1
|
Desfika S, Ichwan M, Ardinata D. Wet Cupping’s Effect on Nitric Oxide Levels in Hypertensive Patients. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Wet cupping is a non-pharmacological therapy that has been shown to assist hypertensive patients with blood pressure reduction. However, the underlying mechanisms by which wet-cupping lowers blood pressure are currently unknown. More scientific investigation is necessary to explain the mechanism by which wet cupping lowers blood pressure, particularly the role of nitric oxide (NO).
AIM: The study aimed to show the effect of wet cupping on NO levels in hypertensive patients.
METHODS: A pre-experimental study using a single group pre-test and post-test design to monitor changes in blood NO levels and blood pressure in 45 hypertensive patients in Medan after 4 weeks of wet cupping therapy. The patients’ blood NO levels, as well as their systolic and diastolic blood pressures (SBP and DBP), were measured before and after 4 weeks of wet cupping.
RESULTS: After 4 weeks of wet cupping, blood NO levels significantly increased (0.00704 mol/mL, p=0.039), while SBP and DBP levels significantly decreased (12.644 mmHg and 7.111 mmHg, respectively, p<0.001). However, there was no correlation between increased blood NO levels and reductions in SBP and DBP (p=0.468 and p=0.299, respectively).
CONCLUSION: This study found that after 4 weeks of cupping therapy, the decrease in SBP and DBP was not accompanied by an increase in blood NO levels.
Collapse
|
2
|
Endothelial-specific overexpression of cationic amino acid transporter-1 prevents loss of kidney function in heart failure. Clin Sci (Lond) 2021; 134:2755-2769. [PMID: 33034619 DOI: 10.1042/cs20200087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) is associated with impaired L-arginine transport. In the present study, we tested the hypothesis that augmented L-arginine transport prevents the loss of kidney function in HF. Renal function was assessed in wildtype mice (WT), transgenic mice with HF (dilated cardiomyopathy, DCM) and double transgenic mice (double transgenic mice with DCM and CAT-1 overexpression, HFCAT-1) with HF and endothelial-specific overexpression of the predominant L-arginine transporter, cationic amino acid transporter-1 (CAT-1) (n=4-8/group). Cardiac function was assessed via echocardiography and left ventricular catheterisation. Renal function was assessed via quantification of albuminuria and creatinine clearance. Plasma nitrate and nitrite levels together with renal fibrosis and inflammatory markers were also quantified at study end. Albumin/creatinine ratio was two-fold greater in DCM mice than in WT mice (P=0.002), and tubulointerstitial and glomerular fibrosis were approximately eight- and three-fold greater, respectively, in DCM mice than in WT mice (P≤0.02). Critically, urinary albumin/creatinine ratio and tubulointerstitial and glomerular fibrosis were less in HFCAT-1 mice than in DCM mice (P<0.05). Renal CAT-1 expression and plasma nitrate and nitrite levels were less in DCM mice compared with WT (P≤0.03) but was greater in HFCAT-1 mice than in DCM mice (P≤0.009). Renal expression of IL-10 was less in DCM mice compared with WT (P<0.001) but was greater in HFCAT-1 mice compared with DCM mice (P=0.02). Our data provide direct evidence that augmented L-arginine transport prevents renal fibrosis, inflammation and loss of kidney function in HF.
Collapse
|
3
|
The CAT-1 is out of the bag: endothelial Cationic Amino Acid Transporter-1 is a critical player in cardiorenal syndrome type 2. Clin Sci (Lond) 2021; 135:105-108. [PMID: 33404050 DOI: 10.1042/cs20201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
Although the numbers of patients affected by cardiorenal syndrome keeps increasing, we lack a complete understanding of the molecular pathways involved in its development and progression. Nitric oxide synthase (NOS) may play a role in cardiorenal syndrome, particularly cardiorenal syndrome type 2 (CRS2). However, complexities and paradoxical clinical findings have limited translation. In the current Clinical Science, Giam et al. (Clinical Science (2020) 134, 2755-2769) highlight the role of a key NOS substrate transporter, the cationic amino acid transporter-1, in preserving renal function in CRS2. In this commentary, we introduce the cardiorenal syndrome and the putative role that nitric oxide (NO) may play in the development of this disease and discuss the exciting findings of Giam et al. (Clinical Science (2020) 134, 2755-2769) and their tantalizing translational implications.
Collapse
|
4
|
Xu H, Fang B, Du S, Wang S, Li Q, Jia X, Bao C, Ye L, Sui X, Qian L, Luan Z, Yang G, Zheng F, Wang N, Chen L, Zhang X, Guan Y. Endothelial cell prostaglandin E2 receptor EP4 is essential for blood pressure homeostasis. JCI Insight 2020; 5:138505. [PMID: 32641583 DOI: 10.1172/jci.insight.138505] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
Prostaglandin E2 and its cognate EP1-4 receptors play important roles in blood pressure (BP) regulation. Herein, we show that endothelial cell-specific (EC-specific) EP4 gene-knockout mice (EC-EP4-/-) exhibited elevated, while EC-specific EP4-overexpression mice (EC-hEP4OE) displayed reduced, BP levels compared with the control mice under both basal and high-salt diet-fed conditions. The altered BP was completely abolished by treatment with l-NG-nitro-l-arginine methyl ester (l-NAME), a competitive inhibitor of endothelial nitric oxide synthase (eNOS). The mesenteric arteries of the EC-EP4-/- mice showed increased vasoconstrictive response to angiotensin II and reduced vasorelaxant response to acetylcholine, both of which were eliminated by l-NAME. Furthermore, EP4 activation significantly reduced BP levels in hypertensive rats. Mechanistically, EP4 deletion markedly decreased NO contents in blood vessels via reducing eNOS phosphorylation at Ser1177. EP4 enhanced NO production mainly through the AMPK pathway in cultured ECs. Collectively, our findings demonstrate that endothelial EP4 is essential for BP homeostasis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | | | - Shengnan Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Qingwei Li
- Advanced Institute for Medical Sciences and
| | - Xiao Jia
- Advanced Institute for Medical Sciences and
| | | | - Lan Ye
- Advanced Institute for Medical Sciences and
| | - Xue Sui
- Advanced Institute for Medical Sciences and
| | - Lei Qian
- Advanced Institute for Medical Sciences and
| | | | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences and.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Nanping Wang
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences and.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| |
Collapse
|
5
|
The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertens Res 2020; 43:511-517. [PMID: 32042143 DOI: 10.1038/s41440-020-0405-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
MicroRNAs are key molecules involved in the regulation of endothelial function. They are important risk factors and biomarkers for the development of hypertension related to endothelial dysfunction. However, the gene expression patterns associated with hypertension development related to endothelial dysfunction have not been fully elucidated. We conducted a case-control study of 65 patients with essential hypertension (EH) and 61 controls without EH. Plasma levels of miR-122 and its target protein high-affinity cationic amino acid transporter 1 (CAT-1) were measured by qRT-PCR and ELISA, respectively. miR-122 expression in plasma of patients with EH was significantly higher than that of the control group (p = 0.001), while CAT-1 expression in patients with EH was significantly lower than that in the control group (p = 0.018). miR-122 expression in plasma of young patients with EH was significantly higher than that in young people without EH (p = 0.0004), and CAT-1 expression in plasma of young patients with EH was also significantly lower than that of the control group (p = 0.002). CAT-1 expression in the plasma of young participants was significantly higher than that of individuals aged ≥40 years (p = 0.003), whereas miR-122 expression was significantly lower (p = 0.001). We showed that among patients with EH, the high expression of miR-122 contributed to endothelial dysfunction by suppressing the expression of the CAT-1 protein, which led to a decrease in CAT-1 expression in plasma. Therefore, high expression of miR-122 appears to be a risk factor for endothelial dysfunction in EH, especially in younger patients.
Collapse
|
6
|
Klawitter J, Hildreth KL, Christians U, Kohrt WM, Moreau KL. A relative L-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition. Physiol Rep 2018; 5:5/17/e13409. [PMID: 28904082 PMCID: PMC5599867 DOI: 10.14814/phy2.13409] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial function declines across the menopause transition in women. We tested the hypothesis that reduced availability of the endothelial nitric oxide synthase [eNOS] substrate L‐arginine is an underlying mechanism to vascular endothelial dysfunction across menopause stages. Endothelial function (brachial artery flow‐mediated dilation [FMD]) and plasma markers of L‐arginine metabolism (citrulline, NG‐mono‐methyl‐ւ‐arginine [L‐NMMA] asymmetric dimethylarginine [ADMA] and NG‐N′G‐dimethyl‐l‐arginine [SDMA]), were measured in 129 women: 36 premenopausal (33 ± 7 years), 16 early‐ (49 ± 3 years) or 21 late‐ (50 ± 4 years) perimenopausal, and 21 early‐ (55 ± 3 years) or 35 late‐ (61 ± 4 years) postmenopausal. FMD was progressively reduced across menopause stages (P < 0.001). Menopause stage was associated with L‐arginine concentrations (P = 0.012), with higher levels in early postmenopausal compared to early and late perimenopausal women (P < 0.05). The methylarginine and eNOS inhibitor L‐NMMA was higher in early and late postmenopausal women compared to premenopausal and early and late perimenopausal women (all P < 0.001), and was inversely correlated with FMD (r = −0.30, P = 0.001). The L‐arginine/L‐NMMA ratio, a potential biomarker of relative L‐arginine levels, was lower in postmenopausal compared to either premenopausal or perimenopausal women (both P < 0.001), and was positively correlated with FMD (r = 0.33, P < 0.001). There were no differences in plasma citrulline, ADMA or SDMA across groups. These data suggest that a relative L‐arginine deficiency may be a mechanism underlying the decline in endothelial function with the menopause transition in women. The relative L‐arginine deficiency may be related to elevated levels of the methylarginine L‐NMMA, which would compete with L‐arginine for eNOS and for intracellular transport, reducing NO biosynthesis.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kerry L Hildreth
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Denver Veterans Administration Medical Center, Geriatric Research Education and Clinical Center, Denver, Colorado
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado .,Denver Veterans Administration Medical Center, Geriatric Research Education and Clinical Center, Denver, Colorado
| |
Collapse
|
7
|
Maione S, Pérez-Madrigal MM, del Valle LJ, Díaz A, Franco L, Cativiela C, Puiggalí J, Alemán C. Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. J Appl Polym Sci 2017. [DOI: 10.1002/app.44883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Silvana Maione
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Maria M. Pérez-Madrigal
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Luis J. del Valle
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Angélica Díaz
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Lourdes Franco
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica; Instituto de Síntesis Química y Catálisis Homogénea, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza; C/Pedro Cerbuna, 12 Zaragoza 50009 Spain
| | - Jordi Puiggalí
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Carlos Alemán
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| |
Collapse
|
8
|
Bacterial toxins activation of abbreviated urea cycle in porcine cerebral vascular smooth muscle cells. Vascul Pharmacol 2016; 87:110-120. [DOI: 10.1016/j.vph.2016.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 08/27/2016] [Indexed: 01/04/2023]
|
9
|
Pilic L, Pedlar CR, Mavrommatis Y. Salt-sensitive hypertension: mechanisms and effects of dietary and other lifestyle factors. Nutr Rev 2016; 74:645-58. [PMID: 27566757 DOI: 10.1093/nutrit/nuw028] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salt sensitivity, which is an increase in blood pressure in response to high dietary salt intake, is an independent risk factor for cardiovascular disease and mortality. It is associated with physiological, environmental, demographic, and genetic factors. This review focuses on the physiological mechanisms of salt sensitivity in populations at particular risk, along with the associated dietary factors. The interplay of mechanisms such as the renin-angiotensin aldosterone system, endothelial dysfunction, ion transport, and estrogen decrease in women contributes to development of salt sensitivity. Because of their effects on these mechanisms, higher dietary intakes of potassium, calcium, vitamin D, antioxidant vitamins, and proteins rich in L-arginine, as well as adherence to dietary patterns similar to the DASH (Dietary Approaches to Stop Hypertension) diet, can be beneficial to salt-sensitive populations. In contrast, diets similar to the typical Western diet, which is rich in saturated fats, sucrose, and fructose, together with excessive alcohol consumption, may exacerbate salt-sensitive changes in blood pressure. Identifying potential mechanisms of salt sensitivity in susceptible populations and linking them to protective or harmful dietary and lifestyle factors can lead to more specific guidelines for the prevention of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Leta Pilic
- L. Pilic, C.R. Pedlar, and Y. Mavrommatis are with the School of Sport, Health and Applied Science, St Mary's University, Twickenham, London, United Kingdom. CR Pedlar is with the Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Charles R Pedlar
- L. Pilic, C.R. Pedlar, and Y. Mavrommatis are with the School of Sport, Health and Applied Science, St Mary's University, Twickenham, London, United Kingdom. CR Pedlar is with the Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yiannis Mavrommatis
- L. Pilic, C.R. Pedlar, and Y. Mavrommatis are with the School of Sport, Health and Applied Science, St Mary's University, Twickenham, London, United Kingdom. CR Pedlar is with the Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J Hypertens 2016; 34:1556-69. [DOI: 10.1097/hjh.0000000000000943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Rajapakse NW, Johnston T, Kiriazis H, Chin-Dusting JP, Du XJ, Kaye DM. Augmented endothelial l-arginine transport ameliorates pressure-overload-induced cardiac hypertrophy. Exp Physiol 2016; 100:796-804. [PMID: 25958845 DOI: 10.1113/ep085250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/06/2015] [Indexed: 01/14/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the potential role of endothelial NO production via overexpression of the l-arginine transporter, CAT1, as a mitigator of cardiac hypertrophy? What is the main finding and its importance? Augmentation of endothelium-specific l-arginine transport via CAT1 can attenuate pressure-overload-dependent cardiac hypertrophy and fibrosis. Our findings support the conclusion that interventions that improve endothelial l-arginine transport may provide therapeutic utility in the setting of myocardial hypertrophy. Such modifications may be introduced by exercise training or locally delivered gene therapy, but further experimental and clinical studies are required. Endothelial dysfunction has been postulated to play a central role in the development of cardiac hypertrophy, probably as a result of reduced NO bioavailability. We tested the hypothesis that increased endothelial NO production, mediated by increased l-arginine transport, could attenuate pressure-overload-induced cardiac hypertrophy. Echocardiography and blood pressure measurements were performed 15 weeks after transverse aortic constriction (TAC) in wild-type (WT) mice (n = 12) and in mice with endothelium-specific overexpression of the l-arginine transporter, CAT1 (CAT+; n = 12). Transverse aortic constriction induced greater increases in heart weight to body weight ratio in WT (by 47%) than CAT+ mice (by 25%) compared with the respective controls (P ≤ 0.05). Likewise, the increase in left ventricular wall thickness induced by TAC was significantly attenuated in CAT+ mice (P = 0.05). Cardiac collagen type I mRNA expression was greater in WT mice with TAC (by 22%; P = 0.03), but not in CAT+ mice with TAC, compared with the respective controls. Transverse aortic constriction also induced lesser increases in β-myosin heavy chain mRNA expression in CAT+ mice compared with WT (P ≤ 0.05). Left ventricular systolic pressure after TAC was 36 and 39% greater in WT and CAT+ mice, respectively, compared with the respective controls (P ≤ 0.001). Transverse aortic constriction had little effect on left ventricular end-diastolic pressure in both genotypes. Taken together, these data indicate that augmenting endothelial function by overexpression of l-arginine transport can attenuate pressure-overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Tamara Johnston
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David M Kaye
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Rajapakse NW, Head GA, Kaye DM. Say NO to Obesity-Related Hypertension: Role of the L-Arginine-Nitric Oxide Pathway. Hypertension 2016; 67:813-9. [PMID: 27021014 DOI: 10.1161/hypertensionaha.116.06778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Niwanthi W Rajapakse
- From the Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.W.R., G.A.H., D.M.K.); Department of Medicine, Monash University, Melbourne, VIC, Australia (D.M.K.); and Department of Physiology, Monash University, Melbourne, VIC, Australia (N.W.R.).
| | - Geoffrey A Head
- From the Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.W.R., G.A.H., D.M.K.); Department of Medicine, Monash University, Melbourne, VIC, Australia (D.M.K.); and Department of Physiology, Monash University, Melbourne, VIC, Australia (N.W.R.)
| | - David M Kaye
- From the Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.W.R., G.A.H., D.M.K.); Department of Medicine, Monash University, Melbourne, VIC, Australia (D.M.K.); and Department of Physiology, Monash University, Melbourne, VIC, Australia (N.W.R.)
| |
Collapse
|
13
|
Moss NG, Gentle TK, Arendshorst WJ. Modulation of the myogenic mechanism: concordant effects of NO synthesis inhibition and O2- dismutation on renal autoregulation in the time and frequency domains. Am J Physiol Renal Physiol 2016; 310:F832-45. [PMID: 26823282 DOI: 10.1152/ajprenal.00461.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Renal blood flow autoregulation was investigated in anesthetized C57Bl6 mice using time- and frequency-domain analyses. Autoregulation was reestablished by 15 s in two stages after a 25-mmHg step increase in renal perfusion pressure (RPP). The renal vascular resistance (RVR) response did not include a contribution from the macula densa tubuloglomerular feedback mechanism. Inhibition of nitric oxide (NO) synthase [N(G)-nitro-l-arginine methyl ester (l-NAME)] reduced the time for complete autoregulation to 2 s and induced 0.25-Hz oscillations in RVR. Quenching of superoxide (SOD mimetic tempol) during l-NAME normalized the speed and strength of stage 1 of the RVR increase and abolished oscillations. The slope of stage 2 was unaffected by l-NAME or tempol. These effects of l-NAME and tempol were evaluated in the frequency domain during random fluctuations in RPP. NO synthase inhibition amplified the resonance peak in admittance gain at 0.25 Hz and markedly increased the gain slope at the upper myogenic frequency range (0.06-0.25 Hz, identified as stage 1), with reversal by tempol. The slope of admittance gain in the lower half of the myogenic frequency range (equated with stage 2) was not affected by l-NAME or tempol. Our data show that the myogenic mechanism alone can achieve complete renal blood flow autoregulation in the mouse kidney following a step increase in RPP. They suggest also that the principal inhibitory action of NO is quenching of superoxide, which otherwise potentiates dynamic components of the myogenic constriction in vivo. This primarily involves the first stage of a two-stage myogenic response.
Collapse
Affiliation(s)
- Nicholas G Moss
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tayler K Gentle
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
15
|
Declèves AÉ, Jadot I, Colombaro V, Martin B, Voisin V, Nortier J, Caron N. Protective effect of nitric oxide in aristolochic acid-induced toxic acute kidney injury: an old friend with new assets. Exp Physiol 2015; 101:193-206. [PMID: 26442795 DOI: 10.1113/ep085333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Aristolochic acid (AA) nephropathy (AAN), a progressive tubulointerstitial injury of toxic origin, is characterized by early and transient acute tubular necrosis. This process has been demonstrated to be associated with reduced nitric oxide (NO) production, which can disrupt the regulation of renal function. In this study, we tested the hypothesis that L-arginine (L-Arg) supplementation could restore renal function and reduce renal injury after AA intoxication. C57BL/6 J male mice were randomly subjected to daily i.p. injection of either sterile saline solution or AA (2.5 mg kg(-1)) for 4 days. To determine whether AA-induced renal injuries were linked to reduced NO production, L-Arg, a substrate for NO synthase, was supplemented (5%) in drinking water. Mice intoxicated with AA exhibited features of rapid-onset acute kidney injury, including polyuria, significantly increased plasma creatinine concentrations, proteinuria and fractional excretion of sodium (P < 0.05), along with severe proximal tubular cell injury and increased NADPH oxidase 2 (Nox2)-derived oxidative stress (P < 0.05). This was associated with a significant reduction in NO bioavailability. L-Arg supplementation in AA-treated mice significantly increased NO bioavailability, which in turn improved renal function (creatininaemia, polyuria, proteinuria, fractional excreted sodium and N-acetyl-β-D-glucosaminidase enzymuria) and renal structure (tubular necrosis and tubular cell apoptosis). These changes were associated with significant reductions in Nox2 expression and in production of reactive oxygen species and with an increase in antioxidant concentrations. Our results demonstrate that preservation of NO bioavailability leads to renal protection in AA-induced acute kidney injury by reducing oxidative stress and maintaining renal function.
Collapse
Affiliation(s)
- Anne-Émilie Declèves
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium.,Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), B-1070, Brussels, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Vanessa Colombaro
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Virginie Voisin
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Joëlle Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), B-1070, Brussels, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| |
Collapse
|
16
|
Cardio-protective effects of combined l-arginine and insulin: Mechanism and therapeutic actions in myocardial ischemia-reperfusion injury. Eur J Pharmacol 2015; 769:64-70. [DOI: 10.1016/j.ejphar.2015.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
|
17
|
Zand L, Torres VE, Larson TS, King BF, Sethi S, Bergstralh EJ, Angioi A, Fervenza FC. Renal hemodynamic effects of the HMG-CoA reductase inhibitors in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2015; 31:1290-5. [PMID: 26614268 DOI: 10.1093/ndt/gfv394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To determine the effect of statins on renal hemodynamics in normal volunteers and those with autosomal dominant polycystic kidney disease either with mild or moderate renal dysfunction. METHODS Thirty-two study subjects were enrolled in this study: 11 normal volunteers, 11 study subjects with autosomal dominant polycystic kidney disease (ADPKD) and mild kidney disease and 10 study subjects with ADPKD and moderate kidney disease. Subjects in each group received simvastatin 40 mg once daily for a period of 4 weeks. Renal blood flow was measured based on para-amino-hippurate (PAH) clearance and with the use of a magnetic resonance (MR) scanner at the beginning and following 4 weeks of therapy with statins. RESULTS At the end of the study, except for the lipid profile, which was significantly lower in all groups, other laboratory results showed no change. Four weeks of therapy with simvastatin resulted in no change in serum creatinine, 24-h urinary protein, sodium, iothalamate clearance, PAH clearance or renal blood flow as measured by MRI or based on PAH clearance. CONCLUSIONS Four weeks of therapy with simvastatin did not change renal blood flow in the study subjects with ADPKD with mild-to-moderate renal dysfunction or in healthy volunteers. CLINICAL TRIAL REGISTRATION NUMBER NCT02511418.
Collapse
Affiliation(s)
- Ladan Zand
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Vicente E Torres
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Timothy S Larson
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Bernard F King
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eric J Bergstralh
- Department of Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrea Angioi
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Fernando C Fervenza
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
18
|
Rajapakse NW, Konstantinidis G, Evans RG, Nguyen-Huu TP, Kaye DM, Head GA. Endothelial cationic amino acid transporter-1 overexpression blunts the effects of oxidative stress on pressor responses to behavioural stress in mice. Clin Exp Pharmacol Physiol 2015; 41:1031-7. [PMID: 25115333 DOI: 10.1111/1440-1681.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 11/28/2022]
Abstract
Observational studies indicate that psychological stress may contribute to the pathogenesis of hypertension and this may be further accentuated by factors such as endothelial dysfunction. On this basis, we aimed to determine whether oxidative stress enhances pressor responses to stressful stimuli and whether augmenting endothelial function by increasing the transport of L-arginine can counter the effects of oxidative stress. Telemetry probes were used to measure mean arterial pressure (MAP) in wild-type (WT; n = 6) and endothelial cationic amino acid transporter-1 (CAT-1)-overexpressing (CAT+) mice (n = 6) before and during an aversive (restraint) and non-aversive (almond feeding) stressor. The superoxide dismutase inhibitor diethyldithiocarbamic acid (DETCA; 30 mg/kg per day; 14 days) was then administered via a minipump to induce oxidative stress. Stress responses to feeding and restraint were repeated during Days 11-12 of DETCA infusion. In WT mice, pressor responses to restraint and feeding were augmented during infusion of DETCA (35 ± 1 and 28 ± 1 mmHg, respectively) compared with respective pretreatment responses (28 ± 2 and 24 ± 1 mmHg, respectively; P ≤ 0.01). In CAT+ mice, pressor responses to feeding were blunted during DETCA (20 ± 1 mmHg) compared with the control response (23 ± 1 mmHg; P = 0.03). In these mice, pressor responses to restraint were similar before (28 ± 1 mmHg) and during (26 ± 1 mmHg) DETCA infusion (P = 0.26). We conclude that endothelial CAT-1 overexpression can counter the ability of oxidative stress to augment pressor responses to behavioural stress.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Baker IDI Heart and Diabetes Institute, Monash University, Melbourne, Victoria, Australia; Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Rajapakse NW, Karim F, Evans RG, Kaye DM, Head GA. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice. PLoS One 2015; 10:e0131424. [PMID: 26186712 PMCID: PMC4505872 DOI: 10.1371/journal.pone.0131424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P < 0.001), but was similar in obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Physiology, Monash University, Melbourne, Australia
| | - Florian Karim
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Roger G Evans
- Department of Physiology, Monash University, Melbourne, Australia
| | - David M Kaye
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A Head
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
20
|
Rajapakse NW, Nanayakkara S, Kaye DM. Pathogenesis and treatment of the cardiorenal syndrome: Implications of L-arginine-nitric oxide pathway impairment. Pharmacol Ther 2015; 154:1-12. [PMID: 25989232 DOI: 10.1016/j.pharmthera.2015.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 01/11/2023]
Abstract
A highly complex interplay exists between the heart and kidney in the setting of both normal and abnormal physiology. In the context of heart failure, a pathophysiological condition termed the cardiorenal syndrome (CRS) exists whereby dysfunction in the heart or kidney can accelerate pathology in the other organ. The mechanisms that underpin CRS are complex, and include neuro-hormonal activation, oxidative stress and endothelial dysfunction. The endothelium plays a central role in the regulation of both cardiac and renal function, and as such impairments in endothelial function can lead to dysfunction of both these organs. In particular, reduced bioavailability of nitric oxide (NO) is a key pathophysiologic component of endothelial dysfunction. The synthesis of NO by the endothelium is critically dependent on the plasmalemmal transport of its substrate, L-arginine, via the cationic amino acid transporter-1 (CAT1). Impaired L-arginine-NO pathway activity has been demonstrated individually in heart and renal failure. Recent findings suggest abnormalities of the L-arginine-NO pathway also play a role in the pathogenesis of CRS and thus this pathway may represent a potential new target for the treatment of heart and renal failure.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Physiology, Monash University, Melbourne, Australia.
| | | | - David M Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne Australia; Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
21
|
Rajapakse NW, Karim F, Straznicky NE, Fernandez S, Evans RG, Head GA, Kaye DM. Augmented endothelial-specific L-arginine transport prevents obesity-induced hypertension. Acta Physiol (Oxf) 2014; 212:39-48. [PMID: 25041756 DOI: 10.1111/apha.12344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/31/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
Abstract
AIM Hypertension is a major clinical complication of obesity. Our previous studies show that abnormal uptake of the nitric oxide precursor L-arginine, via the cationic amino acid transporter-1 (CAT1), contributes to endothelial dysfunction in cardiovascular disease. In this study, we tested the hypothesis that abnormal L-arginine transport may be a key mediator of obesity-induced hypertension. METHODS Mean arterial pressure (MAP) was monitored by telemetry in conscious wild-type (WT; n = 13) mice, and transgenic mice with endothelial-specific overexpression of CAT1 (CAT+; n = 14) fed a normal or a high fat diet for 20 weeks. Renal angiotensin II (Ang II), CAT1 mRNA and plasma nitrate/nitrite levels were then quantified. In conjunction, plasma nitrate/nitrite levels were assessed in obese normotensive (n = 15) and obese hypertensive subjects (n = 15). RESULTS Both genotypes of mice developed obesity when fed a high fat diet (P ≤ 0.002). Fat fed WT mice had 13% greater MAP and 78% greater renal Ang II content, 42% lesser renal CAT1 mRNA levels and 42% lesser plasma nitrate/nitrite levels, than WT mice fed a normal fat diet (P ≤ 0.02). In contrast, none of these variables were significantly altered by high fat feeding in CAT+ mice (P ≥ 0.36). Plasma nitrate/nitrite levels were 17% less in obese hypertensives compared with obese normotensives (P = 0.02). CONCLUSION Collectively, these data indicate that obesity-induced down-regulation of CAT1 expression and subsequent reduced bioavailability of nitric oxide may contribute to the development of obesity-induced hypertension.
Collapse
Affiliation(s)
- N. W. Rajapakse
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - F. Karim
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - N. E. Straznicky
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - S. Fernandez
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - R. G. Evans
- Department of Physiology; Monash University; Melbourne Vic. Australia
| | - G. A. Head
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - D. M. Kaye
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| |
Collapse
|
22
|
Corsetti G, D’Antona G, Ruocco C, Stacchiotti A, Romano C, Tedesco L, Dioguardi F, Rezzani R, Nisoli E. Dietary supplementation with essential amino acids boosts the beneficial effects of rosuvastatin on mouse kidney. Amino Acids 2014; 46:2189-203. [PMID: 24923264 PMCID: PMC4133027 DOI: 10.1007/s00726-014-1772-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
The effects of high-potency statins on renal function are controversial. To address the impact of statins on renal morpho-functional aspects, normotensive young mice were treated with rosuvastatin (Rvs). Moreover, because statins may impair mitochondrial function, mice received either dietary supplementation with an amino acid mixture enriched in essential amino acids (EAAm), which we previously demonstrated to increase mitochondrial biogenesis in muscle or an unsupplemented control diet for 1 month. Mitochondrial biogenesis and function, apoptosis, and insulin signaling pathway events were studied, primarily in cortical proximal tubules. By electron microscopy analysis, mitochondria were more abundant and more heterogeneous in size, with dense granules in the inner matrix, in Rvs- and Rvs plus EAAm-treated animals. Rvs administration increased protein kinase B and endothelial nitric oxide synthase phosphorylation, but the mammalian target of rapamycin signaling pathway was not affected. Rvs increased the expression of sirtuin 1, peroxisome proliferator-activated receptor γ coactivator-1α, cytochrome oxidase type IV, cytochrome c, and mitochondrial biogenesis markers. Levels of glucose-regulated protein 75 (Grp75), B-cell lymphoma 2, and cyclin-dependent kinase inhibitor 1 were increased in cortical proximal tubules, and expression of the endoplasmic reticulum-mitochondrial chaperone Grp78 was decreased. EAAm supplementation maintained or enhanced these changes. Rvs promotes mitochondrial biogenesis, with a probable anti-apoptotic effect. EAAm boosts these processes and may contribute to the efficient control of cellular energetics and survival in the mouse kidney. This suggests that appropriate nutritional interventions may enhance the beneficial actions of Rvs, and could potentially prevent chronic renal side effects.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Giuseppe D’Antona
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| | - Alessandra Stacchiotti
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudia Romano
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Laura Tedesco
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| | - Francesco Dioguardi
- Department of Clinical Sciences and Community, University of Milan, 20122 Milan, Italy
| | - Rita Rezzani
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
23
|
Wesseling S, Fledderus JO, Verhaar MC, Joles JA. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol 2014; 172:1607-19. [PMID: 24597655 DOI: 10.1111/bph.12674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/01/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2 S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2 S by cystathionine γ-lyase (CSE) gene deletion and low levels of exogenous H2 S cause hypertension. Inhibiting CO-producing enzyme haeme oxygenase-1 (HO-1) makes rodents hypersensitive to hypertensive stimuli. We hypothesized that combined inhibition of NOS and HO-1 exacerbates hypertension and renal injury, but how combined inhibition of NOS and CSE affect hypertension and renal injury was unclear. EXPERIMENTAL APPROACH Rats were treated with inhibitors of NOS (L-nitroarginine; LNNA), CSE (DL-propargylglycine; PAG), or HO-1 (tin protoporphyrin; SnPP) singly for 1 or 4 weeks or in combinations for 4 weeks. KEY RESULTS LNNA always reduced NO, decreased H2 S and increased CO after 4 weeks. PAG abolished H2 S, always enhanced CO and reduced NO, but not when used in combination with other inhibitors. SnPP always increased NO, enhanced H2 S and inhibited CO after 1 week. Rats treated with LNNA, but not PAG and SnPP, rapidly developed hypertension followed by renal dysfunction. LNNA-induced hypertension was ameliorated and renal dysfunction prevented by all additional treatments. Renal HO-1 expression was increased by LNNA in injured tubules and increased in all tubules by all other treatments. CONCLUSIONS AND IMPLICATIONS The amelioration of LNNA-induced hypertension and renal injury by additional inhibition of H2 S and/or CO-producing enzymes appeared to be associated with secondary increases in renal CO or NO production.
Collapse
Affiliation(s)
- Sebastiaan Wesseling
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
24
|
Konstantinidis G, Head GA, Evans RG, Nguyen-Huu TP, Venardos K, Croft KD, Mori TA, Kaye DM, Rajapakse NW. Endothelial cationic amino acid transporter-1 overexpression can prevent oxidative stress and increases in arterial pressure in response to superoxide dismutase inhibition in mice. Acta Physiol (Oxf) 2014; 210:845-53. [PMID: 24428817 DOI: 10.1111/apha.12215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/30/2013] [Accepted: 12/11/2013] [Indexed: 12/28/2022]
Abstract
AIM Oxidative stress may play an important role in the pathogenesis of hypertension. The aim of our study is to examine whether increased expression of the predominant endothelial l-arginine transporter, cationic amino acid transporter-1 (CAT1), can prevent oxidative stress-induced hypertension. METHODS Wild-type mice (WT; n = 9) and endothelial CAT1 overexpressing (CAT+) mice (n = 6) had telemetry probes implanted for the measurement of mean arterial pressure (MAP), heart rate (HR) and locomotor activity. Minipumps were implanted for infusion of the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETCA; 30 mg kg(-1) day(-1) ; 14 days) or its saline vehicle. Baseline levels of MAP, HR and locomotor activity were determined before and during chronic DETCA administration. Mice were then killed, and their plasma and kidneys collected for analysis of F2 -isoprostane levels. RESULTS Basal MAP was less in CAT+ (92 ± 2 mmHg; n = 6) than in WT (98 ± 2 mmHg; n = 9; P < 0.001). During DETCA infusion, MAP was increased in WT (by 4.2 ± 0.5%; P < 0.001) but not in CAT+, when compared to appropriate controls (PDETCA*genotype = 0.006). DETCA infusion increased total plasma F2 -isoprostane levels (by 67 ± 11%; P = 0.05) in WT but not in CAT+. Total renal F2 -isoprostane levels were greater during DETCA infusion in WT (by 72%; P < 0.001), but not in CAT+, compared to appropriate controls. CONCLUSION Augmented endothelial l-arginine transport attenuated the prohypertensive effects of systemic and renal oxidative stress, suggesting that manipulation of endothelial CAT1 may provide a new therapeutic approach for the treatment of cardiovascular disease associated with oxidative stress.
Collapse
Affiliation(s)
- G. Konstantinidis
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
- Department of Physiology; Monash University; Melbourne Vic. Australia
| | - G. A. Head
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - R. G. Evans
- Department of Physiology; Monash University; Melbourne Vic. Australia
| | - T.-P. Nguyen-Huu
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - K. Venardos
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - K. D. Croft
- School of Medicine and Pharmacology; Royal Perth Hospital Unit; University of Western Australia; Perth WA Australia
| | - T. A. Mori
- School of Medicine and Pharmacology; Royal Perth Hospital Unit; University of Western Australia; Perth WA Australia
| | - D. M. Kaye
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| | - N. W. Rajapakse
- Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
- Department of Physiology; Monash University; Melbourne Vic. Australia
| |
Collapse
|
25
|
Houston M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol 2014; 6:38-66. [PMID: 24575172 PMCID: PMC3935060 DOI: 10.4330/wjc.v6.i2.38] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/22/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications.
Collapse
Affiliation(s)
- Mark Houston
- Mark Houston, Hypertension Institute, Saint Thomas Medical Plaza, Nashville, TN 37205, United States
| |
Collapse
|