1
|
Wang S, Wang S, Cao X, Yang L, Liu H. Glutathione responsive curcumin delivery via amino acid covalently grafted cyclodextrin metal organic framework coated with soy hull polysaccharides. Food Chem 2025; 480:143914. [PMID: 40117819 DOI: 10.1016/j.foodchem.2025.143914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
To enhance the selective release of curcumin (Cur), a novel metal organic framework (Cys-γ-CD-MOF) was designed to achieve glutathione (GSH)-triggered Cur release. Soy hull polysaccharide (SHP) was used as a coating on the surface of Cys-γ-CD-MOF, to reduce potential side effects and improve intestine bioavailability. Crystal structure analysis confirmed that the SHP coating did not disrupt the inherent crystallinity of Cys-γ-CD-MOF. Scanning electron microscope (SEM) revealed a regular cubic morphology for Cys-γ-CD-MOF. Cur was incorporated in an amorphous form in the carrier, achieving maximum loading and encapsulation efficiencies of 51.99 % at a 1:3 Cur-to-carrier ratio after soaking 24 h at 35 °C. Cys-γ-CD-MOF@SHP loaded with Cur exhibits selective release in GSH solution, with a cumulative release of 56.39 % after 24 h in a 10 mM GSH solution. These findings indicate that Cys-γ-CD-MOF@SHP can serve as a promising novel carrier for the delivery of Cur or other hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Xiuzhi Cao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
2
|
Santini R, Fuentes E, Maleeva G, Matera C, Riefolo F, Berrocal JA, Albertazzi L, Gorostiza P, Pujals S. Discotic amphiphilic supramolecular polymers for drug release and cell activation with light. NANOSCALE 2025; 17:10985-10995. [PMID: 40202720 DOI: 10.1039/d4nr02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The limited efficacy shown by drug delivery systems so far prompts the development of new molecular approaches for releasing drugs in a controlled and selective manner. Light is a privileged stimulus for delivery because it can be applied in sharp spatiotemporal patterns and is orthogonal to most biological processes. Supramolecular polymers form molecular nanostructures whose robustness, versatility, and responsivity to different stimuli have generated wide interest in materials chemistry. However, their application as drug delivery vehicles has received little attention. We built supramolecular polymers based on discotic amphiphiles that self-assemble in linear nanostructures in water. They can integrate diverse amphiphilic bioligands and release them upon illumination, acutely producing functional effects under physiological conditions. We devised two strategies for drug incorporation into the photoswitchable nanofibers. In the co-assembly strategy, discotic monomers with and without conjugated bioligands were co-assembled in helicoidal supramolecular fibers. In the drug embedding approach, we integrated a potent agonist of muscarinic receptors into the discotic polymer by noncovalent stacking interactions. This ligand can be released on demand with light ex situ and in situ, rapidly activating the target receptor and triggering intracellular responses. These novel discotic supramolecular polymers can be light-driven drug carriers for small, planar, and amphiphilic drugs.
Collapse
Affiliation(s)
- Ramona Santini
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- CIBER-BBN, ISCIII, Madrid, 28029, Spain
- Doctorate Program in Organic Chemistry, University of Barcelona, Carrer Martí i Franquès, Barcelona, 08028, Spain
| | - Edgar Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- CIBER-BBN, ISCIII, Madrid, 28029, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- CIBER-BBN, ISCIII, Madrid, 28029, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- CIBER-BBN, ISCIII, Madrid, 28029, Spain
| | - José Augusto Berrocal
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- CIBER-BBN, ISCIII, Madrid, 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain.
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, Barcelona, 08034, Spain.
| |
Collapse
|
3
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
5
|
Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S, Li Z, Xing F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives. J Nanobiotechnology 2025; 23:157. [PMID: 40022098 PMCID: PMC11871784 DOI: 10.1186/s12951-025-03252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Cancer treatment is currently one of the most critical healthcare issues globally. A well-designed drug delivery system can precisely target tumor tissues, improve efficacy, and reduce damage to normal tissues. Stimuli-responsive drug delivery systems (SRDDSs) have shown promising application prospects. Intelligent nano drug delivery systems responsive to endogenous stimuli such as weak acidity, complex redox characteristics, hypoxia, active energy metabolism, as well as exogenous stimuli like high temperature, light, pressure, and magnetic fields are increasingly being applied in chemotherapy, radiotherapy, photothermal therapy, photodynamic therapy, and various other anticancer approaches. Metal-organic frameworks (MOFs) have become promising candidate materials for constructing SRDDSs due to their large surface area, tunable porosity and structure, ease of synthesis and modification, and good biocompatibility. This paper reviews the application of MOF-based SRDDSs in various modes of cancer therapy. It summarizes the key aspects, including the classification, synthesis, modifications, drug loading modes, stimuli-responsive mechanisms, and their roles in different cancer treatment modalities. Furthermore, we address the current challenges and summarize the potential applications of artificial intelligence in MOF synthesis. Finally, we propose strategies to enhance the efficacy and safety of MOF-based SRDDSs, ultimately aiming at facilitating their clinical translation.
Collapse
Affiliation(s)
- Ziliang Guo
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuzhen Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wenting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiyun Yu
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Aundhia C, Parmar G, Talele C, Talele D, Seth AK. Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. Pharm Nanotechnol 2025; 13:41-54. [PMID: 38279711 DOI: 10.2174/0122117385271651231228073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Dipali Talele
- Faculty of Pharmacy, Vishwakarma University, Survey No. 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune, India
| | - Avinsh Kumar Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
7
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
8
|
Torabi Fard N, Ahmad Panahi H, Moniri E, Reza Soltani E, Mahdavijalal M. Stimuli-Responsive Dendrimers as Nanoscale Vectors in Drug and Gene Delivery Systems: A Review Study. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:4959-4985. [DOI: 10.1007/s10924-024-03280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 01/06/2025]
|
9
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
10
|
Jung YL, Yang YJ, Shil A, Sarkar S, Ahn KH. Anticancer Prodrug Capable of Mitochondria-Targeting, Light-Triggered Release, and Fluorescence Monitoring. ACS APPLIED BIO MATERIALS 2024; 7:3991-3996. [PMID: 38835291 DOI: 10.1021/acsabm.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mitigating the adverse effects of anticancer agents requires innovative prodrug engineering. In this study, we showcase the potential of our o-quinone methide-based trigger-release-conjugation platform as a versatile tool for constructing advanced prodrug systems. Using this platform, we achieved the light-triggered release of an anticancer drug mechlorethamine, targeting mitochondrial DNA. The entire process was adeptly tracked through the emission of fluorescence signals, revealing notable effects across various cancer cell lines compared to a normal cell line. Exploring alternative cancer-associated triggers, including enzymes, and incorporating cancer/tumor-specific targeting elements could lead to effective prodrugs with reduced cytotoxicity.
Collapse
Affiliation(s)
- Yun Lim Jung
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
11
|
la Asunción-Nadal VD, Crespo GA, Cuartero M. Light-induced Delivery of Charged Species using Ion-selective Core-Shell Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202403756. [PMID: 38501244 DOI: 10.1002/anie.202403756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Controlled release systems have gained considerable attention owing to their potential to deliver molecules, including ions and drugs, in a customized manner. We present a light-induced ion-transfer platform consisting of a dispersion of nanoparticles (NPs, ~300 nm) with the conductive polymer poly(3-octylthiophene-2,5-diyl) (POT) in the core and a potassium (K+)-selective membrane in the shell. Owing to the photoactive nature of POT, POT NPs can be used for a dual purpose: as a host for positively charged species and as an actuator to trigger the subsequent release. POT0 and doped POT+ coexist in the core, allowing K+ encapsulation in the shell. As POT0 is photo-oxidized to POT+, K+ is released to the (aqueous) dispersion phase to preserve the neutrality of the NPs. This process is reversible and can be simultaneously assessed using the native fluorescence of POT0 and via potentiometric measurements. The NP structure and its mechanism of action were thoroughly studied with a series of control experiments and complementary techniques. Understanding the NP and its surrounding interactions will pave the way for other nanostructured systems, facilitating sophisticated applications. The delivery of ionic drugs and interference/pollutant catching for advanced sensing/restoration will be considered in future research.
Collapse
Affiliation(s)
- Víctor de la Asunción-Nadal
- Department of Chemistry, KTH, The Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
| | - Gastón A Crespo
- Department of Chemistry, KTH, The Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107, Murcia, Spain
| | - María Cuartero
- Department of Chemistry, KTH, The Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107, Murcia, Spain
| |
Collapse
|
12
|
Abousalman-Rezvani Z, Refaat A, Dehghankelishadi P, Roghani-Mamaqani H, Esser L, Voelcker NH. Insights into Targeted and Stimulus-Responsive Nanocarriers for Brain Cancer Treatment. Adv Healthc Mater 2024; 13:e2302902. [PMID: 38199238 DOI: 10.1002/adhm.202302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Brain cancers, especially glioblastoma multiforme, are associated with poor prognosis due to the limited efficacy of current therapies. Nanomedicine has emerged as a versatile technology to treat various diseases, including cancers, and has played an indispensable role in combatting the COVID-19 pandemic as evidenced by the role that lipid nanocarrier-based vaccines have played. The tunability of nanocarrier physicochemical properties -including size, shape, surface chemistry, and drug release kinetics- has resulted in the development of a wide range of nanocarriers for brain cancer treatment. These nanocarriers can improve the pharmacokinetics of drugs, increase blood-brain barrier transfer efficiency, and specifically target brain cancer cells. These unique features would potentially allow for more efficient treatment of brain cancer with fewer side effects and better therapeutic outcomes. This review provides an overview of brain cancers, current therapeutic options, and challenges to efficient brain cancer treatment. The latest advances in nanomedicine strategies are investigated with an emphasis on targeted and stimulus-responsive nanocarriers and their potential for clinical translation.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Ahmed Refaat
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Pharmaceutics Department, Faculty of Pharmacy - Alexandria University, 1 El-Khartoum Square, Alexandria, 21021, Egypt
| | - Pouya Dehghankelishadi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335/1996, Iran
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd, Melbourne, VIC 3168, Australia
- Department of Materials Science & Engineering, Faculty of Engineering, Monash University, 14 Alliance Ln, Melbourne, VIC 3168, Australia
| |
Collapse
|
13
|
Gioldasis C, Gkamas A, Vlahos C. Impact of Copolymer Architecture on Demicellization and Cargo Release via Head-to-Tail Depolymerization of Hydrophobic Blocks or Branches. Polymers (Basel) 2024; 16:1127. [PMID: 38675046 PMCID: PMC11053811 DOI: 10.3390/polym16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Utilizing molecular dynamics simulations, we explored the demicellization and cargo release dynamics of linear and miktoarm copolymers, featuring one, two, and three hydrophobic blocks or branches, each capable of head-to-tail depolymerization. Our findings revealed that, under stoichiometric trigger molecule concentrations, miktoarms with three branches exhibited consistently faster depolymerization rates than those with two branches and linear copolymers. Conversely, at constant trigger molecule concentrations, the depolymerization rates of copolymers exhibited more complex behaviors influenced by two opposing factors: the excess of trigger molecules, which increased with a decrease in the number of hydrophobic branches or blocks, and simultaneous head-to-tail depolymerization, which intensified with an increasing number of branches. Our study elucidates the intricate interplay between copolymer architecture, trigger molecule concentrations, and depolymerization dynamics, providing valuable insights for the rational design of amphiphilic copolymers with tunable demicellization and cargo release properties.
Collapse
Affiliation(s)
| | | | - Costas Vlahos
- Chemistry Department, University of Ioannina, 45110 Ioannina, Greece; (C.G.); (A.G.)
| |
Collapse
|
14
|
Prigyai N, Bunchuay T, Ruengsuk A, Yoshinari N, Manissorn J, Pumirat P, Sapudom J, Kosiyachinda P, Thongnuek P. Photo-Controlled Reversible Uptake and Release of a Modified Sulfamethoxazole Antibiotic Drug from a Pillar[5]arene Cross-Linked Gelatin Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8250-8265. [PMID: 38326106 DOI: 10.1021/acsami.3c14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pillararene cross-linked gelatin hydrogels were designed and synthesized to control the uptake and release of antibiotics using light. A suite of characterization techniques ranging from spectroscopy (FT-IR, 1H and 13C NMR, and MAS NMR), X-ray crystallographic analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) was employed to investigate the physicochemical properties of hydrogels. The azobenzene-modified sulfamethoxazole (Azo-SMX) antibiotic was noncovalently incorporated into the hydrogel via supramolecular host-guest interactions to afford the A-hydrogel. While in its ground state, the Azo-SMX guest has a trans configuration structure and forms a thermodynamically stable inclusion complex with the pillar[5]arene motif in the hydrogel matrix. When the A-hydrogel was exposed to 365 nm UV light, Azo-SMX underwent a photoisomerization reaction. This changed the structure of Azo-SMX from trans to cis, and the material was released into the environment. The Azo-SMX released from the hydrogel was effective against both Gram-positive and Gram-negative bacteria. Importantly, the A-hydrogel exhibited a striking difference in antibacterial activity when applied to bacterial colonies in the presence and absence of UV light, highlighting the switchable antibacterial activity of A-hydrogel aided by light. In addition, all hydrogels containing pillar[5]arenes have demonstrated biocompatibility and effectiveness as scaffolds for biological and medical purposes.
Collapse
Affiliation(s)
- Nicha Prigyai
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Juthathip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattarapon Pumirat
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pahol Kosiyachinda
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Hu Y, Wang J, Hong Y, Han Y, Liang L, Yang Y, Wu Z, Lin Q. Photo-controllable drug releasing bulk polyacrylic intraocular lens material for safer posterior capsular opacification prevention. J Control Release 2024; 366:494-504. [PMID: 38185335 DOI: 10.1016/j.jconrel.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Posterior capsular opacification (PCO) is the most common complication that occurs after intraocular lens (IOL) implantation in cataract therapy. In recent years, IOLs have been developed as drug delivery platforms, but concerns over the safety of uncontrolled proliferative drug release have arisen. Therefore, a controlled drug release strategy is needed for safer PCO prevention. In this study, a new monomer contained coumarin group was introduced in material preparation, and poly(ethylene glycol phenyl ether methacrylate-co-2-(2-ethoxyethoxy) ethyl acrylate-co-7-(2-methacryloyloxyethoxy)-4-methylcoumarin) (PEEC) acrylic IOL materials were synthesized. The antiproliferative drug 5-fluorouracil (5-FU) could be chemically grafted to the PEEC IOL materials easily via a light induced [2 + 2] cycloaddition reaction with the coumarin group, getting drug-loaded IOL (PEEC@5-FU IOL). The PEEC@5-FU IOL exhibited excellent optical and mechanical properties and biocompatibility. More importantly, the loaded 5-FU could be easily controlled from release by light irradiation via photo-dissociation of the cyclobutane ring that was obtained by the [2 + 2] cycloaddition reaction of 5-FU and coumarin. The in vitro and in vivo experiments demonstrated that such photo-controllable drug release IOL could effectively prevent PCO after implantation in a safe way.
Collapse
Affiliation(s)
- Yulin Hu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiahao Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuemei Han
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lin Liang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuexin Yang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhihui Wu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
16
|
Yang X, Xiong M, Fu X, Sun X. Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 2024; 31:247-271. [PMID: 37637080 PMCID: PMC10457517 DOI: 10.1016/j.bioactmat.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Loss of sweat glands (SwGs) commonly associated with extensive skin defects is a leading cause of hyperthermia and heat stroke. In vivo tissue engineering possesses the potential to take use of the body natural ability to regenerate SwGs, making it more conducive to clinical translation. Despite recent advances in regenerative medicine, reconstructing SwG tissue with the same structure and function as native tissue remains challenging. Elucidating the SwG generation mechanism and developing biomaterials for in vivo tissue engineering is essential for understanding and developing in vivo SwG regenerative strategies. Here, we outline the cell biology associated with functional wound healing and the characteristics of bioactive materials. We critically summarize the recent progress in bioactive material-based cell modulation approaches for in vivo SwG regeneration, including the recruitment of endogenous cells to the skin lesion for SwG regeneration and in vivo cellular reprogramming for SwG regeneration. We discussed the re-establishment of microenvironment via bioactive material-mediated regulators. Besides, we offer promising perspectives for directing in situ SwG regeneration via bioactive material-based cell-free strategy, which is a simple and effective approach to regenerate SwG tissue with both fidelity of structure and function. Finally, we discuss the opportunities and challenges of in vivo SwG regeneration in detail. The molecular mechanisms and cell fate modulation of in vivo SwG regeneration will provide further insights into the regeneration of patient-specific SwGs and the development of potential intervention strategies for gland-derived diseases.
Collapse
Affiliation(s)
- Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
17
|
Xu X, Sarhan RM, Mei S, Kochovski Z, Koopman W, Priestley RD, Lu Y. Photothermally Triggered Nanoreactors with a Tunable Catalyst Location and Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48623-48631. [PMID: 37807243 DOI: 10.1021/acsami.3c09657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Thermosensitive microgels based on poly(N-isopropylacrylamide) (PNIPAm) have been widely used to create nanoreactors with controlled catalytic activity through the immobilization of metal nanoparticles (NPs). However, traditional approaches with metal NPs located only in the polymer network rely on electric heating to initiate the reaction. In this study, we developed a photothermal-responsive yolk-shell nanoreactor with a tunable location of metal NPs. The catalytic performance of these nanoreactors can be controlled by both light irradiation and conventional heating, that is, electric heating. Interestingly, the location of the catalysts had a significant impact on the reduction kinetics of the nanoreactors; catalysts in the shell exhibited higher catalytic activity compared with those in the core, under conventional heating. When subjected to light irradiation, nanoreactors with catalysts loaded in the core demonstrated improved catalytic performance compared to direct heating, while nanoreactors with catalysts in the shell exhibited relatively similar activity. We attribute this enhancement in catalytic activity to the spatial distribution of the catalysts and the localized heating within the polydopamine cores of the nanoreactors. This research presents exciting prospects for the design of innovative smart nanoreactors and efficient photothermal-assisted catalysis.
Collapse
Affiliation(s)
- Xiaohui Xu
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Radwan M Sarhan
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Shilin Mei
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Zdravko Kochovski
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Wouter Koopman
- Institute of Physics and Astronomy, University of Potsdam, Potsdam 14467, Germany
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yan Lu
- Institutue of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fur Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
- Institute of Chemistry, University of Potsdam, Potsdam 14467, Germany
| |
Collapse
|
18
|
Iwase H, Akamatsu M, Inamura Y, Sakaguchi Y, Kobayashi K, Sakai H. Time-Resolved Structural Analysis of Fast-Photoresponsive Surfactant Micelles by Stroboscopic Small-Angle Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12357-12364. [PMID: 37610076 DOI: 10.1021/acs.langmuir.3c01456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Photoresponsive materials are garnering attention because of their applications toward building a sustainable society. A recently developed fast-photoresponsive amphiphilic lophine dimer (3TEG-LPD) responds rapidly to light, making it a promising candidate for drug-delivery systems. In this study, the mechanism of structural changes induced by ultraviolet (UV) irradiation in 3TEG-LPD micelles in an aqueous solution was investigated via an in situ time-resolved small-angle neutron scattering (SANS) technique. Since subsecond resolution was necessary to observe the structural changes in the 3TEG-LPD micelles, stroboscopic SANS analysis was employed to obtain scattering profiles with a time width of 0.5 s. The structural parameters were quantitatively determined by performing a model-fitting analysis of the SANS results. The stroboscopic SANS results showed that upon UV irradiation, the axial ratio and pseudo-aggregation number of the 3TEG-LPD micelles increased by 1.8 and 1.6 times, respectively, whereas the number of water molecules per surfactant molecule decreased. This finding suggested that the change in the shape of the micelles from spherical to ellipsoidal shape was accompanied by dehydration. Under the present UV irradiation conditions, this structural change of the micelle occurred rapidly during the first 30 s after the start of UV irradiation. Each structural parameter recovered exponentially and reversibly during the recovery process after the cessation of UV irradiation. The changes in these parameters were analyzed in terms of kinetics by comparing them with the changes in the molecular structure. We found that the change of the micelles proceeds approximately twice as fast as the association of the molecule. Furthermore, from the perspective of the critical packing parameter consideration, the SANS analysis revealed that the UV-induced changes in 3TEG-LPD micelles are dominated by the enthalpy contribution. This finding is expected to be useful for developing new materials for various applications.
Collapse
Affiliation(s)
- Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8552, Japan
| | - Yasuhiro Inamura
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Yoshifumi Sakaguchi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Kazuki Kobayashi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Duncan B, Al-Kassas R, Zhang G, Hughes D, Qiu Y. Ultrasound-Mediated Ocular Drug Delivery: From Physics and Instrumentation to Future Directions. MICROMACHINES 2023; 14:1575. [PMID: 37630111 PMCID: PMC10456754 DOI: 10.3390/mi14081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Drug delivery to the anterior and posterior segments of the eye is impeded by anatomical and physiological barriers. Increasingly, the bioeffects produced by ultrasound are being proven effective for mitigating the impact of these barriers on ocular drug delivery, though there does not appear to be a consensus on the most appropriate system configuration and operating parameters for this application. In this review, the fundamental aspects of ultrasound physics most pertinent to drug delivery are presented; the primary phenomena responsible for increased drug delivery efficacy under ultrasound sonication are discussed; an overview of common ocular drug administration routes and the associated ocular barriers is also given before reviewing the current state of the art of ultrasound-mediated ocular drug delivery and its potential future directions.
Collapse
Affiliation(s)
- Blair Duncan
- School of Engineering, Faculty of Engineering & Technology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Raida Al-Kassas
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Guangming Zhang
- School of Engineering, Faculty of Engineering & Technology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Dave Hughes
- Novosound Ltd., Biocity, BoNess Road, Newhouse, Glasgow ML1 5UH, UK
| | - Yongqiang Qiu
- School of Engineering, Faculty of Engineering & Technology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
20
|
Domka W, Bartusik-Aebisher D, Mytych W, Dynarowicz K, Aebisher D. The Use of Photodynamic Therapy for Head, Neck, and Brain Diseases. Int J Mol Sci 2023; 24:11867. [PMID: 37511625 PMCID: PMC10380422 DOI: 10.3390/ijms241411867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Head-neck cancers as a group have the 7th highest rate of incidence worldwide. The most often diagnosed disease of the head and neck is squamous cell carcinoma (90% of cases). Another specific group of tumors is brain tumors. These can be divided into primary tumors and secondary tumors associated with metastasis. Research shows that treating head and neck cancers continues to be problematic and challenging, and researchers are actively seeking new treatments that would improve survival rates and reduce side effects. Irradiation of tumor tissue with the optimal wavelength of light in photodynamic therapy (PDT) generates predominantly singlet oxygen in tissue-based photosensitizers (PSs) or reactive oxygen radicals in the case of vascular PSs leading to cellular apoptosis and necrosis. A very important feature of PDT is that cells cannot become immune to the effects of singlet oxygen or reactive oxygen radicals. However, photosensitizer (PS) transport is influenced by the specific structures of cancer tumors and the concentration of PS decreases in cells far from the vessel lumen. Therefore, PSs may not reach tumor interiors, which decreases therapy effectiveness. The use of drug carriers and 3rd generation PSs that contain biocompatible functional groups makes it possible to control transport. This review of the current literature on PDT was conducted through databases such as PubMed and Scopus. The types of publications considered included clinical studies and most of the articles included were published in English. Based on the publications collected, we conclude that researchers have demonstrated the potential of PDT as a therapeutic platform for head, neck, and brain diseases.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Wiktoria Mytych
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
21
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
22
|
Takeuchi S, Cesari A, Soma S, Suzuki Y, Casulli MA, Sato K, Mancin F, Hashimoto T, Hayashita T. Preparation of ultrasmall cyclodextrin nanogels by an inverse emulsion method using a cationic surfactant. Chem Commun (Camb) 2023; 59:4071-4074. [PMID: 36938636 DOI: 10.1039/d3cc00523b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Stable water-in-oil emulsion membranes can be prepared using [dilauryl(dimethyl)ammonium] bromide (DDAB), a cationic surfactant. We prepared ultrasmall cyclodextrin (γ-CyD) nanogels (γ-CyDngs) by forming ionic pairs between the secondary hydroxyl groups of γ-CyDs and DDAB. Fluorescence and NMR characterisation of the obtained γ-CyDngs revealed superior inclusion affinities compared with native γ-CyDs, beneficial for the solubilisation of hydrophobic compounds in water.
Collapse
Affiliation(s)
- Satomi Takeuchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Andrea Cesari
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Suzuka Soma
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yota Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Maria Antonietta Casulli
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Kai Sato
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
23
|
Kiran Raj G, Singh E, Hani U, Ramesh KVRNS, Talath S, Garg A, Savadatti K, Bhatt T, Madhuchandra K, Osmani RAM. Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. J Control Release 2023; 355:709-729. [PMID: 36805872 DOI: 10.1016/j.jconrel.2023.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Novel therapies and drug delivery systems (DDS) emphasis on localized, personalized, triggered, and regulated drug administration have heavily implicated electrically responsive DDS. An ideal DDS must deliver drugs to the target region at therapeutically effective concentrations to elicit a pharmacological response, resulting in better prophylaxis of the disease and the treatment. Biodegradable polymers are frequently employed for in-vivo long-term release; however, dose dumping can be anticipated. As a result, current DDSs can be tagged as dubbed "Smart Biomaterials" since they only focus on an on-demand cargo release in response to a trigger or stimulation. These organic materials have been recognized for their metal-like conductivity, as well as their mechanical stability and ease of production. These biomaterials can be programmed to respond to both internal and external stimuli. External pulsed triggers are required for extrinsic stimuli-responsive materials, whereas intrinsic stimuli-responsive materials rely on localized changes in the tissue environment. Furthermore, these materials have the ability to deliver active pharmaceutical agents at a varied concentration levels and across a broad spectrum of action. Drug delivery, biomedical implant technology, biosensor technology, and tissue engineering can be listed as a few prominent applications that have sparked immense interest for conductive polymers-based research and advancements in academia as well as in industry. This review comprehensively covers a cutting-edge collection of electrically conductive polymers and composites, and provide detailed insights of recent trends and advancements allied to conductive polymers for their potential applicability in an array of diverse meadows primarily focusing on drug delivery, biosensing and therapeutics. Furthermore, progressions in their synthesis, structural and functional properties have been presented in conjunction with futuristic directions for the smooth clinical translations.
Collapse
Affiliation(s)
- G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, United States; Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay (IITB), Mumbai 400076, Maharashtra, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Komal Savadatti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - K Madhuchandra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
24
|
Cardiovascular Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
25
|
Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2023; 353:1050-1067. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microneedles (MN) technology is an emerging technology for the transdermal delivery of therapeutics. When combined with photoresponsive (PR) materials, MNs can deliver therapeutics precisely and effectively with enhanced efficacy or synergistic effects. This review systematically summarizes the therapeutic applications of PRMNs in cancer therapy, wound healing, diabetes treatment, and diagnostics. Different PR approaches to activate and control the release of therapeutic agents from MNs are also discussed. Overall, PRMNs are a powerful tool for stimuli-responsive controlled-release therapeutic delivery to treat various diseases.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, United States; School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Brian Youden
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada; Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Sujing Lin
- School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, United States.
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
26
|
Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022; 15:pharmaceutics15010116. [PMID: 36678745 PMCID: PMC9865937 DOI: 10.3390/pharmaceutics15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 01/01/2023] Open
Abstract
After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.
Collapse
|
27
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
28
|
Jia S, Sletten EM. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chem Biol 2022; 17:3255-3269. [PMID: 34516095 PMCID: PMC8918031 DOI: 10.1021/acschembio.1c00518] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex network of naturally occurring biological pathways motivates the development of new synthetic molecules to perturb and/or detect these processes for fundamental research and clinical applications. In this context, photochemical tools have emerged as an approach to control the activity of drug or probe molecules at high temporal and spatial resolutions. Traditional photochemical tools, particularly photolabile protecting groups (photocages) and photoswitches, rely on high-energy UV light that is only applicable to cells or transparent model animals. More recently, such designs have evolved into the visible and near-infrared regions with deeper tissue penetration, enabling photocontrol to study biology in tissue and model animal contexts. This Review highlights recent developments in synthetic far-red and near-infrared photocages and photoswitches and their current and potential applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Coșman BP, Bucătariu SM, Constantin M, Fundueanu G. Temperature/pH-Sensitive Double Cross-Linked Hydrogels as Platform for Controlled Delivery of Metoclopramide. Gels 2022; 8:824. [PMID: 36547347 PMCID: PMC9778456 DOI: 10.3390/gels8120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Novel double cross-linked (DC) hydrogels with pH-/temperature-sensitive properties were designed and developed. Therefore, linear pH-sensitive poly(methyl vinyl ether-alt-maleic acid) (P(VME/MA)) macromolecules were absorbed within a thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide)-hydrogel (PNH) and, subsequently, cross-linked together through a solvent-free thermal method. As a novelty, double cross-linked hydrogels were obtained from previously purified polymers in the absence of any solvent or cross-linking agent, which are generally harmful for the body. The new DC structures were characterized by FT-IR spectroscopy, SEM, swelling kinetic measurements, and mechanical tests. The resulting scaffolds exhibited interconnected pores and a flexible pattern, compared to the brittle structure of conventional PNH. The swelling kinetics of DC hydrogels were deeply affected by temperature (25 and 37 °C) and pH (7.4 and 1.2). Furthermore, the hydrogels absorbed a great amount of water in a basic environment and displayed improved mechanical properties. Metoclopramide (Met) was loaded within DC hydrogels as a model drug to investigate the ability of the support to control the drug release rate. The results obtained recommended them as convenient platforms for the oral administration of drugs, with the release of the largest part of the active principle occurring in the colon.
Collapse
Affiliation(s)
| | - Sanda-Maria Bucătariu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
30
|
Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels 2022; 8:gels8110741. [PMID: 36421563 PMCID: PMC9689473 DOI: 10.3390/gels8110741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.
Collapse
|
31
|
Dastidar DG, Ghosh D, Das A. Recent developments in nanocarriers for cancer chemotherapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
33
|
A concise review on bio-responsive polymers in targeted drug delivery system. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022; 624:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
Cancer is one of the most challenging, life-threatening illnesses to cure, with over 10 million new cases diagnosed each year globally. Improved diagnostic cum treatment with common side-effects are warranting for successful therapy. Nanomaterials are recognized to improve early diagnosis, imaging, and treatment. Recently, multifunctional nanocomposites attracted considerable interest due to their low-cost production, and ideal thermal and chemical stability, and will be beneficial in future diagnostics and customized treatment capacity. Stimuli-Responsive Hybrid Metal Nanocomposites (SRHMNs) based nanocomposite materials pose the on/off delivery of bioactive compounds such as medications, genes, RNA, and DNA to specific tissue or organs and reduce toxicity. They simultaneously serve as sophisticated imaging and diagnostic tools when certain stimuli (e.g., temperature, pH, redox, ultrasound, or enzymes) activate the nanocomposite, resulting in the imaging-guided transport of the payload at defined sites. This review in detail addresses the recent advancements in the design and mechanism of internal breakdown processes of the functional moiety from stimuli-responsive systems in response to a range of stimuli coupled with metal nanoparticles. Also, it provides a thorough understanding of SRHMNs, enabling non-invasive interventional therapy by resolving several difficulties in cancer theranostics.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
35
|
Abstract
Carriers are protective transporters of drugs to target cells, facilitating therapy under each points of view, such as fast healing, reducing infective phenomena, and curing illnesses while avoiding side effects. Over the last 60 years, several scientists have studied drug carrier properties, trying to adapt them to the release environment. Drug/Carrier interaction phenomena have been deeply studied, and the release kinetics have been modeled according to the occurring phenomena involved in the system. It is not easy to define models’ advantages and disadvantages, since each of them may fit in a specific situation, considering material interactions, diffusion and erosion phenomena, and, no less important, the behavior of receiving medium. This work represents a critical review on main mathematical models concerning their dependency on physical, chemical, empirical, or semi-empirical variables. A quantitative representation of release profiles has been shown for the most representative models. A final critical comment on the applicability of these models has been presented at the end. A mathematical approach to this topic may help students and researchers approach the wide panorama of models that exist in literature and have been optimized over time. This models list could be of practical inspiration for the development of researchers’ own new models or for the application of proper modifications, with the introduction of new variable dependency.
Collapse
|
36
|
Wang Y, Wang C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022; 14:pharmaceutics14061150. [PMID: 35745723 PMCID: PMC9229693 DOI: 10.3390/pharmaceutics14061150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops.
Collapse
|
37
|
Guðmundsson KE, Marteinsdóttir G, Kristbergsson K, Kvaran Á. Melatonin photoreactivity: phosphorescence formation and quenching processes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractStudies of melatonin photoreactivity in water solutions: An effect of an external heavy atom I− on UV/Vis absorption, fluorescence and phosphorescence spectra is explored. The data allowed determination of relevant energetics for the system.The heavy atom effect (HAE) of I− on melatonin is clearly found to induce an intersystem crossing from the lowest energy singlet state to the lowest energy triplet state (T1) by a state mixing. Lifetime for the first excited triplet states of melatonin in association with I− and quenching rates for halomethanes (CH2X2, CHX3, CY4, X = Cl, Br, Y = Cl) are determined from Time-Correlated Single-Photon Counting decay curves for the phosphorescence. Dramatic alterations in quenching rate constants with quenchers as CH2X2 < CHX3 < CX4 and Cl < Br are attributed to energy transfer from an I−…Me*(T1) complex to low-lying electronic states of the halomethanes followed by dissociation to form R and X fragments. Relevance of the melatonin photoreactivity to photosensitizer properties in organic media is discussed.
Graphical abstract
Collapse
|
38
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
39
|
Liu D, Wang T, Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv Healthc Mater 2022; 11:e2102253. [PMID: 34767306 DOI: 10.1002/adhm.202102253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Al-Nemrawi N, Hameedat F, Al-Husein B, Nimrawi S. Photolytic Controlled Release Formulation of Methotrexate Loaded in Chitosan/TiO2 Nanoparticles for Breast Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020149. [PMID: 35215259 PMCID: PMC8875436 DOI: 10.3390/ph15020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
A new system composed of chitosan nanoparticles loaded with methotrexate (MTX-CS-NPs) and functionalized with photocatalytic TiO2 nanoparticles (TiO2-NPs) was prepared. This system is expected to initiate polymeric rupture of MTX-CS-NPs and subsequently release MTX, upon illumination with UV light. MTX-CS-NPs were prepared and characterized in terms of particle size, charge, polydispersity and drug release before and after coating with TiO2-NPs. The release of MTX in vitro was studied in dark, light and UV light. Finally, coated and uncoated MTX-CS-NPs were studied in vitro using MCF-7 cell line. The functionalized NPs were larger in size, more polydisperse and carried higher positive charges compared to the unfunctionalized NPs. The entrapment efficacy was high reaching 75% and was not affected by coating with MTX-CS-NPs. Further, less than 5% of methotrexate was released after 80 h from uncoated NPs and the release was not enhanced by UV illumination of the particles. In contrast, the release from functionalized NPs was enhanced, reaching 40% after 80 h, as the particles were stroked with UV light and as the amount of TiO2-NPs used in coating increased. Finally, coating the MTX-CS-NPs with TiO2-NPs significantly enhanced their cytotoxicity on MCF-7 cells. The coated MTX-CS-NPs recorded low cell viabilities compared to the other formulations. In conclusion, the drug release of MTX-CS-NPs could be triggered and controlled remotely by coating with TiO2-NPs, which maybe more effective in cancer treatment.
Collapse
Affiliation(s)
- Nusaiba Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Correspondence:
| | - Fatima Hameedat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | | |
Collapse
|
41
|
Cardiovascular Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Yadav S, Ramesh K, Kumar P, Jo SH, Yoo SII, Gal YS, Park SH, Lim KT. Near-Infrared Light-Responsive Shell-Crosslinked Micelles of Poly(d,l-lactide)- b-poly((furfuryl methacrylate)- co-( N-acryloylmorpholine)) Prepared by Diels-Alder Reaction for the Triggered Release of Doxorubicin. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7913. [PMID: 34947507 PMCID: PMC8705764 DOI: 10.3390/ma14247913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
In the present study, we developed near-infrared (NIR)-responsive shell-crosslinked (SCL) micelles using the Diels-Alder (DA) click reaction between an amphiphilic copolymer poly(d,l-lactide)20-b-poly((furfuryl methacrylate)10-co-(N-acryloylmorpholine)78) (PLA20-b-P(FMA10-co-NAM78)) and a diselenide-containing crosslinker, bis(maleimidoethyl) 3,3'-diselanediyldipropionoate (BMEDSeDP). The PLA20-b-P(FMA10-co-NAM78) copolymer was synthesized by RAFT polymerization of FMA and NAM using a PLA20-macro-chain transfer agent (PLA20-CTA). The DA reaction between BMEDSeDP and the furfuryl moieties in the copolymeric micelles in water resulted in the formation of SCL micelles. The SCL micelles were analyzed by 1H-NMR, FE-SEM, and DLS. An anticancer drug, doxorubicin (DOX), and an NIR sensitizer, indocyanine green (ICG), were effectively incorporated into the SCL micelles during the crosslinking reaction. The DOX/ICG-loaded SCL micelles showed pH- and NIR-responsive drug release, where burst release was observed under NIR laser irradiation. The in vitro cytotoxicity analysis demonstrated that the SCL was not cytotoxic against normal HFF-1 cells, while DOX/ICG-loaded SCL micelles exhibited significant antitumor activity toward HeLa cells. Thus, the SCL micelles of PLA20-b-P(FMA10-co-NAM78) can be used as a potential delivery vehicle for the controlled drug release in cancer therapy.
Collapse
Affiliation(s)
- Sonyabapu Yadav
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| | - Kalyan Ramesh
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Parveen Kumar
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; (S.-H.J.); (S.-H.P.)
| | - Seong II Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Korea;
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 38428, Korea;
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; (S.-H.J.); (S.-H.P.)
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| |
Collapse
|
43
|
Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev 2021; 179:114006. [PMID: 34655662 DOI: 10.1016/j.addr.2021.114006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/19/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticle-based therapeutics have the potential to change the paradigm of how we approach the diagnosis and treatment of human disease. Employing naturally derived cell membranes as a surface coating has created a powerful new approach by which nanoparticles can be functionalized towards a wide range of biomedical applications. By using membranes derived from different cell sources, the resulting nanoparticles inherit properties that can make them well-suited for a variety of tasks. In recent years, stimuli-responsive platforms with the ability to release payloads on demand have received increasing attention due to their improved delivery, reduced side effects, and precision targeting. Nanoformulations have been developed to respond to external stimuli such as magnetic fields, ultrasound, and radiation, as well as local stimuli such as pH gradients, redox potentials, and other chemical conditions. Here, an overview of the novel cell membrane coating platform is provided, followed by a discussion of stimuli-responsive platforms that leverage this technology.
Collapse
|
44
|
Abstract
Achieving a novel drug delivery system needs site-specificity along with dosage control. Many physical, chemical, mechanical, and biological signals are used for developing these systems, out of which light has been used predominantly in the past decade. Light responsive drug delivery systems have tremendous potential, and their exploration is crucial in developing a precise and controlled delivery system. Spatio-temporal and intensity control of light allows better manipulation of drug delivery vehicles than mechanical, chemical, and biological signals. The use of ultraviolet (UV) and near-infrared (NIR) light has helped in upgrading therapeutic functionalities, while the use of up-conversion nanoparticles (UCNPs) has delivered an extension into theranostic tools. Biomaterials incorporated with photosensitizers can readily respond to changes in light and are vital in achieving clinical success via translational research. Further, the inclusion of biological macromolecules for the transportation of drugs, genes, and proteins has seen a broader application of light-controlled systems. The key objective of this review paper is to summarise the evolution of light-activated targeted drug delivery systems and the importance of biomaterials in developing one.
Collapse
Affiliation(s)
- Mishal Pokharel
- Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| | - Kihan Park
- Mechanical Engineering, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
45
|
Al-Nemrawi N, Nimrawi S. A novel formulation of chitosan nanoparticles functionalized with titanium dioxide nanoparticles. J Adv Pharm Technol Res 2021; 12:402-407. [PMID: 34820317 PMCID: PMC8588920 DOI: 10.4103/japtr.japtr_22_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
Herein, chitosan nanoparticles (CS-NPs) were prepared and functionalized chemically with titanium dioxide nanoparticles (TiO2-NPs) to allow on-demand degradation of CS-NPs, using ultraviolet (UV) irradiation as a trigger. This is expected to allow drug release depending on patients' needs or physiological circumstances. Eleven formulations were arranged and their particle size, charge, and polydispersity were determined. The effect of CS-NPs size and the amount of TiO2-NPs, on the system collapse, was studied accordingly. Moreover, the collapse of these systems was examined using a fluorescence microscope after loading CS-NPs with Rhodamine. The formulations showed high monodispersity and had sizes ranged between 170 and 440 nm and charges ranged between +5 and +34 mV. Scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray diffraction proved the chemical deposition of TiO2-NPs on CS-NPs. The dye test showed that there are two factors that oppose each other and affected the deposition of TiO2-NPs on CS-NPs, the size of CS-NPs, and the amount of TiO2-NPs used. In addition, the dye test showed that the deposition of TiO2-NPs is a saturated process that relies on the amount of TiO2-NPs used initially. Finally, the intensity of Rhodamine released from these systems after illumination with UV light was related to the amount of TiO2-NPs deposited on CS-NPs. In conclusion, functionalization of CS-NPs with TiO2-NPs can be controlled and used to rupture CS-NPs on demand by illumination with UV light.
Collapse
Affiliation(s)
- Nusaiba Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
46
|
Hu W, Su YW, Jiang YK, Fan WD, Cheng SY, Tong ZZ, Cen C, Jiang GH. Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
|
48
|
Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021; 15:19-27. [PMID: 34694727 PMCID: PMC8675821 DOI: 10.1049/nbt2.12018] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023] Open
Abstract
Nanomicelles are self‐assembling nanosized (usually with particle size within a range of 10 to 100 nm) colloidal dispersions with a hydrophobic core and hydrophilic shell. Owing to its size, solubility, customised surface or its exposure to the environment, nanomicelles show some unique or novel characteristics, which makes it multifunctional and thus makes its use indispensable in biomedical application and various other fields. This review presents the unique properties of nanomicelles that makes it different from other particles and paves its way to be used as drug delivery agent and many other biological uses or applications. It also emphasises on the drug encapsulation ability of the nanomicelles and different technique of drug loading and delivery along with its advantages and disadvantages.
Collapse
Affiliation(s)
- Anamika Bose
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | | | - Bismayan Sikdar
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Prasun Patra
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| |
Collapse
|
49
|
Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021; 338:446-461. [PMID: 34481021 DOI: 10.1016/j.jconrel.2021.08.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023]
Abstract
Over the past three decades, various photosensitive nanoparticles have been developed as potential therapies in human health, ranging from photodynamic therapy technologies that have already reached clinical use, to drug delivery systems that are still in the preclinical stages. Many of these systems are designed to achieve a high spatial and temporal on-demand drug release via phototriggerable mechanisms. This review examines the current clinical and experimental applications in cancer treatment of photosensitive drug release systems, including nanocarriers such as liposomes, micelles, polymeric nanoparticles, and hydrogels. We will focus on the three main physicochemical mechanisms of imparting photosensitivity to a delivery system: i) photochemical reactions (oxidation, cleavage, and polymerization), ii) photoisomerization, iii) and photothermal reactions. Photosensitive nanoparticles have a multitude of different applications including controlled drug release, resulting from physical/conformational changes in the delivery systems in response to light of specific wavelengths. Most of the recent research in these delivery systems has primarily focused on improving the efficacy and safety of cancer treatments such as photodynamic and photothermal therapy. Combinations of multiple treatment modalities using photosensitive nanoparticulate delivery systems have also garnered great interest in combating multi-drug resistant cancers due to their synergistic effects. Finally, the challenges and future potential of photosensitive drug delivery systems in biomedical applications is outlined.
Collapse
Affiliation(s)
- Patrick Pan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shaun W P Rees
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
50
|
Cai R, Xiang H, Yang D, Lin KT, Wu Y, Zhou R, Gu Z, Yan L, Zhao Y, Tan W. Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. J Am Chem Soc 2021; 143:16113-16127. [PMID: 34582167 DOI: 10.1021/jacs.1c06652] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrating multifunctional nanostructures capable of radiotherapy and photothermal ablation is an emerging alternative in killing cancer cells. In this work, we report a novel plasmonic heterostructure formed by decorating AuPt nanoparticles (NPs) onto the surfaces of CuS nanosheets (AuPt@CuS NSs) as a highly effective nanotheranostic toward dual-modal photoacoustic/computed tomography imaging and enhanced synergistic radiophotothermal therapy. These heterostructures can confer higher photothermal conversion efficiency via the local electromagnetic enhancement as well as a greater radiation dose deposition in the form of glutathione depletion and reactive oxygen species generation. As a result, the depth of tissue penetration is improved, and hypoxia of the tumor microenvironment is alleviated. With synergistic enhancement in the efficacy of photothermal ablation and radiotherapy, the tumor can be eliminated without later recurrence. It is believed that these multifunctional heterostructures will play a vital role in future oncotherapy with the enhanced synergistic effects of radiotherapy and photothermal ablation under the guided imaging of a potential dual-modality system.
Collapse
Affiliation(s)
- Ren Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Huandong Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Yang
- Centre of Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn 3122, Australia
| | - Keng-Te Lin
- Centre of Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn 3122, Australia
| | - Yuanzheng Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyi Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|