel C Lee
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Departments of Medicine and Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiara Bucciarelli-Ducci
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Bristol Heart Institute, NIHR Bristol Cardiovascular Biomedical Research Unit, University of Bristol, Bristol, UK
| | - Paula Tejedor
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert O Bonow
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edwin Wu
- Department of Medicine, Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Departments of Medicine and Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Hammer-Hansen S, Bandettini WP, Hsu LY, Leung SW, Shanbhag S, Mancini C, Greve AM, Køber L, Thune JJ, Kellman P, Arai AE. Mechanisms for overestimating acute myocardial infarct size with gadolinium-enhanced cardiovascular magnetic resonance imaging in humans: a quantitative and kinetic study. Eur Heart J Cardiovasc Imaging 2015; 17:76-84. [PMID: 25983233 PMCID: PMC4684160 DOI: 10.1093/ehjci/jev123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/16/2015] [Indexed: 12/15/2022] Open
Abstract
Aims It remains controversial whether cardiovascular magnetic resonance imaging with gadolinium only enhances acutely infarcted or also salvaged myocardium. We hypothesized that enhancement of salvaged myocardium may be due to altered extracellular volume (ECV) and contrast kinetics compared with normal and infarcted myocardium. If so, these mechanisms could contribute to overestimation of acute myocardial infarction (AMI) size. Methods and results Imaging was performed at 1.5T ≤ 7 days after AMI with serial T1 mapping and volumetric early (5 min post-contrast) and late (20 min post-contrast) gadolinium enhancement imaging. Infarcts were classified as transmural (>75% transmural extent) or non-transmural. Patients with non-transmural infarctions (n = 15) had shorter duration of symptoms before reperfusion (P = 0.02), lower peak troponin (P = 0.008), and less microvascular obstruction (P < 0.001) than patients with transmural infarcts (n = 22). The size of enhancement at 5 min was greater than at 20 min (18.7 ± 12.7 vs. 12.1 ± 7.0%, P = 0.003) in non-transmural infarctions, but similar in transmural infarctions (23.0 ± 10.0 vs. 21.9 ± 9.9%, P = 0.21). ECV of salvaged myocardium was greater than normal (39.5 ± 5.8 vs. 24.1 ± 3.1%) but less than infarcted myocardium (50.5 ± 6.0%, both P < 0.001). In kinetic studies of non-transmural infarctions, salvaged and infarcted myocardium had similar T1 at 4 min but different T1 at 8–20 min post-contrast. Conclusion The extent of gadolinium enhancement in AMI is modulated by ECV and contrast kinetics. Image acquisition too early after contrast administration resulted in overestimation of infarct size in non-transmural infarctions due to enhancement of salvaged myocardium.
Collapse
Affiliation(s)
- Sophia Hammer-Hansen
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - W Patricia Bandettini
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| | - Li-Yueh Hsu
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| | - Steve W Leung
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA Department of Medicine and Radiology, Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Sujata Shanbhag
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| | - Christine Mancini
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| | - Anders M Greve
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| | - Lars Køber
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Jens Jakob Thune
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Peter Kellman
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, Department of Health and Human Services, National Institutes of Health, Building 10, Room B1D416, MSC 1061, 10 Center Drive, Bethesda, MD 20892-1061, USA
| |
Collapse
|
38
|
Nchimi A, Davin L, Georgiopoulos A, Lancellotti P. Value of cardiac MRI to evaluate ischemia-related ventricular arrhythmia substrates. Expert Rev Cardiovasc Ther 2015; 13:565-76. [DOI: 10.1586/14779072.2015.1030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 2015; 17:29. [PMID: 25928314 PMCID: PMC4403942 DOI: 10.1186/s12968-015-0111-7] [Citation(s) in RCA: 542] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023] Open
Abstract
Morphological and functional parameters such as chamber size and function, aortic diameters and distensibility, flow and T1 and T2* relaxation time can be assessed and quantified by cardiovascular magnetic resonance (CMR). Knowledge of normal values for quantitative CMR is crucial to interpretation of results and to distinguish normal from disease. In this review, we present normal reference values for morphological and functional CMR parameters of the cardiovascular system based on the peer-reviewed literature and current CMR techniques and sequences.
Collapse
Affiliation(s)
- Nadine Kawel-Boehm
- Department of Radiology, Kantonsspital Graubuenden, Loestrasse 170, 7000, Chur, Switzerland.
| | - Alicia Maceira
- Cardiac Imaging Unit, Eresa Medical Center, C/Marqués de San Juan s/n, 46015, Valencia, Spain.
| | | | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, OE 8220, Carl-Neuberg-Str 1, 30625, Hannover, Germany.
| | - Evrim B Turkbey
- Radiology and Imaging Sciences/ Clinical Image Processing Service, Clinical Center, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Rupert Williams
- The Rayne Institute, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre & Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK.
| | - Michael Tee
- Radiology and Imaging Sciences, National Institute of Biomedical Imaging and Bioengineering, 10 Center Drive, Bethesda, MD, 20892-1074, USA.
| | - John Eng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| | - David A Bluemke
- Radiology and Imaging Sciences, National Institute of Biomedical Imaging and Bioengineering, 10 Center Drive, Bethesda, MD, 20892-1074, USA.
| |
Collapse
|
40
|
Wang J, Xiang B, Lin HY, Liu H, Freed D, Arora RC, Tian G. Differential MR delayed enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. PLoS One 2015; 10:e0121326. [PMID: 25816056 PMCID: PMC4376775 DOI: 10.1371/journal.pone.0121326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. MATERIALS AND METHODS Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. RESULTS Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn't significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. CONCLUSIONS Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn't provide delayed enhancement.
Collapse
Affiliation(s)
- Jian Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Street, Wuhan, Hubei, China 430022
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- * E-mail:
| | - Bo Xiang
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
| | - Hung Yu Lin
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
| | - Hongyu Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, China 150081
| | - Darren Freed
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- Cardiac Science Program, Institute of Cardiovascular Science, St. Boniface General Hospital, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Rakesh C. Arora
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- Cardiac Science Program, Institute of Cardiovascular Science, St. Boniface General Hospital, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Ganghong Tian
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
| |
Collapse
|
41
|
Matsumoto H, Matsuda T, Miyamoto K, Shimada T, Ushimaru S, Mikuri M, Yamazaki T. Temporal change of enhancement after gadolinium injection on contrast-enhanced CMR in reperfused acute myocardial infarction. J Cardiol 2015; 65:76-81. [DOI: 10.1016/j.jjcc.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/05/2014] [Accepted: 04/10/2014] [Indexed: 12/01/2022]
|
42
|
Saeed M, Hetts SW, Jablonowski R, Wilson MW. Magnetic resonance imaging and multi-detector computed tomography assessment of extracellular compartment in ischemic and non-ischemic myocardial pathologies. World J Cardiol 2014; 6:1192-1208. [PMID: 25429331 PMCID: PMC4244616 DOI: 10.4330/wjc.v6.i11.1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/15/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Myocardial pathologies are major causes of morbidity and mortality worldwide. Early detection of loss of cellular integrity and expansion in extracellular volume (ECV) in myocardium is critical to initiate effective treatment. The three compartments in healthy myocardium are: intravascular (approximately 10% of tissue volume), interstitium (approximately 15%) and intracellular (approximately 75%). Myocardial cells, fibroblasts and vascular endothelial/smooth muscle cells represent intracellular compartment and the main proteins in the interstitium are types I/III collagens. Microscopic studies have shown that expansion of ECV is an important feature of diffuse physiologic fibrosis (e.g., aging and obesity) and pathologic fibrosis [heart failure, aortic valve disease, hypertrophic cardiomyopathy, myocarditis, dilated cardiomyopathy, amyloidosis, congenital heart disease, aortic stenosis, restrictive cardiomyopathy (hypereosinophilic and idiopathic types), arrythmogenic right ventricular dysplasia and hypertension]. This review addresses recent advances in measuring of ECV in ischemic and non-ischemic myocardial pathologies. Magnetic resonance imaging (MRI) has the ability to characterize tissue proton relaxation times (T1, T2, and T2*). Proton relaxation times reflect the physical and chemical environments of water protons in myocardium. Delayed contrast enhanced-MRI (DE-MRI) and multi-detector computed tomography (DE-MDCT) demonstrated hyper-enhanced infarct, hypo-enhanced microvascular obstruction zone and moderately enhanced peri-infarct zone, but are limited for visualizing diffuse fibrosis and patchy microinfarct despite the increase in ECV. ECV can be measured on equilibrium contrast enhanced MRI/MDCT and MRI longitudinal relaxation time mapping. Equilibrium contrast enhanced MRI/MDCT and MRI T1 mapping is currently used, but at a lower scale, as an alternative to invasive sub-endomyocardial biopsies to eliminate the need for anesthesia, coronary catheterization and possibility of tissue sampling error. Similar to delayed contrast enhancement, equilibrium contrast enhanced MRI/MDCT and T1 mapping is completely noninvasive and may play a specialized role in diagnosis of subclinical and other myocardial pathologies. DE-MRI and when T1-mapping demonstrated sub-epicardium, sub-endocardial and patchy mid-myocardial enhancement in myocarditis, Behcet’s disease and sarcoidosis, respectively. Furthermore, recent studies showed that the combined technique of cine, T2-weighted and DE-MRI technique has high diagnostic accuracy for detecting myocarditis. When the tomographic techniques are coupled with myocardial perfusion and left ventricular function they can provide valuable information on the progression of myocardial pathologies and effectiveness of new therapies.
Collapse
|
43
|
Trayanova NA, Boyle PM, Arevalo HJ, Zahid S. Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach. Front Physiol 2014; 5:435. [PMID: 25429272 PMCID: PMC4228852 DOI: 10.3389/fphys.2014.00435] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 12/19/2022] Open
Abstract
Under diseased conditions, remodeling of the cardiac tissue properties (“passive properties”) takes place; these are aspects of electrophysiological behavior that are not associated with active ion transport across cell membranes. Remodeling of the passive electrophysiological properties most often results from structural remodeling, such as gap junction down-regulation and lateralization, fibrotic growth infiltrating the myocardium, or the development of an infarct scar. Such structural remodeling renders atrial or ventricular tissue as a major substrate for arrhythmias. The current review focuses on these aspects of cardiac arrhythmogenesis. Due to the inherent complexity of cardiac arrhythmias, computer simulations have provided means to elucidate interactions pertinent to this spatial scale. Here we review the current state-of-the-art in modeling atrial and ventricular arrhythmogenesis as arising from the disease-induced changes in the passive tissue properties, as well as the contributions these modeling studies have made to our understanding of the mechanisms of arrhythmias in the heart. Because of the rapid advance of structural imaging methodologies in cardiac electrophysiology, we chose to present studies that have used such imaging methodologies to construct geometrically realistic models of cardiac tissue, or the organ itself, where the regional remodeling properties of the myocardium can be represented in a realistic way. We emphasize how the acquired knowledge can be used to pave the way for clinical applications of cardiac organ modeling under the conditions of structural remodeling.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Patrick M Boyle
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Hermenegild J Arevalo
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Sohail Zahid
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
44
|
Feng Y, Bogaert J, Oyen R, Ni Y. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction. Quant Imaging Med Surg 2014; 4:358-75. [PMID: 25392822 PMCID: PMC4213418 DOI: 10.3978/j.issn.2223-4292.2013.09.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/28/2022]
Abstract
To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuanbo Feng
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan Bogaert
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Raymond Oyen
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Yicheng Ni
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
45
|
Jablonowski R, Wilson MW, Do L, Hetts SW, Saeed M. Multidetector CT measurement of myocardial extracellular volume in acute patchy and contiguous infarction: validation with microscopic measurement. Radiology 2014; 274:370-8. [PMID: 25247406 DOI: 10.1148/radiol.14140131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To provide proof of concept that expansion of myocardial extracellular volume (MECV), measured at contrast material-enhanced multidetector computed tomography (CT), can be used as a (a) marker for viability based on histologic confirmation and (b) predictor of severity of myocardial injury. MATERIALS AND METHODS Animals cared for in compliance with Institutional Animal Care and Use Committee served as controls (group 1, n = 6) or were subjected to microinfarction by using 16-mm(3) (60 000 count) microemboli (group 2) and 32-mm(3) (120 000 count) microemboli (group 3), contiguous infarct with left anterior descending artery (LAD) occlusion followed by reperfusion (group 4), or the combination of LAD occlusion and 32-mm(3) microemboli followed by reperfusion (group 5) (n = 7 per group). MECV calculations were based on regional measurements of signal attenuation at contrast-enhanced multidetector CT and counterstaining of infarct at microscopy. Two-way analysis of variance and Student t tests were used to determine significant differences (P < .05). Data were presented as means ± standard deviations. RESULTS Mean signal attenuation at equilibrium state of contrast media distribution (10 minutes) was significantly different among blood (137 HU ± 10), myocardial muscle (77 HU ± 12, P < .05), and skeletal muscle (35 HU ± 12, P < .05). Patchy microinfarct, contiguous infarct, and microinfarct with preexisting contiguous infarct can be differentiated on the basis of mean MECV (24% ± 3 [group 1] vs 36% ± 3 [group 2], P < .01, and 55% ± 5 [group 4], 56% ± 4 [group 5] vs 41% ± 3 [group 3], P < .05). Microscopy measurements confirmed multidetector CT quantitative measurements and differences in patterns of infarct caused by obstruction of major and minor coronary arteries. Regression analysis revealed excellent correlation between regional MECV using multidetector CT and microscopy (r(2) = 0.92). CONCLUSION Contrast-enhanced multidetector CT is a suitable noninvasive imaging technique for assessing MECV in acute patchy and contiguous infarct caused by obstruction of major and minor coronary vessels.
Collapse
Affiliation(s)
- Robert Jablonowski
- From the Department of Radiology and Biomedical Imaging, School of Medicine, University of California-San Francisco, 185 Berry St, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705
| | | | | | | | | |
Collapse
|
46
|
Engblom H, Aletras AH, Heiberg E, Arheden H, Carlsson M. Quantification of myocardial salvage by myocardial perfusion SPECT and cardiac magnetic resonance — reference standards for ECG development. J Electrocardiol 2014; 47:525-34. [DOI: 10.1016/j.jelectrocard.2014.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Indexed: 01/08/2023]
|
47
|
Jacquier A, Kallifatidis A, Guibert N, Giorgi R, Falque C, Thuny F, Croisille P, Clarysse P, Maurel B, Flavian A, Gaubert JY, Moulin G, Habib G. Assessment of myocardial partition coefficient of gadolinium (λ) in dilated cardiomyopathy and its impact on segmental and global systolic function. J Magn Reson Imaging 2013; 40:1336-41. [DOI: 10.1002/jmri.24515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/03/2013] [Indexed: 11/11/2022] Open
Affiliation(s)
- Alexis Jacquier
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM); UMR CNRS n° 6612, Aix Marseille Université, Faculté de Médecine de Marseille Marseille France
| | - Alexandros Kallifatidis
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Nicolas Guibert
- APHM, hôpital Timone, Service de Santé Publique et d'Information Médicale; Marseille France
| | - Roch Giorgi
- APHM, hôpital Timone, Service de Santé Publique et d'Information Médicale; Marseille France
- Department of Cardiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
- INSERM; UMR_S 912 (SESSTIM) Marseille France
| | - Claire Falque
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Franck Thuny
- Department of Cardiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Pierre Croisille
- CREATIS; Université de Lyon; CNRS UMR 5220, Inserm U630; INSA Lyon, Hospice civils de Lyon France
| | - Patrick Clarysse
- CREATIS; Université de Lyon; CNRS UMR 5220, Inserm U630; INSA Lyon, Hospice civils de Lyon France
| | - Boris Maurel
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Antonin Flavian
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Jean-Yves Gaubert
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Guy Moulin
- Department of Radiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| | - Gilbert Habib
- Department of Cardiology; Aix Marseille Université, Hôpital Universitaire la Timone; Marseille France
| |
Collapse
|
48
|
Arevalo H, Plank G, Helm P, Halperin H, Trayanova N. Tachycardia in post-infarction hearts: insights from 3D image-based ventricular models. PLoS One 2013; 8:e68872. [PMID: 23844245 PMCID: PMC3699514 DOI: 10.1371/journal.pone.0068872] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/02/2013] [Indexed: 02/01/2023] Open
Abstract
Ventricular tachycardia, a life-threatening regular and repetitive fast heart rhythm, frequently occurs in the setting of myocardial infarction. Recently, the peri-infarct zones surrounding the necrotic scar (termed gray zones) have been shown to correlate with ventricular tachycardia inducibility. However, it remains unknown how the latter is determined by gray zone distribution and size. The goal of this study is to examine how tachycardia circuits are maintained in the infarcted heart and to explore the relationship between the tachycardia organizing centers and the infarct gray zone size and degree of heterogeneity. To achieve the goals of the study, we employ a sophisticated high-resolution electrophysiological model of the infarcted canine ventricles reconstructed from imaging data, representing both scar and gray zone. The baseline canine ventricular model was also used to generate additional ventricular models with different gray zone sizes, as well as models in which the gray zone was represented as different heterogeneous combinations of viable tissue and necrotic scar. The results of the tachycardia induction simulations with a number of high-resolution canine ventricular models (22 altogether) demonstrated that the gray zone was the critical factor resulting in arrhythmia induction and maintenance. In all models with inducible arrhythmia, the scroll-wave filaments were contained entirely within the gray zone, regardless of its size or the level of heterogeneity of its composition. The gray zone was thus found to be the arrhythmogenic substrate that promoted wavebreak and reentry formation. We found that the scroll-wave filament locations were insensitive to the structural composition of the gray zone and were determined predominantly by the gray zone morphology and size. The findings of this study have important implications for the advancement of improved criteria for stratifying arrhythmia risk in post-infarction patients and for the development of new approaches for determining the ablation targets of infarct-related tachycardia.
Collapse
Affiliation(s)
- Hermenegild Arevalo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Patrick Helm
- Medtronic Inc., Minneapolis, Minnesota, United States of America
| | - Henry Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bravo PE, Zimmerman SL, Luo HC, Pozios I, Rajaram M, Pinheiro A, Steenbergen C, Kamel IR, Wahl RL, Bluemke DA, Bengel FM, Abraham MR, Abraham TP. Relationship of delayed enhancement by magnetic resonance to myocardial perfusion by positron emission tomography in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 2013; 6:210-7. [PMID: 23418294 DOI: 10.1161/circimaging.112.000110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Presence of delayed enhancement (DE) on cardiac magnetic resonance (CMR) is associated with worse clinical outcomes in hypertrophic cardiomyopathy. We investigated the relationship between DE on CMR and myocardial ischemia in hypertrophic cardiomyopathy. METHODS AND RESULTS Hypertrophic cardiomyopathy patients (n=47) underwent CMR for assessment of DE and vasodilator stress ammonia positron emission tomography to quantify myocardial blood flow and coronary flow reserve. The summed difference score for regional myocardial perfusion was also assessed. Patients in the DE group (n=35) had greater left ventricular wall thickness (2.09±0.44 versus 1.78±0.34 cm; P=0.03). Stress myocardial blood flow (2.25±0.46 versus 1.78±0.43 mL/min per gram; P=0.01) and coronary flow reserve (2.78±0.32 versus 2.01±0.52; P<0.001) were significantly lower in DE-positive patients. Summed difference score (7.3±6.6 versus 0.9±1.4; P<0.0001) was significantly higher in patients with DE. A coronary flow reserve <2.00 was seen in 18 patients (51%) with DE but in none of the DE-negative patients (P<0.0001). CMR and positron emission tomography showed visually concordant DE and regional myocardial perfusion abnormalities in 31 patients and absence of DE and perfusion defects in 9 patients. Four DE-positive patients demonstrated normal regional myocardial perfusion, and 3 DE-negative patients had (apical) regional myocardial perfusion abnormalities. CONCLUSIONS We found a close relationship between DE by CMR and microvascular function in most of the patients studied. However, a small proportion of patients had DE in the absence of perfusion abnormalities, suggesting that microvascular dysfunction and ischemia are not the sole causes of DE in hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- Paco E Bravo
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawel N, Nacif M, Santini F, Liu S, Bremerich J, Arai AE, Bluemke DA. Partition coefficients for gadolinium chelates in the normal myocardium: comparison of gadopentetate dimeglumine and gadobenate dimeglumine. J Magn Reson Imaging 2012; 36:733-7. [PMID: 22488770 PMCID: PMC3396792 DOI: 10.1002/jmri.23651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 02/29/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the influence of contrast agents with different relaxivity on the partition coefficient (λ) and timing of equilibration using a modified Look-Locker inversion recovery (MOLLI) sequence in cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS MOLLI was acquired in 20 healthy subjects (1.5T) at the mid-ventricular short axis precontrast and 5, 10, 20, 25, and 30 minutes after administration of a bolus of 0.15 mmol/kg gadobenate dimeglumine (Gd-BOPTA) (n = 10) or gadopentetate dimeglumine (Gd-DTPA) (n = 10). T1 times were measured in myocardium and blood pool. λ was approximated by ΔR1(myocardium) /ΔR1(blood) . Values for Gd-BOPTA and Gd-DTPA were compared. Interobserver agreement was evaluated (intraclass correlation coefficient [ICC]). RESULTS T1 times of myocardium and blood pool (P < 0.001) and λ (0.42 ± 0.03 and 0.47 ± 0.04, respectively, P < 0.001; excluding 5 minutes for Gd-BOPTA) were significantly lower for Gd-BOPTA than Gd-DTPA. The λ((Gd-DTPA)) showed no significant variation between 5 and 30 minutes. The λ((Gd-BOPTA)) values were significantly lower at 5 minutes compared to other times (0.38 vs. 0.42; P < 0.05). Interobserver agreement for λ values was excellent with Gd-BOPTA (ICC = 0.818) and good for Gd-DTPA (ICC = 0.631). CONCLUSION The λ((Gd-BOPTA)) values were significantly lower compared to λ((Gd-DTPA)) at the same administered dose. Using Gd-BOPTA, the equilibrium between myocardium and blood pool was not achieved at 5 minutes postcontrast.
Collapse
Affiliation(s)
- Nadine Kawel
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marcelo Nacif
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Santini
- Department of Radiological Physics, University Hospital Basel, Basel, Switzerland
| | - Songtao Liu
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
- Molecular Biomediacal Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Jens Bremerich
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Andrew E. Arai
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A. Bluemke
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
- Molecular Biomediacal Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| |
Collapse
|