1
|
Zhao ML, Lu ZJ, Yang L, Ding S, Gao F, Liu YZ, Yang XL, Li X, He SY. The cardiovascular system at high altitude: A bibliometric and visualization analysis. World J Cardiol 2024; 16:199-214. [PMID: 38690218 PMCID: PMC11056872 DOI: 10.4330/wjc.v16.i4.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND When exposed to high-altitude environments, the cardiovascular system undergoes various changes, the performance and mechanisms of which remain controversial. AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis. METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded. A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer. RESULTS A total of 1674 publications were included in the study, with an observed annual increase in the number of publications spanning from 1990 to 2022. The United States of America emerged as the predominant contributor, while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output. Notably, Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude. Furthermore, Peter Bärtsch emerged as the author with the highest number of cited articles. Keyword analysis identified hypoxia, exercise, acclimatization, acute and chronic mountain sickness, pulmonary hypertension, metabolism, and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude. CONCLUSION Over the past 32 years, research on the cardiovascular system in high-altitude regions has been steadily increasing. Future research in this field may focus on areas such as hypoxia adaptation, metabolism, and cardiopulmonary exercise. Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.
Collapse
Affiliation(s)
- Mao-Lin Zhao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Zhong-Jie Lu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Li Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Sheng Ding
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Feng Gao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Yuan-Zhang Liu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Xue-Lin Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Xia Li
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Si-Yi He
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China.
| |
Collapse
|
2
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Basak N, Norboo T, Mustak MS, Thangaraj K. Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. J Blood Med 2021; 12:287-298. [PMID: 34040473 PMCID: PMC8139737 DOI: 10.2147/jbm.s294564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction High altitude hypoxia is believed to be experienced at elevations of more than 2500 meters above sea level. Several studies have shed light on the biochemical aspects of high altitude acclimatization, where participants were sojourners to the high altitude from low altitude areas. However, information regarding the difference between the high altitude adapted Tibetans living at high altitude and their counterparts who reside at low altitude are lacking. To understand this, we have measured various hematological parameters in the Tibetan populations, who are residing in both high and low altitudes in India. Methods A total of 168 individuals (79 from high altitude (≥4500 meters) and 89 from low altitude (~850 meters) were recruited for this study. Hematological parameters such as red blood cells (RBC) count, hematocrit (HCT), hemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were measured from the individuals from high and low altitudes. Serum erythropoietin (EPO) was measured by ELISA. Statistical analyses were performed to compare data from both of the altitudes. Gender-wise comparison of data was reported. Correlation analysis was performed within relevant parameters. Results Highly significant differences (p <0.0001) between high and low altitude Tibetans were detected in RBC count, HCT, Hb, MCHC in both males and females and in MCV in females. In the case of MCHC, however, age and BMI were potential confounders. Nominally significant differences (p <0.05) were detected in MCV and MCH within males. No significant difference in serum EPO level was found between altitude groups, in any gender. No significant correlation was found between serum EPO with Hb as well as serum EPO with HCT. Discussion Our study explores significantly lower RBC count, HCT, Hb, MCH, MCHC and higher MCV in long-term Tibetan residents living at low altitude compared to their high altitude counterparts, which is likely due to the outcome of hematological adaptation to a relatively hyperoxic environment in low altitude areas.
Collapse
Affiliation(s)
- Nipa Basak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
4
|
Keeling RF, Powell FL, Shaffer G, Robbins PA, Simonson TS. Impacts of Changes in Atmospheric O 2 on Human Physiology. Is There a Basis for Concern? Front Physiol 2021; 12:571137. [PMID: 33737880 PMCID: PMC7960674 DOI: 10.3389/fphys.2021.571137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/11/2021] [Indexed: 12/01/2022] Open
Abstract
Concern is often voiced over the ongoing loss of atmospheric O2. This loss, which is caused by fossil-fuel burning but also influenced by other processes, is likely to continue at least for the next few centuries. We argue that this loss is quite well understood, and the eventual decrease is bounded by the fossil-fuel resource base. Because the atmospheric O2 reservoir is so large, the predicted relative drop in O2 is very small even for extreme scenarios of future fossil-fuel usage which produce increases in atmospheric CO2 sufficient to cause catastrophic climate changes. At sea level, the ultimate drop in oxygen partial pressure will be less than 2.5 mm Hg out of a baseline of 159 mmHg. The drop by year 2300 is likely to be between 0.5 and 1.3 mmHg. The implications for normal human health is negligible because respiratory O2 consumption in healthy individuals is only weakly dependent on ambient partial pressure, especially at sea level. The impacts on top athlete performance, on disease, on reproduction, and on cognition, will also be very small. For people living at higher elevations, the implications of this loss will be even smaller, because of a counteracting increase in barometric pressure at higher elevations due to global warming.
Collapse
Affiliation(s)
- Ralph F. Keeling
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gary Shaffer
- GAIA Antarctic Research Center, University of Magallanes, Punta Arenas, Chile
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peter A. Robbins
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Pun M, Guadagni V, Drogos LL, Pon C, Hartmann SE, Furian M, Lichtblau M, Muralt L, Bader PR, Moraga FA, Soza D, Lopez I, Rawling JM, Ulrich S, Bloch KE, Giesbrecht B, Poulin MJ. Cognitive Effects of Repeated Acute Exposure to Very High Altitude Among Altitude-Experienced Workers at 5050 m. High Alt Med Biol 2019; 20:361-374. [DOI: 10.1089/ham.2019.0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Veronica Guadagni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lauren L. Drogos
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Charlotte Pon
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Sara E. Hartmann
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michael Furian
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Mona Lichtblau
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Lara Muralt
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Patrick R. Bader
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Fernando A. Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Daniel Soza
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Ivan Lopez
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Jean M. Rawling
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Silvia Ulrich
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Konrad E. Bloch
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences, and Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| | - Marc J. Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Heggie V. Blood, race and indigenous peoples in twentieth century extreme physiology. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:26. [PMID: 31197607 PMCID: PMC6565645 DOI: 10.1007/s40656-019-0264-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
In the first half of the twentieth century the attention of American and European researchers was drawn to the area of 'extreme physiology', partly because of expeditions to the north and south poles, and to high altitude, but also by global conflicts which were fought for the first time with aircraft, and involved conflict in non-temperate zones, deserts, and at the freezing Eastern front. In an attempt to help white Euro-Americans survive in extreme environments, physiologists, anthropologists, and explorers studied indigenous people's bodies, cultures, and technologies. This paper will sketch an outline of the science of white survival in three 'extreme' environments: the Antarctic and Arctic; high-altitude; and the Australian desert, with a particular focus on the ways in which indigenous populations were studied, or in some cases ignored, by Western biomedical scientists-despite their crucial and systematic contributions to the success of experiments and expeditions. Particularly focusing on altitude, and on blood in both its symbolic (hereditary) and literal sense, the article shows how assumptions about race, indigeneity, civilisation, and evolution shaped the ways White Westerners understood their own bodies as well as those of the people they encountered in cold, high and hot places on the earth. Despite new discoveries in physiology and evolutionary science, old racialised assumptions were maintained, especially those that figured the temperate body as civilised and the tropical body as primitive; and in at least one case it will be shown that these racialised assumptions significantly altered, if not retarded, the science of respiratory physiology.
Collapse
|
7
|
Moore LG. Human Genetic Adaptation to High Altitudes: Current Status and Future Prospects. QUATERNARY INTERNATIONAL : THE JOURNAL OF THE INTERNATIONAL UNION FOR QUATERNARY RESEARCH 2017; 461:4-13. [PMID: 29375239 PMCID: PMC5784843 DOI: 10.1016/j.quaint.2016.09.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The question of whether human populations have adapted genetically to high altitude has been of interest since studies began there in the early 1900s. Initially there was debate as to whether genetic adaptation to high altitude has taken place based, in part, on disciplinary orientation and the sources of evidence being considered. Studies centered on short-term responses, termed acclimatization, and the developmental changes occurring across lifetimes. A paradigm shift occurred with the advent of single nucleotide polymorphism (SNP) technologies and statistical methods for detecting evidence of natural selection, resulting in an exponential rise in the number of publications reporting genetic adaptation. Reviewed here are the various kinds of evidence by which adaptation to high altitude has been assessed and which have led to widespread acceptance of the idea that genetic adaptation to high altitude has occurred. While methodological and other challenges remain for determining the specific gene or genes involved and the physiological mechanisms by which they are exerting their effects, considerable progress has been realized as shown by recent studies in Tibetans, Andeans and Ethiopians. Further advances are anticipated with the advent of new statistical methods, whole-genome sequencing and other molecular techniques for finer-scale genetic mapping, and greater intradisciplinary and interdisciplinary collaboration to identify the functional consequences of the genes or gene regions implicated and the time scales involved.
Collapse
Affiliation(s)
- Lorna G Moore
- Department of Obstetrics & Gynecology, University of Colorado Denver, Aurora CO (formerly of the Department of Anthropology, University of Colorado Denver, Denver CO)
| |
Collapse
|
8
|
Persson PB, Bondke Persson A. Altitude sickness and altitude adaptation. Acta Physiol (Oxf) 2017; 220:303-306. [PMID: 28498559 DOI: 10.1111/apha.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | | |
Collapse
|
9
|
Giussani DA, Bennet L, Sferruzzi-Perri AN, Vaughan OR, Fowden AL. Hypoxia, fetal and neonatal physiology: 100 years on from Sir Joseph Barcroft. J Physiol 2016; 594:1105-11. [PMID: 26926314 DOI: 10.1113/jp272000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - L Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - A N Sferruzzi-Perri
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - O R Vaughan
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - A L Fowden
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
10
|
Longo LD. Sir Joseph Barcroft: one victorian physiologist's contributions to a half century of discovery. J Physiol 2016; 594:1113-25. [PMID: 25929679 PMCID: PMC4728207 DOI: 10.1113/jp270078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/26/2015] [Indexed: 11/08/2022] Open
Abstract
During the first half of the 20th Century, Joseph Barcroft, KBE, FRS of Cambridge University became a world leader in respiratory physiology. He determined the role of neural stimulation in the oxygen consumption of several organs, established many of the factors that regulate the binding of oxygen to haemoglobin, explored the determinants of a human's acclimatization to high altitude and developed the field of fetal cardiovascular physiology. Chair of the Cambridge Department of Physiology from 1925 to 1937, he served as a consultant and member of many UK governmental committees. During World War I, he led a British research unit exploring the effects of poisonous gases on pulmonary function and related problems. In addition to his almost 300 publications, several of his monographs are considered as classics.
Collapse
Affiliation(s)
- Lawrence D Longo
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|