1
|
Jiahao M, Fan Z, Junsheng M. Influence of acidic metabolic environment on differentiation of stem cell-derived cardiomyocytes. Front Cardiovasc Med 2024; 11:1288710. [PMID: 38572303 PMCID: PMC10987843 DOI: 10.3389/fcvm.2024.1288710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-based myocardial regeneration is a frontier topic in the treatment of myocardial infarction. Manipulating the metabolic microenvironment of stem cells can influence their differentiation into cardiomyocytes, which have promising clinical applications. pH is an important indicator of the metabolic environment during cardiomyocyte development. And lactate, as one of the main acidic metabolites, is a major regulator of the acidic metabolic environment during early cardiomyocyte development. Here, we summarize the progress of research into the influence of pH value and lactate on cardiomyocyte survival and differentiation, as well as related mechanisms.
Collapse
Affiliation(s)
- Mao Jiahao
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Fan
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Mu Junsheng
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Milliken AS, Ciesla JH, Nadtochiy SM, Brookes PS. Distinct effects of intracellular vs. extracellular acidic pH on the cardiac metabolome during ischemia and reperfusion. J Mol Cell Cardiol 2023; 174:101-114. [PMID: 36481511 PMCID: PMC9868090 DOI: 10.1016/j.yjmcc.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/10/2022]
Abstract
Tissue ischemia results in intracellular pH (pHIN) acidification, and while metabolism is a known driver of acidic pHIN, less is known about how acidic pHIN regulates metabolism. Furthermore, acidic extracellular (pHEX) during early reperfusion confers cardioprotection, but how this impacts metabolism is unclear. Herein we employed LCMS based targeted metabolomics to analyze perfused mouse hearts exposed to: (i) control perfusion, (ii) hypoxia, (iii) ischemia, (iv) enforced acidic pHIN, (v) control reperfusion, and (vi) acidic pHEX (6.8) reperfusion. Surprisingly little overlap was seen between metabolic changes induced by hypoxia, ischemia, and acidic pHIN. Acidic pHIN elevated metabolites in the top half of glycolysis, and enhanced glutathione redox state. Meanwhile, acidic pHEX reperfusion induced substantial metabolic changes in addition to those seen in control reperfusion. This included elevated metabolites in the top half of glycolysis, prevention of purine nucleotide loss, and an enhancement in glutathione redox state. These data led to hypotheses regarding potential roles for methylglyoxal inhibiting the mitochondrial permeability transition pore, and for acidic inhibition of ecto-5'-nucleotidase, as potential mediators of cardioprotection by acidic pHEX reperfusion. However, neither hypothesis was supported by subsequent experiments. In contrast, analysis of cardiac effluents revealed complex effects of pHEX on metabolite transport, suggesting that mildly acidic pHEX may enhance succinate release during reperfusion. Overall, each intervention had distinct and overlapping metabolic effects, suggesting acidic pH is an independent metabolic regulator regardless which side of the cell membrane it is imposed.
Collapse
Affiliation(s)
- Alexander S Milliken
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Jessica H Ciesla
- Department of Biochemistry, University of Rochester Medical Center, USA
| | - Sergiy M Nadtochiy
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA
| | - Paul S Brookes
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA.
| |
Collapse
|
3
|
Ciocci Pardo A, González Arbeláez LF, Fantinelli JC, Álvarez BV, Mosca SM, Swenson ER. Myocardial and mitochondrial effects of the anhydrase carbonic inhibitor ethoxzolamide in ischemia-reperfusion. Physiol Rep 2021; 9:e15093. [PMID: 34806317 PMCID: PMC8606860 DOI: 10.14814/phy2.15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that inhibition of extracellularly oriented carbonic anhydrase (CA) isoforms protects the myocardium against ischemia-reperfusion injury. In this study, our aim was to assess the possible further contribution of CA intracellular isoforms examining the actions of the highly diffusible cell membrane permeant inhibitor of CA, ethoxzolamide (ETZ). Isolated rat hearts, after 20 min of stabilization, were assigned to the following groups: (1) Nonischemic control: 90 min of perfusion; (2) Ischemic control: 30 min of global ischemia and 60 min of reperfusion (R); and (3) ETZ: ETZ at a concentration of 100 μM was administered for 10 min before the onset of ischemia and then during the first 10 min of reperfusion. In additional groups, ETZ was administered in the presence of SB202190 (SB, a p38MAPK inhibitor) or chelerythrine (Chel, a protein kinase C [PKC] inhibitor). Infarct size, myocardial function, and the expression of phosphorylated forms of p38MAPK, PKCε, HSP27, and Drp1, and calcineurin Aβ content were assessed. In isolated mitochondria, the Ca2+ response, Ca2+ retention capacity, and membrane potential were measured. ETZ decreased infarct size by 60%, improved postischemic recovery of myocardial contractile and diastolic relaxation increased P-p38MAPK, P-PKCε, P-HSP27, and P-Drp1 expression, decreased calcineurin content, and normalized calcium and membrane potential parameters measured in isolated mitochondria. These effects were significantly attenuated when ETZ was administered in the presence of SB or Chel. These data show that ETZ protects the myocardium and mitochondria against ischemia-reperfusion injury through p38MAPK- and PKCε-dependent pathways and reinforces the role of CA as a possible target in the management of acute cardiac ischemic diseases.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Luisa F. González Arbeláez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Juliana C. Fantinelli
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Bernardo V. Álvarez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
- Present address:
Department of BiochemistryMembrane Protein Disease Research GroupUniversity of AlbertaEdmontonAlbertaT6G 2H7Canada
| | - Susana M. Mosca
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Erik R. Swenson
- Department of Medicine, Pulmonary and Critical Care MedicineVA Puget Sound Health Care SystemUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Escudero DS, Pérez NG, Díaz RG. Myocardial Impact of NHE1 Regulation by Sildenafil. Front Cardiovasc Med 2021; 8:617519. [PMID: 33693035 PMCID: PMC7937606 DOI: 10.3389/fcvm.2021.617519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The cardiac Na+/H+ exchanger (NHE1) is a membrane glycoprotein fundamental for proper cell functioning due its multiple housekeeping tasks, including regulation of intracellular pH, Na+ concentration, and cell volume. In the heart, hyperactivation of NHE1 has been linked to the development of different pathologies. Several studies in animal models that reproduce the deleterious effects of ischemia/reperfusion injury or cardiac hypertrophy have conclusively demonstrated that NHE1 inhibition provides cardioprotection. Unfortunately, NHE1 inhibitors failed to reproduce these effects in the clinical arena. The reasons for those discrepancies are not apparent yet. However, a reasonable clue to consider would be that drugs that completely abolish the exchanger activity, including that its essential housekeeping function may not be the best therapeutic approach. Therefore, interventions tending to specifically reduce its hyperactive state without affecting its basal activity emerge as a novel potential gold standard. In this regard, a promising goal seems to be the modulation of the phosphorylation state of the cytosolic tail of the exchanger. Recent own experiments demonstrated that Sildenafil, a phosphodiesterase 5A inhibitor drug that has been widely used for the treatment of erectile dysfunction is able to decrease NHE1 phosphorylation, and hence reduce its hyperactivity. In connection, growing evidence demonstrates cardioprotective properties of Sildenafil against different cardiac pathologies, with the distinctive characteristic of directly affecting cardiac tissue without altering blood pressure. This mini-review was aimed to focus on the regulation of NHE1 activity by Sildenafil. For this purpose, experimental data reporting Sildenafil effects in different animal models of heart disease will be discussed.
Collapse
Affiliation(s)
- Daiana S Escudero
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
6
|
Espejo MS, Orlowski A, Ibañez AM, Di Mattía RA, Velásquez FC, Rossetti NS, Ciancio MC, De Giusti VC, Aiello EA. The functional association between the sodium/bicarbonate cotransporter (NBC) and the soluble adenylyl cyclase (sAC) modulates cardiac contractility. Pflugers Arch 2019; 472:103-115. [PMID: 31754830 DOI: 10.1007/s00424-019-02331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 μM), the selective inhibitor of sAC KH7 (1 μM), and the PKA inhibitor H89 (0.1 μM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.
Collapse
Affiliation(s)
- María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandro M Ibañez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Romina A Di Mattía
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Fernanda Carrizo Velásquez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Noelia S Rossetti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
7
|
Ibañez AM, Espejo MS, Zavala MR, Villa-Abrille MC, Lofeudo JM, Aiello EA, De Giusti VC. Regulation of Intracellular pH is Altered in Cardiac Myocytes of Ovariectomized Rats. J Am Heart Assoc 2019; 8:e011066. [PMID: 30917747 PMCID: PMC6509710 DOI: 10.1161/jaha.118.011066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background It is well known that after menopause women are exposed to a greater cardiovascular risk, but the intracellular modifications are not properly described. The sodium/proton exchanger (NHE) and the sodium/bicarbonate cotransporter (NBC) regulate the intracellular pH and, indirectly, the intracellular sodium concentration ([Na+]). There are 2 isoforms of NBC in the heart: the electrogenic (1Na+/2[Formula: see text]; NBCe1) and the electroneutral (1Na+/1[Formula: see text]; NBCn1). Because NHE and NBCn1 hyperactivity as well as the NBCe1 decreased activity have been associated with several cardiovascular pathologies, the aim of this study was to investigate the potential alterations of the alkalinizing transporters during the postmenopausal period. Methods and Results Three-month ovariectomized rats (OVX) were used. The NHE activity and protein expression are significantly increased in OVX. The NBCe1 activity is diminished, and the NBCn1 activity becomes predominant in OVX rats. p-Akt levels showed a significant diminution in OVX. Finally, NHE activity in platelets from OVX rats is also higher in comparison to sham rats, resulting in a potential biomarker of cardiovascular diseases. Conclusions Our results demonstrated for the first time that in the cardiac ventricular myocytes of OVX rats NHE and NBC isoforms are altered, probably because of the decreased level of p-Akt, compromising the ionic intracellular homeostasis.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - María Sofía Espejo
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Maite Raquel Zavala
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - María Celeste Villa-Abrille
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Juan Manuel Lofeudo
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Ernesto Alejandro Aiello
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Verónica Celeste De Giusti
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| |
Collapse
|
8
|
Ciocci Pardo A, González Arbeláez LF, Fantinelli JC, Aiello EA, Mosca SM. Calcineurin/P38MAPK/HSP27-dependent pathways are involved in the attenuation of postischemic mitochondrial injury afforded by sodium bicarbonate co-transporter (NBCe1) inhibition. Biochem Pharmacol 2019; 161:26-36. [PMID: 30615862 DOI: 10.1016/j.bcp.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
The electrogenic sodium bicarbonate co-transporter isoform 1 (NBCe1) plays an important role in ischemia-reperfusion injury. The cardioprotective action of an antibody directed to the extracellular loop 3 (a-L3) of NBCe1 was previously demonstrated by us. However, the role of a-L3 on mitochondrial post-ischemic alterations has not yet been determined. In this study, we aimed to elucidate the effects of a-L3 on post-ischemic mitochondrial state and dynamics analysing the involved mechanisms. Isolated rat hearts were assigned to the following groups: 1) Non-ischemic control (NIC): 110 min of perfusion; 2) Ischemic control (IC): 30 min of global ischemia and 60 min of reperfusion (R); 3) a-L3: a-L3 was administered during the initial 10 min of R; 4) SB + a-L3: SB202190 (p38MAPK inhibitor) plus a-L3. Infarct size (IS) was measured by TTC staining. Developed pressure (LVDP), maximal velocities of rise and decay of LVP (+dP/dt max, -dP/dt max) and end-diastolic pressure (LVEDP) of the left ventricle were used to assess systolic and diastolic function. Mitochondrial Ca2+ response (CaR), Ca2+ retention capacity (CRC), membrane potential (ΔΨm) and MnSOD levels were measured. The expression of P-p38MAPK, calcineurin, P-HSP27, P-Drp1, Drp1, and OPA1 were determined. a-L3 decreased IS, improved post-ischemic recovery of myocardial function, increased P-p38MAPK, P-HSP27, P-Drp1, cytosolic Drp1, and OPA1 expression and decreased calcineurin. These effects were abolished by p38MAPK inhibition with SB. These data show that NBCe1 inhibition by a-L3 limits the cell death, improves myocardial post-ischemic contractility and mitochondrial state and dynamic through calcium decrease/calcineurin inhibition-mediated p38MAPK activation and p38MAPK/HSP27-dependent pathways. Thus, we demonstrated that a-L3 is a potential therapeutic strategy in post-ischemic alterations.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Vairamani K, Prasad V, Wang Y, Huang W, Chen Y, Medvedovic M, Lorenz JN, Shull GE. NBCe1 Na +-HCO3 - cotransporter ablation causes reduced apoptosis following cardiac ischemia-reperfusion injury in vivo. World J Cardiol 2018; 10:97-109. [PMID: 30344957 PMCID: PMC6189072 DOI: 10.4330/wjc.v10.i9.97] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hypothesis that cardiomyocyte-specific loss of the electrogenic NBCe1 Na+-HCO3- cotransporter is cardioprotective during in vivo ischemia-reperfusion (IR) injury.
METHODS An NBCe1 (Slc4a4 gene) conditional knockout mouse (KO) model was prepared by gene targeting. Cardiovascular performance of wildtype (WT) and cardiac-specific NBCe1 KO mice was analyzed by intraventricular pressure measurements, and changes in cardiac gene expression were determined by RNA Seq analysis. Response to in vivo IR injury was analyzed after 30 min occlusion of the left anterior descending artery followed by 3 h of reperfusion.
RESULTS Loss of NBCe1 in cardiac myocytes did not impair cardiac contractility or relaxation under basal conditions or in response to β-adrenergic stimulation, and caused only limited changes in gene expression patterns, such as those for electrical excitability. However, following ischemia and reperfusion, KO heart sections exhibited significantly fewer apoptotic nuclei than WT sections.
CONCLUSION These studies indicate that cardiac-specific loss of NBCe1 does not impair cardiovascular performance, causes only minimal changes in gene expression patterns, and protects against IR injury in vivo .
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3026, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, United States
| | - Yigang Wang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Wei Huang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Yinhua Chen
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, United States
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, United States
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0524, United States
| |
Collapse
|
10
|
Bonde L, Boedtkjer E. Extracellular acidosis and very low [Na + ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiol (Oxf) 2017; 221:129-141. [PMID: 28319329 DOI: 10.1111/apha.12877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
Abstract
AIM The electroneutral Na+ , HCO3- cotransporter NBCn1 and Na+ /H+ exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na+ ]. We examined effects of low [Na+ ]o and pHo on NBCn1 and NHE1 activity in VSMCs of small arteries. METHODS We measured pHi by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. RESULTS NBCn1 activity - defined as Na+ -dependent, amiloride-insensitive net base uptake with CO2 /HCO3- present - was inhibited equally when pHo decreased from 7.4 (22 mm HCO3-/5% CO2 ) by metabolic (pHo 7.1/11 mm HCO3-: 22 ± 8%; pHo 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pHo 7.1/10% CO2 : 35 ± 11%; pHo 6.8/20% CO2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na+ -dependent net acid extrusion without CO2 /HCO3- present - at both pHo 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pHo , lowering [Na+ ]o from 140 to 70 mm reduced NBCn1 and NHE1 activity <20% whereas transport activities declined markedly (25-50%) when [Na+ ]o was reduced to 35 mm. Steady-state pHi decreased more during respiratory (ΔpHi /ΔpHo = 71 ± 4%) than metabolic (ΔpHi /ΔpHo = 30 ± 7%) acidosis. CONCLUSION Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO2 is raised or [HCO3-]o decreased. Lowering [Na+ ]o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na+ -dependent net acid extrusion at low pHo protects against cellular Na+ overload at the cost of intracellular acidification.
Collapse
Affiliation(s)
- L. Bonde
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - E. Boedtkjer
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
11
|
Orlowski A, De Giusti VC, Ciancio MC, Espejo MS, Aiello EA. The cardiac electrogenic sodium/bicarbonate cotransporter (NBCe1) is activated by aldosterone through the G protein-coupled receptor 30 (GPR 30). Channels (Austin) 2016; 10:428-434. [PMID: 27249584 DOI: 10.1080/19336950.2016.1195533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sodium/bicarbonate cotransporter (NBC) transports extracellular Na+ and HCO3- into the cytoplasm upon intracellular acidosis, restoring the acidic pHi to near neutral values. Two different NBC isoforms have been described in the heart, the electroneutral NBCn1 (1Na+:1HCO3-) and the electrogenic NBCe1 (1Na+:2HCO3-). Certain non-genomic effects of aldosterone (Ald) were due to an orphan G protein-couple receptor 30 (GPR30). We have recently demonstrated that Ald activates GPR30 in adult rat ventricular myocytes, which transactivates the epidermal growth factor receptor (EGFR) and in turn triggers a reactive oxygen species (ROS)- and PI3K/AKT-dependent pathway, leading to the stimulation of NBC. The aim of this study was to investigate the NBC isoform involved in the Ald/GPR30-induced NBC activation. Using specific NBCe1 inhibitory antibodies (a-L3) we demonstrated that Ald does not affect NBCn1 activity. Ald was able to increase NBCe1 activity recorded in isolation. Using immunofluorescence and confocal microscopy analysis we showed in this work that both NBCe1 and GPR30 are localized in t-tubules. In conclusion, we have demonstrated that NBCe1 is the NBC isoform activated by Ald in the heart.
Collapse
Affiliation(s)
- Alejandro Orlowski
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - Verónica C De Giusti
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - María C Ciancio
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - María S Espejo
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - Ernesto A Aiello
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| |
Collapse
|
12
|
De Giusti VC, Orlowski A, Ciancio MC, Espejo MS, Gonano LA, Caldiz CI, Vila Petroff MG, Villa-Abrille MC, Aiello EA. Aldosterone stimulates the cardiac sodium/bicarbonate cotransporter via activation of the g protein-coupled receptor gpr30. J Mol Cell Cardiol 2015; 89:260-7. [PMID: 26497404 DOI: 10.1016/j.yjmcc.2015.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Luis A Gonano
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martín G Vila Petroff
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Villa-Abrille
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
13
|
Wang T, Eskandari D, Zou D, Grote L, Hedner J. Increased Carbonic Anhydrase Activity is Associated with Sleep Apnea Severity and Related Hypoxemia. Sleep 2015; 38:1067-73. [PMID: 25845687 DOI: 10.5665/sleep.4814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/25/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The catalytic function of the enzyme carbonic anhydrase (CA) plays a fundamental role in carbon dioxide (CO2), proton (H(+)), and bicarbonate (HCO3(-)) homeostasis. Hypoxia and tissue acidosis have been proposed to increase physiological CA activity in various compartments of the body. We hypothesized that CA activity in blood is upregulated in patients with obstructive sleep apnea (OSA). DESIGN Cross-sectional analysis of a sleep clinic cohort. SETTINGS Sleep laboratory at a university hospital. PARTICIPANTS Seventy referred patients with suspected OSA (48 males, age 54 ± 13 y, apnea-hypopnea index (AHI) median [interquartile range] 21 [8-41] n/h). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS In-laboratory cardiorespiratory polygraphy was used to assess OSA. CA activity was determined by an in vitro assay that quantifies the pH change reflecting the conversion of CO2 and H2O to HCO3(-) and H(+). CA activity was positively associated with AHI and 4% oxygen desaturation index (ODI4) (Spearman correlation r = 0.44 and 0.47, both P < 0.001). The associations (CA activity versus logAHI and CA versus logODI4) were independent of sex, age, body mass index, presleep oxygen saturation, nocturnal oxygen saturation, hypertension status, and use of diuretic medication in two generalized linear models (P = 0.007 and 0.011, respectively). Sitting diastolic blood pressure was associated with CA activity after adjustment of sex, age, body mass index, mean oxygen saturation, and AHI (P = 0.046). CONCLUSIONS Carbonic anhydrase (CA) activity increased with apnea-hypopnea index and related nocturnal hypoxemia measures in patients with obstructive sleep apnea (OSA). Altered CA activity may constitute a component that modulates respiratory control and hemodynamic regulation in patients with OSA.
Collapse
Affiliation(s)
- Tengyu Wang
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Davoud Eskandari
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ding Zou
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ludger Grote
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Hedner
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Odunewu-Aderibigbe A, Fliegel L. The Na+/H+exchanger and pH regulation in the heart. IUBMB Life 2014; 66:679-85. [DOI: 10.1002/iub.1323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Larry Fliegel
- Department of Biochemistry; University of Alberta; Edmonton AB Canada
| |
Collapse
|
15
|
Wang HS, Chen Y, Vairamani K, Shull GE. Critical role of bicarbonate and bicarbonate transporters in cardiac function. World J Biol Chem 2014; 5:334-345. [PMID: 25225601 PMCID: PMC4160527 DOI: 10.4331/wjbc.v5.i3.334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/06/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H+, HCO3- is generated from CO2 and H2O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membranes. The functions of HCO3- and HCO3--transporters in epithelial tissues have been studied extensively, but their functions in heart are less well understood. Here we review studies of the identities and physiological functions of Cl-/HCO3- exchangers and Na+/HCO3- cotransporters of the SLC4A and SLC26A families in heart. We also present RNA Seq analysis of their cardiac mRNA expression levels. These studies indicate that slc4a3 (AE3) is the major Cl-/HCO3- exchanger and plays a protective role in heart failure, and that Slc4a4 (NBCe1) is the major Na+/HCO3- cotransporter and affects action potential duration. In addition, previous studies show that HCO3- has a positive inotropic effect in the perfused heart that is largely independent of effects on intracellular Ca2+. The importance of HCO3- in the regulation of contractility is supported by experiments showing that isolated cardiomyocytes exhibit sharply enhanced contractility, with no change in Ca2+ transients, when switched from Hepes-buffered to HCO3-- buffered solutions. These studies demonstrate that HCO3- and HCO3--handling proteins play important roles in the regulation of cardiac function.
Collapse
|
16
|
Lin X, Kraut JA, Wu D. Coadministration of a Na+-H+ exchange inhibitor and sodium bicarbonate for the treatment of asphyxia-induced cardiac arrest in piglets. Pediatr Res 2014; 76:118-26. [PMID: 24796369 DOI: 10.1038/pr.2014.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/27/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND The present study tested the hypothesis that addition of an inhibitor of Na(+)/H(+) exchanger (NHE1) to sodium bicarbonate might improve the response to base therapy from prolonged asphyxial cardiac arrest in piglets. METHODS Asphyxial cardiac arrest was induced by endotracheal tube clamping. Animals were randomly assigned to four study groups: (i) vehicle control, (ii) administration of sabiporide (NHE1 inhibitor), (iii) administration of sodium bicarbonate, and (iv) administration of sabiporide and sodium bicarbonate. RESULTS Administration of sodium bicarbonate alone did not affect survival, hemodynamic measures, and regional blood flow to critical tissues such as brain, heart, kidney, liver, and spleen. In contrast, sabiporide given alone or combined with sodium bicarbonate improved these. Furthermore, treatment with sabiporide reduced accumulation of neutrophils, reduced cytokine production in the lung, and reduced plasma levels of cardiac troponin-I, alanine aminotransferase, aspartate aminotransferase, and urea. In addition, the combined use of sabiporide and sodium bicarbonate had more profound reduction in interleukin (IL)-6 and IL-10, compared to sabiporide alone. CONCLUSION These results suggest that addition of sabiporide to the administration of sodium bicarbonate might improve hemodynamic response and dampen the inflammatory cascade noted with cardiac arrest, and therefore being an attractive option in the treatment of cardiac arrest.
Collapse
Affiliation(s)
- Xinchun Lin
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - Jeffrey A Kraut
- 1] Medical and Research Services and Division of Nephrology, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California [2] David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dongmei Wu
- 1] Department of Research, Mount Sinai Medical Center, Miami Beach, Florida [2] Department of Biotechnology, Information Science, and Nanotechnology (BIN) Fusion Technology, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
17
|
Abstract
BACKGROUND Metabolic acidosis is associated with impaired cellular function. This has been attributed to the accompanying reduction in intracellular and interstitial pH of the myocardium. Recent studies suggest that activation of the cellular Na(+)-H(+) exchanger NHE1 might contribute to myocardial dysfunction. This review examines the experimental evidence which supports the role of NHE1 in the genesis of acidosis-induced cellular dysfunction, the benefits of its inhibition, and the type of acidosis that might benefit from therapy. SUMMARY Information was obtained by searching MEDLINE for articles published between 1969 and 2013 using the terms: NHE1, metabolic acidosis, lactic acidosis, ischemia-reperfusion, shock, resuscitation, high anion gap acidosis, and non-gap acidosis. Each article was also reviewed for additional suitable references. Nineteen manuscripts published between 2002 and 2013 assessed the impact of inhibition of NHE1 on cellular function. They revealed that NHE1 is activated with metabolic acidosis associated with hypoxia, hypoperfusion, hemorrhagic shock, and sepsis. This was associated with a rise in cellular sodium and calcium and cardiac dysfunction including reduced contractility and a predisposition to cardiac arrhythmias. Inhibition of NHE1 with specific inhibitors improved cardiac function, reduced blood and tissue levels of proinflammatory cytokines, and decreased mortality. Key Message: These results suggest that use of inhibitors of NHE1 might be worthwhile in the treatment of some types of acute metabolic acidosis, specifically the lactic acidosis associated with hypoxia, hemorrhagic shock, and cardiac arrest. Its potential role in the treatment of other forms of acute metabolic acidosis remains to be determined.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Research, Mount Sinai Medical Center, Miami, Fla., USA
| | | |
Collapse
|
18
|
Lin X, Lee D, Wu D. Sabiporide improves cardiovascular function and attenuates organ injury from severe sepsis. J Surg Res 2014; 188:231-7. [DOI: 10.1016/j.jss.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
19
|
Fantinelli JC, Orlowski A, Aiello EA, Mosca SM. The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury. Cardiovasc Pathol 2014; 23:224-30. [PMID: 24721237 DOI: 10.1016/j.carpath.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although the participation of the electrogenic sodium/bicarbonate cotransporter (NBCe1) in the recovery from an intracellular acid load is recognized, its role in ischemia-reperfusion is still unclear. METHODS AND RESULTS Our objective was to assess the role of NBCe1 in reperfusion injury. We use selective functional antibodies against extracellular loop 3 (a-L3) and loop 4 (a-L4) of NBCe1. a-L3 inhibits and a-L4 stimulates NBCe1 activity. Isolated rat hearts were submitted to 40 min of coronary occlusion and 1 h of reperfusion. a-L3, a-L4 or S0859--selective Na(+)-HCO3(-) co-transport inhibitor--were administered during the initial 10 min of reperfusion. The infarct size (IS) was measured by triphenyltetrazolium chloride staining technique. Postischemic systolic and diastolic functions were also assessed. a-L3 and S0859 treatments decreased significantly (P < .05) the IS (16 ± 3% for a-L3 vs. 32 ± 5% in hearts treated with control nonimmune serum and 19 ± 3% for S0859 vs. 39 ± 2% in untreated hearts). Myocardial function during reperfusion improved after a-L3 treatment, but it was not modified by S0859. The infusion of a-L4 did not modify neither the IS nor myocardial function. CONCLUSIONS The NBCe1 hyperactivity during reperfusion leads to Na(+) and Ca(2+) loading, conducing to Ca(2+) overload and myocardial damage. Consistently, we have shown herein that the selective NBCe1 blockade with a-L3 exerted cardioprotection. This beneficial action strongly suggests that NBCe1 could be a potential target for the treatment of coronary disease.
Collapse
Affiliation(s)
- Juliana C Fantinelli
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandro Orlowski
- Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ernesto A Aiello
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana M Mosca
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:923805. [PMID: 24745027 PMCID: PMC3972907 DOI: 10.1155/2014/923805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023]
Abstract
The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology.
Collapse
|
21
|
De Giusti VC, Ciancio MC, Orlowski A, Aiello EA. Modulation of the cardiac sodium/bicarbonate cotransporter by the renin angiotensin aldosterone system: pathophysiological consequences. Front Physiol 2014; 4:411. [PMID: 24478712 PMCID: PMC3894460 DOI: 10.3389/fphys.2013.00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms in the cardiomyocytes. It has been demonstrated the existence of at least two functional isoforms, one that promotes the co-influx of 1 molecule of Na+ per 1 molecule of HCO−3 (electroneutral isoform; NBCn1) and the other one that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO−3 (electrogenic isoform; NBCe1). Both isoforms are important to maintain intracellular pH (pHi) and sodium concentration ([Na+]i). In addition, NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). The renin-angiotensin-aldosterone system (RAAS) is implicated in the modulation of almost all physiological cardiac functions and is also involved in the development and progression of cardiac diseases. It was reported that angiotensin II (Ang II) exhibits an opposite effect on NBC isoforms: it activates NBCn1 and inhibits NBCe1. The activation of NBCn1 leads to an increase in pHi and [Na+]i, which indirectly, due to the stimulation of reverse mode of the Na+/Ca2+ exchanger (NCX), conduces to an increase in the intracellular Ca2+ concentration. On the other hand, the inhibition of NBCe1 generates an APD prolongation, potentially representing a risk of arrhythmias. In the last years, the potentially altered NBC function in pathological scenarios, as cardiac hypertrophy and ischemia-reperfusion, has raised increasing interest among investigators. This review attempts to draw the attention on the relevant regulation of NBC activity by RAAS, since it modulates pHi and [Na+]i, which are involved in the development of cardiac hypertrophy, the damage produced by ischemia-reperfusion and the generation of arrhythmic events, suggesting a potential role of NBC in cardiac diseases.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - María C Ciancio
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - Alejandro Orlowski
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - Ernesto A Aiello
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| |
Collapse
|
22
|
Orlowski A, Ciancio MC, Caldiz CI, De Giusti VC, Aiello EA. Reduced sarcolemmal expression and function of the NBCe1 isoform of the Na⁺-HCO₃⁻ cotransporter in hypertrophied cardiomyocytes of spontaneously hypertensive rats: role of the renin-angiotensin system. Cardiovasc Res 2013; 101:211-9. [PMID: 24253522 DOI: 10.1093/cvr/cvt255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Electroneutral (NBCn1) and electrogenic (NBCe1) isoforms of the Na(+)-HCO3(-) cotransporter (NBC) coexist in the heart. We studied the expression and function of these isoforms in hearts of Wistar and spontaneously hypertensive rats (SHR), elucidating the direct implication of the renin-angiotensin system in the NBC regulation. METHODS AND RESULTS We used myocytes from Wistar, SHR, losartan-treated SHR (Los-SHR), and Angiotensin II (Ang II)-induced cardiac hypertrophy. We found an overexpression of NBCe1 and NBCn1 proteins in SHR that was prevented in Los-SHR. Hyperkalaemic-induced pHi alkalization was used to study selective activation of NBCe1. Despite the increase in NBCe1 expression, its activity was lower in SHR than in Wistar or Los-SHR. Similar results were found in Ang II-induced hypertrophy. A specific inhibitory antibody against NBCe1 allowed the discrimination between NBCe1 and NBCn1 activity. Whereas in SHR most of the pHi recovery was due to NBCn1 stimulation, in Wistar and Los-SHR the activity of both isoforms was equitable, suggesting that the deteriorated cardiac NBCe1 function observed in SHR is compensated by an enhanced activity of NBCn1. Using the biotin method, we observed greater level of internalized NBCe1 protein in SHR than in the non-hypertophic groups, while with immunofluorescence we localized the protein in endosomes near the nucleus only in SHR. CONCLUSIONS We conclude that Ang II is responsible for the impairment of the NBCe1 in hypertrophied hearts. This is due to retained transporter protein units in early endosomes. Moreover, NBCn1 activity seems to be increased in the hypertrophic myocardium of SHR, compensating impaired function of NBCe1.
Collapse
Affiliation(s)
- Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900 La Plata, Argentina
| | | | | | | | | |
Collapse
|
23
|
Intracellular levels of Na(+) and TTX-sensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 2013; 13:138-47. [PMID: 23225150 DOI: 10.1007/s12012-012-9192-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracellular Na(+) ([Na(+)](i)) is an important modulator of excitation-contraction coupling via regulating Ca(2+) efflux/influx, and no investigation has been so far performed in diabetic rat heart. Here, we examined whether any change of [Na(+)](i) in paced cardiomyocytes could contribute to functional alterations during diabetes. Slowing down in depolarization phase of the action potential, small but significant decrease in its amplitude with a slight depolarized resting membrane potential was traced in live cardiomyocytes from diabetic rat, being parallel with a decreased TTX-sensitive Na(+) channel current (I(Na)) density. We recorded either [Na(+)](i) or [Ca(2+)](i) by using a fluorescent Na(+) indicator (SBFI-AM or Na-Green) or a Ca(2+) indicator (Fura 2-AM) in freshly isolated cardiomyocytes. We examined both [Na(+)](i) and [Ca(2+)](i) at rest, and also [Na(+)](i) during pacing with electrical field stimulation in a range of 0.2-2.0 Hz stimulation frequency. In order to test the possible contribution of Na(+)/H(+) exchanger (NHE) to [Na(+)](i), we examined the free cytoplasmic [H(+)](i) changes from time course of [H(+)](i) recovery in cardiomyocytes loaded with SNARF1-AM by using ammonium prepulse method. Our data showed that [Na(+)](i) in resting cells from either diabetic or control group was not significantly different, whereas the increase in [Na(+)](i) was significantly smaller in paced diabetic cardiomyocytes compared to that of the controls. However, resting [Ca(2+)](i) in diabetic cardiomyocytes was significantly higher than that of the controls. Here, a lower basal pH(i) in diabetics compared with the controls correlates also with a slightly higher but not significantly different NHE activity and consequently a similar Na(+) loading rate at resting state with a leftward shift in pH sensitivity of NHE-dependent H(+)-flux. NHE protein level remained unchanged, while protein levels of Na(+)/K(+) ATPase and Na(+)/Ca(2+) exchanger were decreased in the diabetic cardiomyocytes. Taken together, the present data indicate that depressed I(Na) plays an important role in altered electrical activity with less Na(+) influx during contraction, and an increased [Ca(2+)](i) load in these cells seems to be independent of [Na(+)](i). The data with insulin treatment suggest further a recent balance between Na(+) influx and efflux proteins associated with the [Na(+)](i), particularly during diabetes.
Collapse
|
24
|
Coppini R, Ferrantini C, Mazzoni L, Sartiani L, Olivotto I, Poggesi C, Cerbai E, Mugelli A. Regulation of intracellular Na(+) in health and disease: pathophysiological mechanisms and implications for treatment. Glob Cardiol Sci Pract 2013; 2013:222-42. [PMID: 24689024 PMCID: PMC3963757 DOI: 10.5339/gcsp.2013.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/01/2013] [Indexed: 12/19/2022] Open
Abstract
Transmembrane sodium (Na+) fluxes and intracellular sodium homeostasis are central players in the physiology of the cardiac myocyte, since they are crucial for both cell excitability and for the regulation of the intracellular calcium concentration. Furthermore, Na+ fluxes across the membrane of mitochondria affect the concentration of protons and calcium in the matrix, regulating mitochondrial function. In this review we first analyze the main molecular determinants of sodium fluxes across the sarcolemma and the mitochondrial membrane and describe their role in the physiology of the healthy myocyte. In particular we focus on the interplay between intracellular Ca2+ and Na+. A large part of the review is dedicated to discuss the changes of Na+ fluxes and intracellular Na+ concentration([Na+]i) occurring in cardiac disease; we specifically focus on heart failure and hypertrophic cardiomyopathy, where increased intracellular [Na+]i is an established determinant of myocardial dysfunction. We review experimental evidence attributing the increase of [Na+]i to either decreased Na+ efflux (e.g. via the Na+/K+ pump) or increased Na+ influx into the myocyte (e.g. via Na+ channels). In particular, we focus on the role of the “late sodium current” (INaL), a sustained component of the fast Na+ current of cardiac myocytes, which is abnormally enhanced in cardiac diseases and contributes to both electrical and contractile dysfunction. We analyze the pathophysiological role of INaL enhancement in heart failure and hypertrophic cardiomyopathy and the consequences of its pharmacological modulation, highlighting the clinical implications. The central role of Na+ fluxes and intracellular Na+ physiology and pathophysiology of cardiac myocytes has been highlighted by a large number of recent works. The possibility of modulating Na+ inward fluxes and [Na+]i with specific INaL inhibitors, such as ranolazine, has made Na+a novel suitable target for cardiac therapy, potentially capable of addressing arrhythmogenesis and diastolic dysfunction in severe conditions such as heart failure and hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Raffaele Coppini
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Cecilia Ferrantini
- Department of Clinical and Experimental Medicine, division of Physiology, University of Florence, Italy
| | - Luca Mazzoni
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Laura Sartiani
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Iacopo Olivotto
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy
| | - Corrado Poggesi
- Department of Clinical and Experimental Medicine, division of Physiology, University of Florence, Italy
| | - Elisabetta Cerbai
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Alessandro Mugelli
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| |
Collapse
|
25
|
Aiello EA, De Giusti VC. Regulation of the cardiac sodium/bicarbonate cotransporter by angiotensin II: potential Contribution to structural, ionic and electrophysiological myocardial remodelling. Curr Cardiol Rev 2013; 9:24-32. [PMID: 23116057 PMCID: PMC3584305 DOI: 10.2174/157340313805076340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
The sodium/ bicarbonate cotransporter (NBC) is, with the Na+/H+ exchanger (NHE), an important alkalinizing mechanism that maintains cellular intracellular pH (pHi). In the heart exists at least three isoforms of NBC, one that promotes the co-influx of 1 molecule of Na+ per 1molecule of HCO3-(electroneutral isoform; nNBC) and two others that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO3- (electrogenic isoforms; eNBC). In addition, the eNBC generates an anionic repolarizing current that modulate the cardiac action potential (CAP), adding to such isoforms the relevance to modulate the electrophysiological function of the heart. Angiotensin II (Ang II) is one of the main hormones that regulate cardiac physiology. The alkalinizing mechanisms (NHE and NBC) are stimulated by Ang II, increasing pHi and intracellular Na+ concentration, which indirectly, due to the stimulation of the Na+/Ca2+ exchanger (NCX) operating in the reverse form, leads to an increase in the intracellular Ca2+ concentration. Interestingly, it has been shown that Ang II exhibits an opposite effect on NBC isoforms: it activates the nNBC and inhibits the eNBC. This inhibition generates a CAP prolongation, which could directly increase the intracellular Ca2+ concentration. The regulation of the intracellular Na+ and Ca2+ concentrations is crucial for the cardiac cellular physiology, but these ions are also involved in the development of cardiac hypertrophy and the damage produced by ischemia-reperfusion, suggesting a potential role of NBC in cardiac diseases.
Collapse
Affiliation(s)
- Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900, La Plata, Argentina.
| | | |
Collapse
|
26
|
Shen X, Cannell MB, Ward ML. Effect of SR load and pH regulatory mechanisms on stretch-dependent Ca(2+) entry during the slow force response. J Mol Cell Cardiol 2013; 63:37-46. [PMID: 23880608 DOI: 10.1016/j.yjmcc.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/11/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
When cardiac muscle is stretched, there is an initial inotropic response that coincides with the stretch followed by a slower increase in twitch force that develops over several minutes (the "slow force response", or SFR). Unlike the initial response to stretch, the SFR is produced by an increase in Ca(2+) transient amplitude, but the cellular mechanisms that give rise to the increased transients are still debated. We have examined the relationship between the SFR, intracellular [Ca(2+)] and the inotropic state of right ventricular trabeculae from rat hearts at 37°C. The magnitude of the SFR varied with [Ca(2+)]o and stimulation frequency, so that the SFR was greatest for conditions associated with a reduced SR Ca(2+) content. The SFR was not blocked by the AT1 receptor blocker losartan, but was reduced by SN-6, an inhibitor of reverse mode Na(+)/Ca(2+)-exchange (NCX). The Na(+)/H(+)-exchange (NHE) inhibitor HOE642 had no effect in HCO3(-)-buffered solutions, but blocked 50% of the SFR in HCO3(-)-free solution. Inhibition of HCO3(-) transport by DIDS increased the SFR and made it sensitive to HOE642. The addition of cross-bridge cycle inhibitors (20mM BDM or 20μM blebbistatin) to the superfusate reduced the SFR as monitored by changes in Ca(2+). In HCO3(-)-free conditions, the SFR was associated with a slow acidification that was inhibited by BDM, and by stopping electrical stimulation. These results can be explained by stretch increasing metabolic demand and stimulating Na(+) entry via both NHE and the Na(+)/HCO3(-) transporters. This mechanism provides a novel link between inotropic state and stretch, as well as a way for the cell to compensate for increased acid load. The feedback mechanism between force and Ca(2+) transient amplitude that we describe is also limited by the degree of SR Ca(2+) load.
Collapse
Affiliation(s)
- Xin Shen
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | | | | |
Collapse
|
27
|
De Giusti VC, Caldiz CI, Ennis IL, Pérez NG, Cingolani HE, Aiello EA. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS). Front Physiol 2013; 4:126. [PMID: 23755021 PMCID: PMC3667248 DOI: 10.3389/fphys.2013.00126] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/13/2013] [Indexed: 12/22/2022] Open
Abstract
Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- V C De Giusti
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, UNLP-CONICET La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Wu D, Russano K, Kouz I, Abraham WM. NHE1 inhibition improves tissue perfusion and resuscitation outcome after severe hemorrhage. J Surg Res 2013; 181:e75-81. [DOI: 10.1016/j.jss.2012.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/05/2012] [Accepted: 07/11/2012] [Indexed: 11/25/2022]
|
29
|
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH. J Mol Cell Cardiol 2013; 61:51-9. [PMID: 23602948 DOI: 10.1016/j.yjmcc.2013.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|
30
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
31
|
Wu D, Kraut JA, Abraham WM. Sabiporide improves cardiovascular function, decreases the inflammatory response and reduces mortality in acute metabolic acidosis in pigs. PLoS One 2013; 8:e53932. [PMID: 23326542 PMCID: PMC3542271 DOI: 10.1371/journal.pone.0053932] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Acute metabolic acidosis impairs cardiovascular function and increases the mortality of critically ill patients. However, the precise mechanism(s) underlying these effects remain unclear. We hypothesized that targeting pH-regulatory protein, Na(+)/H(+) exchanger (NHE1) could be a novel approach for the treatment of acute metabolic acidosis. The aim of the present study was to examine the impact of a novel NHE1 inhibitor, sabiporide, on cardiovascular function, blood oxygen transportation, and inflammatory response in an experimental model of metabolic acidosis produced by hemorrhage-induced hypovolemia followed by an infusion of lactic acid. METHODS AND RESULTS Anesthetized pigs were subjected to hypovolemia for 30 minutes. The animals then received a bolus infusion of sabiporide (3 mg/kg) or vehicle, followed by an infusion of lactic acid for 2 hours. The animals were continuously monitored for additional 3 hours. Hypovolemia followed by a lactic acid infusion resulted in a severe metabolic acidosis with blood pH falling to 6.8. In association with production of the acidemia, there was an excessive increase in pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR). Treatment with sabiporide significantly attenuated the increase in PAP by 38% and PVR by 67%, as well as significantly improved cardiac output by 51%. Sabiporide treatment also improved mixed venous blood oxygen saturation (55% in sabiporide group vs. 28% in control group), and improved systemic blood oxygen delivery by 36%. In addition, sabiporide treatment reduced plasma levels of TNF-α (by 33%), IL-6 (by 63%), troponin-I (by 54%), ALT (by 34%), AST (by 35%), and urea (by 40%). CONCLUSION These findings support the possible beneficial effects of sabiporide in the treatment of acute metabolic acidosis and could have implications for the treatment of metabolic acidosis in man.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Research, Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America.
| | | | | |
Collapse
|
32
|
Lin X, Lee D, Wu D. Protective effects of NHE1 inhibition with sabiporide in an experimental model of asphyxia-induced cardiac arrest in piglets. Resuscitation 2012; 84:520-5. [PMID: 22989728 DOI: 10.1016/j.resuscitation.2012.08.334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 11/27/2022]
Abstract
The present study investigated the protective effects of a novel NHE1 selective inhibitor, sabiporide, in a porcine model of asphyxia-induced cardiac arrest. Asphyxial cardiac arrest was induced by endotracheal tube clamping (ETC). The animals remained untreated for 3 min after loss of aortic pulsations (LOAP), and followed by chest compression and defibrillation. Sixteen of eighteen pigs had return of spontaneous circulation (ROSC), and were randomly assigned to two study groups. Group 1: vehicle control. Group 2: 3mg/kg sabiporide was given at 15 min after ROSC. Post-arrest myocardial dysfunction was present in both groups, and progressed over hours. Animals treated with sabiporide had less wall motion abnormality and higher left ventricular ejection fraction than control animals (33% in control group vs. 47% in sabiporide group). Sabopiride treatment also significantly improved post-arrest arterial blood pressure by 25% and cardiac stroke volume by 44%, and improved mixed-venous blood oxygen saturation by 38% and oxygen delivery by 118%. Furthermore, compared to the control group, the sabiporide group also had higher blood flows in the brain, heart, kidney, liver and spleen at 30 min after ROSC. There was no significant blood flow difference in distal ileum mucosa between control and sabiporide groups. In addition, sabiporide treatment significantly reduced cardiac myeloperoxidase (MPO) activity by 53% and cardiac troponin I by 51%, and reduced the plasma level of TNF-α by 52% and IL-6 by 41%. This study shows that post-arrest pharmacological conditioning with sabiporide affords protection from whole body ischemia-reperfusion injury in this model of asphyxia-induced cardiac arrest and resuscitation.
Collapse
Affiliation(s)
- Xinchun Lin
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | | |
Collapse
|
33
|
|
34
|
De Giusti VC, Orlowski A, Villa-Abrille MC, de Cingolani GEC, Casey JR, Alvarez BV, Aiello EA. Antibodies against the cardiac sodium/bicarbonate co-transporter (NBCe1) as pharmacological tools. Br J Pharmacol 2012; 164:1976-89. [PMID: 21595652 DOI: 10.1111/j.1476-5381.2011.01496.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Na(+) /HCO(3) (-) co-transport (NBC) regulates intracellular pH (pH(i) ) in the heart. We have studied the electrogenic NBC isoform NBCe1 by examining the effect of functional antibodies to this protein. EXPERIMENTAL APPROACH We generated two antibodies against putative extracellular loop domains 3 (a-L3) and 4 (a-L4) of NBCe1 which recognized NBCe1 on immunoblots and immunostaining experiments. pH(i) was monitored using epi-fluorescence measurements in cat ventricular myocytes. Transport activity of total NBC and of NBCe1 in isolation were evaluated after an ammonium ion-induced acidosis (expressed as H(+) flux, J(H) , in mmol·L(-1) min(-1) at pH(i) 6.8) and during membrane depolarization with high extracellular potassium (potassium pulse, expressed as ΔpH(i) ) respectively. KEY RESULTS The potassium pulse produced a pH(i) increase of 0.18 ± 0.006 (n= 5), which was reduced by the a-L3 antibody (0.016 ± 0.019). The a-L-3 also decreased J(H) by 50%. Surprisingly, during the potassium pulse, a-L4 induced a higher pH(i) increase than control,(0.25 ± 0.018) whereas the recovery of pH(i) from acidosis was faster (J(H) was almost double the control value). In perforated-patch experiments, a-L3 prolonged and a-L4 shortened action potential duration, consistent with blockade and stimulation of NBCe1-carried anionic current respectively. CONCLUSIONS AND IMPLICATIONS Both antibodies recognized NBCe1, but they had opposing effects on the function of this transporter, as the a-L3 was inhibitory and the a-L4 was excitatory. These antibodies could be valuable in studies on the pathophysiology of NBCe1 in cardiac tissue, opening a path for their potential clinical use.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
35
|
Wu D, Kraut JA. Potential Role of NHE1 (Sodium-Hydrogen Exchanger 1) in the Cellular Dysfunction of Lactic Acidosis: Implications for Treatment. Am J Kidney Dis 2011; 57:781-7. [DOI: 10.1053/j.ajkd.2010.10.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/10/2010] [Indexed: 11/11/2022]
|
36
|
De Giusti VC, Orlowski A, Aiello EA. Angiotensin II inhibits the electrogenic Na+/HCO3- cotransport of cat cardiac myocytes. J Mol Cell Cardiol 2010; 49:812-8. [PMID: 20692267 DOI: 10.1016/j.yjmcc.2010.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 01/12/2023]
Abstract
The Na(+)/HCO(3)(-) cotransporter (NBC) plays an important role in intracellular pH (pH(i)) regulation in the heart. In the myocardium co-exist the electrogenic (eNBC) and electroneutral (nNBC) isoforms of NBC. We have recently reported that angiotensin II (Ang II) stimulated total NBC activity during the recovery from intracellular acidosis through a reactive oxygen species (ROS) and ERK-dependent pathway. In the present work we focus our attention on eNBC. In order to study the activity of the eNBC in isolation, we induced a membrane potential depolarization by increasing extracellular K(+) [K(+)](o) from 4.5 to 45 mM (K(+) pulse). This experimental protocol enhanced eNBC driving force leading to intracellular alkalization (0.19 ± 0.008, n=6; data expressed as an increase of pH(i) units after 14 min of applying the K(+) pulse). This alkalization was completely abrogated by the NBC blocker S0859 (-0.004 ± 0.016*, n=5; * indicates p<0.05 vs control) but not by the Na(+)/H(+) exchanger blocker HOE642 (0.185 ± 0.04, n=4), indicating that we are exclusively measuring eNBC. The K(+) pulse induced alkalization was canceled by 100 nM Ang II (-0.008 ± 0.018*; n=5). This inhibitory effect was prevented when the myocytes were incubated with losartan (AT(1) receptor blocker, 0.18 ± 0.02; n=4) or SB202190 (p38 MAP kinase inhibitor, 0.25 ± 0.06; n=5). Neither chelerythrine (PKC inhibitor, -0.06 ± 0.04*; n=4), nor U0126 (ERK inhibitor, -0.07 ± 0.04*; n=4) nor MPG (ROS scavenger, -0.02 ± 0.05*; n=8) affected the Ang II-induced inhibition of eNBC. The inhibitory action of Ang II on eNBC was corroborated with perforated patch-clamp experiments, since no impact of the current produced by eNBC on action potential repolarization was observed in the presence of Ang II. In conclusion, we propose that Ang II, binding to AT(1) receptors, exerts an inhibitory effect on eNBC activity in a p38 kinase-dependent manner.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | |
Collapse
|
37
|
A model of Na+/H+ exchanger and its central role in regulation of pH and Na+ in cardiac myocytes. Biophys J 2010; 97:2674-83. [PMID: 19917220 DOI: 10.1016/j.bpj.2009.08.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 07/30/2009] [Accepted: 08/21/2009] [Indexed: 01/27/2023] Open
Abstract
A new kinetic model of the Na(+)/H(+) exchanger (NHE) was developed by fitting a variety of major experimental findings, such as ion-dependencies, forward/reverse mode, and the turnover rate. The role of NHE in ion homeostasis was examined by implementing the NHE model in a minimum cell model including intracellular pH buffer, Na(+)/K(+) pump, background H(+), and Na(+) fluxes. This minimum cell model was validated by reconstructing recovery of pH(i) from acidification, accompanying transient increase in [Na(+)](i) due to NHE activity. Based on this cell model, steady-state relationships among pH(i), [Na(+)](I), and [Ca(2+)](i) were quantitatively determined, and thereby the critical level of acidosis for cell survival was predicted. The acidification reported during partial blockade of the Na(+)/K(+) pump was not attributed to a dissipation of the Na(+) gradient across the membrane, but to an increase in indirect H(+) production. This NHE model, though not adapted to the dimeric behavioral aspects of NHE, can provide a strong clue to quantitative prediction of degree of acidification and accompanying disturbance of ion homeostasis under various pathophysiological conditions.
Collapse
|
38
|
Role of reactive oxygen species (ROS) in angiotensin II-induced stimulation of the cardiac Na+/HCO3- cotransport. J Mol Cell Cardiol 2009; 47:716-22. [PMID: 19646989 DOI: 10.1016/j.yjmcc.2009.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 01/12/2023]
Abstract
The sarcolemmal Na+/HCO3- cotransporter (NBC) plays an important role in intracellular pH (pH(i)) regulation in the heart. In the present work we studied, in isolated cat ventricular myocytes, the role of Angiotensin II (Ang II) and reactive oxygen species (ROS) production as potential activators of the NBC. pH(i) was measured in single cells in a medium with HCO3- using the fluorescent pH indicator BCECF. The NH4+ pulse method was used to induce an intracellular acid load and the acid efflux (JH) in the presence of the Na+/H+ exchanger blocker HOE642 (10 microM) was calculated as indicator of NBC activity. The following JH data are presented at pH(i) of 6.8 (* and # indicate p<0.05 after ANOVA vs. control and Ang II, respectively). The basal JH (1.03+/-0.12 mM/min, n=11) was significantly increased in the presence of 100 nM Ang II (1.70+/-0.15 mM/min, n=8*). This effect of Ang II was abolished when we added to the extracellular solution 2 mM MPG (ROS scavenger; 0.80+/-0.08 mM/min, n=11#), 300 microM apocynin (NADPH oxidase blocker; 0.80+/-0.13 mM/min, n=6#), 500 microM 5-hydroxidecanoate (mitochondrial ATP dependent K+ channel, mK(ATP), blocker; 0.97+/-0.21 mM/min, n=9#), or the inhibitor of the MAP kinase ERK pathway U0126 (10 microM; 0.56+/-0.18 mM/min, n=6#). We also determined the phosphorylation of ERK during the first min of acidosis and we detected that Ang II significantly enhanced the ERK phosphorylation levels, an effect that was cancelled by scavenging ROS with MPG. In conclusion, we propose that Ang II enhances the production of ROS through the activation of the NADPH oxidase, which in turn triggers mK(ATP) opening and mitochondrial ROS production ("ROS-induced ROS-release mechanism"). Finally, these mitochondrial ROS stimulate the ERK pathway, leading to the activation of the NBC.
Collapse
|
39
|
Abstract
The transmembrane sodium gradient is essential for both excitability of the cardiac cell and the regulation of the cytoplasmic concentrations of Ca and protons. In addition, movements of Na across the mitochondrial membrane affect matrix protons and calcium. In the first part of the review, we discuss the most important pathways responsible for sarcolemmal and mitochondrial sodium movements. The bulk of the review considers the changes of intracellular Na concentration ([Na(+)](i)) that occur in disease, specifically, ischemia, reperfusion, and heart failure. We review evidence implicating the increase of intracellular sodium to either increased influx of sodium (via either sodium channels or sodium/hydrogen exchange) or, alternatively, to decreased efflux on the Na/K pump. Although much has been learned about sodium regulation in the heart, there are still many unanswered questions, particularly concerning mitochondrial Na regulation.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
40
|
Yamaguchi S, Ishikawa T. The electrogenic Na+-HCO3- cotransporter NBCe1-B is regulated by intracellular Mg2+. Biochem Biophys Res Commun 2008; 376:100-4. [PMID: 18762166 DOI: 10.1016/j.bbrc.2008.08.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
NBCe1-B, a major splice variant of the electrogenic Na+--HCO3- cotransporter (NBCe1) fulfills basic cellular functions including regulation of intracellular pH and epithelial HCO3- secretion. However, its cellular regulatory mechanism still remains elusive. Here, we provide evidence for the first time that NBCe1-B activity can be controlled by intracellular Mg2+ (Mg2+(i)), the physiologically most abundant intracellular divalent cation. Using the whole-cell patch-clamp technique, we found that recombinant NBCe1-B currents expressed in HEK293 and NIH3T3 cells were inhibited voltage-independently by Mg2+(i) in a concentration-dependent manner (K(i) approximately 0.01 mM). The Mg2+(i) inhibition was partially relieved by truncation of the NBCe1-B specific N-terminal region (K(i) approximately 0.3 mM), and was also observed for native electrogenic Na+--HCO3- cotransporter current in bovine parotid acinar cells that endogenously express NBCe1-B (K(i) approximately 1 mM). These results suggest that Mg2+ may be a cytosolic factor that limits intrinsic cotransport activity of NBCe1-B in mammalian cells.
Collapse
Affiliation(s)
- Soichiro Yamaguchi
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | |
Collapse
|
41
|
Schelling JR, Abu Jawdeh BG. Regulation of cell survival by Na+/H+ exchanger-1. Am J Physiol Renal Physiol 2008; 295:F625-32. [PMID: 18480176 DOI: 10.1152/ajprenal.90212.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Na(+)/H(+) exchanger-1 (NHE1) is a ubiquitous plasma membrane Na(+)/H(+) exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na(+)/H(+) transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and phosphatidylinositol 4,5-bisphosphate, which initiates formation of a signaling complex that culminates in Akt activation and opposition to initial apoptotic stress. With robust apoptotic stimuli renal tubular epithelial cell NHE1 is a caspase substrate, and proteolytic cleavage may permit progression to apoptotic cell death. In vivo, genetic or pharmacological NHE1 loss of function causes renal tubule epithelial cell apoptosis and renal dysfunction following streptozotocin-induced diabetes, ureteral obstruction, and adriamycin-induced podocyte toxicity. Taken together, substantial in vivo and in vitro data demonstrate that NHE1 regulates tubular epithelial cell survival. In contrast to connotations of NHE1 as an unimportant "housekeeping" protein, this review highlights that NHE1 activity is critical for countering tubular atrophy and chronic renal disease progression.
Collapse
Affiliation(s)
- Jeffrey R Schelling
- Rammelkamp Center for Education and Research, 2500 MetroHealth Drive, Cleveland, OH 44109-1998, USA.
| | | |
Collapse
|
42
|
Triana JR, Yanagihashi M, Larson DF. Mathematical modeling of buffers used in myocardial preservation. Perfusion 2008; 22:353-62. [PMID: 18416222 DOI: 10.1177/0267659108088617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Buffers added to myocardial preservation solutions are considered to be critical for resisting myocardium pH changes from the accumulation of protons (H+). Our hypothesis is that mathematical modeling of three clinically used buffers will define their individual buffering capacities under simulated clinical conditions. METHODS The buffers, tromethamine (THAM), sodium bicarbonate (HCO3-), and L-histidine, were compared in terms of their buffering capacity (beta) under specific temperatures and concentrations, using a mathematical model. RESULTS At 37 degrees C, the maximal beta (betamax) occurred at pH 7.75 for THAM, pH 6.10 for HCO3-, and pH 5.89 for L-histidine at equimolar concentrations. A decrease in temperature moved betamax to a higher pH value for each buffer. At clinical concentrations, L-histidine provided the greatest buffering capacity followed by HCO3- and THAM, respectively. DISCUSSION This model permitted comparison of the above buffers under simulated clinical conditions. The assumption was that the magnitude of betamax at a given temperature determines which buffer(s) could be most effective for myocardial preservation. Also, the assumption was taken that these buffers are used in a closed system--where there is no continuous blood flow--and that the buffering ability of THAM and L-histidine were not influenced by the accumulation of CO2 as is HCO3-. THAM and L-histidine were more effective at hypothermic temperatures compared with HCO3-; however, HCO3- provided buffering at normothermic temperatures. Through the theoretical considerations of this study, we propose that combining HCO3- with THAM or L-histidine could be most efficacious for myocardial preservation during open heart surgery or organ transplantation.
Collapse
Affiliation(s)
- Jonathan R Triana
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
43
|
Abstract
Investigation of the physiological functions and possible pathological roles of Na(+)/HCO(3)(-) co-transport in the heart has been hampered by uncertainty over the molecular identity of cardiac Na(+)/HCO(3)(-) co-transporter(s) and the absence of selective pharmacological inhibitors. In their paper published in this issue, Ch'en and colleagues describe the extensive characterization of S0859 as a high-affinity inhibitor of Na(+)/HCO(3)(-) co-transport in cardiac myocytes (Ch'en et al., 2008). The availability of S0859 provides a powerful new tool to investigate the (patho)physiological significance of Na(+)/HCO(3)(-) co-transport in the heart and other tissues.
Collapse
Affiliation(s)
- M Avkiran
- King's College London, Cardiovascular Division, St Thomas' Hospital, London, UK.
| |
Collapse
|