1
|
Fischer M, Tamariz‐Ellemann A, Egelund J, Rytter N, Hellsten Y, Gliemann L. Tipping the scale: Effects of physical activity and body composition on cardiac parameters in postmenopausal females. Physiol Rep 2024; 12:e70144. [PMID: 39609943 PMCID: PMC11604573 DOI: 10.14814/phy2.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
The risk of cardiovascular disease increases significantly after menopause. We sought to assess the impact of different activity levels on cardiac structure and function in postmenopausal women. We grouped age-similar, postmenopausal women by self-reported physical activity levels over two decades. The study involved 34 women (age 61 ± 1 years; 11 ± 2 postmenopausal years; body mass index 23 ± 3 kg/m2) categorized into three activity tiers: sedentary (SED; ≤1 h exercise weekly; n = 9); moderately active (MOD; ≥2 ≤6 h low/moderate intensity exercise weekly; n = 11) and highly active (HIGH; >4 h of moderate/high intensity exercise weekly; n = 14). Maximum oxygen uptake (VO2max) differed significantly (p < 0.05) between the groups (24.9 ± 5.8; 30.5 ± 5.8; 38.4 ± 4.4 mL O2/kg/min; SED, MOD and HIGH respectively). Conversely, there were no differences (p > 0.05) in height, Total fat-free mass, body surface area or in echocardiographic measures of left ventricular (LV) morphology, systolic function, diastolic function and right ventricular function. Contrary to our hypothesis, these findings reveal that marked differences in activity level and VO2max are not reflected in measures of LV morphology or echocardiographic indicators of cardiac diastolic or systolic function in postmenopausal women of similar body size.
Collapse
Affiliation(s)
- Mads Fischer
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagen ØDenmark
| | | | - Jon Egelund
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagen ØDenmark
| | - Nicolai Rytter
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagen ØDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagen ØDenmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagen ØDenmark
| |
Collapse
|
2
|
Wakeham DJ, Hearon CM, Levine BD. The effect of chronic habitual exercise on oxygen carrying capacity and blood compartment volumes in older adults. J Appl Physiol (1985) 2024; 136:984-993. [PMID: 38420680 PMCID: PMC11305637 DOI: 10.1152/japplphysiol.00706.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Absolute total hemoglobin mass (tHbmass) and blood compartment volumes are often considered to be higher in endurance athletes compared with nonathletes, yet little data support a fitness effect in older age. Therefore, we measured tHbmass and blood compartment volumes (carbon monoxide rebreathing) in 77 healthy individuals (23% female; aged, 60-87 yr). Participants were recruited into groups based upon their lifelong (>25 yr) exercise "dose": 1) 15 sedentary individuals, <2 sessions/wk; 2) 25 casual exercisers, 2-3 sessions/wk; 3) 24 committed exercisers, 4-5 sessions/wk; and 4) 13 competitive Masters athletes, 6-7 sessions/wk, plus regular competitions. Absolute (L/min) and relative (mL/kg/min) V̇o2peak were higher with increasing exercise "dose" (P = 0.0005 and P < 0.0001, respectively). Hemoglobin concentration, hematocrit, and absolute tHbmass and blood compartment volumes were not significantly different between groups (all, P > 0.1328). When scaled to body mass, tHbmass (Sedentary, 9.2 ± 1.7 mL/kg; Casual, 9.2 ± 1.3; Committed, 10.2 ± 1.4; Competitive, 11.5 ± 1.4, ANOVA P < 0.0001) and blood volume were significantly different between groups [Sedentary, 63.4 (59.2-68.5) mL/kg; Casual, 67.3 (64.4-72.6); Committed, 73.5 (67.5-80.2); Competitive, 83.4 (78.9-88.6), ANOVA P < 0.0001], whereby all values were highest in Masters athletes. However, when scaled to fat-free mass (FFM), tHbmass and blood compartment volumes were greater in Competitive compared with Casual exercisers (all, P < 0.0340) and tHbmass and erythrocyte volume were also higher in Committed compared with Casual exercisers (both, P < 0.0134). In conclusion, absolute tHbmass and blood compartment volumes are not different between groups, with dose-dependent differences only among exercisers when scaled for FFM, with the highest tHbmass and blood compartment volumes in competitive Masters athletes.NEW & NOTEWORTHY We observed that absolute oxygen carrying capacity (total hemoglobin mass, tHbmass) and blood compartment volumes were not associated with lifelong exercise dose. However, hematological adaptations associated with lifelong habitual exercise are only present among exercisers, whereby competitive Masters athletes have a greater oxygen carrying capacity (tHbmass) and expanded blood compartment volumes when scaled to fat-free mass.
Collapse
Affiliation(s)
- Denis J Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
3
|
D'Souza AW, Yoo JK, Bhai S, Sarma S, Anderson EH, Levine BD, Fu Q. Attenuated peripheral oxygen extraction and greater cardiac output in women with posttraumatic stress disorder during exercise. J Appl Physiol (1985) 2024; 136:141-150. [PMID: 38031720 PMCID: PMC11219012 DOI: 10.1152/japplphysiol.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with an increased risk of developing cardiovascular disease, especially in women. Evidence indicates that men with PTSD exhibit lower maximal oxygen uptake (V̇o2max) relative to controls; however, whether V̇o2max is blunted in women with PTSD remains unknown. Furthermore, it is unclear what determinants (i.e., central and/or peripheral) of V̇o2max are impacted by PTSD. Therefore, we evaluated the central (i.e., cardiac output; Q̇c) and peripheral (i.e., arteriovenous oxygen difference) determinants of V̇o2max in women with PTSD; hypothesizing that V̇o2max would be lower in women with PTSD compared with women without PTSD (controls), primarily due to smaller increases in stroke volume (SV), and therefore Q̇c. Oxygen uptake (V̇o2), heart rate (HR), Q̇c, SV, and arteriovenous oxygen difference were measured in women with PTSD (n = 14; mean [SD]: 43 [11] yr,) and controls (n = 17; 45 [11] yr) at rest, and during an incremental maximal treadmill exercise test, and the Q̇c/V̇o2 slope was calculated. V̇o2max was not different between women with and without PTSD (24.3 [5.6] vs. 26.4 [5.0] mL/kg/min; P = 0.265). However, women with PTSD had higher Q̇c [P = 0.002; primarily due to greater SV (P = 0.069), not HR (P = 0.285)], and lower arteriovenous oxygen difference (P = 0.002) throughout exercise compared with controls. Furthermore, the Q̇c/V̇o2 slope was steeper in women with PTSD relative to controls (6.6 [1.4] vs. 5.7 [1.0] AU; P = 0.033). Following maximal exercise, women with PTSD exhibited slower HR recovery than controls (P = 0.046). Thus, despite attenuated peripheral oxygen extraction, V̇o2max is not reduced in women with PTSD, likely due to larger increases in Q̇c.NEW & NOTEWORTHY The current study indicates that V̇o2max is not different between women with and without PTSD; however, women with PTSD exhibit blunted peripheral extraction of oxygen, thus requiring an increase in Q̇c to meet metabolic demand during exercise. Furthermore, following exercise, women with PTSD demonstrate impaired autonomic cardiovascular control relative to sedentary controls. We interpret these data to indicate that women with PTSD demonstrate aberrant cardiovascular responses during and immediately following fatiguing exercise.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Salman Bhai
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Elizabeth H Anderson
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Veterans Affairs North Texas Health Care System, Dallas, Texas, United States
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
4
|
Huynh E, Wiley E, Noguchi KS, Fang H, Beauchamp MK, MacDonald MJ, Tang A. The effects of aerobic exercise on cardiometabolic health in postmenopausal females: A systematic review and meta-analysis of randomized controlled trials. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057241290889. [PMID: 39431435 PMCID: PMC11503877 DOI: 10.1177/17455057241290889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND After menopause, reductions in ovarian hormones increase the risk of cardiovascular disease. Aerobic exercise training has been shown to reduce cardiovascular risk in older adults, but its effectiveness in postmenopausal females is less definitive. OBJECTIVES The objectives of this study were to examine the: (1) effects of aerobic training, and (2) association between aerobic training intensity and cardiometabolic health outcomes in postmenopausal females. DESIGN Systematic review and meta-analysis of randomized controlled trials. DATA SOURCES AND METHODS Six electronic databases were searched from inception to July 21, 2023 for aerobic training interventions reporting cardiometabolic outcomes in postmenopausal females. Data were synthesized qualitatively and random-effects meta-analyses and subgroup analyses (light, moderate, and vigorous intensity) were performed. Grading of Recommendations, Assessment, Development and Evaluation was used to assess the certainty of evidence. RESULTS Fifty-nine studies (n = 4,225; 45-78 years old) were identified, 53 (n = 3,821) were included in the quantitative analyses. Aerobic training interventions varied in frequency (3-21×/week), intensity, type, time (8-60 min/session), and duration (3-52 weeks). Aerobic training improved systolic blood pressure (mean difference (MD) = -4.41 mmHg, 95% confidence interval (95%CI) [-7.29, -1.52], p = 0.01), resting heart rate (MD = -3.08 bpm, 95%CI [-5.11, -1.05], p < 0.01), body mass index (BMI, MD = -0.65 kg/m2, 95%CI [-0.99, -0.31], p < 0.01), waist circumference (MD = -2.03 cm, 95%CI [-2.65, -1.41], p < 0.01), body fat (MD = -2.57 kg, 95%CI [-3.65, -1.49], p < 0.01), low-density lipoprotein cholesterol (MD = -10.46 mg/dL, 95%CI [-16.31, -4.61], p < 0.01), high-density lipoprotein cholesterol (MD = 3.28 mg/dL, 95%CI [0.20, 6.36], p = 0.04) and cardiorespiratory fitness (standardized MD = 1.38, 95%CI [1.13, 1.64], p < 0.01). There was a very low certainty of evidence for all outcomes. In subgroup analyses, light- and vigorous intensities were beneficial for BMI with no effect for moderate-intensity exercise (p < 0.01). Light intensity showed a beneficial effect (p = 0.02) for glucose levels (p < 0.01) and triglycerides; there was no effect with moderate or vigorous intensities. CONCLUSION Aerobic training may improve cardiometabolic health outcomes in postmenopausal females. There may be differential effects of exercise intensity on BMI, blood triglycerides, and blood glucose; however, this warrants further investigation. REGISTRATION PROSPERO-CRD42022313350.
Collapse
Affiliation(s)
- Eric Huynh
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Elise Wiley
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Kenneth S Noguchi
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Hanna Fang
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Marla K Beauchamp
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | | | - Ada Tang
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Carrick-Ranson G, Howden EJ, Brazile TL, Levine BD, Reading SA. Effects of aging and endurance exercise training on cardiorespiratory fitness and cardiac structure and function in healthy midlife and older women. J Appl Physiol (1985) 2023; 135:1215-1235. [PMID: 37855034 PMCID: PMC11918309 DOI: 10.1152/japplphysiol.00798.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in women in developed societies. Unfavorable structural and functional adaptations within the heart and central blood vessels with sedentary aging in women can act as the substrate for the development of debilitating CVD conditions such as heart failure with preserved ejection fraction (HFpEF). The large decline in cardiorespiratory fitness, as indicated by maximal or peak oxygen uptake (V̇o2max and V̇o2peak, respectively), that occurs in women as they age significantly affects their health and chronic disease status, as well as the risk of cardiovascular and all-cause mortality. Midlife and older women who have performed structured endurance exercise training for several years or decades of their adult lives exhibit a V̇o2max and cardiac and vascular structure and function that are on par or even superior to much younger sedentary women. Therefore, regular endurance exercise training appears to be an effective preventative strategy for mitigating the adverse physiological cardiovascular adaptations associated with sedentary aging in women. Herein, we narratively describe the aging and short- and long-term endurance exercise training adaptations in V̇o2max, cardiac structure, and left ventricular systolic and diastolic function at rest and exercise in midlife and older women. The role of circulating estrogens on cardiac structure and function is described for consideration in the timing of exercise interventions to maximize beneficial adaptations. Current research gaps and potential areas for future investigation to advance our understanding in this critical knowledge area are highlighted.
Collapse
Affiliation(s)
- Graeme Carrick-Ranson
- Department of Surgery, the University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, the University of Auckland, Auckland, New Zealand
| | - Erin J Howden
- Human Integrative Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tiffany L Brazile
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Stacey A Reading
- Department of Exercise Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Hunter SK, S Angadi S, Bhargava A, Harper J, Hirschberg AL, D Levine B, L Moreau K, J Nokoff N, Stachenfeld NS, Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:2328-2360. [PMID: 37772882 DOI: 10.1249/mss.0000000000003300] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Biological sex is a primary determinant of athletic performance because of fundamental sex differences in anatomy and physiology dictated by sex chromosomes and sex hormones. Adult men are typically stronger, more powerful, and faster than women of similar age and training status. Thus, for athletic events and sports relying on endurance, muscle strength, speed, and power, males typically outperform females by 10%-30% depending on the requirements of the event. These sex differences in performance emerge with the onset of puberty and coincide with the increase in endogenous sex steroid hormones, in particular testosterone in males, which increases 30-fold by adulthood, but remains low in females. The primary goal of this consensus statement is to provide the latest scientific knowledge and mechanisms for the sex differences in athletic performance. This review highlights the differences in anatomy and physiology between males and females that are primary determinants of the sex differences in athletic performance and in response to exercise training, and the role of sex steroid hormones (particularly testosterone and estradiol). We also identify historical and nonphysiological factors that influence the sex differences in performance. Finally, we identify gaps in the knowledge of sex differences in athletic performance and the underlying mechanisms, providing substantial opportunities for high-impact studies. A major step toward closing the knowledge gap is to include more and equitable numbers of women to that of men in mechanistic studies that determine any of the sex differences in response to an acute bout of exercise, exercise training, and athletic performance.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic and Human Performance Center, Marquette University, Milwaukee, WI
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Joanna Harper
- Loughborough University, Loughborough, UNITED KINGDOM
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, SWEDEN
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, CO
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Stéphane Bermon
- Health and Science Department, World Athletics, Monaco and the LAMHESS, University Côte d'Azur, Nice, FRANCE
| |
Collapse
|
7
|
Foulkes SJ, Howden EJ, Dillon HT, Janssens K, Beaudry R, Mitchell AM, Lindqvist A, Wallace I, Wright L, Costello BT, Claessen G, Haykowsky MJ, La Gerche A. Too Little of a Good Thing: Strong Associations Between Cardiac Size and Fitness Among Women. JACC Cardiovasc Imaging 2023; 16:768-778. [PMID: 36881424 DOI: 10.1016/j.jcmg.2022.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Cardiorespiratory fitness (CRF) is associated with functional impairment and cardiac events, particularly heart failure (HF). However, the factors predisposing women to low CRF and HF remain unclear. OBJECTIVES This study sought to evaluate the association between CRF and measures of ventricular size and function and to examine the potential mechanism linking these factors. METHODS A total of 185 healthy women aged >30 years (51 ± 9 years) underwent assessment of CRF (peak volume of oxygen uptake [Vo2peak]) and biventricular volumes at rest and during exercise by using cardiac magnetic resonance (CMR). The relationships among Vo2peak, cardiac volumes, and echocardiographic measures of systolic and diastolic function were assessed using linear regression. The effect of cardiac size on cardiac reserve (change in cardiac function during exercise) was assessed by comparing quartiles of resting left ventricular end-diastolic volume (LVEDV). RESULTS Vo2peak was strongly associated with resting measures of LVEDV and right ventricular end-diastolic volume (R2 = 0.58-0.63; P < 0.0001), but weakly associated with measures of resting left ventricular (LV) systolic and diastolic function (R2 = 0.01-0.06; P < 0.05). Increasing LVEDV quartiles were positively associated with cardiac reserve, with the smallest quartile showing the smallest reduction in LV end-systolic volume (quartile [Q]1: -4 mL vs Q4: -12 mL), smallest augmentation in LV stroke volume (Q1: +11 mL vs Q4: +20 mL) and cardiac output (Q1: +6.6 L/min vs Q4: +10.3 L/min) during exercise (interaction P < 0.001 for all). CONCLUSIONS A small ventricle is strongly associated with low CRF because of the combined effect of a smaller resting stroke volume and an attenuated capacity to increase with exercise. The prognostic implications of low CRF in midlife highlight the need for further longitudinal studies to determine whether women with small ventricles are predisposed to functional impairment, exertional intolerance, and HF later in life.
Collapse
Affiliation(s)
- Stephen J Foulkes
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Erin J Howden
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley T Dillon
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kristel Janssens
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rhys Beaudry
- Faculty of Medicine and Dentistry, College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M Mitchell
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Imogen Wallace
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Leah Wright
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Benedict T Costello
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Guido Claessen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Mark J Haykowsky
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - André La Gerche
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Wang Y, Guo X, Wang H, Chen Y, Xu N, Xie M, Wong DWC, Lam WK. Training and retention effects of paced and music-synchronised walking exercises on pre-older females: an interventional study. BMC Geriatr 2022; 22:895. [PMID: 36424532 PMCID: PMC9685952 DOI: 10.1186/s12877-022-03598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Physical activity at pre-older ages (55-64 years) can greatly affect one's physical fitness, health, physical-activity behaviour, and quality of life at older ages. The objective of this study was to conduct a 24-week walking-exercise programme among sedentary pre-older females and investigate the influence of different walking cadences on cardiorespiratory fitness and associated biomarkers. METHODS A total of 78 pre-older sedentary female participants were recruited and randomly assigned to normal (n = 36), paced (n = 15), music-synchronised (n = 15) walking, and no-exercise control (n = 12) groups, respectively. The normal, paced, and music-synchronised walking groups walked at a cadence of 120 steps/min, 125 steps/min, and 120-128 steps/min, respectively, under supervised conditions. Anthropometric characteristics, step length, nutrient intake, blood pressure and composition, and cardiorespiratory fitness were measured at baseline, the 12th week of the programme, the 24th week of the programme (completion), and after a 12-week retention period, which began immediately upon completion of the programme and did not feature any supervised exercises. RESULTS All walking conditions improved high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, step length, maximum oxygen consumption (VO2max), and oxidative capacity at anaerobic threshold (all P < 0.001); however, after the 12-week retention period only the training effects of HDL-C (P < 0.05) and VO2max (P < 0.05) remained robust. Additionally, music-synchronised walking was found to reduce the fat ratio (P = 0.031), while paced walking was found to reduce body mass (P = 0.049). CONCLUSIONS The significant pre-post changes in health-related outcomes across the 24-week walking intervention, including improved blood composition, longer step length, and better cardiorespiratory capacity, show that this intervention is promising for improving health and fitness. When, during the retention period, the participants resumed their usual lifestyles without supervised exercise, most physiological biomarkers deteriorated. Thus, for sedentary middle-aged females, persistent behavioural change is necessary to retain the health benefits of physical exercise.
Collapse
Affiliation(s)
- Yi Wang
- Department of Physical Education, Renmin University of China, Beijing, China
- Sports and Social Development Research Center, Renmin University of China, Beijing, China
| | - Xian Guo
- Sport Science School, Beijing Sport University, Beijing, China
| | - Hongchu Wang
- School of Mathematical Sciences, South China Normal University, Guangzhou, China
| | - Yinru Chen
- College of Education, Beijing Sport University, Beijing, China
| | - Naxin Xu
- Sport Science School, Beijing Sport University, Beijing, China
| | - Minghao Xie
- National Institute of Sports Medicine, Beijing, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Wing-Kai Lam
- Sports Information and External Affairs Centre, Hong Kong Sports Institute, Shatin, Hong Kong, China.
| |
Collapse
|
9
|
Schmitt EE, McNair BD, Polson SM, Cook RF, Bruns DR. Mechanisms of Exercise-Induced Cardiac Remodeling Differ Between Young and Aged Hearts. Exerc Sport Sci Rev 2022; 50:137-144. [PMID: 35522248 PMCID: PMC9203913 DOI: 10.1249/jes.0000000000000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging induces physiological and molecular changes in the heart that increase the risk for heart disease. Several of these changes are targetable by exercise. We hypothesize that the mechanisms by which exercise improves cardiac function in the aged heart differ from those in the young exercised heart.
Collapse
Affiliation(s)
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Sydney M Polson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | | |
Collapse
|
10
|
Nyberg M, Jones AM. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front Physiol 2022; 13:898395. [PMID: 35774284 PMCID: PMC9237395 DOI: 10.3389/fphys.2022.898395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the most dynamic metabolic organs as evidenced by increases in metabolic rate of >150-fold from rest to maximal contractile activity. Because of limited intracellular stores of ATP, activation of metabolic pathways is required to maintain the necessary rates of ATP re-synthesis during sustained contractions. During the very early phase, phosphocreatine hydrolysis and anaerobic glycolysis prevails but as activity extends beyond ∼1 min, oxidative phosphorylation becomes the major ATP-generating pathway. Oxidative metabolism of macronutrients is highly dependent on the cardiovascular system to deliver O2 to the contracting muscle fibres, which is ensured through a tight coupling between skeletal muscle O2 utilization and O2 delivery. However, to what extent O2 delivery is ideal in terms of enabling optimal metabolic and contractile function is context-dependent and determined by a complex interaction of several regulatory systems. The first part of the review focuses on local and systemic mechanisms involved in the regulation of O2 delivery and how integration of these influences the matching of skeletal muscle O2 demand and O2 delivery. In the second part, alterations in cardiovascular function and structure associated with aging and heart failure, and how these impact metabolic and contractile function, will be addressed. Where applicable, the potential of exercise training to offset/reverse age- and disease-related cardiovascular declines will be highlighted in the context of skeletal muscle metabolic function. The review focuses on human data but also covers animal observations.
Collapse
Affiliation(s)
- Michael Nyberg
- Vascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- *Correspondence: Michael Nyberg,
| | - Andrew M. Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Kim S, Yi D, Yim J. The Effect of Core Exercise Using Online Videoconferencing Platform and Offline-Based Intervention in Postpartum Woman with Diastasis Recti Abdominis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127031. [PMID: 35742279 PMCID: PMC9222342 DOI: 10.3390/ijerph19127031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
To investigate the efficacy of exercise intervention using a real-time video conferencing platform (ZOOM) on inter-recti distance, abdominal muscle thickness, static trunk endurance, and maternal quality of life, 37 women with diastasis recti between six months and one year postpartum were randomly divided into the online (n = 19) and offline (n = 18) groups. The online group underwent 40-min trunk stabilization exercise sessions twice a week for six weeks, through a real-time video conference platform, while the offline group attended the same program in person. The inter-recti distance and muscle thickness between the abdominal muscles were measured by rehabilitation ultrasound imaging, the Torso endurance test was used to compare the static trunk endurance, and the maternal quality of life questionnaire (MAPP-QOL, score) was applied. Significant improvements were observed in the inter-recti distance between the rectus abdominis, abdominal muscle thickness, static trunk endurance, and maternal quality of life in both groups (p < 0.001); a more significant improvement was observed in the offline group. No significant differences were observed between groups except for the left rectus abdominis thickness and Psychological/Baby and Relational/Spouse-Partner subscale in the maternal quality of life index (p > 0.05). Exercise interventions delivered in a real-time videoconferencing platform are effective at improving the inter-recti distance, trunk stability, and quality of life in postpartum women and may be an alternate to face-to-face intervention.
Collapse
Affiliation(s)
- Seohee Kim
- Department of Physical Therapy, Graduate School, Sahmyook University, Seoul 01795, Korea;
| | - Donghyun Yi
- Institute of Active Aging, Sahmyook University, Seoul 01795, Korea;
| | - Jongeun Yim
- Institute of Active Aging, Sahmyook University, Seoul 01795, Korea;
- Department of Physical Therapy, Sahmyook University, Seoul 01795, Korea
- Correspondence: ; Tel.: +82-2-3399-1635
| |
Collapse
|
12
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Abstract
The Exercise Boom of the 1970's resulted in the adoption of habitual exercise in a significant portion of the population. Many of these individuals are defying the cultural norms by remaining physically active and competing at a high level in their later years. The juxtaposition between masters athletes and non-exercisers demonstrate the importance of remaining physically active throughout the lifespan on physiological systems related to healthspan (years of healthy living). This includes ~50% improved maximal aerobic capacity (VO2max) and enhanced skeletal muscle health (size, function, as well as metabolic and communicative properties) compared to non-exercisers at a similar age. By taking a reductionist approach to VO2max and skeletal muscle health, we can gain insight into how aging and habitual exercise affects the aging process. Collectively, this review provides a physiological basis for the elite performances seen in masters athletes, as well as the health implications of lifelong exercise with a focus on VO2max, skeletal muscle metabolic fitness, whole muscle size and function, single muscle fiber physiology, and communicative properties of skeletal muscle. This review has significant public health implications due to the potent health benefits of habitual exercise across the lifespan.
Collapse
Affiliation(s)
- Kevin J Gries
- Exercise and Sports Science, Marian University, Indianapolis, United States
| | - S W Trappe
- Human Performance Laboratory, Ball State University, Muncie, United States
| |
Collapse
|
14
|
Marsh CE, Thomas HJ, Naylor LH, Dembo LG, Green DJ. Sex Differences in Cardiac Adaptation to Distinct Modalities of Exercise: A Cardiac Magnetic Resonance Study. Med Sci Sports Exerc 2021; 53:2543-2552. [PMID: 34138817 DOI: 10.1249/mss.0000000000002729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE No previous study has described sex differences in chronic cardiac adaptation in response to distinct modalities of exercise training in humans. METHODS Cardiac magnetic resonance imaging (1.5 T) was used to assess left ventricular (LV) outcomes in 78 untrained subjects (46F, 26 M; 26.1 ± 5.4 yr). Subjects underwent 3 months of closely supervised and monitored resistance (RES) and endurance (END) training, separated by a 3-month washout period. RESULTS LV mass (LVM) increased in response to END in both sexes (females △3.98 ± 7.98 g, P = 0.002; males △5.99 ± 10.67 g, P = 0.005), whereas LV end-diastolic volume (EDV) increased in males (△7.48 ± 11.91 mL, P = 0.002) but not females (△1.54 ± 10.49 mL, P = 0.373). In response to RES, LVM and EDV did not increase in either sex. The proportion of subjects exhibiting a positive response to training (i.e., a change >0) for LVM and EDV did not differ between sexes for either training modality. CONCLUSION Eccentric hypertrophy in response to END training was more apparent in males than females, whereas there were no notable cardiac changes between sexes for RES training. The proportion of low versus high responders to training was not sex specific for LVM or EDV in response to either commonly prescribed exercise training modality.
Collapse
Affiliation(s)
- Channa E Marsh
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, AUSTRALIA
| | - Hannah J Thomas
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, AUSTRALIA
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, AUSTRALIA
| | | | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, AUSTRALIA
| |
Collapse
|
15
|
Carrick-Ranson G, Howden EJ, Levine BD. Exercise in Octogenarians: How Much Is Too Little? Annu Rev Med 2021; 73:377-391. [PMID: 34794323 DOI: 10.1146/annurev-med-070119-115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The global population is rapidly aging, with predictions of many more people living beyond 85 years. Age-related physiological adaptations predispose to decrements in physical function and functional capacity, the rate of which can be accelerated by chronic disease and prolonged physical inactivity. Decrements in physical function exacerbate the risk of chronic disease, disability, dependency, and frailty with advancing age. Regular exercise positively influences health status, physical function, and disease risk in adults of all ages. Herein, we review the role of structured exercise training in the oldest old on cardiorespiratory fitness and muscular strength and power, attributes critical for physical function, mobility, and independent living. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graeme Carrick-Ranson
- Surgical and Translational Research (STaR) Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Erin J Howden
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004 Australia
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, and the University of Texas Southwestern Medical Center, Dallas, Texas 75213, USA;
| |
Collapse
|
16
|
Henrique PPB, Perez FMP, Becker OHC, Bellei EA, Biduski D, Korb A, Pochmann D, Dani C, Elsner VR, De Marchi ACB. Kinesiotherapy With Exergaming as a Potential Modulator of Epigenetic Marks and Clinical Functional Variables of Older Women: Protocol for a Mixed Methods Study. JMIR Res Protoc 2021; 10:e32729. [PMID: 34643543 PMCID: PMC8552101 DOI: 10.2196/32729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Kinesiotherapy is an option to mitigate worsening neuropsychomotor function due to human aging. Moreover, exergames are beneficial for the practice of physical therapy by older patients. Physical exercise interventions are known to alter the epigenome, but little is known about their association with exergames. Objective We aim to evaluate the effects of kinesiotherapy with exergaming on older women’s epigenetic marks and cognitive ability, as well as on their clinical functional variables. Our hypothesis states that this kind of therapy can elicit equal or even better outcomes than conventional therapy. Methods We will develop a virtual clinic exergame with 8 types of kinesiotherapy exercises. Afterward, we will conduct a 1:1 randomized clinical trial to compare the practice of kinesiotherapy with exergames (intervention group) against conventional kinesiotherapy (control group). A total of 24 older women will be enrolled for 1-hour sessions performed twice a week, for 6 weeks, totaling 12 sessions. We will assess outcomes using epigenetic blood tests, the Montreal Cognitive Assessment test, the Timed Up and Go test, muscle strength grading in a hydraulic dynamometer, and the Game Experience Questionnaire at various stages. Results The project was funded in October 2019. Game development took place in 2020. Patient recruitment and a clinical trial are planned for 2021. Conclusions Research on this topic is likely to significantly expand the understanding of kinesiotherapy and the impact of exergames. To the best of our knowledge, this may be one of the first studies exploring epigenetic outcomes of exergaming interventions. Trial Registration Brazilian Clinical Trials Registry/Registro Brasileiro de Ensaios Clínicos (ReBEC) RBR-9tdrmw; https://ensaiosclinicos.gov.br/rg/RBR-9tdrmw. International Registered Report Identifier (IRRID) DERR1-10.2196/32729
Collapse
Affiliation(s)
- Patrícia Paula Bazzanello Henrique
- Faculty of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo, Brazil.,Department of Physiotherapy, Regional Integrated University of High Uruguay and Missions, Erechim, Brazil
| | - Fabrízzio Martin Pelle Perez
- Faculty of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo, Brazil.,Department of Physiotherapy, Regional Integrated University of High Uruguay and Missions, Erechim, Brazil
| | | | - Ericles Andrei Bellei
- Institute of Exact Sciences and Geosciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Daiana Biduski
- Institute of Exact Sciences and Geosciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Arthiese Korb
- Department of Physiotherapy, Regional Integrated University of High Uruguay and Missions, Erechim, Brazil
| | - Daniela Pochmann
- Graduate Program in Biosciences and Rehabilitation, Porto Alegre Institute of the Methodist Church, Porto Alegre, Brazil
| | - Caroline Dani
- Graduate Program in Biosciences and Rehabilitation, Porto Alegre Institute of the Methodist Church, Porto Alegre, Brazil
| | - Viviane Rostirola Elsner
- Graduate Program in Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Carolina Bertoletti De Marchi
- Faculty of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo, Brazil.,Institute of Exact Sciences and Geosciences, University of Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
17
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
18
|
Varesco G, Hunter SK, Rozand V. Physical activity and aging research: opportunities abound. Appl Physiol Nutr Metab 2021; 46:1004-1006. [PMID: 33951404 DOI: 10.1139/apnm-2020-1062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is associated with large between-subjects variability in motor function among older adults, which can compromise identifying the mechanisms for age-related reductions in motor performance. This variability is in part explained by differences among older adults in habitual physical activity. Quantifying and accounting for physical activity levels of the participants in aging studies will help differentiate those changes in motor function associated with biological aging rather than those induced by inactivity. Novelty: Quantification of physical activity levels in studies with older participants will help differentiate the effects of aging rather than physical inactivity.
Collapse
Affiliation(s)
- G Varesco
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, UJM-Saint-Etienne, EA 7424, Saint-Etienne F-42023, France
| | - S K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI 53201, USA
| | - V Rozand
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, UJM-Saint-Etienne, EA 7424, Saint-Etienne F-42023, France
| |
Collapse
|
19
|
Archiza B, Leahy MG, Kipp S, Sheel AW. An integrative approach to the pulmonary physiology of exercise: when does biological sex matter? Eur J Appl Physiol 2021; 121:2377-2391. [PMID: 33903937 DOI: 10.1007/s00421-021-04690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Historically, many studies investigating the pulmonary physiology of exercise (and biomedical research in general) were performed exclusively or predominantly with male research participants. This has led to an incomplete understanding of the pulmonary response to exercise. More recently, important sex-based differences with respect to the human respiratory system have been identified. The purpose of this review is to summarize current findings related to sex-based differences in the pulmonary physiology of exercise. To that end, we will discuss how morphological sex-based differences of the respiratory system affect the respiratory response to exercise. Moreover, we will discuss sex-based differences of the physiological integrative responses to exercise, and how all these differences can influence the regulation of breathing. We end with a brief discussion of pregnancy and menopause and the accompanying ventilatory changes observed during exercise.
Collapse
Affiliation(s)
- Bruno Archiza
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada.
| | - Michael G Leahy
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada
| |
Collapse
|
20
|
Hoffmann F, Moestl S, Wooten SV, Stray-Gundersen S, Tomczak CR, Tank J, Tanaka H, Rittweger J, Chilibeck PD. Left Ventricular Dimensions and Diastolic Function Are Different in Throwers, Endurance Athletes, and Sprinters From the World Masters Athletics Championships. Front Physiol 2021; 12:643764. [PMID: 33790804 PMCID: PMC8005638 DOI: 10.3389/fphys.2021.643764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 11/27/2022] Open
Abstract
There is controversy whether a lifetime of heavy resistance training, providing pressure-overload, is harmful for left ventricular function. We compared left ventricular dimensions and function in elite Masters athletes involved in throwing events (requiring strength; n = 21, seven females, 60 ± 14 years) to those involved in endurance events (n = 65, 25 females, 59 ± 10 years) and sprinting (n = 68, 21 females, 57 ± 13 years) at the 2018 World Masters Athletic Championships. Left ventricular dimensions and function were assessed with B-mode ultrasound and Doppler. The ratio of left ventricular early diastolic peak filling velocity to peak velocity during atrial contraction (E/A) across the mitral valve and the ratio of E to velocity of the E-wave (E') across the lateral and septal mitral annulus (E/E') were used as indexes of left ventricular diastolic function. Intra-ventricular septal wall thickness was greater in throwers compared to sprinters (11.9 ± 2.2 vs. 10.3 ± 2.3 mm; p = 0.01). Left ventricular end diastolic diameter/body surface area was higher in endurance athletes and sprinters vs. throwers (25.2 ± 3.0, 24.3 ± 3.1, and 22.0 ± 3.1 mm/m2, respectively, p < 0.01). The E/A was higher in endurance athletes and sprinters vs. throwers (1.35 ± 0.40, 1.37 ± 0.43, and 1.05 ± 0.41, respectively; p < 0.01). The E/E' was lower in endurance athletes and sprinters vs. throwers (6.9 ± 1.8, 6.6 ± 1.9, and 8.1 ± 1.9, respectively, p < 0.05). Compared to age-matched historical controls (n > 1,000; E/A = 1.06; E/E' = 7.5), left ventricular diastolic function was not different in throwers, but superior in endurance athletes and sprinters (p < 0.01). Masters throwers have altered left ventricular dimensions and function vs. other athletes, but a lifetime of heavy resistance training does not appear to alter left ventricular function compared to age-matched controls.
Collapse
Affiliation(s)
- Fabian Hoffmann
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Cardiology, University Hospital, Cologne, Germany
| | - Stefan Moestl
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Savannah V. Wooten
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Sten Stray-Gundersen
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Corey R. Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Jörn Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital, Cologne, Germany
| | | |
Collapse
|
21
|
Namespetra AM, McCaughan NBJ, Cavers JG. Young at heart: lifelong endurance exercise confers cardiovascular benefits for older women. J Physiol 2020; 598:4439-4441. [DOI: 10.1113/jp280172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|