1
|
Wu Y, Liu J, Du X, Li M, Ren Y, Chen L, Lu Y. Prognostic Value of Angiography-derived Index of Microcirculatory Resistance in Patients with diabetes and ST-Segment Elevation Myocardial Infarction. Can J Cardiol 2025:S0828-282X(25)00334-4. [PMID: 40349770 DOI: 10.1016/j.cjca.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The occurrence of coronary microvascular dysfunction (CMD) after primary PCI in DM patients with STEMI and its impact on prognosis remains elusive. METHODS This single-center retrospective observational study included 293 patients diagnosed with DM and STEMI. The caIMR was calculated using the measurement software FlashAngio, while cardiac magnetic resonance parameters were quantified using the post-processing software Cvi42. CMD was defined as caIMR ≥ 25 U. The primary endpoint was MACE, defined as all-cause mortality, non-fatal myocardial infarction, ischemia-driven revascularization, and heart failure. RESULTS MACE occurred in 86 patients (29.4%) during a median follow-up of 31 months. A significant correlation was identified between caIMR and both microvascular obstruction (MVO) (R = 0.61, P < 0.001) and infarct size (IS) (R = 0.39, P < 0.001). Furthermore, caIMR ≥ 25 was identified as an independent risk factor for MACE (HR, 2.99; 95% CI, 1.78-5.03; P < 0.001). Additionally, the integration of caIMR into risk modeling significantly improved MACE prediction (Net reclassification improvement 0.264, P<0.001; Integrated discrimination improvement 0.060, P<0.001). Lastly, the Kaplan-Meier survival curves displayed that patients with caIMR ≥ 25 were at a higher risk of MACE (log-rank P < 0.001). CONCLUSION The caIMR demonstrated a satisfactory correlation with CMR-determined MVO and IS in DM patients with STEMI. Elevated caIMR was independently linked to a higher risk of MACE in diabetic STEMI patients post-PCI, serving as an effective predictor for MACE.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiahua Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xinjia Du
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Maochen Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanfei Ren
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yuan Lu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Cao L, Rushakoff J, Williamson I, Karlstaedt A, Kittleson M, Czer L, Kransdorf EP. Similar burden of rare genetic variants in ischemic and non-ischemic dilated cardiomyopathy. Front Cardiovasc Med 2025; 12:1542653. [PMID: 40364824 PMCID: PMC12069280 DOI: 10.3389/fcvm.2025.1542653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background The aim of the study was to determine the prevalence of rare disease-causing variants in cardiomyopathy-associated genes in a cohort of patients with ischemic and non-ischemic dilated cardiomyopathy undergoing heart transplant. Methods We conducted a single-center cohort study of 60 adult patients with left ventricular ejection fraction ≤50% and left ventricular end-diastolic dimension ≥95th percentile for sex/height who underwent heart transplant between January 2017 and December 2023 and consented to participate in a cardiac tissue biobank. We evaluated the prevalence of rare (minor allele frequency <0.1%) disease-causing (pathogenic or likely pathogenic by American College of Genetics and Genomics criteria) variants in cardiomyopathy-associated genes. Results A total of 60 individuals fulfilled the inclusion criteria: 16 with ischemic dilated cardiomyopathy [88% men, median age 65 years, interquartile range (IQR) 64-68 years] and 44 with non-ischemic dilated cardiomyopathy (80% men, median age 53 years, IQR 39-65 years). We found that the prevalence of disease-causing variants was similar between patients with ischemic dilated cardiomyopathy (3/16 or 19%; 95% credible interval 6%-36%) and those with non-ischemic dilated cardiomyopathy (10/44 or 23%; 95% credible interval 12%-33%). Variants in the ischemic dilated cardiomyopathy group were found in the TTN and DMD genes. Variants in the non-ischemic dilated cardiomyopathy group were found in the TTN, FLNC, LMNA, MYH7, and RBM20 genes. Conclusions Patients with ischemic dilated cardiomyopathy undergoing heart transplant possessed a similar burden of rare disease-causing variants as those with non-ischemic dilated cardiomyopathy. Our results suggest that genetic testing may be beneficial in patients with advanced heart failure requiring heart transplant due to ischemic dilated cardiomyopathy to detect disease-causing variants in cardiomyopathy-associated genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Evan P. Kransdorf
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Wan J, Xu F, Yin C, Jiang Y, Chen C, Wang Y, Zuo H, Cheng J, Li H. Predictive value of HIF-1α for left ventricular remodeling following an anterior ST-segment elevation myocardial infarction. Am J Med Sci 2025; 369:479-484. [PMID: 39608641 DOI: 10.1016/j.amjms.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Hypoxia-inducible factor-1α (HIF-1α) has an essential role in ventricular remodeling processes involving myocardial fibrosis and hypertrophy, but the clinical significance of HIF-1α levels in the early period after ST-segment elevation myocardial infarction (STEMI) for the prediction of left ventricular remodeling (LVR) has yet to be fully elucidated. OBJECTIVE To investigate the predictive value of HIF-1α for LVR after STEMI based on the echocardiographic parameters. METHODS In this prospective observational study, plasma samples were collected within 12 hours of onset from 183 patients with a first reperfused anterior ST-segment elevation myocardial infarction (STEMI), and HIF-1α levels were measured using enzyme-linked immunosorbent assay (ELISA). At baseline and 12 months after discharge, all patients underwent repeat echocardiography. The changes of echocardiography parameters from baseline to 12 months were used to reflect the changes of ventricular structure and function. An increase in end-diastolic volume of ≥20 % was defined as LVR. RESULTS The levels of HIF-1α were highly correlated with the changes of echocardiography parameters (ΔLVEF, ΔLVEDD, as well as ΔLVEDV). During the follow-up period, patients with higher HIF-1α concentrations had higher incidence of LVR, poorer ventricular function, and a lower MACE-free survival. Multivariate analysis showed the single-point HIF-1α was an independent predictor of LVR (odds ratio[OR]: 4.813; 95 % CI: 1.553 to 14.918; P = 0.006). The HIF-1α levels predicted LVR with an AUC of 0.7905 (95 % CI: 0.7067 to 0.8744; P < 0.0001). The combination of HIF-1α and N-terminal probrain natriuretic peptide (NT-proBNP) yielded a favorable increase in AUC to 0.8121 (95 % CI: 0.7345 to 0.8896; P < 0.0001). CONCLUSION These results demonstrate that serum HIF-1α levels can predict LVR after STEMI independently.
Collapse
Affiliation(s)
- Jun Wan
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Feng Xu
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Chunlin Yin
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Yang Jiang
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Cai Chen
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Yulin Wang
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Heping Zuo
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - Jinglin Cheng
- Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China
| | - He Li
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui 230001, China.
| |
Collapse
|
4
|
Vinhais da Silva AV, Chesseron S, Benouna O, Rollin J, Roger S, Bourguignon T, Chadet S, Ivanes F. P2 purinergic receptors at the heart of pathological left ventricular remodeling following acute myocardial infarction. Am J Physiol Heart Circ Physiol 2025; 328:H550-H564. [PMID: 39884315 DOI: 10.1152/ajpheart.00599.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Pathological left ventricular remodeling is a complex process following an acute myocardial infarction, leading to architectural disorganization of the cardiac tissue. This phenomenon is characterized by sterile inflammation and the exaggerated development of fibrotic tissue, which is noncontractile and poorly conductive, responsible for organ dysfunction and heart failure. At present, specific therapies are lacking for both prevention and treatment of this condition, and no biomarkers are currently validated to identify at-risk patients. Physiopathological understanding of this process is limited, probably due to the combination of the multicellular responses involved that are initially necessary for tissue healing but may be detrimental in the longer term. Current research focuses on understanding and modulating the inflammatory response, a key aspect of the tissue healing process. Inflammation is triggered by the release of inflammatory mediators from cardiomyocytes undergoing cell death in the context of ischemia-reperfusion injury. Among them, extracellular ATP is a strong mediator of inflammation through the activation of P2 purinergic receptors, regulating the behavior of all the cellular actors of the postmyocardial infarction response and impacting organ function and recovery. Rather than considering each cellular protagonist independently, this review provides an integrated overview of the inflammatory and tissue response to myocardial infarction by members of the P2 receptor family. Finally, it explores the possibility of reducing pathological left ventricular remodeling through the modulation of these receptors and their associated signaling pathways.
Collapse
Affiliation(s)
- Ana Valéria Vinhais da Silva
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
| | - Simon Chesseron
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
| | - Oumnia Benouna
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
| | - Jérôme Rollin
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
- Service d'Hématologie-Hémostase, CHU de Tours, Tours, France
| | - Sébastien Roger
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
| | - Thierry Bourguignon
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
- Service de Chirurgie Cardiaque, CHU de Tours, Tours, France
| | - Stéphanie Chadet
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
| | - Fabrice Ivanes
- Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Université de Tours, Tours, France
- Service de Cardiologie, CHU de Tours, Tours, France
| |
Collapse
|
5
|
Felbel D, Fackler S, Michalke R, Paukovitsch M, Gröger M, Keßler M, Nita N, Teumer Y, Schneider L, Imhof A, Buckert D, Rottbauer W, Markovic S. Prolonged pain-to-balloon time still impairs midterm left ventricular function following STEMI. BMC Cardiovasc Disord 2025; 25:37. [PMID: 39849376 PMCID: PMC11756106 DOI: 10.1186/s12872-025-04484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND ST-elevation myocardial infarction (STEMI) demands near-time reperfusion to reduce the risk of long-term heart failure. This study evaluates the proportion of impaired left ventricular ejection fraction (LVEF) following STEMI in the context of current healthcare settings at a tertiary care center equipped with the most advanced and up-to-date standards of care. METHODS Patients experiencing STEMI as their first manifestation of coronary artery disease were analyzed, as these individuals had no prior experience with heart-related chest pain. LVEF was assessed by levocardiography at admission and semiautomatically using TOMTEC in patients with eligible full-cycle echocardiography of 2- and 4-chamber view available at discharge and 1-year follow-up (FU). Pain-to-balloon time was divided into quartiles (Q) [0-111, 112-159, 160-246 and 247-784 min]. Multiple logistic regression analysis identified independent predictors of reduced LVEF < 50% at 1-year FU. RESULTS A total of 1,379 consecutive STEMI patients were reviewed from 2010 to 2017, with 130 meeting the inclusion criteria. Mean age was 63 ± 12 years, 75% were male, 14% had diabetes, 72% had arterial hypertension, and 56% had history of smoking. LVEF was reduced in 94% of patients at admission, 69% at discharge, and remained reduced in 45% at the 1-year follow-up. Anterior wall myocardial infarction (OR 3.2 [95%-CI 1.2-6.9], p = 0.018) and increasing pain-to-balloon time across quartiles (Q2: OR 15.7 [95%-CI 1.8-140.4], p = 0.014; Q4: OR 33.7 [3.4-278.7] p = 0.002) were independently associated with reduced LVEF at 1 year. CONCLUSION Despite optimal medical management and advanced healthcare structures, nearly half of patients with STEMI as their first presentation of coronary artery disease continue to exhibit reduced LVEF at 12-months. Anterior wall myocardial infarction and pain-to-balloon time exceeding 2 h remain independent predictors of left ventricular dysfunction. Further improvements in healthcare systems and public education are essential to reduce treatment delays and improve long-term outcomes.
Collapse
Affiliation(s)
- Dominik Felbel
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Sabrina Fackler
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Rachel Michalke
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Michael Paukovitsch
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Matthias Gröger
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Mirjam Keßler
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Nicoleta Nita
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Yannick Teumer
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Leonhard Schneider
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Armin Imhof
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Dominik Buckert
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Sinisa Markovic
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
6
|
Logeart D, Taille Y, Derumeaux G, Gellen B, Sirol M, Galinier M, Roubille F, Georges JL, Trochu JN, Launay JM, Vodovar N, Bauters C, Vicaut E, Mercadier JJ. Patterns of left ventricular remodeling post-myocardial infarction, determinants, and outcome. Clin Res Cardiol 2024; 113:1670-1681. [PMID: 38261025 DOI: 10.1007/s00392-023-02331-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
AIM Left ventricular remodeling (LVR) after myocardial infarction (MI) can lead to heart failure, arrhythmia, and death. We aim to describe adverse LVR patterns at 6 months post-MI and their relationships with subsequent outcomes and to determine baseline. METHODS AND RESULTS A multicenter cohort of 410 patients (median age 57 years, 87% male) with reperfused MI and at least 3 akinetic LV segments on admission was analyzed. All patients had transthoracic echocardiography performed 4 days and 6 months post-MI, and 214 also had cardiac magnetic resonance imaging performed on day 4. To predict LVR, machine learning methods were employed in order to handle many variables, some of which may have complex interactions. Six months post-MI, echocardiographic increases in LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), and LV ejection fraction (LVEF) were 14.1% [interquartile range 0.0, 32.0], 5.0% [- 14.0, 25.8], and 8.7% [0.0, 19.4], respectively. At 6 months, ≥ 15% or 20% increases in LVEDV were observed in 49% and 42% of patients, respectively, and 37% had an LVEF < 50%. The rate of death or new-onset HF at the end of 5-year follow-up was 8.8%. Baseline variables associated with adverse LVR were determined best by random forest analysis and included stroke volume, stroke work, necrosis size, LVEDV, LVEF, and LV afterload, the latter assessed by Ea or Ea/Ees. In contrast, baseline clinical and biological characteristics were poorly predictive of LVR. After adjustment for predictive baseline variables, LV dilation > 20% and 6-month LVEF < 50% were significantly associated with the risk of death and/or heart failure: hazard ratio (HR) 2.12 (95% confidence interval (CI) 1.05-4.43; p = 0.04) and HR 2.68 (95% CI 1.20-6.00; p = 0.016) respectively. CONCLUSION Despite early reperfusion and cardioprotective therapy, adverse LVR remains frequent after acute MI and is associated with a risk of death and HF. A machine learning approach identified and prioritized early variables that are associated with adverse LVR and which were mainly hemodynamic, combining LV volumes, estimates of systolic function, and afterload.
Collapse
Affiliation(s)
- Damien Logeart
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France.
- Université Paris Cité, Paris, France.
| | - Yoann Taille
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France
| | - Geneviève Derumeaux
- Assistance Publique Hôpitaux de Paris, Hôpital Henri-Mondor, Créteil, France
| | | | - Marc Sirol
- American Hospital, Neuilly-Sur-Seine, France
| | | | | | | | | | | | - Nicolas Vodovar
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France
| | | | - Eric Vicaut
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France
- Université Paris Cité, Paris, France
| | | |
Collapse
|
7
|
de Waha S, Patel MR, Thiele H, Udelson JE, Granger CB, Ben‐Yehuda O, Kotinkaduwa L, Redfors B, Eitel I, Selker HP, Maehara A, Stone GW. Relationship Between Infarct Artery, Myocardial Injury, and Outcomes After Primary Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc 2024; 13:e034748. [PMID: 39248268 PMCID: PMC11935624 DOI: 10.1161/jaha.123.034748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The extent to which infarct artery impacts the extent of myocardial injury and outcomes in patients with ST-segment-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention is uncertain. METHODS AND RESULTS We performed a pooled analysis using individual patient data from 7 randomized STEMI trials in which myocardial injury within 30 days after primary percutaneous coronary intervention was assessed in 1774 patients by cardiac magnetic resonance (n=1318) or technetium-99m sestamibi single-photon emission computed tomography (n=456). Clinical follow-up was performed at a median duration of 351 days (interquartile range, 184-368 days). Infarct size and outcomes were assessed in anterior (infarct vessel=left anterior descending) versus nonanterior (non-left anterior descending) STEMI. Median infarct size (percentage left ventricular myocardial mass) was larger in patients with anterior compared with nonanterior STEMI (19.7% [interquartile range, 9.4%-31.7%] versus 12.6% [interquartile range, 5.1%-20.5%]; P<0.001). Patients with anterior compared with nonanterior STEMI were at higher risk for 1-year all-cause mortality (6.2% versus 3.6%; adjusted hazard ratio [HR], 1.66 [95% CI, 1.02-2.69]; P=0.04) and heart failure hospitalization (4.4% versus 2.6%; adjusted HR, 1.96 [95% CI, 1.15-3.36]; P=0.01). Infarct size was a predictor of subsequent all-cause mortality or heart failure hospitalization in anterior STEMI (adjusted HR per 1% increase, 1.05 [95% CI, 1.03-1.07]; P<0.001), but not in nonanterior STEMI (adjusted HR, 1.02 [95% CI, 0.99-1.05]; P=0.19). The P value for this interaction was 0.04. CONCLUSIONS Anterior STEMI was associated with substantially greater myonecrosis after primary percutaneous coronary intervention compared with nonanterior STEMI, contributing in large part to the worse prognosis in patients with anterior infarction.
Collapse
Affiliation(s)
- Suzanne de Waha
- Heart Center Leipzig at the University of LeipzigLeipzigGermany
- University Heart Center Lübeck and the German Center for Cardiovascular ResearchLübeckGermany
| | | | - Holger Thiele
- Heart Center Leipzig at the University of LeipzigLeipzigGermany
| | - James E. Udelson
- Institute for Clinical Research and Health Policy Studies, Tufts Medical CenterBostonMA
| | | | | | | | | | - Ingo Eitel
- University Heart Center Lübeck and the German Center for Cardiovascular ResearchLübeckGermany
| | - Harry P. Selker
- Institute for Clinical Research and Health Policy Studies, Tufts Medical CenterBostonMA
| | | | - Gregg W. Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|
8
|
Bernáth-Nagy D, Kalinyaprak MS, Giannitsis E, Ábrahám P, Leuschner F, Frey N, Krohn JB. Circulating extracellular vesicles as biomarkers in the diagnosis, prognosis and therapy of cardiovascular diseases. Front Cardiovasc Med 2024; 11:1425159. [PMID: 39314768 PMCID: PMC11417624 DOI: 10.3389/fcvm.2024.1425159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiovascular disease (CVD) ranks among the primary contributors to worldwide mortality. Hence, the importance of constant research on new circulating biomarkers for the improvement of early diagnosis and prognostication of different CVDs and the development and refinement of therapeutic measures is critical. Extracellular vesicles (EV) have a great potential as diagnostic and prognostic markers, as they represent their parent cell by enclosing cell-specific molecules, which can differ in quality and quantity based on cell state. Assuming that all cell types of the cardiovascular system are capable of releasing EV into circulation, an emerging body of evidence has investigated the potential role of serum- or plasma-derived EV in CVD. Comprehensive research has unveiled alterations in EV quantity and EV-bound cargo in the form of RNA, proteins and lipids in the context of common CVDs such as coronary artery disease, atrial fibrillation, heart failure or inflammatory heart diseases, highlighting their diagnostic and prognostic relevance. In numerous in vitro and in vivo models, EV also showed promising therapeutic potential. However, translation of EV studies to a preclinical or clinical setting has proven to be challenging. This review is intended to provide an overview of the most relevant studies in the field of serum or plasma-derived EV.
Collapse
Affiliation(s)
- Dominika Bernáth-Nagy
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Melek Sükran Kalinyaprak
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pál Ábrahám
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jona Benjamin Krohn
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Zheng W, Guo Q, Guo R, Guo Y, Wang H, Xu L, Huo Y, Ai H, Que B, Wang X, Nie S. Predicting left ventricular remodeling post-MI through coronary physiological measurements based on computational fluid dynamics. iScience 2024; 27:109513. [PMID: 38600975 PMCID: PMC11004870 DOI: 10.1016/j.isci.2024.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Early detection of left ventricular remodeling (LVR) is crucial. While cardiac magnetic resonance (CMR) provides valuable information, it has limitations. Coronary angiography-derived fractional flow reserve (caFFR) and index of microcirculatory resistance (caIMR) offer viable alternatives. 157 patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention were prospectively included. 23.6% of patients showed LVR. Machine learning algorithms constructed three LVR prediction models: Model 1 incorporated clinical and procedural parameters, Model 2 added CMR parameters, and Model 3 included echocardiographic and functional parameters (caFFR and caIMR) with Model 1. The random forest algorithm showed robust performance, achieving AUC of 0.77, 0.84, and 0.85 for Models 1, 2, and 3. SHAP analysis identified top features in Model 2 (infarct size, microvascular obstruction, admission hemoglobin) and Model 3 (current smoking, caFFR, admission hemoglobin). Findings indicate coronary physiology and echocardiographic parameters effectively predict LVR in patients with STEMI, suggesting their potential to replace CMR.
Collapse
Affiliation(s)
- Wen Zheng
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Qian Guo
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ruifeng Guo
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yingying Guo
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Hui Wang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yunlong Huo
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Ai
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Bin Que
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiao Wang
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
10
|
Corral Acero J, Lamata P, Eitel I, Zacur E, Evertz R, Lange T, Backhaus SJ, Stiermaier T, Thiele H, Bueno-Orovio A, Schuster A, Grau V. Comprehensive characterization of cardiac contraction for improved post-infarction risk assessment. Sci Rep 2024; 14:8951. [PMID: 38637609 PMCID: PMC11026383 DOI: 10.1038/s41598-024-59114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
This study aims at identifying risk-related patterns of left ventricular contraction dynamics via novel volume transient characterization. A multicenter cohort of AMI survivors (n = 1021) who underwent Cardiac Magnetic Resonance (CMR) after infarction was considered for the study. The clinical endpoint was the 12-month rate of major adverse cardiac events (MACE, n = 73), consisting of all-cause death, reinfarction, and new congestive heart failure. Cardiac function was characterized from CMR in 3 potential directions: by (1) volume temporal transients (i.e. contraction dynamics); (2) feature tracking strain analysis (i.e. bulk tissue peak contraction); and (3) 3D shape analysis (i.e. 3D contraction morphology). A fully automated pipeline was developed to extract conventional and novel artificial-intelligence-derived metrics of cardiac contraction, and their relationship with MACE was investigated. Any of the 3 proposed directions demonstrated its additional prognostic value on top of established CMR indexes, myocardial injury markers, basic characteristics, and cardiovascular risk factors (P < 0.001). The combination of these 3 directions of enhancement towards a final CMR risk model improved MACE prediction by 13% compared to clinical baseline (0.774 (0.771-0.777) vs. 0.683 (0.681-0.685) cross-validated AUC, P < 0.001). The study evidences the contribution of the novel contraction characterization, enabled by a fully automated pipeline, to post-infarction assessment.
Collapse
Affiliation(s)
- Jorge Corral Acero
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - Pablo Lamata
- Department of Digital Twins for Healthcare, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor North Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Ingo Eitel
- Medical Clinic II, Cardiology, Angiology and Intensive Care Medicine, University Heart Centre Lübeck, Lübeck, Germany
- University Hospital Schleswig-Holstein, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ernesto Zacur
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Thomas Stiermaier
- Medical Clinic II, Cardiology, Angiology and Intensive Care Medicine, University Heart Centre Lübeck, Lübeck, Germany
- University Hospital Schleswig-Holstein, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Centre Leipzig at University of Leipzig, Leipzig, Germany
| | | | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Vicente Grau
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Drapkina OM, Kontsevaya AV, Kalinina AM, Avdeev SN, Agaltsov MV, Alekseeva LI, Almazova II, Andreenko EY, Antipushina DN, Balanova YA, Berns SA, Budnevsky AV, Gainitdinova VV, Garanin AA, Gorbunov VM, Gorshkov AY, Grigorenko EA, Jonova BY, Drozdova LY, Druk IV, Eliashevich SO, Eliseev MS, Zharylkasynova GZ, Zabrovskaya SA, Imaeva AE, Kamilova UK, Kaprin AD, Kobalava ZD, Korsunsky DV, Kulikova OV, Kurekhyan AS, Kutishenko NP, Lavrenova EA, Lopatina MV, Lukina YV, Lukyanov MM, Lyusina EO, Mamedov MN, Mardanov BU, Mareev YV, Martsevich SY, Mitkovskaya NP, Myasnikov RP, Nebieridze DV, Orlov SA, Pereverzeva KG, Popovkina OE, Potievskaya VI, Skripnikova IA, Smirnova MI, Sooronbaev TM, Toroptsova NV, Khailova ZV, Khoronenko VE, Chashchin MG, Chernik TA, Shalnova SA, Shapovalova MM, Shepel RN, Sheptulina AF, Shishkova VN, Yuldashova RU, Yavelov IS, Yakushin SS. Comorbidity of patients with noncommunicable diseases in general practice. Eurasian guidelines. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2024; 23:3696. [DOI: 10.15829/1728-8800-2024-3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Создание руководства поддержано Советом по терапевтическим наукам отделения клинической медицины Российской академии наук.
Collapse
|
12
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Akhtar KH, Khan MS, Baron SJ, Zieroth S, Estep J, Burkhoff D, Butler J, Fudim M. The spectrum of post-myocardial infarction care: From acute ischemia to heart failure. Prog Cardiovasc Dis 2024; 82:15-25. [PMID: 38242191 DOI: 10.1016/j.pcad.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Heart failure (HF) is the leading cause of mortality in patients with acute myocardial infarction (AMI), with incidence ranging from 14% to 36% in patients admitted due to AMI. HF post-MI develops due to complex inter-play between macrovascular obstruction, microvascular dysfunction, myocardial stunning and remodeling, inflammation, and neuro-hormonal activation. Cardiogenic shock is an extreme presentation of HF post-MI and is associated with a high mortality. Early revascularization is the only therapy shown to improve survival in patients with cardiogenic shock. Treatment of HF post-MI requires prompt recognition and timely introduction of guideline-directed therapies to improve mortality and morbidity. This article aims to provide an up-to-date review on the incidence and pathogenesis of HF post-MI, current strategies to prevent and treat onset of HF post-MI, promising therapeutic strategies, and knowledge gaps in the field.
Collapse
Affiliation(s)
- Khawaja Hassan Akhtar
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Suzanne J Baron
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Shelley Zieroth
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jerry Estep
- Section of Heart Failure & Transplantation, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Daniel Burkhoff
- Cardiovascular Research Foundation, Columbia University Medical Center, New York City, NY, USA
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA; Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Marat Fudim
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
14
|
Konijnenberg LSF, Beijnink CWH, van Lieshout M, Vos JL, Rodwell L, Bodi V, Ortiz-Pérez JT, van Royen N, Rodriguez Palomares J, Nijveldt R. Cardiovascular magnetic resonance imaging-derived intraventricular pressure gradients in ST-segment elevation myocardial infarction: a long-term follow-up study. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae009. [PMID: 39045208 PMCID: PMC11195698 DOI: 10.1093/ehjimp/qyae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 07/25/2024]
Abstract
Aims Recently, novel post-processing tools have become available that measure intraventricular pressure gradients (IVPGs) on routinely obtained long-axis cine cardiac magnetic resonance (CMR) images. IVPGs provide a comprehensive overview of both systolic and diastolic left ventricular (LV) functions. Whether IVPGs are associated with clinical outcome after ST-elevation myocardial infarction (STEMI) is currently unknown. Here, we investigated the association between CMR-derived LV-IVPGs and major adverse cardiovascular events (MACE) in a large reperfused STEMI cohort with long-term outcome. Methods and results In this prospectively enrolled multi-centre cohort study, 307 patients underwent CMR within 14 days after the first STEMI. LV-IVPGs (from apex-to-base) were estimated on the long-axis cine images. During a median follow-up of 9.7 (5.9-12.5) years, MACE (i.e. composite of cardiovascular death and de novo heart failure hospitalisation) occurred in 49 patients (16.0%). These patients had larger infarcts, more often microvascular injury, and impaired LV-IVPGs. In univariable Cox regression, overall LV-IVPG was significantly associated with MACE and remained significantly associated after adjustment for common clinical risk factors (hazard ratio (HR) 0.873, 95% confidence interval (CI) 0.794-0.961, P = 0.005) and myocardial injury parameters (HR 0.906, 95% CI 0.825-0.995, P = 0.038). However, adjusted for LV ejection fraction and LV global longitudinal strain (GLS), overall LV-IVPG does not provide additional prognostic information (HR 0.959, 95% CI 0.866-1.063, P = 0.426). Conclusion Early after STEMI, CMR-derived LV-IVPGs are univariably associated with MACE and this association remains significant after adjustment for common clinical risk factors and measures of infarct severity. However, LV-IVPGs do not add prognostic value to LV ejection fraction and LV GLS.
Collapse
Affiliation(s)
- Lara S F Konijnenberg
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Casper W H Beijnink
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Maarten van Lieshout
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jacqueline L Vos
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Laura Rodwell
- Department of Epidemiology and Biostatistics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Vicente Bodi
- Department of Cardiology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Instituto de Investigación Sanitaria (INCLIVA), 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28022 Madrid, Spain
| | - José T Ortiz-Pérez
- Department of Cardiology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Clínic Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - José Rodriguez Palomares
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28022 Madrid, Spain
- Department of Cardiology, Hospital Universitario Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
15
|
Guo Q, Miao M, Duan L, Liu Y, Qiu Y, Feng X, Liang S, Xiao W, Zheng M, Wei M, Liu G. The relationship between insulin resistance, serum alkaline phosphatase, and left ventricular dysfunction following myocardial infarction. Sci Rep 2023; 13:17974. [PMID: 37863941 PMCID: PMC10589322 DOI: 10.1038/s41598-023-45246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
The occurrence of heart failure following acute myocardial infarction (AMI) significantly increases the risk of post-infarction mortality. Alkaline phosphatase (AP) is considered to be an independent predictor of cardiovascular disease (CVD) and adverse outcomes. Furthermore, in recent years, alkaline phosphatase has been associated with insulin resistance (IR). Our aim was to investigate the correlation between IR substitutes (triglyceride-glucose (TyG) index, triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio), AP, and LV dysfunction in patients admitted after AMI. The retrospective study included 810 patients who underwent coronary angiography for myocardial infarction at the First Hospital of Hebei Medical University from August 2018 to December 2021. Patients were categorized into three groups based on their serum AP levels. Clinical characteristics at admission, cardiac echocardiography findings, coronary angiography results, and biochemical markers such as serum AP levels and triglycerides (TG) were recorded during hospitalization. Left ventricular ejection fraction (LVEF) was assessed using cardiac echocardiography conducted from the time of admission until the coronary angiography procedure. A total of 774 patients with AMI were included in this study. The TyG index is significantly correlated with the TG/HDL-C ratio. (R = 0.739, P < 0.001). Binary logistic regression analysis revealed that elevated serum AP (OR 2.598, 95% CI 1.331-5.071, P = 0.005), presence of the left anterior descending (LAD) artery as the infarct-related artery (IRA) (OR 2.452, 95% CI 1.352-4.449, P = 0.003), and triglyceride (TG) levels (OR 0.652, 95% CI 0.429-0.992, P = 0.046) were protective risk factor for an admission LVEF < 40% following AMI. The serum alkaline phosphatase and LAD as IRA are independent risk factors for severe reduction in LVEF during hospitalization for AMI. Conversely, triglyceride are independent protective factor for severe reduction in LVEF during AMI hospitalization.
Collapse
Affiliation(s)
- Qifeng Guo
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
- Graduate School of Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, China
| | - Mengdan Miao
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Linan Duan
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Yongsheng Liu
- Department of Geriatric Medicine, the First Hospital of Hebei Medicical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Yahui Qiu
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
- Graduate School of Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, China
| | - Xuejuan Feng
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
- Graduate School of Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, China
| | - Shisen Liang
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
- Graduate School of Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, China
| | - Weiqiang Xiao
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China
- Graduate School of Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, China
| | - Mingqi Zheng
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China.
| | - Mei Wei
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China.
| | - Gang Liu
- Department of Heart Center, the First Hospital of Hebei Medicical University, 89Donggang Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
16
|
Monzo L, Huttin O, Ferreira JP, Lamiral Z, Bozec E, Beaumont M, Micard E, Baudry G, Marie PY, Eschalier R, Rossignol P, Zannad F, Girerd N. Role of aldosterone in mid- and long-term left ventricular remodelling after acute myocardial infarction: The REMI study. Eur J Heart Fail 2023; 25:1742-1752. [PMID: 37530453 DOI: 10.1002/ejhf.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/03/2023] Open
Abstract
AIMS Whether aldosterone levels after myocardial infarction (MI) are associated with mid- and long-term left ventricular (LV) remodelling in the era of systematic use of renin-angiotensin system inhibitors is uncertain. We prospectively investigated the relationship between aldosterone levels and mid- and long-term LV remodelling in patients with acute MI. METHODS AND RESULTS Plasma aldosterone was measured in 119 patients successfully treated by primary percutaneous coronary angioplasty for a first acute ST-elevation MI (STEMI) 2-4 days after the acute event. LV volumes were assessed by cardiac magnetic resonance (CMR) and transthoracic echocardiography (TTE) in the same timeframe and 6 months later. LV assessment was repeated by TTE 3-9 years after MI (n = 80). The median aldosterone level at baseline was 23.1 [16.8; 33.1] pg/ml. In the multivariable model, higher post-MI aldosterone concentration was significantly associated with more pronounced increase in LV end-diastolic volume index (TTE: β ± standard error [SE]: 0.113 ± 0.046, p = 0.015; CMR: β ± SE: 0.098 ± 0.040, p = 0.015) and LV end-systolic volume index (TTE: β ± SE: 0.083 ± 0.030, p = 0.008; CMR: β ± SE: 0.064 ± 0.032, p = 0.048) at 6-month follow-up, regardless of the method of assessment. This result was consistent also in patients with a LV ejection fraction (LVEF) >40%. The association between baseline plasma aldosterone and adverse LV remodelling did not persist at the 3-9-year follow-up evaluation. CONCLUSION Aldosterone concentration in the acute phase was associated with adverse LV remodelling in the medium term, even in the subgroup of patients with LVEF >40%, suggesting a potential role of the mineralocorticoid system in post-MI adverse remodelling. Plasma aldosterone was no longer associated with LV remodelling in the long term (NCT01109225).
Collapse
Affiliation(s)
- Luca Monzo
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Olivier Huttin
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - João Pedro Ferreira
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Zohra Lamiral
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Erwan Bozec
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Marine Beaumont
- Centre d'Investigations Cliniques IADI U947, Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France
| | - Emilien Micard
- Centre d'Investigations Cliniques IADI U947, Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France
| | - Guillaume Baudry
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Pierre-Yves Marie
- CHRU-Nancy, Université de Lorraine, Nuclear Medicine & Nancyclotep Imaging Platform, Nancy, France
| | - Romain Eschalier
- Cardiology Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Department of Medicine and Nephrology-Hemodialysis, Princess Grace Hospital, and Monaco Private Hemodialysis Centre, La Colle, Monaco
| | - Faiez Zannad
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Nicolas Girerd
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| |
Collapse
|
17
|
Köktürk U, Püşüroğlu H, Somuncu MU, Akgül Ö, Uygur B, Özyılmaz S, Işıksaçan N, Sürgit Ö, Yıldırım A. Short and Long-Term Prognostic Significance of Galectin-3 in Patients with ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Angiology 2023; 74:889-896. [PMID: 36594728 DOI: 10.1177/00033197221149846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study evaluated the short and long-term prognostic value of galectin-3 in patients with ST-segment elevation myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention (PCI). Patients (n = 143) were admitted with STEMI and followed up for 2 years. The study population was divided into high and low galectin-3 groups based on the admission median value of serum galectin-3. Primary clinical outcomes consisted of cardiovascular (CV) mortality, non-fatal reinfarction, stroke, and target vessel revascularization (TVR). CV events were recorded in hospital and at 1 and 2 years. The primary clinical outcomes (in-hospital, 1 year and 2 year) were significantly higher in the high galectin-3 group. (P = .008, P = .004, P = .002, respectively). High galectin-3 levels were also associated with heart failure development and re-hospitalization at both 1 year (P = .029, P = .009, respectively) and 2 years (P = .019, P = .036, respectively). According to Cox multivariate analysis, left ventricular ejection fraction (LVEF) was an independent predictor of 2-year cardiovascular mortality (P = .009), whereas galectin-3 was not (P = .291). Although high galectin-3 levels were not independent predictors of long-term CV mortality in patients with acute STEMI who underwent primary PCI, it was associated with short-term and long-term development of adverse CV events, heart failure, and re-hospitalization.
Collapse
Affiliation(s)
- Uğur Köktürk
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Hamdi Püşüroğlu
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Umut Somuncu
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Özgür Akgül
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Begüm Uygur
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Sinem Özyılmaz
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Nilgün Işıksaçan
- Department of Biochemistry, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Özgür Sürgit
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Aydın Yıldırım
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
18
|
Zhang S, Zhu Z, Luo M, Chen L, He C, You Z, He H, Lin M, Zhang L, Lin K, Guo Y. The optimal definition and prediction nomogram for left ventricular remodelling after acute myocardial infarction. ESC Heart Fail 2023; 10:2955-2965. [PMID: 37489064 PMCID: PMC10567660 DOI: 10.1002/ehf2.14479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
AIMS Left ventricular (LV) remodelling after acute myocardial infarction (AMI) is associated with heart failure and increased mortality. There was no consensus on the definition of LV remodelling, and the prognostic value of LV remodelling with different definitions has not been compared. We aimed to find the optimal definition and develop a prediction nomogram as well as online calculator that can identify patients at risk of LV remodelling. METHODS AND RESULTS This prospective, observational study included 829 AMI patients undergoing percutaneous coronary intervention from January 2015 to January 2020. Echocardiography was performed within the 48 h of admission and at 6 months after infarction to evaluate LV remodelling, defined as a 20% increase in LV end-diastolic volume (LVEDV), a 15% increase in LV end-systolic volume (LVESV), or LV ejection fraction (LVEF) < 50% at 6 months. The impact of LV remodelling on long-term outcomes was analysed. Lasso regression was performed to screen potential predictors, and multivariable logistic regression analysis was conducted to establish the prediction nomogram. The area under the curve, calibration curve and decision curve analyses were used to determine the discrimination, calibration and clinical usefulness of the remodelling nomogram. The incidences of LV remodelling defined by LVEDV, LVESV and LVEF were 24.85% (n = 206), 28.71% (n = 238) and 14.60% (n = 121), respectively. Multivariable Cox regression models demonstrated that different definitions of LV remodelling were independently associated with the composite endpoint. However, only remodelling defined by LVEF was significantly connected with long-term mortality (hazard ratio = 2.78, 95% confidence interval 1.41-5.48, P = 0.003). Seven variables were selected to construct the remodelling nomogram, including diastolic blood pressure, heart rate, AMI type, stent length, N-terminal pro brain natriuretic peptide, troponin I, and glucose. The prediction model had an area under the receiver operating characteristics curve of 0.766. The calibration curve and decision curve analysis indicated consistency and better net benefit in the prediction model. CONCLUSIONS LV remodelling defined by LVEDV, LVESV and LVEF were independent predictors for long-term mortality or heart failure hospitalization in AMI patients after percutaneous coronary intervention. However, only remodelling defined by LVEF was suitable for predicting all-cause death. In addition, the nomogram can provide an accurate and effective tool for the prediction of postinfarct remodelling.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Zheng Zhu
- Department of Endocrine and Metabolic Diseases, School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong UniversityShanghaiChina
| | - Manqing Luo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Lichuan Chen
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Chen He
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Zhebin You
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
- Department of Geriatric MedicineShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Haoming He
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Maoqing Lin
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Liwei Zhang
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Kaiyang Lin
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Yansong Guo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| |
Collapse
|
19
|
Wang J, Meng Y, Zhang C, Lu Y, Hu C, Xu K. Delays in first medical contact to primary interventional therapy and left ventricular remodelling in ST-segment elevation myocardial infarction. Ir J Med Sci 2023; 192:2143-2150. [PMID: 36732417 PMCID: PMC9894669 DOI: 10.1007/s11845-023-03283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Early reperfusion and early evaluation of adverse cardiovascular events have become important aspects of treatment for ST-segment elevation myocardial infarction post-primary percutaneous coronary intervention (PPCI). However, emergency medical service (EMS) delays always occur, especially in developing countries. AIMS The aim of this study was to investigate the impact of EMS delays on short-term predictions of the severity of myocardial injury in STEMI patients after PPCI. METHODS A total of 151 STEMI patients who underwent successful PPCI and two postoperative cardiac magnetic resonance (CMR) imaging examinations (1 week and 4 months postoperatively) were retrospectively analysed. CMR cine and late gadolinium enhancement (LGE) images were analysed to evaluate left ventricular (LV) function, LV global longitudinal peak strain (GLS) and scar characteristics. The time from first medical contact to balloon (FMC2B) and door-to-balloon (D2B) time, expressed in minutes, were recorded and compared with the recommended timelines. Unadjusted and multivariable analyses were used to assess the impact of EMS delays on short-term left ventricular remodelling (ALVR). RESULTS EMS delays (FMC2B time > 90 min) led to larger infarct size (IS) and microcirculation obstruction (MVO) and poor recovery of the LV ejection fraction and GLS (all p < 0.05). Logistic regression analysis showed that an FMC2B time > 90 min (p = 0.028, OR = 2.661, 95% CI 1.112-6.367) and baseline IS (p = 0.016, OR = 1.079, 95% CI 1.015-1.148) were independent predictors of short-term ALVR. CONCLUSION Delays in FMC2B time were strongly associated with short-term ALVR; shorter ischaemic times may improve the cardiac function and prognosis of patients.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Radiology, Nanjing Medical University, Nanjing, 211166, China
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yankai Meng
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuan Lu
- Department of Cardiac Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunfeng Hu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kai Xu
- Department of Radiology, Nanjing Medical University, Nanjing, 211166, China.
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
20
|
Zarà M, Baggiano A, Amadio P, Campodonico J, Gili S, Annoni A, De Dona G, Carerj ML, Cilia F, Formenti A, Fusini L, Banfi C, Gripari P, Tedesco CC, Mancini ME, Chiesa M, Maragna R, Marchetti F, Penso M, Tassetti L, Volpe A, Bonomi A, Marenzi G, Pontone G, Barbieri SS. Circulating Small Extracellular Vesicles Reflect the Severity of Myocardial Damage in STEMI Patients. Biomolecules 2023; 13:1470. [PMID: 37892152 PMCID: PMC10605123 DOI: 10.3390/biom13101470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Circulating small extracellular vesicles (sEVs) contribute to inflammation, coagulation and vascular injury, and have great potential as diagnostic markers of disease. The ability of sEVs to reflect myocardial damage assessed by Cardiac Magnetic Resonance (CMR) in ST-segment elevation myocardial infarction (STEMI) is unknown. To fill this gap, plasma sEVs were isolated from 42 STEMI patients treated by primary percutaneous coronary intervention (pPCI) and evaluated by CMR between days 3 and 6. Nanoparticle tracking analysis showed that sEVs were greater in patients with anterior STEMI (p = 0.0001), with the culprit lesion located in LAD (p = 0.045), and in those who underwent late revascularization (p = 0.038). A smaller sEV size was observed in patients with a low myocardial salvage index (MSI, p = 0.014). Patients with microvascular obstruction (MVO) had smaller sEVs (p < 0.002) and lower expression of the platelet marker CD41-CD61 (p = 0.039). sEV size and CD41-CD61 expression were independent predictors of MVO/MSI (OR [95% CI]: 0.93 [0.87-0.98] and 0.04 [0-0.61], respectively). In conclusion, we provide evidence that the CD41-CD61 expression in sEVs reflects the CMR-assessed ischemic damage after STEMI. This finding paves the way for the development of a new strategy for the timely identification of high-risk patients and their treatment optimization.
Collapse
Affiliation(s)
- Marta Zarà
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Patrizia Amadio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Jeness Campodonico
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Sebastiano Gili
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Andrea Annoni
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Gianluca De Dona
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | | | - Francesco Cilia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alberto Formenti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20156 Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Paola Gripari
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | | | | | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Riccardo Maragna
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Francesca Marchetti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Marco Penso
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Luigi Tassetti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alessandra Volpe
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alice Bonomi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|
21
|
Del Buono MG, Garmendia CM, Seropian IM, Gonzalez G, Berrocal DH, Biondi-Zoccai G, Trankle CR, Bucciarelli-Ducci C, Thiele H, Lavie CJ, Crea F, Abbate A. Heart Failure After ST-Elevation Myocardial Infarction: Beyond Left Ventricular Adverse Remodeling. Curr Probl Cardiol 2023; 48:101215. [PMID: 35460680 DOI: 10.1016/j.cpcardiol.2022.101215] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
Abstract
ST-segment elevation myocardial infarction (STEMI) remains a significant source of morbidity and mortality worldwide. Despite advances in treatment leading to a significant reduction in the early complications and in-hospital mortality, a significant proportion of STEMI survivors develop heart failure (HF) at follow-up. The classic paradigm of HF after STEMI is one characterized by left ventricular adverse remodeling (LVAR) and encompasses the process of regional and global structural and functional changes that occur in the heart as a consequence of loss of viable myocardium, increased wall stress and neurohormonal activation, and results in HF with reduced ejection fraction (HFrEF). More recently, however, with further improvements in the treatment of STEMI the incidence and entity of LVAR appear to be largely reduced, yet the risk for HF following STEMI is not abolished and remains substantial, identifying a new paradigm by which patients with STEMI present with HF and preserved EF (HFpEF) characterized by reduction of diastolic or systolic reserve independent of LVAR.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Cristian M Garmendia
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA; Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio M Seropian
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Germán Gonzalez
- Pontificia Universidad Católica Argentina (UCA), Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Daniel H Berrocal
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Cory R Trankle
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Clinical Partership, Guys and St Thomas NHS Trust anD King's College London, London, UK
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany
| | - Carl J Lavie
- Department of Cardiovascular Diseases, Ochsner Clinical School, New Orleans, LA
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Jing Y, Lu C, Guo S, Chen B, Ye X, He Q, Xia W, Xin T. Influencing factors and prognostic value of left ventricular systolic dysfunction in patients with complete occlusion of the left anterior descending artery reperfused by primary percutaneous coronary intervention. BMC Cardiovasc Disord 2023; 23:344. [PMID: 37430213 DOI: 10.1186/s12872-023-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The aim of this study was to perform a retrospective analysis of patients with acute anterior wall ST-segment elevation myocardial infarction (AAW-STEMI) whose left anterior descending (LAD) artery was completely occluded and reperfused by primary percutaneous coronary intervention (PPCI) and to determine the influencing factors and prognostic value of left ventricular systolic dysfunction (LVSD) in the acute phase of acute myocardial infarction (AMI). METHODS A total of 304 patients with AAW-STEMI were selected. The selected patients were divided into two groups: the preserved left ventricular ejection fraction (pLVEF) group (LVEF ≥ 50%, n = 185) and the reduced left ventricular ejection fraction (rLVEF) group (LVEF < 50%, n = 119). The influencing factors of LVSD and their predictive value for LVSD were analyzed. Patients were followed up by examining outpatient records and via telephone. The predictive value of LVSD for the cardiovascular mortality of patients with AAW-STEMI was analyzed. RESULTS Age, heart rate (HR) at admission, number of ST-segment elevation leads (STELs), peak creatine kinase (CK) and symptom to wire-crossing (STW) time were independent risk factors for LVSD (P < 0.05). The receiver operating characteristic (ROC) analysis showed that the peak CK had the strongest predictive value for LVSD, with an area under the curve (AUC) of 0.742 (CI, 0.687 to 0.797) as the outcome. At a median follow-up of 47 months (interquartile range, 27 to 64 months), the Kaplan‒Meier survival curves up to 6-year follow-up revealed a total of 8 patients succumbed to cardiovascular disease, with 7 (6.54%) in the rLVEF group and 1 (0.56%) in the pLVEF group, respectively (hazard ratio: 12.11, [P = 0.02]). Univariate and multivariate Cox proportional hazards regression analysis demonstrated that rLVEF was an independent risk predictor of cardiovascular death in patients with AAW-STEMI discharged after PPCI (P < 0.01). CONCLUSIONS Age, HR at admission, number of STELs, peak CK, and STW time may be used to identify patients with a high risk of heart failure (HF) in a timely manner and initiate early standard therapy for incident LVSD in the acute phase of AAW-STEMI reperfused by PPCI. A trend toward increased cardiovascular mortality at follow-up was significantly linked to LVSD.
Collapse
Affiliation(s)
- Yongle Jing
- The First Central Clinical School, Tianjin Medical University, No 22 Qixiangtai Road, Tianjin, 300070, Heping District, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China.
| | - Suzhen Guo
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China
| | - Bingwei Chen
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China
| | - Xuying Ye
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China
| | - Qiang He
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China
| | - Wei Xia
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, No 24 Fukang Road, Tianjin, 300192, Nankai District, China
| |
Collapse
|
23
|
Liu C, Guo M, Cui Y, Wu M, Chen H. Incidence and predictors of left ventricular function change following ST-segment elevation myocardial infarction. Front Cardiovasc Med 2023; 10:1079647. [PMID: 37063963 PMCID: PMC10098331 DOI: 10.3389/fcvm.2023.1079647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
AimThe purpose of the study was to assess the incidence and predictors of left ventricular function change in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary PCI.Methods312 patients with STEMI who received primary percutaneous coronary intervention (PCI) between January 2015 and December 2016 were consecutively enrolled in this study. Multiple logistic regression analysis was used to evaluate independent predictors of left ventricular ejection fraction (LVEF) improvement after long-term follow-up.ResultsWe finally analyzed the LVEF change in 186 patients from baseline to follow-up. The mean age was 61.3 ± 12.5 years, with 78.5% being male. The median duration of follow-up after STEMI was 1,021 (389–1,947) days. 54.3% had a decrease in LVEF and 45.7% experienced an improvement in LV function after primary PCI through long-term follow-up. Logistic regression analysis showed lower peak troponin I, non-anterior STEMI, lower baseline LVEF, and no previous myocardial infarction history were independently associated with LVEF improvement.Conclusion54.3% of patients with STEMI undergoing primary PCI had a decrease in LVEF during long-term follow-up. LVEF recovery can be predicted by baseline characteristics.
Collapse
Affiliation(s)
- Chuanfen Liu
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
| | - Meng Guo
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Correspondence: Hong Chen
| |
Collapse
|
24
|
Dayem KA, Younis O, Zarif B, Attia S, AbdelSalam A. Impact of dapagliflozin on cardiac function following anterior myocardial infarction in non-diabetic patients - DACAMI (a randomized controlled clinical trial). Int J Cardiol 2023; 379:9-14. [PMID: 36889650 DOI: 10.1016/j.ijcard.2023.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The role of Sodium-glucose co-transporter 2 inhibitors (SGLT2i) in heart failure is established. Early data also suggests their favorable role in patients with acute coronary syndromes, but more evidence is still needed. METHODS In this dual center, double-blinded randomized controlled trial, non-diabetic patients (N = 100) who presented with anterior ST- elevation myocardial infarction (STEMI) & had undergone successful primary percutaneous coronary intervention, but their left ventricular ejection fraction was below 50%, were randomized to dapagliflozin 10 mg or a placebo once daily. The primary endpoint was a change in cardiac function assessed by N-terminal pro-Brain Natriuretic Peptide - NT-proBNP measured at baseline & 12 weeks post the cardiac event &/or echocardiographic parameters (left ventricular ejection fraction, left ventricular diastolic dimension & left ventricular mass index) assessed at baseline, 4-weeks & 12-weeks post the cardiac event. RESULTS From October 2021 to April 2022, 100 patients were randomized. The mean drop of NT- proBNP in the study group was more significant compared to the control group by 10.17% (95% CI: -3.28-19.67, p-value 0.034). In addition, the decrease in the left ventricular mass index (LV mass index) was also significant in the study group compared to the control group by 11.46% (95% CI: -19.37 to -3.56, p-value 0.029). CONCLUSIONS Dapagliflozin seems to have a role in preventing left ventricular dysfunction & maintaining cardiac function following anterior ST-elevation myocardial infarction. More Large-scale trials need to be done to confirm these findings further. This trial is locally registered at the National Heart Institute, Cairo - Egypt, and Faculty of Medicine, Ain Shams University, with reference numbers CTN1012021 & MS-07/2022, respectively. It is also registered retrospectively at the US National Institutes of Health (ClinicalTrial.gov) with identifier number: NCT05424315 - June 16th,2022.
Collapse
Affiliation(s)
- Khairy Abdel Dayem
- Cardiology, Ain Shams University, 38 Abbassia Square, Abbassia, Cairo 1181, Egypt
| | - Omar Younis
- Cardiology, National Heart Institute, 5 Ibn Al Nafees Square, Al Kit Kat, Giza 3755204, Egypt.
| | - Bassem Zarif
- Cardiology, National Heart Institute, 5 Ibn Al Nafees Square, Al Kit Kat, Giza 3755204, Egypt
| | - Sameh Attia
- Cardiology, Ain Shams University, 38 Abbassia Square, Abbassia, Cairo 1181, Egypt
| | - Ahmed AbdelSalam
- Cardiology, Ain Shams University, 38 Abbassia Square, Abbassia, Cairo 1181, Egypt
| |
Collapse
|
25
|
Association of Left Ventricular Systolic Function with Diagonal Branch Flow in Patients with First Anterior ST-Elevation Myocardial Infarction Treated with Primary Angioplasty. INTERNATIONAL JOURNAL OF CARDIOVASCULAR PRACTICE 2023. [DOI: 10.5812/intjcardiovascpract-129928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: There are few studies about the impact of diagonal branch blood flow on echocardiographic findings in patients with first acute anterior myocardial infarction undergoing primary angioplasty. Objectives: We aimed to compare left ventricular systolic function measures in patients with first acute anterior ST-segment elevation myocardial infarction (STEMI) treated with primary angioplasty based on diagonal branch blood flow after the procedure. Methods: This study was a single-center study that enrolled patients with their first acute anterior STEMI treated with primary angioplasty in our center between October 2020 and March 2021. Patients were divided into two groups: The patients with final thrombolysis in myocardial infarction (TIMI) flow III in diagonal (sufficient diagonal flow) and patients with final TIMI flow less than III in diagonal (insufficient diagonal flow) after the procedure. The left ventricular Wall-Motion Score Index (WMSI) and left ventricular ejection fraction (LVEF) were compared between the two groups. Results: A total of 107 patients with first anterior STEMI treated with primary PCI were enrolled in the present study, of which 13 patients (12.1%) had insufficient diagonal flow after primary coronary angioplasty. The LVEF was lower in patients with insufficient diagonal flow (32.92 ± 7.29% vs. 39 ± 8.68%, P = 0.018). Also, this group had higher LV WMSI (1.68 ± 0.28 vs. 1.49 ± 0.26, P = 0.029). Conclusions: The present study showed that in patients with first acute anterior STEMI undergoing primary angioplasty, insufficient diagonal branch flow after the procedure was associated with worse left ventricular systolic function and higher LV WMSI.
Collapse
|
26
|
Wang J, Kong Y, Xi J, Zhang M, Lu Y, Hu C, Xu K. Recovery and prognostic values of myocardial strain in acute anterior and non-anterior wall myocardial infarction. PLoS One 2023; 18:e0282027. [PMID: 36800349 PMCID: PMC9937471 DOI: 10.1371/journal.pone.0282027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND To assess the recovery and prognostic values of myocardial strain using cardiac magnetic resonance (CMR)- feature tracking (FT) in acute anterior and non-anterior wall myocardial infarction. METHODS 103 reperfused patients after STEMI who underwent CMR at about 4 days (baseline) and 4 months (follow-up) were included, including 48 and 55 patients with anterior wall myocardial infarction (AWMI) and non-anterior wall myocardial infarction(NAWMI). CMR-FT analysis was performed using cine images to measure LV global radial, circumferential, and longitudinal peak strains (GRS, GCS, and GLS, respectively). Infarct size (IS) and microvascular obstruction (MVO) were estimated by late-gadolinium enhancement imaging. The primary clinical endpoint was the occurrence of major adverse cardiac events (MACE) after infarction. RESULTS Patients with AWMI had higher IS, higher MVO, lower ejection fraction, and more significantly impaired CMR-FT strain values than patients with NAWMI (all p<0.05). Global strain significantly improved at 4 months (all p<0.01), especial in NAWMI. GLS was an independent predictor (odds ratio = 2.08, 95% confidence interval = 1.032-4.227, p = 0.04] even after adjustment for IS and MVO. The optimal cutoff of GLS was -7.9%, with sensitivity and specificity were 73.3% and 75.0%, respectively. In receiver operating characteristic analysis, IS remained the strongest predictor (area under the curve [AUC] = 0.83, p<0.01), followed by MVO (AUC = 0.81, p<0.01) and GLS (AUC = 0.78, p<0.01). CONCLUSION CMR-FT-derived global myocardial strains significantly improved over time, especial in NAWMI. GLS measurement independently predicted the occurrence of medium-term MACE.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Kong
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianning Xi
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Min Zhang
- Department of Cardiac Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuan Lu
- Department of Cardiac Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunfeng Hu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- * E-mail:
| |
Collapse
|
27
|
Calvieri C, Riva A, Sturla F, Dominici L, Conia L, Gaudio C, Miraldi F, Secchi F, Galea N. Left Ventricular Adverse Remodeling in Ischemic Heart Disease: Emerging Cardiac Magnetic Resonance Imaging Biomarkers. J Clin Med 2023; 12:jcm12010334. [PMID: 36615133 PMCID: PMC9820966 DOI: 10.3390/jcm12010334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Post-ischemic left ventricular (LV) remodeling is a biologically complex process involving myocardial structure, LV shape, and function, beginning early after myocardial infarction (MI) and lasting until 1 year. Adverse remodeling is a post-MI maladaptive process that has been associated with long-term poor clinical outcomes. Cardiac Magnetic Resonance (CMR) is the best tool to define adverse remodeling because of its ability to accurately measure LV end-diastolic and end-systolic volumes and their variation over time and to characterize the underlying myocardial changes. Therefore, CMR is the gold standard method to assess in vivo myocardial infarction extension and to detect the presence of microvascular obstruction and intramyocardial hemorrhage, both associated with adverse remodeling. In recent times, new CMR quantitative biomarkers emerged as predictive of post-ischemic adverse remodeling, such as T1 mapping, myocardial strain, and 4D flow. Additionally, CMR T1 mapping imaging may depict infarcted tissue and assess diffuse myocardial fibrosis by using surrogate markers such as extracellular volume fraction, which may predict functional recovery or risk stratification of remodeling. Finally, there is emerging evidence supporting the utility of intracavitary blood flow kinetic energy and hemodynamic features assessed by the 4D flow CMR technique as early predictors of remodeling.
Collapse
Affiliation(s)
- Camilla Calvieri
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
- Correspondence:
| | - Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20129 Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20129 Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Lorenzo Dominici
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Luca Conia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Carlo Gaudio
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Francesco Secchi
- Unit of Radiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20129 Milan, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| |
Collapse
|
28
|
Zhirov IV, Safronova NV, Tereshchenko SN. Heart failure as a complication of myocardial infarction: rational therapy. Case report. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.10.201888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heart failure (HF) is still a frequent complication of myocardial infarction. Timely identification of subjects at risk for HF development and early initiation of guideline-directed HF therapy in these patients, can decrease the HF burden. This article aims at summarizing clinical data on established pharmacological therapies in treating post-MI patients with left ventricular systolic dysfunction and signs and symptoms of HF.
Collapse
|
29
|
Effect of Infarct Location and Size on Left Atrial Function: A Cardiovascular Magnetic Resonance Feature Tracking Study. J Clin Med 2022; 11:jcm11236938. [PMID: 36498513 PMCID: PMC9739184 DOI: 10.3390/jcm11236938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background: LA function has been recognized as a significant prognostic marker in many cardiovascular diseases. Cardiovascular magnetic resonance feature tracking (CMR-FT) represents a promising technique for left atrial function evaluation. The size and location of myocardial infarction are important factors in the cause of adverse left ventricular remodeling, but the effect on the left atriam is unclear. Purpose: to investigate the effect of location and size of previous myocardial infarction (MI) on LA function using CMR-FT. Study type: retrospective. Population: patients formerly diagnosed with anterior MI (n = 42) or non-anterior MI (n = 40) and healthy controls (n = 47). Field Strength/Sequence: a 3.0T MR, Steady state free precession (SSFP), Phase-sensitive inversion recovery (PSIR). Assessment: infarct location and size were assigned and quantified by late-gadolinium enhancement (LGE) imaging. LA performance was analyzed using CMR-FT in 2- and 4-chamber cine images, including LA reservoir, conduit and booster pump function. Statistics: descriptive statistics, ANOVA with post Bonferroni correction, Kruskal−Wallis H, Spearman’s correlation, intraclass correlation coefficient. Results: Anterior MI patients had impaired LA reservoir function (LATEF, εs, SRs), conduit function (LAPEF, εe, SRs) and booster pump function (LAAEF, εa) compared with controls (p < 0.05). Non-anterior MI patients had impaired LA strain (εs, εe, εa; p < 0.05) but preserved LAEFs (p > 0.05). After adjusting the area of MI, there was no significant difference in the LA morphology and function between the anterior and non-anterior wall groups. Stratification analysis by MI size revealed that LA volumes and LAEFs were unchanged in patients with MI size ≤ 15% compared with controls (p > 0.05); only εs and εe were decreased (p < 0.05). Increased LAVIpre-a, LAVImin and decreased LATEF, and LAAEF were found in patients with MI size > 15% compared with the MI size ≤ 15% group (p < 0.05). LVSVI, εs and MI size were significant correlated with LAVI pre-a in multiple stepwise regression analysis. Data conclusions: The location of myocardial infarction is not a major factor affecting the morphology and function of the left atrium. Patients with MI size > 15% experience more pronounced post-infarction LA remodeling and dysfunction than MI size ≤ 15% patients.
Collapse
|
30
|
Ma W, Li X, Gao C, Gao Y, Liu Y, Kang S, Pan J. Predictive Value of Cardiac Magnetic Resonance for Left Ventricular Remodeling of Patients with Acute Anterior Myocardial Infarction. Diagnostics (Basel) 2022; 12:2780. [PMID: 36428840 PMCID: PMC9689537 DOI: 10.3390/diagnostics12112780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Heart failure is a serious complication resulting from left ventricular remodeling (LVR), especially in patients experiencing acute anterior myocardial infarction (AAMI). It is crucial to explore the predictive parameters for LVR following primary percutaneous coronary intervention (PPCI) in patients with AAMI. Methods: A total of 128 AAMI patients who were reperfused successfully by PPCI were enrolled sequentially from June 2018 to December 2019. Cardiovascular magnetic resonance (CMR) was performed at the early stage (<7 days) and after the 6-month follow-up. The patients were divided into LVR and non-LVR groups according to the increase of left ventricular end diastolic volume (LVEDV) measured by the second cardiac magnetic resonance examination ≥20% from baseline. (3) Results: The left ventricular ejection fraction (LVEF), the global longitudinal strain (GLS), the peak circumferential strain in infarcted segments, and the infarct size (IS) remained significantly different in the multivariate logistic regression analysis (all p < 0.05). The area under the receiver operating characteristic curve of Model 1, wherein the GLS was added to the LVEF, was 0.832 (95% CI 0.758−0.907, p < 0.001). The C-statistics for Model 2, which included the infarct-related regional parameters (IS and the peak circumferential strain in infarcted segments)was 0.917 (95% CI 0.870−0.965, p < 0.001). Model 2 was statistically superior to Model 1 in predicting LVR (IDI: 0.190, p = 0.002). (4) Conclusions: Both the global and regional CMR parameters were valuable in predicting LVR in patients with AAMI following the PPCI. The local parameters of the infarct zones were superior to those of the global ones.
Collapse
Affiliation(s)
- Wenkun Ma
- Department of Cardiovasology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xinni Li
- Department of Cardiovasology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chengjie Gao
- Department of Geriatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yajie Gao
- Department of Cardiovasology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuting Liu
- Department of Cardiovasology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sang Kang
- Department of Cardiovasology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingwei Pan
- Department of Cardiovasology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
31
|
Ausra J, Madrid M, Yin RT, Hanna J, Arnott S, Brennan JA, Peralta R, Clausen D, Bakall JA, Efimov IR, Gutruf P. Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation. SCIENCE ADVANCES 2022; 8:eabq7469. [PMID: 36288311 PMCID: PMC9604544 DOI: 10.1126/sciadv.abq7469] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Monitoring and control of cardiac function are critical for investigation of cardiovascular pathophysiology and developing life-saving therapies. However, chronic stimulation of the heart in freely moving small animal subjects, which offer a variety of genotypes and phenotypes, is currently difficult. Specifically, real-time control of cardiac function with high spatial and temporal resolution is currently not possible. Here, we introduce a wireless battery-free device with on-board computation for real-time cardiac control with multisite stimulation enabling optogenetic modulation of the entire rodent heart. Seamless integration of the biointerface with the heart is enabled by machine learning-guided design of ultrathin arrays. Long-term pacing, recording, and on-board computation are demonstrated in freely moving animals. This device class enables new heart failure models and offers a platform to test real-time therapeutic paradigms over chronic time scales by providing means to control cardiac function continuously over the lifetime of the subject.
Collapse
Affiliation(s)
- Jokubas Ausra
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Micah Madrid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Rose T. Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Suzanne Arnott
- Department of Surgery, The George Washington University, Washington, DC 20037, USA
| | - Jaclyn A. Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Roberto Peralta
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Jakob A. Bakall
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL 60611, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
Incidence, Predictive Factors and Long-Term Clinical Impact of Left Ventricular Remodeling According to the Completeness of Revascularization in Patients with ST-Elevation Myocardial Infarction and Multivessel Disease. J Clin Med 2022; 11:jcm11216252. [PMID: 36362481 PMCID: PMC9656271 DOI: 10.3390/jcm11216252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we identified several factors related to left ventricular remodeling (LVR) and examined the impact of LVR on the prognosis of patients with ST-elevated myocardial infarction and multivessel disease treated with complete (CR) or incomplete (IR) revascularization. LVR was defined as an LV end-diastolic diameter >55 mm. A total of 262 patients without LVR at presentation were followed up with echocardiography between 1 month and 1 year. The primary outcome was a composite of all-cause death (AD), MI, and heart failure (HF), referred to as a major adverse cardiovascular endpoint (MACE). Then, each variable was analyzed as a secondary outcome. Follow-up echocardiography identified 26 patients (9.9%) with LVR. LVR was associated with an initial LV ejection fraction <50%, Killip 3 disease at presentation, and a peak troponin I level >70 mg/dL. Survival analysis showed an association between LVR and adverse outcomes only in the IR group, in which the adjusted hazard ratio (HR) was increased for the MACE (HR = 3.22, 95% confidence interval (CI) = 1.19−8.71, p = 0.002) and HF (HR = 21.37, 95% CI = 4.47−102.09, p< 0.001), but not for the CR group. In STEMI with MVD, LVR within the first year after percutaneous coronary intervention was associated with worse outcomes in the IR but not the CR group.
Collapse
|
33
|
Del Buono MG, Moroni F, Montone RA, Azzalini L, Sanna T, Abbate A. Ischemic Cardiomyopathy and Heart Failure After Acute Myocardial Infarction. Curr Cardiol Rep 2022; 24:1505-1515. [PMID: 35972638 PMCID: PMC9556362 DOI: 10.1007/s11886-022-01766-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ischemic cardiomyopathy refers to systolic left ventricular dysfunction in the setting of obstructive coronary artery disease and represents the most common cause of heart failure worldwide. It is often the combination of an irreversible loss of viable mass following an acute myocardial infarction (AMI) with a dysfunctional, but still viable, myocardium in the context of a chronically reduced myocardial blood flow and reduced coronary reserve. Medical treatments aiming at modulating neurohumoral response and restoring blood flow to the ischemic cardiomyocytes were shown to dramatically abate the occurrence of ventricular dysfunction and adverse remodeling in ischemic cardiomyopathy. RECENT FINDINGS Novel therapeutic approaches, such as mechanical unloading and modulation of the inflammatory response, appear to be promising. Furthermore, the understanding of the mechanisms by which, despite optimal treatment, heart failure ensues after AMI, with or without adverse remodeling and systolic dysfunction, is a critical step in the search for novel ways to tackle heart failure risk beyond preservation of left ventricular volumes and systolic function. In this review article, we explore the principal pathophysiological mechanisms and pathways of heart failure in ischemic cardiomyopathy, therapeutic opportunities, and knowledge gaps in this area.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 1, 00168, Rome, Italy.
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
| | - Francesco Moroni
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 1, 00168, Rome, Italy
| | - Lorenzo Azzalini
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 1, 00168, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Bachar A, Benmessaoud FA, Diatta A, Fadoum H, Haroun AE, Oukerraj L, Cherti M. Predictive factors of heart failure in acute coronary syndrome: Institutional cross-sectional study. Ann Med Surg (Lond) 2022; 81:104332. [PMID: 36147130 PMCID: PMC9486600 DOI: 10.1016/j.amsu.2022.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background Heart failure complicating acute coronary syndrome (ACS) remains a challenge because it is associated with a high risk of mortality at 1 year. Our objective is to highlight the factors frequently associated with heart failure following an ACS and thus deduce the predictive factors for the occurrence of heart failure. Methods ACS patients who were managed between 01/01/2021 to 06/30/2021 at the authors’ institution were included retrospectively in the analysis. Results One hundred twenty-one patients (121) included. Eighty-seven were males (72%), and the mean age was 59.4 ± 8.8. Most patients were smokers (58.7%),40% were diabetic, and 40.5% were hypertensive. Dyslipidemia was found in 37.2% of cases. 75% of patients were admitted for STEMI, and 25% for NSTEMI. The majority of patients (67.5%) were admitted out of time. The anterior electrical territory was found as a factor in the occurrence of heart failure (OR = 5.47, 95% CI (2.16–15.26), P = 0.0005). Among the patients who presented a heart failure, 64% had an LVEF <40%, and only 3% with an LVEF >50% (P < 0.001). Also, 76% had a Wall Motion Index Score (WMSI) of 1.5 (P < 0.001). Angioplasty was the treatment of choice in 65%, aortocoronary bypass in 7% of cases, and medical treatment alone, associated or not with ischemia/viability tests in 28% of cases. Patients admitted out of time (>12 h) were found to be a factor in the occurrence of HF (OR = 3.31,95% CI (1.21–10,60), P = 0.02). The outcome was favorable in 93% of cases. We observed 9 cases of complications including 4 deaths from cardiogenic, septic, and hemorrhagic shock. Conclusions This study allows us to identify patients at risk of developing heart failure and patients with a more reserved prognosis. Besides, our findings will allow our peers and colleagues to be able to detect early these factors and optimize adequate management to avoid heart failure.
Heart failure complicating acute coronary syndrome (ACS) remains a challenge. It is associated with a high risk of mortality at 1 year. The delay in care is a determining factor in the occurrence of complications. Our health system have a weakness that should be corrected. The deadlines are far from the recommended deadlines.
Collapse
|
35
|
Wang W, Zhao H, Wan F, Shen XD, Ding S, Pu J. Inhomogeneous Distribution of Regional Myocardial Work Efficiency Predicts Early Left Ventricular Remodeling After Acute Anterior Myocardial Infarction Treated With Primary Percutaneous Intervention. Front Cardiovasc Med 2022; 9:922567. [PMID: 35966524 PMCID: PMC9363585 DOI: 10.3389/fcvm.2022.922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to investigate the hypothesis that specific pattern of myocardial work (MW) distribution in patients with acute anterior ST-segment elevation myocardial infarction (STEMI) could provide prognostic value for predicting left ventricular (LV) remodeling. Methods A total of 98 first anterior wall STEMI patients treated with primary percutaneous coronary intervention [85 men (86.7%), mean age: 58 ± 12 years] were enrolled. Transthoracic echocardiography was performed 24–72 h after angioplasty and during 3-month follow-up. MW was estimated from the left ventricular pressure–strain loop derived from speckle tracking echocardiography and simultaneous noninvasive brachial artery cuff pressure. The primary endpoint was early LV remodeling, defined as an increase in LV end-diastolic volume ≥20% compared with baseline at 3 months after STEMI. Major adverse cardiac events and combined clinical outcomes were recorded. Results LV remodeling was present in 32 patients (33%), who exhibited lower global and culprit-regional work index (WI), constructive work (CW), work efficiency (WE), and specifically, greater differences of WE (delta-WE) and CW (delta-CW) between the culprit and non-culprit region than those without LV remodeling both at the acute phase and follow-up (all P < 0.0125). During follow-up, all global and regional WI, CW, and WE were improved (P < 0.0125 compared with baseline), with less improvement in patients with LV remodeling. In multivariate analysis, baseline delta-WE (odds ratio: 2.304; 95% CI: 1.093–4.856, P = 0.028) and peak troponin I level (odds ratio: 1.035; 95%CI: 1.008–1.063, P = 0.010) were independently associated with early LV remodeling. Patients with greater delta-WE at baseline were associated with a higher incidence of heart failure and combined clinical outcomes during follow-up. Conclusion After reperfused acute anterior STEMI, patients with LV remodeling presented with more inhomogeneous MW distribution. The absolute difference of WE between culprit and non-culprit territory at the acute phase is an independent predictor for early LV remodeling. Clinical Trial Registration www.ClinicalTrials.gov, identifier: NCT05107102.
Collapse
|
36
|
Leancă SA, Crișu D, Petriș AO, Afrăsânie I, Genes A, Costache AD, Tesloianu DN, Costache II. Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment. Life (Basel) 2022; 12:1111. [PMID: 35892913 PMCID: PMC9332014 DOI: 10.3390/life12081111] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of death and morbidity worldwide, with an incidence relatively high in developed countries and rapidly growing in developing countries. The most common cause of MI is the rupture of an atherosclerotic plaque with subsequent thrombotic occlusion in the coronary circulation. This causes cardiomyocyte death and myocardial necrosis, with subsequent inflammation and fibrosis. Current therapies aim to restore coronary flow by thrombus dissolution with pharmaceutical treatment and/or intravascular stent implantation and to counteract neurohormonal activation. Despite these therapies, the injury caused by myocardial ischemia leads to left ventricular remodeling; this process involves changes in cardiac geometry, dimension and function and eventually progression to heart failure (HF). This review describes the pathophysiological mechanism that leads to cardiac remodeling and the therapeutic strategies with a role in slowing the progression of remodeling and improving cardiac structure and function.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Daniela Crișu
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Antoniu Octavian Petriș
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. University nr. 16, 700083 Iasi, Romania;
| | - Irina Afrăsânie
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Antonia Genes
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. University nr. 16, 700083 Iasi, Romania;
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Dan Nicolae Tesloianu
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Irina Iuliana Costache
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. University nr. 16, 700083 Iasi, Romania;
| |
Collapse
|
37
|
Lei Z, Li B, Li B, Peng W. Predictors and prognostic impact of left ventricular ejection fraction trajectories in patients with ST-segment elevation myocardial infarction. Aging Clin Exp Res 2022; 34:1429-1438. [PMID: 35147922 PMCID: PMC9151544 DOI: 10.1007/s40520-022-02087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is little evidence on left ventricular ejection fraction (LVEF) trajectories after ST-segment elevation myocardial infarction (STEMI). AIM We aim to identify the LVEF trajectories after STEMI and explore their predictors and association with prognosis. METHODS This is a retrospective, observational study of STEMI patients. The LVEF trajectories were identified by the latent class trajectory model in patients with baseline LVEF < 50%. We used logistic regression analysis to investigate the predictors for LVEF trajectories. The Cox proportional hazard model was used to assess the impact of LVEF trajectories on prognosis. The primary outcomes were cardiovascular mortality and heart failure (HF) rehospitalization. RESULTS 572 of 1179 patients presented with baseline normal LVEF (≥ 50%) and 607 with baseline reduced LVEF (< 50%). Two distinct LVEF trajectories were identified in patients with baseline reduced LVEF: recovered LVEF group and persistently reduced LVEF group. Higher baseline LVEF, lower peak troponin T, non-anterior MI, and lower heart rates were all found to be independently associated with LVEF recovery. After multivariate adjustments, patients with persistently reduced LVEF experienced an increased risk of cardiovascular mortality (HR 7.49, 95% CI 1.94-28.87, P = 0.003) and HF rehospitalization (HR 3.54, 95% CI 1.56-8.06 P = 0.003) compared to patients with baseline normal LVEF. Patients with recovered LVEF, on the other hand, showed no significant risk of cardiovascular mortality and HF rehospitalization. CONCLUSION Our study indicated two distinct LVEF trajectories after STEMI and that the persistently reduced LVEF trajectory was related to poor prognosis. In addition, several baseline characteristics can predict LVEF recovery.
Collapse
Affiliation(s)
- Zhijun Lei
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Bingyu Li
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Bo Li
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Wenhui Peng
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
38
|
Del Buono MG, Damonte JI, Chiabrando JG, Markley R, Turlington J, Trankle CR, Kang L, Biondi-Zoccai G, Van Tassell BW, Abbate A. Effect of IL-1 Blockade With Anakinra on Heart Failure Outcomes in Patients With Anterior Versus Nonanterior ST Elevation Myocardial Infarction. J Cardiovasc Pharmacol 2022; 79:774-780. [PMID: 35170493 PMCID: PMC9177574 DOI: 10.1097/fjc.0000000000001240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/22/2022] [Indexed: 11/26/2022]
Abstract
Patients with ST elevation myocardial infarction (STEMI) are at risk of future heart failure (HF), particularly those with anterior STEMI. Interleukin-1 (IL-1) is a key mediator of the inflammatory response, and its blockade has emerged as a potential therapeutic strategy to prevent HF events. The aim of this analysis was to explore the effects of anakinra, an IL-1 receptor antagonist, on HF outcomes based on anterior versus nonanterior location STEMI and to explore whether this effect is mediated through the amelioration of left ventricular systolic function and cardiac remodeling. We pooled data from 3 early phase randomized clinical trials. The primary end point was a composite of all-cause death and new-onset HF at 1-year follow-up. The left anterior descending coronary artery as culprit vessel was used to identify anterior STEMI. We included 139 patients, 47 (34%) with anterior STEMI and 92 (66%) with nonanterior STEMI. Anakinra significantly reduced the combined end point of death or new-onset HF in patients with anterior STEMI [4 (13%) vs. 7 (42%), log-rank P value = 0.049] and in patients with nonanterior STEMI [3 (6%) vs. 9 (24%), log-rank P value = 0.014]. We found no significant differences comparing anakinra versus placebo in interval changes in left ventricular ejection fraction and volumes in anterior and nonanterior STEMI. In conclusion, anakinra is associated with a reduction of HF events in patients with STEMI, irrespective of anterior or nonanterior location, or of changes in left ventricular ejection fraction or cardiac remodeling.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Juan Ignacio Damonte
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Argentina
| | - Juan Guido Chiabrando
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Argentina
| | - Roshanak Markley
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Turlington
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cory R. Trankle
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Le Kang
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W. Van Tassell
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
Bromage DI, Pareek N, Cannata A, Ameri P. Targeting Inflammation After Myocardial Infarction-Another Piece of the Puzzle. J Cardiovasc Pharmacol 2022; 79:769-771. [PMID: 35289771 DOI: 10.1097/fjc.0000000000001261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel I Bromage
- Department of Cardiology, King's College Hospital London, Denmark Hill, Brixton, London, United Kingdom
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, London, United Kingdom
| | - Nilesh Pareek
- Department of Cardiology, King's College Hospital London, Denmark Hill, Brixton, London, United Kingdom
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, London, United Kingdom
| | - Antonio Cannata
- Department of Cardiology, King's College Hospital London, Denmark Hill, Brixton, London, United Kingdom
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, London, United Kingdom
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy; and
- Department of Internal Medicine, University of Genova, Genova, Italy
| |
Collapse
|
40
|
Chen R, Liu C, Zhou P, Li J, Zhou J, Wang Y, Zhao X, Chen Y, Yan S, Song L, Zhao H, Yan H. Prognostic Impacts of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Acute Coronary Syndrome Patients Without Heart Failure. Front Pharmacol 2022; 13:663811. [PMID: 35479321 PMCID: PMC9037138 DOI: 10.3389/fphar.2022.663811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Despite the recommendations from mainstream guidelines, the use of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) for acute coronary syndrome (ACS) patients without heart failure (HF) is controversial, as its evidence is lacking in the era of reperfusion and intensive secondary preventions. This study aimed to investigate the impacts of ACEI/ARB on outcomes of ACS patients without HF treated by percutaneous coronary intervention (PCI). Methods: A total of 2,397 non-HF ACS patients treated by PCI were retrospectively recruited. Prognostic impacts of ACEI/ARB were assessed by unadjusted analysis, followed by propensity score matching (PSM) and propensity score matching weight (PSMW) analysis to control the between-group differences. The primary outcome was a composite of all-cause death and recurrent myocardial infarction (MI). Results: Among the included patients, 1,805 (75.3%) were prescribed with ACEI/ARB at discharge. The median follow-up time was 727 (433-2016) days, with 129 (5.4%) primary endpoint events, consisting of 55 (2.3%) cases of all-cause death and 74 (3.1%) cases of recurrent MI. The use of ACEI/ARB was not associated with significant risk reduction of primary endpoint events in unadjusted analysis (hazard ratio [HR]: 0.95, 95% confidence interval [CI]: 0.64-1.39, p = 0.779), PSM analysis (HR: 0.94, 95% CI: 0.60-1.47, p = 0.784), and PSMW analysis (HR: 0.91, 95% CI: 0.55-1.49, p = 0.704). Similar results were observed for secondary outcomes of all-cause death, cardiac death, and recurrent MI. Conclusion: For ACS patients without HF, the use of ACEI/ARB was not associated with lower risk of death or recurrent MI after PCI.
Collapse
Affiliation(s)
- Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shaodi Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Prognostic value of left atrial strain quantification from 2D ultrasound imaging in post-ischemic heart failure patients: evidence from the REMODEL-HF study. Int J Cardiol 2022; 362:183-189. [DOI: 10.1016/j.ijcard.2022.04.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
|
42
|
Calvieri C, Galea N, Cilia F, Pambianchi G, Mancuso G, Filomena D, Cimino S, Carbone I, Francone M, Agati L, Catalano C. Protective Value of Aspirin Loading Dose on Left Ventricular Remodeling After ST-Elevation Myocardial Infarction. Front Cardiovasc Med 2022; 9:786509. [PMID: 35369291 PMCID: PMC8965885 DOI: 10.3389/fcvm.2022.786509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Left ventricular (LV) remodeling after ST-elevation myocardial infarction (STEMI) is a complex process, defined as changes of LV volumes over time. CMR feature tracking analysis (CMR-FT) offers an accurate quantitative assessment of LV wall deformation and myocardial contractile function. This study aimed to evaluate the role of myocardial strain parameters in predicting LV remodeling and to investigate the effect of Aspirin (ASA) dose before primary coronary angioplasty (pPCI) on myocardial injury and early LV remodeling. METHODS AND RESULTS Seventy-eight patients undergoing CMR, within 9 days from symptom onset and after 6 months, were enrolled in this cohort retrospective study. We divided the study population into three groups based on a revised Bullock's classification and we evaluated the role of baseline CMR features in predicting early LV remodeling. Regarding CMR strain analysis, worse global circumferential and longitudinal strain (GCS and GLS) values were associated with adverse LV remodeling. Patients were also divided based on pre-pPCI ASA dosage. Significant differences were detected in patients receiving ASA 500 mg dose before pPCI, which showed lower infarct size extent and better strain values compared to those treated with ASA 250 mg. The stepwise multivariate logistic regression analysis, adjusted for covariates, indicated that a 500 mg ASA dose remained an inverse independent predictor of early adverse LV remodeling. CONCLUSION GCS and GLS have high specificity to detect early LV adverse remodeling. We first reported a protective effect of ASA loading dose of 500 mg before pPCI on LV myocardial damage and in reducing early LV adverse remodeling.
Collapse
Affiliation(s)
- Camilla Calvieri
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Policlinico Umberto I” Hospital, Sapienza University of Rome, Rome, Italy
| | - Nicola Galea
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Cilia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Mancuso
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Filomena
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Policlinico Umberto I” Hospital, Sapienza University of Rome, Rome, Italy
| | - Sara Cimino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Policlinico Umberto I” Hospital, Sapienza University of Rome, Rome, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Humanitas Research Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Luciano Agati
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Policlinico Umberto I” Hospital, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Filomena D, Cimino S, Monosilio S, Galea N, Mancuso G, Francone M, Tonti G, Pedrizzetti G, Maestrini V, Fedele F, Agati L. Impact of intraventricular haemodynamic forces misalignment on left ventricular remodelling after myocardial infarction. ESC Heart Fail 2022; 9:496-505. [PMID: 34939359 PMCID: PMC8787983 DOI: 10.1002/ehf2.13719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Altered left ventricular (LV) haemodynamic forces (HDFs) have been associated with positive and negative remodelling after pathogenic or therapeutic events. We aimed to identify LV HDFs patterns associated with adverse LV remodelling (aLVr) in reperfused segment elevation myocardial infarction (STEMI) patients. METHODS AND RESULTS Forty-nine acute STEMI patients underwent cardiac magnetic resonance (CMR) at 1 week (baseline) and after 4 months (follow-up). LV HDFs were computed at baseline from cine CMR long axis data sets, using a novel technique based on endocardial boundary tracking, both in apex-base (A-B) and latero-septal (L-S) directions. HDFs distribution was evaluated by L-S over A-B HDFs ratio (L-S/A-B HDFs ratio %). HDFs parameters were computed over the entire heartbeat, in systole and diastole. At baseline, aLVr patients had lower systolic L-S HDF (2.7 ± 0.9 vs. 3.6 ± 1%; P = 0.027) and higher diastolic L-S/A-B HDF ratio (28 ± 14 vs. 19 ± 6%; P = 0.03). At univariate logistic regression analysis, higher infarct size [odds ratio (OR) 1.05; 95% confidence interval (CI) 1.01-1.1; P = 0.04], higher L-S/A-B HDFs ratio (OR 1.1; 95% CI 1.01-1.2; P = 0.05) and lower L-S HDFs (OR 0.41; 95% CI 0.2-0.9; P = 0.04) were associated with aLVr at follow-up. In the multivariable logistic regression analysis, diastolic L-S/A-B HDF ratio remained the only independent predictor of aLVr (OR 1.1; 95% CI 1.01-1.2; P = 0.04). CONCLUSIONS Misalignment of diastolic haemodynamic forces after STEMI is associated with aLVr after 4 months.
Collapse
Affiliation(s)
- Domenico Filomena
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences‘Sapienza’ University of RomePoliclinico Umberto I, Viale del Policlinico 155Rome00161Italy
| | - Sara Cimino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences‘Sapienza’ University of RomePoliclinico Umberto I, Viale del Policlinico 155Rome00161Italy
| | - Sara Monosilio
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences‘Sapienza’ University of RomePoliclinico Umberto I, Viale del Policlinico 155Rome00161Italy
| | - Nicola Galea
- Department of Radiological, Oncological, and Pathological Sciences‘Sapienza’ University of RomeRomeItaly
- Department of Experimental Medicine‘Sapienza’ University of RomeRomeItaly
| | - Giuseppe Mancuso
- Department of Radiological, Oncological, and Pathological Sciences‘Sapienza’ University of RomeRomeItaly
| | - Marco Francone
- Department of Radiological, Oncological, and Pathological Sciences‘Sapienza’ University of RomeRomeItaly
| | - Giovanni Tonti
- Cardiology Division‘G. D'Annunzio’ UniversityChietiItaly
| | - Gianni Pedrizzetti
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences‘Sapienza’ University of RomePoliclinico Umberto I, Viale del Policlinico 155Rome00161Italy
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences‘Sapienza’ University of RomePoliclinico Umberto I, Viale del Policlinico 155Rome00161Italy
| | - Luciano Agati
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences‘Sapienza’ University of RomePoliclinico Umberto I, Viale del Policlinico 155Rome00161Italy
| |
Collapse
|
44
|
Riva A, Sturla F, Pica S, Camporeale A, Tondi L, Saitta S, Caimi A, Giese D, Palladini G, Milani P, Castelvecchio S, Menicanti L, Redaelli A, Lombardi M, Votta E. Comparison of Four-Dimensional Magnetic Resonance Imaging Analysis of Left Ventricular Fluid Dynamics and Energetics in Ischemic and Restrictive Cardiomyopathies. J Magn Reson Imaging 2022; 56:1157-1170. [PMID: 35075711 PMCID: PMC9541919 DOI: 10.1002/jmri.28076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/07/2023] Open
Abstract
Background Time‐resolved three‐directional velocity‐encoded (4D flow) magnetic resonance imaging (MRI) enables the quantification of left ventricular (LV) intracavitary fluid dynamics and energetics, providing mechanistic insight into LV dysfunctions. Before becoming a support to diagnosis and patient stratification, this analysis should prove capable of discriminating between clearly different LV derangements. Purpose To investigate the potential of 4D flow in identifying fluid dynamic and energetics derangements in ischemic and restrictive LV cardiomyopathies. Study Type Prospective observational study. Population Ten patients with post‐ischemic cardiomyopathy (ICM), 10 patients with cardiac light‐chain cardiac amyloidosis (AL‐CA), and 10 healthy controls were included. Field Strength/Sequence 1.5 T/balanced steady‐state free precession cine and 4D flow sequences. Assessment Flow was divided into four components: direct flow (DF), retained inflow, delayed ejection flow, and residual volume (RV). Demographics, LV morphology, flow components, global and regional energetics (volume‐normalized kinetic energy [KEV] and viscous energy loss [ELV]), and pressure‐derived hemodynamic force (HDF) were compared between the three groups. Statistical Tests Intergroup differences in flow components were tested by one‐way analysis of variance (ANOVA); differences in energetic variables and peak HDF were tested by two‐way ANOVA. A P‐value of <0.05 was considered significant. Results ICM patients exhibited the following statistically significant alterations vs. controls: reduced KEV, mostly in the basal region, in systole (−44%) and in diastole (−37%); altered flow components, with reduced DF (−33%) and increased RV (+26%); and reduced basal–apical HDF component on average by 63% at peak systole. AL‐CA patients exhibited the following alterations vs. controls: significantly reduced KEV at the E‐wave peak in the basal segment (−34%); albeit nonstatistically significant, increased peaks and altered time‐course of the HDF basal–apical component in diastole and slightly reduced HDF components in systole. Data Conclusion The analysis of multiple 4D flow‐derived parameters highlighted fluid dynamic alterations associated with systolic and diastolic dysfunctions in ICM and AL‐CA patients, respectively. Level of Evidence 2 Technical Efficacy Stage 3
Collapse
Affiliation(s)
- Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simone Saitta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alessandro Caimi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Lorenzo Menicanti
- Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
45
|
Koopmans T, van Beijnum H, Roovers EF, Tomasso A, Malhotra D, Boeter J, Psathaki OE, Versteeg D, van Rooij E, Bartscherer K. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). NPJ Regen Med 2021; 6:78. [PMID: 34789755 PMCID: PMC8599451 DOI: 10.1038/s41536-021-00188-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.), a murid rodent that exhibits bona fide regeneration of the back skin and ear pinna, as a model to study heart repair. By comparing them to ordinary mice (Mus musculus), we show that the acute injury response in spiny mice is similar, but with an associated tolerance to infarction through superior survivability, improved ventricular conduction, and near-absence of pathological remodeling. Critically, spiny mice display increased vascularization, altered scar organization, and a more immature phenotype of cardiomyocytes, with a corresponding improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
| | - Henriette van Beijnum
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Elke F Roovers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Antonio Tomasso
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Divyanshu Malhotra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Jochem Boeter
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Olympia E Psathaki
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Danielle Versteeg
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kerstin Bartscherer
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
46
|
Lechner I, Reindl M, Tiller C, Holzknecht M, Troger F, Fink P, Mayr A, Klug G, Bauer A, Metzler B, Reinstadler SJ. Impact of COVID-19 pandemic restrictions on ST-elevation myocardial infarction: a cardiac magnetic resonance imaging study. Eur Heart J 2021; 43:1141-1153. [PMID: 34632491 PMCID: PMC8524546 DOI: 10.1093/eurheartj/ehab621] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS The severity of myocardial tissue damage following ST-elevation myocardial infarction (STEMI) strongly determines short- and long-term prognosis. This study explored the impact of the coronavirus disease 2019 (COVID-19) pandemic and associated public health restrictions on infarct severity. METHODS AND RESULTS STEMI patients treated with primary percutaneous coronary intervention (PCI) and included in the prospective Magnetic Resonance Imaging in Acute ST-Elevation Myocardial Infarction (MARINA-STEMI) cohort study from 2015- 2020 (n = 474) were categorized according to (i) timeframes with and without major public health restrictions in 2020, and (ii) timeframes of major public health restrictions during 2020 and during the corresponding timeframes between 2015-2019. Myocardial damage was evaluated by cardiac magnetic resonance imaging. During major public health restrictions in 2020 (n = 48), there was an increase in infarct size (22 [IQR 12-29] vs. 14 [IQR 6-23]%, P < 0.01), a higher frequency (77% vs. 52%, P < 0.01) and larger extent of microvascular obstruction (1.5 [IQR 0.1-11.4] vs. 0.2 [IQR 0.0-2.6]%, P < 0.01) and a higher rate of intramyocardial haemorrhage (56% vs. 34%, P = 0.02) as compared to the phases without major restrictions in 2020 (n = 101). These findings were confirmed in adjusted analysis and were consistent when comparing patients admitted in 2020 versus patients admitted in the "pre-pandemic" era (2015-2019). Patient characteristics were comparable between groups, except for a significantly longer total ischemia time (P < 0.01) and higher frequency of pre-PCI Thrombolysis in Myocardial Infarction (TIMI) flow 0 during times of major restrictions (P = 0.03). CONCLUSION This study provides novel mechanistic insights demonstrating a significant increase in myocardial damage in STEMI patients admitted during the COVID-19 pandemic with a temporal relation to major public health restrictions.
Collapse
Affiliation(s)
- Ivan Lechner
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Christina Tiller
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Magdalena Holzknecht
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Felix Troger
- University Clinic of Radiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Priscilla Fink
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Agnes Mayr
- University Clinic of Radiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Gert Klug
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Axel Bauer
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Sebastian J Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
47
|
Stoeck CT, von Deuster C, Fuetterer M, Polacin M, Waschkies CF, van Gorkum RJH, Kron M, Fleischmann T, Cesarovic N, Weisskopf M, Kozerke S. Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. J Cardiovasc Magn Reson 2021; 23:103. [PMID: 34538266 PMCID: PMC8451129 DOI: 10.1186/s12968-021-00794-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. METHODS CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. RESULTS Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes (< 3%). ECV as well as MD increased from acute to the chronic stages compared to baseline: ECV: 125 ± 24% (day 6) 157 ± 24% (week 5) 146 ± 60% (week 9), MD: 17 ± 7% (day 6) 33 ± 14% (week 5) 29 ± 15% (week 9) and FA was further reduced: - 31 ± 10% (day 6) - 38 ± 8% (week 5) - 36 ± 14% (week 9). T2 as marker for myocardial edema was significantly increased in the ischemic area only during the acute stage (83 ± 3 ms infarction vs. 58 ± 2 ms control p < 0.001 and 61 ± 2 ms in the remote area p < 0.001). The analysis of functional imaging revealed reduced left ventricular ejection fraction, global longitudinal strain and torsion in the infarct group. At the same time the transmural helix angle (HA) gradient was steeper in the chronic follow-up and a correlation between longitudinal strain and transmural HA gradient was detected (r = 0.59 with p < 0.05). Comparing non-gadolinium enhanced data T2 mapping showed the largest relative change between infarct and remote during the acute stage (+ 33 ± 4% day 6, with p = 0.013 T2 vs. MD, p = 0.009 T2 vs. FA and p = 0.01 T2 vs. T1) while FA exhibited the largest relative change between infarct and remote during the chronic follow-up (+ 31 ± 2% week 5, with p = N.S. FA vs. MD, p = 0.03 FA vs. T2 and p = 0.003 FA vs. T1). Overall, diffusion parameters provided a higher contrast (> 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17-18%/T2 10-20%). CONCLUSION During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.
Collapse
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Malgorzata Polacin
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Conny F. Waschkies
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Robbert J. H. van Gorkum
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mareike Kron
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
- Institute of Translational Cardiovascular Technologies, ETH Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
48
|
Haji K, Marwick TH, Stewart S, Carrington M, Chan YK, Chan W, Huynh Q, Neil C, Wong C. Incremental Value of Global Longitudinal Strain in the Long-Term Prediction of Heart Failure among Patients with Coronary Artery Disease. J Am Soc Echocardiogr 2021; 35:187-195. [PMID: 34508839 DOI: 10.1016/j.echo.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) remains a common complication for patients with coronary artery disease (CAD), especially after acute myocardial infarction. Although left ventricular ejection fraction (LVEF) is conventionally used to assess cardiac function for risk stratification, it has been shown in other settings to underestimate the risk of HF compared with global longitudinal strain (GLS). Moreover, most evidence pertains to early-onset HF. We sought the clinical and myocardial predictors for late-onset HF in patients with CAD. METHODS We analyzed echocardiograms (including GLS) in 334 patients with CAD (ages 65 ± 11 years, 77% male) who were enrolled in the Nurse-Led Intervention for Less Chronic Heart Failure trial, a prospective, randomized controlled trial that compared standard care with nurse-led intervention to prevent HF in individuals at risk of incident HF. Long-term (9 years) follow-up was obtained via data linkage. Analysis was performed using a competing-risk model. RESULTS Baseline LVEF values were normal or mildly impaired (LVEF ≥ 40%) in all subjects. After a median of 9 years of follow-up, 50 (15%) of the 334 patients had new HF admissions, and 68 (20%) died. In a competing-risk model, HF was associated with GLS (hazard ratio = 1.15 [1.05-1.25], P = .001), independent of estimated glomerular filtration rate (hazard ratio = 0.98 [0.97-0.99], P = .045), Charlson comorbidity score (hazard ratio = 1.64 [1.25-2.15], P < .001), or E/e' (hazard ratio = 1.08 [1.02-1.14], P = .01). Global longitudinal strain-but not conventional echocardiographic measures-added incremental value to a clinical model based on age, gender, and Charlson score (area under the curve, 0.78-0.83, P = .01). Global longitudinal strain was still associated with HF development in patients taking baseline angiotensin convertase enzyme inhibitors (hazard ratio = 1.21 [1.11-1.31], P < .01) and baseline beta-blockers (1.17 [1.09, 1.26]; P < .01). Mortality was associated with older men, risk factors (hypertension or diabetes), and comorbidities (AF and chronic kidney disease). CONCLUSIONS Global longitudinal strain is independently associated with risk of incident HF in patients admitted with CAD and provides incremental prognostic value to standard markers. Identifying an at-risk subgroup using GLS may be the focus of future randomized controlled trails to enable targeted therapeutic intervention.
Collapse
Affiliation(s)
- Kawa Haji
- Baker Heart and Diabetes Institute, Melbourne, Australia; Cardiology Department, Western Health, Melbourne, Australia; Department of Medicine; and University of Melbourne, Melbourne, Australia.
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Australia; Cardiology Department, Western Health, Melbourne, Australia; Department of Medicine; and University of Melbourne, Melbourne, Australia
| | - Simon Stewart
- Torrens University Australia, Adelaide, Australia; University of Glasgow, Glasgow, Scotland
| | | | - Yih-Kai Chan
- Australian Catholic University, Melbourne, Australia
| | - William Chan
- Cardiology Department, Western Health, Melbourne, Australia; Department of Medicine; and University of Melbourne, Melbourne, Australia
| | - Quan Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Christopher Neil
- Cardiology Department, Western Health, Melbourne, Australia; Department of Medicine; and University of Melbourne, Melbourne, Australia
| | - Chiew Wong
- Department of Medicine; and University of Melbourne, Melbourne, Australia; Cardiology Department, Northern Health, Melbourne, Australia
| |
Collapse
|
49
|
Leong CO, Leong CN, Liew YM, Al Abed A, Aziz YFA, Chee KH, Sridhar GS, Dokos S, Lim E. The role of regional myocardial topography post-myocardial infarction on infarct extension. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3501. [PMID: 34057819 DOI: 10.1002/cnm.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.
Collapse
Affiliation(s)
- Chen Onn Leong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Neng Leong
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Faridah Abdul Aziz
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Han Chee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Aimo A, Panichella G, Barison A, Maffei S, Cameli M, Coiro S, D'Ascenzi F, Di Mario C, Liga R, Marcucci R, Morrone D, Olivotto I, Tritto I, Emdin M. Sex-related differences in ventricular remodeling after myocardial infarction. Int J Cardiol 2021; 339:62-69. [PMID: 34314766 DOI: 10.1016/j.ijcard.2021.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The epidemiology, clinical features and outcome of myocardial infarction (MI) display significant differences between men and women. Prominent sex differences have also been suggested in left ventricular (LV) remodeling after MI. Ventricular remodeling refers to a deterioration of LV geometry and function often leading to heart failure (HF) development and an increased risk of adverse cardiovascular events. Women have a lower propensity to the acquisition of a spherical geometry and LV dysfunction. These differences can be attributed at least partially to a lower frequency of transmural infarction and smaller areas of microvascular obstruction in women, as well as to a less prominent activation of neuroendocrine systems and apoptotic, inflammatory and profibrotic pathways in women. Estrogens might play a role in this difference, which could partially persist even after the menopause because of a persisting intramyocardial synthesis of estrogens in women. Conversely, androgens may exert a detrimental influence. Future studies should better clarify sex differences in the predictors, clinical correlates, prognostic impact and disease mechanisms of remodeling, as well as the existence of sex-specific therapeutic targets. This research effort should hopefully allow to optimize the treatment of MI during the acute and post-acute phase, possibly through different therapeutic strategies in men and women, with the goal of reducing the risk of HF development and improving patient outcome.
Collapse
Affiliation(s)
- Alberto Aimo
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | | | - Andrea Barison
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Matteo Cameli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Italy
| | - Stefano Coiro
- Division of Cardiology, University of Perugia, Italy
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Italy
| | - Carlo Di Mario
- Structural Interventional Cardiology, Careggi University Hospital, Florence, Italy
| | - Riccardo Liga
- Cardio-Thoracic and Vascular Department, University Hospital, Pisa, Italy
| | - Rossella Marcucci
- Experimental and Clinical Medicine, University of Florence, Atherothrombotic Center, AOU Careggi, Florence, Italy
| | - Doralisa Morrone
- Cardio-Thoracic and Vascular Department, University Hospital, Pisa, Italy
| | - Iacopo Olivotto
- Cardiomiopathy Unit, AOU Careggi, Florence, Italy. Società Italiana di Cardiologia, Sezione Regionale Tosco-Umbra
| | | | - Michele Emdin
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|