1
|
Teixeira SM, Burle-Caldas GDA, Castro JT, Gazzinelli RT. The time has come for a vaccine against Chagas disease. LANCET REGIONAL HEALTH. AMERICAS 2025; 45:101059. [PMID: 40206818 PMCID: PMC11981767 DOI: 10.1016/j.lana.2025.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025]
Abstract
Despite many studies, there is still no vaccines for Chagas Disease (CD), which affects approximately 7 million people mainly in Latin America. To make matters worse, the only two drugs available have proved efficacy only when administered during the acute phase of the disease. Here, we discuss recent advances towards the development of a CD vaccine including (i) better understanding of the role of elements involved in immune responses and host defense against Trypanosoma cruzi; (ii) molecular characterization of parasite genetic diversity and the biochemical nature of T. cruzi antigens involved in protective immune responses; and (iii) the use of novel vaccine platforms that show high efficacy in experimental models. Other aspects such as the role of parasite-induced inflammation in the pathogenesis of CD is also under intense scrutiny. An essential issue discussed in this Viewpoint refers to the main use of a vaccine for CD, i.e., whether this vaccine should be used for prophylactic purposes, combined therapy to improve drug efficacy and parasitological cure, or to re-orient the immune and inflammatory response. Finally, we emphasize the necessity to attract the interest of both private and public pharmaceutical companies to translate all the pre-clinical studies into a much-needed CD vaccine.
Collapse
Affiliation(s)
- Santuza M. Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Júlia T. Castro
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo T. Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Chen C, Chen Y, Lu M, Xu L, Yan R, Li X, Song X. IFN-γ inhibitory molecules derived from Eimeria maxima inhibit IL-12 secretion by modulating MAPK pathways in chicken macrophages. Poult Sci 2024; 103:103359. [PMID: 38128458 PMCID: PMC10776662 DOI: 10.1016/j.psj.2023.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
IFN-γ plays a crucial role in resisting intracellular parasitic protozoa, such as Eimeria species. In our previous study, we identified 4 molecules derived from Eimeria maxima (E. maxima) that significantly inhibited IFN-γ production. However, the mechanism underlying this inhibitory effect remains unknown. In this study, we first investigated the effects of these 4 IFN-γ inhibitory molecules on the expression levels of chicken Toll-like receptors (chTLRs), IL-12, IL-10, TGF-β, and TNF-α in chicken macrophage HD11 and bone marrow-derived dendritic cells (BMDCs). The results demonstrated that these 4 inhibitory molecules significantly downregulated the mRNA levels of chTLR-2, chTLR-4, chTLR-21, and both mRNA and protein levels of IL-12. Subsequently, to clarify the effects of these 4 inhibitory molecules on the IL-12 secretion-related signaling pathways in chicken macrophages, qRT-PCR and Western blot were used to detect the changes of key molecules involved in the signaling pathways of IL-12 secretion (NF-κB, ERK1/2, p38, JNK, STAT3) following coincubation with these inhibitory molecules. Finally, RNAi was employed to verify the function of key molecules in the signaling pathway. The results revealed a significant upregulation in the expression of ERK1/2 phosphorylated protein induced by the 4 inhibitory molecules. Knockdown of the ERK1/2 gene significantly reduced the inhibitory effect of the 4 E. maxima inhibitory molecules on IL-12. These findings indicate that the 4 inhibitory molecules can inhibit the secretion of IL-12 by upregulating the expression of ERK1/2 phosphorylated protein, which is a key molecule in the ERK-MAPK pathway. Our study may contribute to elucidating the mechanisms underlying immune evasion during E. maxima infections, thereby providing new insights for the control of chicken coccidiosis.
Collapse
Affiliation(s)
- Chen Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yufeng Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingmin Lu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
de Oliveira Souza JE, Gomes SMR, Lima AKC, de Souza Brito AC, Da-Silva SAG, de Carvalho Santos Lopes AH, Silva-Neto MAC, Atella GC, Dutra PML. Influence of CK2 protein kinase activity on the interaction between Trypanosoma cruzi and its vertebrate and invertebrate hosts. Parasitol Res 2024; 123:80. [PMID: 38163833 DOI: 10.1007/s00436-023-08085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Chagas disease, endemic from Latin America, is caused by Trypanosoma cruzi and is transmitted by triatomine feces. This parasite undergoes complex morphological changes through its life cycle, promoted by significant changes in signal transduction pathways. The activity of protein kinase CK2 has been described in trypanosomatids. Using a specific peptide and radioactive ATP, we identified CK2 activity on the cellular surface and the cytoplasmic content in Trypanosoma cruzi, apart from the secreted form. Dephosphorylated casein promoted an increase of 48% in the secreted CK2 activity. Total extract of peritoneal macrophages from BALB/c and inactivated human serum promoted an increase of 67% and 36%, respectively, in this activity. The protein secreted by parasites was purified by HPLC and had shown compatibility with the catalytic subunit of mammalian CK2. Incubation of the parasites with CK2 inhibitors, added to the culture medium, prevented their growth. The opposite was observed when CK2 activators were used. Results of interaction between Trypanosoma cruzi and the gut of the vector have revealed that, in the presence of CK2 inhibitors, there is a reduction in the association rate. A similar inhibition profile was seen in the Trypanosoma cruzi-macrophages interaction, confirming the importance of this enzyme in the life cycle of this protozoan.
Collapse
Affiliation(s)
- Joyce Eliza de Oliveira Souza
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayane Martins Rodrigues Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Karina Castro Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréia Carolinne de Souza Brito
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Geórgia Correa Atella
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Maria Lourenço Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Vaish U. Pathogenesis and Immune Response in T. cruzi Infection: Quest for Natural Compound-Based Drugs. NATURAL PRODUCT BASED DRUG DISCOVERY AGAINST HUMAN PARASITES 2023:431-450. [DOI: 10.1007/978-981-19-9605-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Gupta I, Pedersen S, Vranic S, Al Moustafa AE. Implications of Gut Microbiota in Epithelial-Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers (Basel) 2022; 14:2964. [PMID: 35740629 PMCID: PMC9221329 DOI: 10.3390/cancers14122964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Advancement in the development of molecular sequencing platforms has identified infectious bacteria or viruses that trigger the dysregulation of a set of genes inducing the epithelial-mesenchymal transition (EMT) event. EMT is essential for embryogenesis, wound repair, and organ development; meanwhile, during carcinogenesis, initiation of the EMT can promote cancer progression and metastasis. Recent studies have reported that interactions between the host and dysbiotic microbiota in different tissues and organs, such as the oral and nasal cavities, esophagus, stomach, gut, skin, and the reproductive tract, may provoke EMT. On the other hand, it is revealed that certain microorganisms display a protective role against cancer growth, indicative of possible therapeutic function. In this review, we summarize recent findings elucidating the underlying mechanisms of pathogenic microorganisms, especially the microbiota, in eliciting crucial regulator genes that induce EMT. Such an approach may help explain cancer progression and pave the way for developing novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Local cytokine/chemokine profiles in BALB/c and C57BL/6 mice in response to T. vaginalis infection. Exp Parasitol 2022; 239:108287. [PMID: 35660531 DOI: 10.1016/j.exppara.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 02/27/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022]
Abstract
Trichomonas vaginalis is the causative agent of Trichomoniasis (a sexually transmitted infection). Recent reports have shown that stimulation of cellular immunity can reduce trichomoniasis infection. Animal studies are essential to understanding the pathogenesis of infection and developing new potential drugs and vaccines to treat the infection. Therefore, we have tried to understand the pathogenesis of T. vaginalis infection by investigating the differences in the expression of chemokine/cytokine levels in vaginal and cervical tissues of BALB/c and C57BL/6 mice. Different pathological symptoms, like desquamation, neutrophil infiltration, and hemorrhage, were recorded in BALB/c and C57BL/6 in response to T. vaginalis infection. Vaginal and cervical tissues of BALB/c showed these symptoms on 2nd dpi, which became severe on 7th dpi and turned to mild or normal till 14th dpi compared to C57BL/6 strain. Immunohistochemistry in the vagina and cervical tissues of BALB/c and C57BL/6 mice was done to assess cytokines at different time intervals post-infection. Significant expression of Interleukin-1β (IL-1β) (a pro-inflammatory cytokine) was found in BALB/c compared to the C57BL/6 mice, on 7th dpi and 2nd dpi in vaginal and cervical tissues, respectively. Higher expression of MIP-2 (neutrophil chemoattractant) was observed in the vaginal tissues of BALB/c mice on 7th dpi compared to the C57BL/6 group. In addition, higher expression of TGF-β (immune-suppressor) was observed on 7th dpi in the vaginal tissue of BALB/c mice. The present study demonstrates that more pathological signs of T. vaginalis infection developed in BALB/c mice than C57BL/6 mice. Also, significant levels of IL-1β and MIP-2 were measured in BALB/c mice in response to T. vaginalis compared to C57BL/6.
Collapse
|
7
|
Rajavel A, Klees S, Hui Y, Schmitt AO, Gültas M. Deciphering the Molecular Mechanism Underlying African Animal Trypanosomiasis by Means of the 1000 Bull Genomes Project Genomic Dataset. BIOLOGY 2022; 11:biology11050742. [PMID: 35625470 PMCID: PMC9138820 DOI: 10.3390/biology11050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Climate change is increasing the risk of spreading vector-borne diseases such as African Animal Trypanosomiasis (AAT), which is causing major economic losses, especially in sub-Saharan African countries. Mainly considering this disease, we have investigated transcriptomic and genomic data from two cattle breeds, namely Boran and N‘Dama, where the former is known for its susceptibility and the latter one for its tolerance to the AAT. Despite the rich literature on this disease, there is still a need to investigate underlying genetic mechanisms to decipher the complex interplay of regulatory SNPs (rSNPs), their corresponding gene expression profiles and the downstream effectors associated with the AAT disease. The findings of this study complement our previous results, which mainly involve the upstream events, including transcription factors (TFs) and their co-operations as well as master regulators. Moreover, our investigation of significant rSNPs and effectors found in the liver, spleen and lymph node tissues of both cattle breeds could enhance the understanding of distinct mechanisms leading to either resistance or susceptibility of cattle breeds. Abstract African Animal Trypanosomiasis (AAT) is a neglected tropical disease and spreads by the vector tsetse fly, which carries the infectious Trypanosoma sp. in their saliva. Particularly, this parasitic disease affects the health of livestock, thereby imposing economic constraints on farmers, costing billions of dollars every year, especially in sub-Saharan African countries. Mainly considering the AAT disease as a multistage progression process, we previously performed upstream analysis to identify transcription factors (TFs), their co-operations, over-represented pathways and master regulators. However, downstream analysis, including effectors, corresponding gene expression profiles and their association with the regulatory SNPs (rSNPs), has not yet been established. Therefore, in this study, we aim to investigate the complex interplay of rSNPs, corresponding gene expression and downstream effectors with regard to the AAT disease progression based on two cattle breeds: trypanosusceptible Boran and trypanotolerant N’Dama. Our findings provide mechanistic insights into the effectors involved in the regulation of several signal transduction pathways, thereby differentiating the molecular mechanism with regard to the immune responses of the cattle breeds. The effectors and their associated genes (especially MAPKAPK5, CSK, DOK2, RAC1 and DNMT1) could be promising drug candidates as they orchestrate various downstream regulatory cascades in both cattle breeds.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
- Correspondence: (A.R.); (M.G.)
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Yuehan Hui
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Correspondence: (A.R.); (M.G.)
| |
Collapse
|
8
|
Ferreira RR, Waghabi MC, Bailly S, Feige JJ, Hasslocher-Moreno AM, Saraiva RM, Araujo-Jorge TC. The Search for Biomarkers and Treatments in Chagas Disease: Insights From TGF-Beta Studies and Immunogenetics. Front Cell Infect Microbiol 2022; 11:767576. [PMID: 35186778 PMCID: PMC8847772 DOI: 10.3389/fcimb.2021.767576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The anti-inflammatory cytokine transforming growth factor beta (TGF-β) plays an important role in Chagas disease (CD), a potentially life-threatening illness caused by Trypanosoma cruzi. In this review we revisited clinical studies in CD patients combined with in vitro and in vivo experiments, presenting three main sections: an overview of epidemiological, economic, and clinical aspects of CD and the need for new biomarkers and treatment; a brief panorama of TGF-β roles and its intracellular signaling pathways, and an update of what is known about TGF-β and Chagas disease. In in vitro assays, TGF-β increases during T. cruzi infection and modulates heart cells invasion by the parasite fostering its intracellular parasite cycle. TGF-β modulates host immune response and inflammation, increases heart fibrosis, stimulates remodeling, and slows heart conduction via gap junction modulation. TGF-β signaling inhibitors reverts these effects opening a promising therapeutic approach in pre-clinical studies. CD patients with higher TGF-β1 serum level show a worse clinical outcome, implicating a predictive value of serum TGF-β as a surrogate biomarker of clinical relevance. Moreover, pre-clinical studies in chronic T. cruzi infected mice proved that inhibition of TGF-β pathway improved several cardiac electric parameters, reversed the loss of connexin-43 enriched intercellular plaques, reduced fibrosis of the cardiac tissue, restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Finally, TGF-β polymorphisms indicate that CD immunogenetics is at the base of this phenomenon. We searched in a Brazilian population five single-nucleotide polymorphisms (-800 G>A rs1800468, -509 C>T rs1800469, +10 T>C rs1800470, +25 G>C rs1800471, and +263 C>T rs1800472), showing that CD patients frequently express the TGF-β1 gene genotypes CT and TT at position -509, as compared to noninfected persons; similar results were observed with genotypes TC and CC at codon +10 of the TGF-β1 gene, leading to the conclusion that 509 C>T and +10 T>C TGF-β1 polymorphisms are associated with Chagas disease susceptibility. Studies in genetically different populations susceptible to CD will help to gather new insights and encourage the use of TGF-β as a CD biomarker.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (LAGFB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (LAGFB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Sabine Bailly
- Laboratory Biology of Cancer and Infection, Université Grenoble Alpes, Inserm, Commissariat à l’Energie Atomique, Grenoble, France
| | - Jean-Jacques Feige
- Laboratory Biology of Cancer and Infection, Université Grenoble Alpes, Inserm, Commissariat à l’Energie Atomique, Grenoble, France
| | - Alejandro M. Hasslocher-Moreno
- Clinical Research Laboratory of Chagas Disease, Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberto M. Saraiva
- Clinical Research Laboratory of Chagas Disease, Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Braga YLL, Neto JRC, Costa AWF, Silva MVT, Silva MV, Celes MRN, Oliveira MAP, Joosten LAB, Ribeiro-Dias F, Gomes RS, Machado JR. Interleukin-32 γ in the Control of Acute Experimental Chagas Disease. J Immunol Res 2022; 2022:7070301. [PMID: 35097133 PMCID: PMC8794684 DOI: 10.1155/2022/7070301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease (CD) is an important parasitic disease caused by Trypanosoma cruzi. Interleukin-32 (IL-32) plays an important role in inflammation and in the development of Th1/Th17 acquired immune responses. We evaluated the influence of IL-32γ on the immune response profile, pathogenesis of myocarditis in acute experimental CD, and control of the disease. For this, C57BL/6 wild-type (WT) and IL-32γTg mice were infected subcutaneously with 1,000 forms of Colombian strain of T. cruzi. In the histopathological analyzes, T. cruzi nests, myocarditis, and collagen were quantified in cardiac tissue. Cytokine productions (IL-32, IFN-γ, TNF-α, IL-10, and IL-17) were measured in cardiac homogenate by ELISA. The IL-32γTg mice showed a better control of parasitemia and T. cruzi nests in the heart than WT mice. Infected-WT and -IL-32γTg mice showed similar levels of IFN-γ, TNF-α, and IL-17, but IL-10 was significantly higher expressed in IL-32γTg than in WT mice. The cytokine profile found in IL-32γTg animals contributed to body weight maintenance, parasitemia control, and survival. Our results indicate that the presence of human IL-32γ in mice infected with the Colombian strain of T. cruzi is important for infection control during the acute phase of Chagas disease.
Collapse
Affiliation(s)
- Yarlla L. L. Braga
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - José R. C. Neto
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Arthur W. F. Costa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Muriel V. T. Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marcos V. Silva
- Departamento de Microbiologia, Bioquímica e Imunologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Mara R. N. Celes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Milton A. P. Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leo A. B. Joosten
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rodrigo S. Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana R. Machado
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
10
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
11
|
Queiroga TBD, Pereira NDS, da Silva DD, Andrade CDM, de Araújo Júnior RF, Brito CRDN, Galvão LMDC, da Câmara ACJ, Nascimento MSL, Guedes PMM. Virulence of Trypanosoma cruzi Strains Is Related to the Differential Expression of Innate Immune Receptors in the Heart. Front Cell Infect Microbiol 2021; 11:696719. [PMID: 34336720 PMCID: PMC8321543 DOI: 10.3389/fcimb.2021.696719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Resistance or susceptibility to T. cruzi infection is dependent on the host immunological profile. Innate immune receptors, such as Toll-like receptors (TLRs/TLR2, TLR4, TLR7, and TLR9) and Nod-like receptors (NLRs/NOD1 and NLRP3 inflammasome) are involved with the resistance against acute experimental T. cruzi infection. Here, we evaluated the impact of T. cruzi virulence on the expression of innate immune receptors and its products in mice. For that, we used six T. cruzi strains/isolates that showed low (AM64/TcIV and 3253/Tc-V), medium (PL1.10.14/TcIII and CL/TcVI), or high (Colombian/Tc-I and Y/TcII) virulence and pathogenicity to the vertebrate host and belonging to the six discrete typing units (DTUs)—TcI to TcVI. Parasitemia, mortality, and myocarditis were evaluated and correlated to the expression of TLRs, NLRs, adapter molecules, cytokines, and iNOS in myocardium by real time PCR. Cytokines (IL-1β, IL-12, TNF-α, and IFN-γ) were quantified in sera 15 days after infection. Our data indicate that high virulent strains of T. cruzi, which generate high parasitemia, severe myocarditis, and 100% mortality in infected mice, inhibit the expression of TLR2, TLR4, TLR9, TRIF, and Myd88 transcripts, leading to a low IL-12 production, when compared to medium and low virulent T. cruzi strains. On the other hand, the high virulent T. cruzi strains induce the upregulation of NLRP3, caspase-1, IL-1β, TNF-α, and iNOS mRNA in heart muscle, compared to low and medium virulent strains, which may contribute to myocarditis and death. Moreover, high virulent strains induce higher levels of IL-1β and TNF-α in sera compared to less virulent parasites. Altogether the data indicate that differential TLR and NLR expression in heart muscle is correlated with virulence and pathogenicity of T cruzi strains. A better knowledge of the immunological mechanisms involved in resistance to T. cruzi infection is important to understand the natural history of Chagas disease, can lead to identification of immunological markers and/or to serve as a basis for alternative therapies.
Collapse
Affiliation(s)
| | - Nathalie de Sena Pereira
- Graduate Program Health and Biological Sciences, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Denis Dantas da Silva
- Graduate Program Parasitary Biology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Raimundo Fernandes de Araújo Júnior
- Laboratory of Investigation of the Inflammation and Cancer (LAICI)/Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
12
|
Drewry LL, Harty JT. Balancing in a black box: Potential immunomodulatory roles for TGF-β signaling during blood-stage malaria. Virulence 2021; 11:159-169. [PMID: 32043415 PMCID: PMC7051139 DOI: 10.1080/21505594.2020.1726569] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Malarial disease caused by Plasmodium parasites challenges the mammalian immune system with a delicate balancing act. Robust inflammatory responses are required to control parasite replication within red blood cells, which if unchecked, can lead to severe anemia and fatality. However, the same inflammatory response that controls parasite replication is also associated with immunopathology and severe disease, as is exemplified by cerebral malaria. A robust literature has identified critical roles for innate, cellular, and humoral immune responses orchestrated by IFN-γ and TH1 type responses in controlling blood stage malarial disease. In contrast, TGF-β and IL-10 have been identified as important anti–inflammatory immunomodulators that help to limit inflammation and pathology during malaria. TGF-β is a pleiotropic cytokine, with the ability to exert a wide variety of context-dependent immunomodulatory roles. The specific mechanisms that allow TGF-β to protect against malarial pathology remain essentially unexplored and offer a promising avenue to dissect the most critical elements of immunomodulation in avoiding severe malaria. Here we discuss potential immunomodulatory roles for TGF-β during malaria in light of recent advances in our understanding of the role of Tregs during blood-stage malaria.
Collapse
Affiliation(s)
- Lisa L Drewry
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Silva MC, da Silva Medina T, Fuzo CA, Dias FC, Freitas-Castro F, Fukutani KF, Donadi EA, Cunha-Neto E, Cunha TM, Silva JS. Polymorphism in the catalytic subunit of the PI3Kγ gene is associated with Trypanosoma cruzi-induced chronic chagasic cardiomyopathy. INFECTION GENETICS AND EVOLUTION 2020; 88:104671. [PMID: 33301989 DOI: 10.1016/j.meegid.2020.104671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. During the chronic phase of disease, while most infected people do not present symptoms, characterizing the asymptomatic form, some patients develop the cardiac form or chronic chagasic cardiomyopathy, which is considered the most severe manifestation of this disease. Considering that the activation of the PI3Kγ signaling pathway is essential for an efficient immune response against T. cruzi infection, we evaluated the PIK3CG C > T (rs1129293) polymorphism in exon 3 of this gene, which encodes the catalytic subunit of PI3Kγ. The PIK3CG CT and TT genotypes were found to be associated with an increased risk of developing the cardiac form of the disease rather than the asymptomatic or digestive forms. In conclusion, the presence of the T allele at single or double doses may differentiate the cardiac from other clinical manifestations of Chagas disease. This finding should help in further studies to evaluate the mechanisms underlying the differential association of PIK3CG in Chagas disease.
Collapse
Affiliation(s)
- Maria Cláudia Silva
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago da Silva Medina
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabrício Cesar Dias
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe Freitas-Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kiyoshi Ferreira Fukutani
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - João Santana Silva
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
De Alba-Alvarado M, Bucio-Torres MI, Zenteno E, Sampedro-Carrillo E, Hernández-Lopez M, Reynoso-Ducoing O, Torres-Gutiérrez E, Guevara-Gomez Y, Guerrero-Alquicira R, Cabrera-Bravo M, Salazar-Schettino PM. Response to Infection by Trypanosoma cruzi in a Murine Model. Front Vet Sci 2020; 7:568745. [PMID: 33134353 PMCID: PMC7572856 DOI: 10.3389/fvets.2020.568745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Cardiopathy is a common, irreversible manifestation of the chronic phase of Chagas disease; however, there is controversy as to how the causes for progression from the acute to the chronic phase are defined. In this work, the presence of the parasite is correlated with the occurrence of cell infiltration and fibrosis in cardiac tissues, as well as IgG detection and disease progression in a murine model. Fifty CD1 mice were infected intraperitoneally with Trypanosoma cruzi, while 30 control were administered with saline solution. Parasitemia levels were determined, and IgG titers were quantified by ELISA. At different times, randomly selected mice were euthanized, and the heart was recovered. Cardiac tissue slides were stained with HE and Masson trichrome stain. A significant increase in parasitemia levels was observed after 15 days post-infection (dpi), with a maximum of 4.1 × 106 parasites on 33 dpi, ending on 43 dpi; amastigote nests were observed on 15–62 dpi. Histological analysis revealed lymphocytic infiltration and fibrotic lesions from 8 dpi until the end of the study, on 100 dpi. The presence of plasma cells in the myocardium observed on 40–60 dpi, accompanied by seropositivity to ELISA on 40–100 dpi, was regarded as the hallmark of the transition phase. Meanwhile, the chronic phase, characterized by the absence of amastigotes, presence of cell infiltration, fibrotic lesions, and seropositivity, started on 62 dpi. A strong correlation between parasitemia and the presence of amastigote nests was found (r2 = 0.930), while correlation between the presence of fibrosis and of amastigote nests was weak (r2 = 0.306), and that between fibrosis and lymphocyte infiltration on 100 dpi was strong (r2 = 0.899). The murine model is suitable to study Chagas disease, since it can reproduce the chronic and acute phases of the human disease. The acute phase was determined to occur on 1–60 dpi, while the chronic phase starts on 62 dpi, and fibrotic damage is a consequence of the continuous inflammatory infiltration; on the other hand, fibrosis was determined to start on the acute phase, being more apparent in the chronic phase, when Chagas disease-related cardiopathy is induced.
Collapse
Affiliation(s)
- Mariana De Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martha Irene Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Sampedro-Carrillo
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Hernández-Lopez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olivia Reynoso-Ducoing
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yolanda Guevara-Gomez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raquel Guerrero-Alquicira
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Nisimura LM, Ferrão PM, Nogueira ADR, Waghabi MC, Meuser-Batista M, Moreira OC, Urbina JA, Garzoni LR. Effect of Posaconazole in an in vitro model of cardiac fibrosis induced by Trypanosoma cruzi. Mol Biochem Parasitol 2020; 238:111283. [PMID: 32564978 DOI: 10.1016/j.molbiopara.2020.111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022]
Abstract
Posaconazole (POS) is an inhibitor of ergosterol biosynthesis in clinical use for treating invasive fungal infections. POS has potent and selective anti-Trypanosoma cruzi activity and has been evaluated as a possible treatment for Chagas disease. Microtissues are a 3D culture system that has been shown to reproduce better tissue architecture and functionality than cell cultures in monolayer (2D). It has been used to evaluate chemotropic response as in vitro disease models. We previously developed an in vitro model that reproduces aspects of cardiac fibrosis observed in Chagas cardiomyopathy, using microtissues formed by primary cardiac cells infected by the T. cruzi, here called T. cruzi fibrotic cardiac microtissue (TCFCM). We also showed that the treatment of TCFCM with a TGF-β pathway inhibitor reduces fibrosis. Here, we aimed to evaluate the effect of POS in TCFCM, observing parasite load and molecules involved in fibrosis. To choose the concentration of POS to be used in TCFCM we first performed experiments in a monolayer of primary cardiac cell cultures and, based on the results, TCFCM was treated with 5 nM of POS for 96 h, starting at 144 h post-infection. Our previous studies showed that at this time the TCFCM had established fibrosis, resulting from T. cruzi infection. Treatment with POS of TCFCM reduced 50 % of parasite load as observed by real-time PCR and reduced markedly the fibrosis as observed by western blot and immunofluorescence, associated with a strong reduction in the expression of fibronectin and laminin (45 % and 54 %, respectively). POS treatment also changed the expression of proteins involved in the regulation of extracellular matrix proteins (TGF-β and TIMP-4, increased by 50 % and decreased by 58 %, respectively) in TCFCM. In conclusion, POS presented a potent trypanocidal effect both in 2D and in TCFCM, and the reduction of the parasite load was associated with a reduction of fibrosis in the absence of external immunological effectors.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia Mello Ferrão
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alanderson da Rocha Nogueira
- Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Julio A Urbina
- Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Cerbán FM, Stempin CC, Volpini X, Carrera Silva EA, Gea S, Motran CC. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165707. [DOI: 10.1016/j.bbadis.2020.165707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
17
|
Cardiac Chagas Disease: MMPs, TIMPs, Galectins, and TGF- β as Tissue Remodelling Players. DISEASE MARKERS 2019; 2019:3632906. [PMID: 31885735 PMCID: PMC6899287 DOI: 10.1155/2019/3632906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
Abstract
A century after the discovery of Chagas disease, studies are still needed to establish the complex pathophysiology of this disease. However, it is known that several proteins and molecules are related to the establishment of this disease, its evolution, and the appearance of its different clinical forms. Metalloproteinases and their tissue inhibitors, galectins, and TGF-β are involved in the process of infection and consequently the development of myocarditis, tissue remodeling, and fibrosis upon infection with Trypanosoma cruzi. Thus, considering that the heart is one of the main target organs in Chagas disease, knowledge regarding the mechanisms of action of these molecules is essential to understand how they interact and trigger local and systemic reactions and, consequently, determine whether they contribute to the development of Chagas' heart disease. In this sense, it is believed that the inflammatory microenvironment caused by the infection alters the expression of these proteins favoring progression of the host-parasite cycle and thereby stimulating cardiac tissue remodeling mechanisms and fibrosis. The aim of this review was to gather information on metalloproteinases and their tissue inhibitors, galectins, and TGF-β and discuss how these molecules and their different interrelationships contribute to the development of Chagas' heart disease.
Collapse
|
18
|
Trypanosoma cruzi Mexican Strains Differentially Modulate Surface Markers and Cytokine Production in Bone Marrow-Derived Dendritic Cells from C57BL/6 and BALB/c Mice. Mediators Inflamm 2019; 2019:7214798. [PMID: 31636507 PMCID: PMC6766131 DOI: 10.1155/2019/7214798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/08/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are a type of antigen-presenting cells that play an important role in the immune response against Trypanosoma cruzi, the causative agent of Chagas disease. In vitro and in vivo studies have shown that the modulation of these cells by this parasite can directly affect the innate and acquired immune response of the host in order to facilitate its biological cycle and the spreading of the species. Many studies show the mechanisms by which T. cruzi modulates DCs, but the interaction of these cells with the Mexican strains of T. cruzi such as Ninoa and INC5 has not yet been properly investigated. Here, we evaluated whether Ninoa and INC5 strains evaded the immunity of their hosts by modulating the biology and function of murine DCs. The CL-Brener strain was used as the reference strain. Herein, it was demonstrated that Ninoa was more infective toward bone marrow-derived dendritic cells (BMDCs) than INC5 and CL-Brener strains in both BMDCs of BALB/c and C57BL/6 mice. Mexican strains of T. cruzi induced different cytokine patterns. In BMDCs obtained from BALB/c mice, Ninoa strain led to the reduction in IL-6 and increased IL-10 production, while in C57BL/6 mice Ninoa strain considerably increased the productions of TNF-α and IL-10. Also, Ninoa and INC5 differentially modulated BMDC expressions of MHC-II, TLR2, and TLR4 in both BALB/c and C57BL/6 mice compared to Brazilian strain CL-Brener. These results indicate that T. cruzi Mexican strains differentially infect and modulate MHC-II, toll-like receptors, and cytokine production in DCs obtained from C57BL/6 and BALB/c mice, suggesting that these strains have developed particular modulatory strategies to disrupt DCs and, consequently, the host immune responses.
Collapse
|
19
|
de Jong GM, McCall MBB, Dik WA, Urbanus RT, Wammes LJ, Koelewijn R, Sauerwein RW, Verbon A, van Hellemond JJ, van Genderen PJJ. Transforming growth factor-beta profiles correlate with clinical symptoms and parameters of haemostasis and inflammation in a controlled human malaria infection. Cytokine 2019; 125:154838. [PMID: 31525609 DOI: 10.1016/j.cyto.2019.154838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND After a controlled human malaria infection (CHMI), presentation of clinical signs and symptoms and host responses is heterogeneous. Transforming growth factor-beta (TGF-β) is the first serum cytokine that changes in malaria-naïve volunteers after CHMI. We studied a possible relation between TGF-β changes, pro-inflammatory cytokines, activation of haemostasis and endothelial cells and clinical symptoms. METHODS A panel of cytokines including TGF-β, and markers of activation of haemostasis and endothelial cells were measured in blood samples of 15 volunteers at baseline before CHMI and during CHMI at day of treatment. The change of the parameters on the day of treatment was examined for a significant alteration during infection. RESULTS Nine of 15 volunteers showed a significant decrease in TGF-β compared to baseline, with concomitant increased concentrations of D-dimer (p = 0.012), Von Willebrand factor (p = 0.017), IL-6 (p = 0.012) and IFN-γ (0.028) and a significantly decreased platelet count (p = 0.011). In contrast, 6 of 15 volunteers showed sustained or increased TGF-β concentrations without change in the aforementioned parameters. The sustained responders presented with less moderate and severe clinical symptoms than the negative responders (p = 0.036) and had a higher baseline lymphocyte count (p = 0.026). TGF-β concentrations did not correlate with the parasitaemia on day of treatment. CONCLUSION Early decreases of serum TGF-β might function a marker for a pro-inflammatory host response and downstream clinical symptoms and pathology during CHMI.
Collapse
Affiliation(s)
- Gerdie M de Jong
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Matthew B B McCall
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Rolf T Urbanus
- Department of Clinical Chemistry and Haematology, 3584 CX, University Medical Center, Utrecht, the Netherlands
| | - Linda J Wammes
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Rob Koelewijn
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Perry J J van Genderen
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
20
|
Ferreira RR, Abreu RDS, Vilar-Pereira G, Degrave W, Meuser-Batista M, Ferreira NVC, da Cruz Moreira O, da Silva Gomes NL, Mello de Souza E, Ramos IP, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas' heart disease. PLoS Negl Trop Dis 2019; 13:e0007602. [PMID: 31365537 PMCID: PMC6690554 DOI: 10.1371/journal.pntd.0007602] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/12/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
TGF-β involvement in Chagas disease cardiomyopathy has been clearly demonstrated. The TGF-β signaling pathway is activated in the cardiac tissue of chronic phase patients and is associated with an increase in extracellular matrix protein expression. The aim of this study was to investigate the effect of GW788388, a selective inhibitor of TβR1/ALK5, on cardiac function in an experimental model of chronic Chagas' heart disease. To this end, C57BL/6 mice were infected with Trypanosoma cruzi (102 parasites from the Colombian strain) and treated orally with 3mg/kg GW788388 starting at 120 days post-infection (dpi), when 100% of the infected mice show cardiac damage, and following three distinct treatment schedules: i) single dose; ii) one dose per week; or iii) three doses per week during 30 days. The treatment with GW788388 improved several cardiac parameters: reduced the prolonged PR and QTc intervals, increased heart rate, and reversed sinus arrhythmia, and atrial and atrioventricular conduction disorders. At 180 dpi, 30 days after treatment interruption, the GW3x-treated group remained in a better cardiac functional condition. Further, GW788388 treatment reversed the loss of connexin-43 enriched intercellular plaques and reduced fibrosis of the cardiac tissue. Inhibition of the TGF-β signaling pathway reduced TGF-β/pSmad2/3, increased MMP-9 and Sca-1, reduced TIMP-1/TIMP-2/TIMP-4, and partially restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Moreover, GW788388 administration did not modify cardiac parasite load during the infection but reduced the migration of CD3+ cells to the heart tissue. Altogether, our data suggested that the single dose schedule was not as effective as the others and treatment three times per week during 30 days seems to be the most effective strategy. The therapeutic effects of GW788388 are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-β inhibitors.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Rayane da Silva Abreu
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Wim Degrave
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Nilma Valéria Caldeira Ferreira
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Otacílio da Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Natália Lins da Silva Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Elen Mello de Souza
- Laboratório de Virologia Molecular—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Isalira P. Ramos
- UFRJ, Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Sabine Bailly
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Jean-Jacques Feige
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Tania C. de Araújo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- * E-mail:
| |
Collapse
|
21
|
Rêgo FD, Fradico JRB, Teixeira-Carvalho A, Gontijo CMF. Molecular variants of Leishmania (Viannia) braziliensis trigger distinct patterns of cytokines and chemokines expression in golden hamster. Mol Immunol 2018; 106:36-45. [PMID: 30576950 DOI: 10.1016/j.molimm.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/07/2018] [Accepted: 12/09/2018] [Indexed: 12/23/2022]
Abstract
Cutaneous leishmaniasis (CL) mainly caused by Leishmania braziliensis is a chronic inflammatory disease widely spread in Brazil. Genetic variant strains of this parasite have been associated with atypical clinical manifestations of CL in an endemic area in Brazil. Furthermore, these strains have presented distinct biological behaviors in golden hamster, suggesting differential activation of the immune response. In the present study we proposed to evaluate the localized immune response in golden hamsters infected with known molecular variant strains of L. braziliensis, in distinct time points post-infection (PI). Detailed analyses of the mRNA expression of cytokines and chemokines in hamster-skin lesions were performed. Heat map matrix and hierarchical cluster analysis were carried out to segregate the strains due to mRNA expression. Distinct patterns of immune response were found in both time points, more evident in the recent-phase disease (30 days-PI). At this time point, the genetic variant strains expressed high levels of tnfα, il12 and tgfβ whilst the non-variant strain expressed ifnγ, il6, il4, il10, il13 and ccl17. The hierarchical clustering highlights this distinct pattern in which all genetic variant strain was grouped in the cluster I and the non-variant strain grouped into the cluster II. At late-phase disease (60 days-PI) all isolates expressed high levels of il4 and il10. The non-variant strain shown a significant reduced expression of ifnγ, il6, ccl17, and ccl22 whilst distinct patterns were observed for the genetic variant strains. For the first time, a large panel of cytokines and chemokines mRNA-expression was analyzed in experimental trials using golden hamsters as animal model and genetic variant strains of L. braziliensis. Our findings suggest that genetic variant strains of L. braziliensis are able to trigger differential gene expression of cytokines and chemokines in the skin lesion from infected hamsters. The parasite intrinsic ability to activate distinct pathways in the host-parasite interaction may be associated to the large spectrum of clinical manifestation observed in CL-patients.
Collapse
Affiliation(s)
- Felipe Dutra Rêgo
- Grupo de Estudos em Leishmanioses, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil.
| | - Jordana Rodrigues Barbosa Fradico
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Célia Maria Ferreira Gontijo
- Grupo de Estudos em Leishmanioses, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Upregulation of Cardiac IL-10 and Downregulation of IFN- γ in Balb/c IL-4 -/- in Acute Chagasic Myocarditis due to Colombian Strain of Trypanosoma cruzi. Mediators Inflamm 2018; 2018:3421897. [PMID: 30622430 PMCID: PMC6304210 DOI: 10.1155/2018/3421897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammatory response in Chagas disease is related to parasite and host factors. However, immune system regulation has not been fully elucidated. Thus, this study is aimed at evaluating IL-4 influence on acute phase of Trypanosoma cruzi experimental infection through dosage of cytokine levels in cardiac homogenate of infected Balb/c WT and Balb/c IL-4−/− as well as its histopathological repercussions. For such purpose, mice were divided into two groups: an infected group with 100 forms of the Colombian strain and an uninfected group. After 21 days of infection, animals were euthanized and the blood, spleen, and heart were collected. The spleen was used to culture splenic cells in 48 h. Subsequently, cytokines TNF-α, IL-12p70, IL-10, IFN-γ, and IL-17 were measured in the blood, culture supernatant, and heart apex by ELISA. The base of the heart was used for histopathological analysis. From these analysis, infected Balb/c IL-4−/− mice showed milder inflammatory infiltrate compared to Balb/c WT, but without changes in nest density and collagen deposition. IL-4 absence culminated in lower cardiac tissue IFN-γ production, although it did not affect TNF-α expression in situ. It also decreased TNF-α systemic production and increased IL-10, both systemically and in situ. In addition, IL-4 absence did not influence IL-17 expression. Splenocytes of IL-4-deficient mice produced higher amounts of IFN-γ, TNF-α, and IL-17 and lower amounts of IL-10. Thus, IL-4 absence in acute phase of experimental infection with T. cruzi Colombian strain reduces myocarditis due to lower IFN-γ production and greater IL-10 production in situ and this pattern is not influenced by splenocyte general repertoire.
Collapse
|
24
|
Zhang YG, Singhal M, Lin Z, Manzella C, Kumar A, Alrefai WA, Dudeja PK, Saksena S, Sun J, Gill RK. Infection with enteric pathogens Salmonella typhimurium and Citrobacter rodentium modulate TGF-beta/Smad signaling pathways in the intestine. Gut Microbes 2018; 9:326-337. [PMID: 29381406 PMCID: PMC6219646 DOI: 10.1080/19490976.2018.1429878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Salmonella and Citrobacter are gram negative, members of Enterobacteriaceae family that are important causative agents of diarrhea and intestinal inflammation. TGF-β1 is a pleiotropic multifunctional cytokine that has been implicated in modulating the severity of microbial infections. How these pathogens alter the TGF-β1 signaling pathways in the intestine is largely unknown. Streptomycin-pretreated C57BL/6J mouse model colonized with S. typhimurium for 8 hours (acute) and 4 days (chronic) infection and FVB/N mice infected with C. rodentium for 6 days were utilized. Results demonstrated an increase in TGF-β1 receptor I expression (p<0.05) in S. typhimurium infected mouse ileum at both acute and chronic post-infection vs control. This was associated with activation of Smad pathways as evidenced by increased phosphorylated (p)-Smad2 and p-Smad3 levels in the nucleus. The inhibitory Smad7 mRNA levels showed a significant up regulation during acute phase of Salmonella infection but no change at 4d post-infection. In contrast to Salmonella, infection with Citrobacter caused drastic downregulation of TGF receptor I and II concomitant with a decrease in levels of Smad 2, 3, 4 and 7 expression in the mouse colon. We speculate that increased TGF-β1 signaling in response to Salmonella may be a host compensatory response to promote mucosal healing; while C. rodentium decreases TGF-β1 signaling pathways to promote inflammation and contribute to disease pathogenesis. These findings increase our understanding of how enteric pathogens subvert specific aspects of the host-cellular pathways to cause disease.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Megha Singhal
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhijie Lin
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Manzella
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Anoop Kumar
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A. Alrefai
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K. Dudeja
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Jun Sun, Ph.D., AGAF, Associate Professor Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB Chicago, IL 60612
| | - Ravinder K. Gill
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Ravinder K. Gill, Ph.D., Associate Professor Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, 820 South Damen Avenue Chicago, IL 60612
| |
Collapse
|
25
|
Ferreira BL, Ferreira ÉR, de Brito MV, Salu BR, Oliva MLV, Mortara RA, Orikaza CM. BALB/c and C57BL/6 Mice Cytokine Responses to Trypanosoma cruzi Infection Are Independent of Parasite Strain Infectivity. Front Microbiol 2018; 9:553. [PMID: 29662478 PMCID: PMC5890190 DOI: 10.3389/fmicb.2018.00553] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas’ disease, which affects 6–7 million people worldwide. Different strains of T. cruzi present specific genotypic and phenotypic characteristics that affect the host–pathogen interactions, and thus, the parasite has been classified into six groups (TcI to TcVI). T. cruzi infection presents two clinical phases, acute and chronic, both with distinct characteristics and important participation by the immune system. However, the specific contributions of parasite and host factors in the disease phases are not yet fully understood. The murine model for Chagas’ disease is well-established and reproduces important features of the human infection, providing an experimental basis for the study of host lineages and parasite strains. Thus, we evaluated acute and chronic infection by the G (TcI) and CL (TcVI) strains of T. cruzi, which have distinct tropisms and infectivity, in two inbred mice lineages (C57BL/6 and BALB/c) that display variable degrees of susceptibility to different T. cruzi strains. Analysis of the parasite loads in host tissues by qPCR showed that CL strain established an infection faster than the G strain; at the same time, the response in BALB/c mice, although diverse in terms of cytokine secretion, was initiated earlier than that in C57BL/6 mice. At the parasitemia peak in the acute phase, we observed, either by confocal microscopy or by qPCR, that the infection was disseminated in all groups analyzed, with some differences concerning parasite tropism; at this point, all animals responded to infection by increasing the serum concentrations of cytokines. However, BALB/c mice seemed to better regulate the immune response than C57BL/6 mice. Indeed, in the chronic phase, C57BL/6 mice still presented exacerbated cytokine and chemokine responses. In summary, our results indicate that in these experimental models, the deregulation of immune response that is typical of chronic Chagas’ disease may be due to control loss over pro- and anti-inflammatory cytokines early in the acute phase of the disease, depending primarily on the host background rather than the parasite strain.
Collapse
Affiliation(s)
- Bianca L Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Éden R Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marlon V de Brito
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruno R Salu
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria L V Oliva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristina M Orikaza
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Pinto BF, Medeiros NI, Teixeira-Carvalho A, Eloi-Santos SM, Fontes-Cal TCM, Rocha DA, Dutra WO, Correa-Oliveira R, Gomes JAS. CD86 Expression by Monocytes Influences an Immunomodulatory Profile in Asymptomatic Patients with Chronic Chagas Disease. Front Immunol 2018; 9:454. [PMID: 29599775 PMCID: PMC5857740 DOI: 10.3389/fimmu.2018.00454] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022] Open
Abstract
In the chronic phase of Chagas disease, 60% of the patients develop the asymptomatic form known as indeterminate (IND). The remaining 30% of the patients develop a life-threatening form in which digestive and/or cardiac (CARD) alterations take place. The mechanisms underlying the development of severe forms of Chagas disease remain poorly understood. It is well known that interactions between immune cells such as monocytes and lymphocytes drive immune responses. Further, the co-stimulatory molecules CD80 and CD86 expressed by monocytes and subsets induce lymphocyte activation, thereby triggering cellular immune response. Here, we revealed, for the first time, the functional-phenotypic profile of monocytes subsets in Chagas disease. Using flow cytometry, we evaluated the effect of in vitro stimulation with Trypanosoma cruzi antigens on the expression of the co-stimulatory molecules CD80 and CD86 in different monocyte subsets of patients with IND and CARD clinical forms of Chagas disease. We also assessed the expression of toll-like receptor (TLR)-2, TLR-4, TLR-9, HLA-DR, IL-10, and IL-12 in the monocyte subsets and of CTLA-4 and CD28, ligands of CD80 and CD86, in T lymphocytes. CD86 expression in all monocyte subsets was higher in IND patients when compared with non-infected (NI) individuals. After stimulation with T. cruzi, these patients also showed a higher frequency of CD4+CTLA-4+ T lymphocytes than NI individuals. We found an association between CD80 and CD28, and between CD86 and CTLA-4 expression, with a high frequency of regulatory T (Treg) cells in IND patients. We proposed that CD86 may be involved in immunoregulation by its association with CTLA-4 in asymptomatic patients. CD86 and CTLA-4 interaction may influence Treg activation, and this could represent a new strategy to control inflammation and tissue damage.
Collapse
Affiliation(s)
- Bruna F Pinto
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara I Medeiros
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | | | | | - Tereza C M Fontes-Cal
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora A Rocha
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| | - Rodrigo Correa-Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil.,NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Juliana A S Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Fresno M, Gironès N. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection. Front Microbiol 2018; 9:351. [PMID: 29545782 PMCID: PMC5838393 DOI: 10.3389/fmicb.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
28
|
Curvo EO, Ferreira RR, Madeira FS, Alves GF, Chambela MC, Mendes VG, Sangenis LHC, Waghabi MC, Saraiva RM. Correlation of transforming growth factor-β1 and tumour necrosis factor levels with left ventricular function in Chagas disease. Mem Inst Oswaldo Cruz 2018. [PMID: 29513876 PMCID: PMC5851032 DOI: 10.1590/0074-02760170440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transforming growth factor β1 (TGF-β1) and tumour necrosis factor (TNF) have been implicated in Chagas disease pathophysiology and may correlate with left ventricular (LV) function. OBJECTIVES We determined whether TGF-β1 and TNF serum levels correlate with LV systolic and diastolic functions and brain natriuretic peptide (BNP) serum levels in chronic Chagas disease. METHODS This cross-sectional study included 152 patients with Chagas disease (43% men; 57 ± 12 years old), classified as 53 patients with indeterminate form and 99 patients with cardiac form (stage A: 24, stage B: 25, stage C: 44, stage D: 6). TGF-β1, TNF, and BNP were determined by enzyme-linked immunosorbent assay ELISA. Echocardiogram was used to determine left atrial and LV diameters, as well as LV ejection fraction and diastolic function. FINDINGS TGF-b1 serum levels were lower in stages B, C, and D, while TNF serum levels were higher in stages C and D of the cardiac form. TGF-β1 presented a weak correlation with LV diastolic function and LV ejection fraction. TNF presented a weak correlation with left atrial and LV diameters and LV ejection fraction. CONCLUSIONS TNF is increased, while TGF-β1 is decreased in the cardiac form of chronic Chagas disease. TNF and TGF-β1 serum levels present a weak correlation with LV systolic and diastolic function in Chagas disease patients.
Collapse
Affiliation(s)
- Eduardo Ov Curvo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Roberto R Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Fabiana S Madeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Gabriel F Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Mayara C Chambela
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Veronica G Mendes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Luiz Henrique C Sangenis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Mariana C Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Roberto M Saraiva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
29
|
TGF- β Polymorphisms Are a Risk Factor for Chagas Disease. DISEASE MARKERS 2018; 2018:4579198. [PMID: 29670670 PMCID: PMC5835243 DOI: 10.1155/2018/4579198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β1 (TGF-β1) is an important mediator in Chagas disease. Furthermore, patients with higher TGF-β1 serum levels show a worse clinical outcome. Gene polymorphism may account for differences in cytokine production during infectious diseases. We tested whether TGFB1 polymorphisms could be associated with Chagas disease susceptibility and severity in a Brazilian population. We investigated five single-nucleotide polymorphisms (-800 G>A, -509 C>T, +10 T>C, +25 G>C, and +263 C>T). 152 patients with Chagas disease (53 with the indeterminate form and 99 with the cardiac form) and 48 noninfected subjects were included. Genotypes CT and TT at position -509 of the TGFB1 gene were more frequent in Chagas disease patients than in noninfected subjects. Genotypes TC and CC at codon +10 of the TGFB1 gene were also more frequent in Chagas disease patients than in noninfected subjects. We found no significant differences in the distribution of the studied TGFB1 polymorphisms between patients with the indeterminate or cardiac form of Chagas disease. Therefore, -509 C>T and +10 T>C TGFB1 polymorphisms are associated with Chagas disease susceptibility in a Brazilian population.
Collapse
|
30
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Gatto M, Oliveira LRC, De Nuzzi Dias F, Araújo Júnior JP, Lima CRG, Lordelo EP, Dos Santos RM, Kurokawa CS. Benznidazole affects expression of Th1, Th17 and Treg cytokines during acute experimental Trypanosoma cruzi infection. J Venom Anim Toxins Incl Trop Dis 2017; 23:47. [PMID: 29255475 PMCID: PMC5727918 DOI: 10.1186/s40409-017-0137-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023] Open
Abstract
Background The present study evaluated the effect of treatment with benznidazole on mRNA expression of IFN-γ, IL-17, IL-10, TGF-β and FoxP3 in spleen and heart tissue of BALB/c mice in the acute phase of an experimental infection with Trypanosoma cruzi, strains JLP or Y. Methods The mRNA expression of cytokines and parasite load were assessed by q-PCR. Dependent groups were compared using Student's paired t-test and independent groups were compared using Student's unpaired t-test. Results Infection with the JLP or Y strains increased expression of IFN-γ in the heart and of IL-10 and IL-17 in the spleen and heart compared to uninfected animals. Treatment increased the expression of IFN-γ and decreased the expression of IL-17, IL-10, TGF- β and Foxp3 in spleen and heart tissue compared to untreated infected animals. Conclusion Benznidazole can induce Th1 profile in the initial of the acute phase. The treatment decreased the parasite load in both organs, although the number of parasites in Y-strain-infected mice remained high. The data suggest that benznidazole may modulate cytokine expression in infection and can be dependent of the strain. However, treatment was not fully effective in the infection provoked by Y strain, probably due to the characteristics of the strain itself.
Collapse
Affiliation(s)
- Mariana Gatto
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Av. Professor Mário Rubens Guimarães Montenegro, s/n, Distrito de Rubião Júnior, Botucatu, 18.6186-87 SP Brazil
| | - Larissa Ragozo Cardoso Oliveira
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Fernanda De Nuzzi Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP - Univ Estadual Paulista), Araraquara, SP Brazil
| | - João Pessoa Araújo Júnior
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Carlos Roberto Gonçalves Lima
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Av. Professor Mário Rubens Guimarães Montenegro, s/n, Distrito de Rubião Júnior, Botucatu, 18.6186-87 SP Brazil
| | - Eliana Peresi Lordelo
- Department of Immunology, University of Western São Paulo (Unoeste), Presidente Prudente, SP Brazil
| | - Rodrigo Mattos Dos Santos
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Av. Professor Mário Rubens Guimarães Montenegro, s/n, Distrito de Rubião Júnior, Botucatu, 18.6186-87 SP Brazil
| | - Cilmery Suemi Kurokawa
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Av. Professor Mário Rubens Guimarães Montenegro, s/n, Distrito de Rubião Júnior, Botucatu, 18.6186-87 SP Brazil
| |
Collapse
|
32
|
Ricci-Azevedo R, Gonçales RA, Roque-Barreira MC, Girard D. Human neutrophils are targets to paracoccin, a lectin expressed by Paracoccidioides brasiliensis. Inflamm Res 2017; 67:31-41. [DOI: 10.1007/s00011-017-1093-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/16/2017] [Accepted: 09/19/2017] [Indexed: 01/05/2023] Open
|
33
|
Role of Monokine Induced by Interferon Gamma in Discrimination and Prognosis of Patients With Chagas' Disease and Idiopathic Dilated Cardiomyopathy. J Cardiovasc Pharmacol 2017; 67:427-32. [PMID: 26828323 DOI: 10.1097/fjc.0000000000000368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Monokine induced by interferon gamma (MIG) is a chemokine that has been found to increase in the myocardium of mice infected with Trypanosoma cruzi. It is not known whether MIG is regulated in patients with Chagas' disease (CD) and idiopathic dilated cardiomyopathy (DCM). Therefore, we aimed to investigate the possible diagnostic and/or prognostic value of MIG in these patients. METHODS AND RESULTS In this prospective cohort study, MIG was measured in patients with CD (n = 93) and DCM (n = 47) and in healthy control subjects (n = 24). MIG was found to be significantly increased in patients with CD and advanced heart failure (New York Heart Association III-IV). Although no significant increase in MIG levels was observed in patients with DCM, there was a significant correlation between MIG and left ventricular ejection fraction in patients with DCM. In contrast, despite the significant increase in patients with CD and advanced heart failure, MIG had no significant correlation with any of the echocardiographic parameters in CD. MIG also failed to predict mortality and necessity for heart transplant in patients with CD but showed a clear trend for patients with DCM. CONCLUSIONS To the best of our knowledge, this is the first study to investigate MIG in patients with CD and DCM. The significant increase of MIG in patients with CD and advanced heart failure, the negative correlation between MIG and left ventricular ejection fraction, and the clear trend in discrimination using a cutoff value found in patients with DCM require further investigation to clarify the diagnostic and prognostic potential of MIG in these patients.
Collapse
|
34
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
35
|
Mendonça PHB, da Rocha RFDB, Moraes JBDB, LaRocque-de-Freitas IF, Logullo J, Morrot A, Nunes MP, Freire-de-Lima CG, Decote-Ricardo D. Canine Macrophage DH82 Cell Line As a Model to Study Susceptibility to Trypanosoma cruzi Infection. Front Immunol 2017; 8:604. [PMID: 28620374 PMCID: PMC5449653 DOI: 10.3389/fimmu.2017.00604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi is an obligatory intracellular protozoan parasite, and it is the etiological agent of Chagas' disease that is endemic in the Americas. In addition to humans, a wide spectrum of mammals can be infected by T. cruzi, including dogs. Dogs develop acute and chronic disease, similar to human infection. T. cruzi can infect almost all cell types and after cell invasion, the metacyclics trypomastigotes localize in the cytoplasm, where they transform into amastigotes, the replicative form of T. cruzi in mammals. After amastigote multiplication and differentiation, parasites lyse host cells and spread through the body by blood circulation. In this work, we evaluated the in vitro ability of T. cruzi to infect a canine macrophage cell line DH82 compared with RAW264.7, a murine tissue culture macrophage. Our results have shown that the T. cruzi is able to infect, replicate and differentiate in DH82 cell line. We observed that following treatment with LPS and IFN-γ DH82 cells were more resistant to infection and that resistance was not related reactive oxygen species production in our system. In this study, we also found that DH82 cells became more susceptible to T. cruzi infection when cocultured with apoptotic cells. The analysis of cytokine production has showed elevated levels of the TGF-β, IL-10, and TNF-α produced by T. cruzi-infected canine macrophages. Additionally, we demonstrated a reduced expression of the MHC class II and CD80 by infected DH82 cell line.
Collapse
Affiliation(s)
| | | | | | | | - Jorgete Logullo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Pereira AV, Góis MB, Lera KRJL, Falkowski-Temporini GJ, Massini PF, Drozino RN, Aleixo DL, Miranda MM, da Silva Watanabe P, Conchon-Costa I, da Costa IN, Dos Anjos Neto Filho M, de Araújo SM, Pavanelli WR. Histopathological lesions in encephalon and heart of mice infected with Toxoplasma gondii increase after Lycopodium clavatum 200dH treatment. Pathol Res Pract 2016; 213:50-57. [PMID: 27894616 DOI: 10.1016/j.prp.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023]
Abstract
In many cases, symptoms of toxoplasmosis are mistaken for the ones of other infectious diseases. Clinical signs are rare in immunocompetent people. However, when they arise, in the acute phase of infection, several organs are affected due to the rapid spread of tachyzoites through the bloodstream. In the present study, the reduction of tachyzoites in peripheral blood of mice of G72 (infected 72h after treatment) and G48 (infected 48h after treatment and treated three more times), when compared with IC (infected and non-treated), suggests protective effect exerted by Lycopodium clavatum. If on the one hand L. clavatum brought benefits, reducing parasitemia, on the other hand, the parasitism became exacerbated. Histopathological analysis demonstrated focal, multifocal and diffuse inflammatory infiltrates, ranging from absent, discreet, moderate to intense, in heart and encephalon of mice of NIC (non-infected and non-treated), IC, G48 and G72 groups, respectively. In the perivascular region and meninges, the injuries were enlarged. The presence of tachyzoites was demonstrated through immunohistochemical (IHC) assay in myocardium. Toxoplasma gondii induced increase of collagen fibers in myocardium of mice of G72 and G48 groups, compared with IC (p<0.05) and NIC (p<0.001). The presence of inflammatory infiltrates, as well as the progressive fibrosis, caused myocardial remodeling in animals treated with L. clavatum. Counterstaining with H&E suggests TGF-β expression by mononuclear cells in the inflammatory infiltrate. Based on our results, we can conclude that the adopted regimen and potency exerted a protective effect, reducing parasitemia. However, it intensified the histopathological lesions in encephalon and heart of mice infected with T. gondii.
Collapse
Affiliation(s)
- Andréia Vieira Pereira
- Department of Experimental Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Marcelo Biondaro Góis
- Department of Morphological Sciences, State University of Maringa, Maringa, PR, Brazil.
| | | | | | | | | | - Denise Lessa Aleixo
- Department of Health Sciences, State University of Maringa, Maringa, PR, Brazil
| | | | | | - Ivete Conchon-Costa
- Department of Experimental Pathology, State University of Londrina, Londrina, PR, Brazil
| | | | | | | | | |
Collapse
|
37
|
Pinho RT, Waghabi MC, Cardillo F, Mengel J, Antas PRZ. Scrutinizing the Biomarkers for the Neglected Chagas Disease: How Remarkable! Front Immunol 2016; 7:306. [PMID: 27563302 PMCID: PMC4980390 DOI: 10.3389/fimmu.2016.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022] Open
Abstract
Biomarkers or biosignature profiles have become accessible over time in population-based studies for Chagas disease. Thus, the identification of consistent and reliable indicators of the diagnosis and prognosis of patients with heart failure might facilitate the prioritization of therapeutic management to those with the highest chance of contracting this disease. The purpose of this paper is to review the recent state and the upcoming trends in biomarkers for human Chagas disease. As an emerging concept, we propose a classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic-, and management-related candidates. The available data revisited here reveal the lessons learned thus far and the existing challenges that still lie ahead to enable biomarkers to be employed consistently in risk evaluation for this disease. There is a strong need for biomarker validation, particularly for biomarkers that are specific to the clinical forms of Chagas disease. The current failure to achieve the eradication of the transmission of this disease has produced determination to solve this validation issue. Finally, it would be strategic to develop a wide variety of biomarkers and to test them in both preclinical and clinical trials.
Collapse
Affiliation(s)
- Rosa T Pinho
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | | | - José Mengel
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Faculdade de Medicina de Petropolis (FMP-FASE), Petrópolis, Brazil
| | - Paulo R Z Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| |
Collapse
|
38
|
Morrot A, Villar SR, González FB, Pérez AR. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease? Front Microbiol 2016; 7:704. [PMID: 27242726 PMCID: PMC4876113 DOI: 10.3389/fmicb.2016.00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Silvina R Villar
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Florencia B González
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW American trypanosomiasis, or Chagas disease, is a lifelong and persistent infection caused by the protozoan Trypanosoma cruzi and is the most significant cause of morbidity and mortality in South and Central America. Owing to immigration and additional risks from blood transfusion and organ transplantation, the number of reported cases of Chagas disease has increased recently in Europe and the USA. The disease is caused by a moderate to intense lasting inflammatory response that triggers local expression of inflammatory mediators and activates and recruits leukocytes to various tissues to eliminate the parasites. RECENT FINDINGS This long-term inflammatory process triggers biochemical, physiological and morphological alterations and clinical changes in the digestive, nervous and cardiac (e.g. myocarditis, arrhythmias, congestive heart failure, autonomic dysfunctions and microcirculatory disturbances) systems. Indeed, the pathogenesis of Chagas disease is intricate and multifactorial, and the roles of the parasite and the immune response in initiating and maintaining the disease are still controversial. SUMMARY In this review, we discuss the current knowledge of 'strategies' employed by the parasite to persist in the host and host defence mechanisms against Trypanosoma cruzi infection, which can result in equilibrium (absence of the disease) or disease development, mainly in the cardiac systems.
Collapse
|
40
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
41
|
Magalhães LMD, Viana A, Chiari E, Galvão LMC, Gollob KJ, Dutra WO. Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi. PLoS Negl Trop Dis 2015; 9:e0003816. [PMID: 26147698 PMCID: PMC4492932 DOI: 10.1371/journal.pntd.0003816] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. Methodology/Principal Findings We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Conclusion/Significance Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression. Chagas disease remains a major public health problem in Latin America with over 13 million people infected. It is believed that the host immune response and genetic diversity of the parasite play an important role in the progression of Chagas disease, which presents a variety of clinical forms ranging from indeterminate to cardiac and digestive forms. Since parasite genetic diversity may influence the development of Chagas disease, our study aims to understand the immune response of human peripheral blood cells upon infection with two T. cruzi strains with different genetic backgrounds (Col cl1.7 – Tc I, and Y strain – TcII). Our study showed differences in the expression of cytokines and activation molecules between cells infected with strains from Tc I (Col cl1.7) and Tc II (Y strain). These data show the importance of parasite strain in the development of the host response early in infection, which may influence the clinical progression of Chagas disease.
Collapse
Affiliation(s)
- Luísa M. D. Magalhães
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Lúcia M. C. Galvão
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Kenneth J. Gollob
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina, Instituto de Ensino e Pesquisa, Hospital Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
42
|
Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP. Early expression of local cytokines during systemic Candida albicans infection in a murine intravenous challenge model. Biomed Rep 2014; 2:869-874. [PMID: 25279161 DOI: 10.3892/br.2014.365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022] Open
Abstract
Local cytokine production is a significant indicator for disease pathogenesis or progression. Previous studies on cytokine production during systemic Candida albicans (C. albicans) infection were solely on kidney or single cell type interaction with C. albicans. Therefore, the present study aimed to assess the early cytokine expression of various target organs (kidney, spleen and brain) over a 72-h time course during systemic C. albicans infection. The local cytokine profiles of the target organs during systemic C. albicans infection were measured by cytometric bead array and ELISA analysis. The results demonstrated that interleukin-6 (IL-6) and IL-2 were statistically significant (P<0.05) in the spleen at 24 and 72 h post-infection, whereas in the kidney, IL-6 and tumor necrosis factor-α (TNF-α) were statistically significant (P<0.05) at 24 and 72 h post-infection and CXCL-1 and transforming growth factor-β (TGF-β) were statistically significant (P<0.05) at 72 h post-infection. In the brain, IL-6 and TNF-α were statistically significant (P<0.05) at 24 and 72 h post-infection, whereas TGF-β was statistically significant (P<0.05) at 72 h post-infection. These findings demonstrate that host immune responses were varied among target organs during systemic C. albicans infection. This could be important for designing targeted immunotherapy against this pathogen through immunomodulatory approaches in future exploratory research.
Collapse
Affiliation(s)
- Voon Kin Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Kuan Jeang Foong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Abdullah Maha
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Basir Rusliza
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohtarrudin Norhafizah
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Pei Pei Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia ; Translational Infectious Diseases Program, Centre for Translational Medicine, Department of Microbiology, National University of Singapore, Singapore 117597, Republic of Singapore
| |
Collapse
|
43
|
Trypanosoma cruzi infection and host lipid metabolism. Mediators Inflamm 2014; 2014:902038. [PMID: 25276058 PMCID: PMC4168237 DOI: 10.1155/2014/902038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected worldwide. Several players in host lipid metabolism have been implicated in T. cruzi-host interactions in recent research, including macrophages, adipocytes, low density lipoprotein (LDL), low density lipoprotein receptor (LDLR), and high density lipoprotein (HDL). All of these factors are required to maintain host lipid homeostasis and are intricately connected via several metabolic pathways. We reviewed the interaction of T. cruzi with each of the relevant host components, in order to further understand the roles of host lipid metabolism in T. cruzi infection. This review sheds light on the potential impact of T. cruzi infection on the status of host lipid homeostasis.
Collapse
|
44
|
Schmitz V, Almeida LN, Svensjö E, Monteiro AC, Köhl J, Scharfstein J. C5a and Bradykinin Receptor Cross-Talk Regulates Innate and Adaptive Immunity inTrypanosoma cruziInfection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3613-23. [DOI: 10.4049/jimmunol.1302417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Ferreira LRP, Frade AF, Baron MA, Navarro IC, Kalil J, Chevillard C, Cunha-Neto E. Interferon-γ and other inflammatory mediators in cardiomyocyte signaling during Chagas disease cardiomyopathy. World J Cardiol 2014; 6:782-790. [PMID: 25228957 PMCID: PMC4163707 DOI: 10.4330/wjc.v6.i8.782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/29/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease cardiomyopathy (CCC), the main consequence of Trypanosoma cruzi (T.cruzi) infection, is an inflammatory cardiomyopathy that develops in up to 30% of infected individuals. The heart inflammation in CCC patients is characterized by a Th1 T cell-rich myocarditis with increased production of interferon (IFN)-γ, produced by the CCC myocardial infiltrate and detected at high levels in the periphery. IFN-γ has a central role in the cardiomyocyte signaling during both acute and chronic phases of T.cruzi infection. In this review, we have chosen to focus in its pleiotropic mode of action during CCC, which may ultimately be the strongest driver towards pathological remodeling and heart failure. We describe here the antiparasitic protective and pathogenic dual role of IFN-γ in Chagas disease.
Collapse
|
46
|
Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm 2014; 2014:683230. [PMID: 25210230 PMCID: PMC4152981 DOI: 10.1155/2014/683230] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects ca. 10 million people worldwide. About 30% of Chagas disease patients develop chronic Chagas disease cardiomyopathy (CCC), a particularly lethal inflammatory cardiomyopathy that occurs decades after the initial infection, while most patients remain asymptomatic. Mortality rate is higher than that of noninflammatory cardiomyopathy. CCC heart lesions present a Th1 T-cell-rich myocarditis, with cardiomyocyte hypertrophy and prominent fibrosis. Data suggest that the myocarditis plays a major pathogenetic role in disease progression. Major unmet goals include the thorough understanding of disease pathogenesis and therapeutic targets and identification of prognostic genetic factors. Chagas disease thus remains a neglected disease, with no vaccines or antiparasitic drugs proven efficient in chronically infected adults, when most patients are diagnosed. Both familial aggregation of CCC cases and the fact that only 30% of infected patients develop CCC suggest there might be a genetic component to disease susceptibility. Moreover, previous case-control studies have identified some genes associated to human susceptibility to CCC. In this paper, we will review the immunopathogenesis and genetics of Chagas disease, highlighting studies that shed light on the differential progression of Chagas disease patients to CCC.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, Avenida Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9° Andar, 05406-000 São Paulo, SP, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, 05406-000 São Paulo, SP, Brazil
| | | |
Collapse
|
47
|
Redpath SA, Fonseca NM, Perona-Wright G. Protection and pathology during parasite infection: IL-10 strikes the balance. Parasite Immunol 2014; 36:233-52. [PMID: 24666543 DOI: 10.1111/pim.12113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 12/16/2022]
Abstract
The host response to infection requires an immune response to be strong enough to control the pathogen but also restrained, to minimize immune-mediated pathology. The conflicting pressures of immune activation and immune suppression are particularly apparent in parasite infections, where co-evolution of host and pathogen has selected many different compromises between protection and pathology. Cytokine signals are critical determinants of both protective immunity and immunopathology, and, in this review, we focus on the regulatory cytokine IL-10 and its role in protozoan and helminth infections. We discuss the sources and targets of IL-10 during parasite infection, the signals that initiate and reinforce its action, and its impact on the invading parasite, on the host tissue, and on coincident immune responses.
Collapse
Affiliation(s)
- S A Redpath
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
48
|
de Souza SM, Vieira PMDA, Roatt BM, Reis LES, da Silva Fonseca K, Nogueira NC, Reis AB, Tafuri WL, Carneiro CM. Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection. Mol Immunol 2013; 58:92-7. [PMID: 24317279 DOI: 10.1016/j.molimm.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
The recent increase in immigration of people from areas endemic for Chagas disease (Trypanosoma cruzi) to the United States and Europe has raised concerns about the transmission via blood transfusion and organ transplants in these countries. Infection by these pathways occurs through blood trypomastigotes (BT), and these forms of T. cruzi are completely distinct of metacyclic trypomastigotes (MT), released by triatomine vector, in relation to parasite-host interaction. Thus, research comparing infection with these different infective forms is important for explaining the potential impacts on the disease course. Here, we investigated tissue parasitism and relative mRNA expression of cytokines, chemokines, and chemokine receptors in the heart during acute infection by MT or BT forms in dogs. BT-infected dogs presented a higher cardiac parasitism, increased relative mRNA expression of pro-inflammatory and immunomodulatory cytokines and of the chemokines CCL3/MIP-1α, CCL5/RANTES, and the chemokine receptor CCR5 during the acute phase of infection, as compared to MT-infected dogs. These results suggest that infection with BT forms may lead to an increased immune response, as revealed by the cytokines ratio, but this kind of immune response was not able to control the cardiac parasitism. Infection with the MT form presented an increase in the relative mRNA expression of IL-12p40 as compared to that of IL-10 or TGF-β1. Correlation analysis showed increased relative mRNA expression of IFN-γ as well as IL-10, which may be an immunomodulatory response, as well as an increase in the correlation of CCL5/RANTES and its CCR5 receptor. Our findings revealed a difference between inoculum sources of T. cruzi, as vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase, which may influence immunopathological aspects of Chagas disease.
Collapse
Affiliation(s)
- Sheler Martins de Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Levi Eduardo Soares Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nívia Carolina Nogueira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Washington Luiz Tafuri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
49
|
IL-10 inhibits the NF-κB and ERK/MAPK-mediated production of pro-inflammatory mediators by up-regulation of SOCS-3 in Trypanosoma cruzi-infected cardiomyocytes. PLoS One 2013; 8:e79445. [PMID: 24260222 PMCID: PMC3832617 DOI: 10.1371/journal.pone.0079445] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease.
Collapse
|
50
|
Saraiva RM, Waghabi MC, Vilela MF, Madeira FS, Sperandio da Silva GM, Xavier SS, Feige JJ, Hasslocher-Moreno AM, Araujo-Jorge TC. Predictive value of transforming growth factor-β1in Chagas disease: towards a biomarker surrogate of clinical outcome. Trans R Soc Trop Med Hyg 2013; 107:518-25. [PMID: 23787193 DOI: 10.1093/trstmh/trt050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) may be implicated in the development of Chagas heart disease. However, the clinical value of TGF-β1 measurement is yet to be determined. METHODS We retrospectively analyzed the outcome of 54 Chagas disease patients without heart failure and with left ventricular (LV) ejection fraction >45% whose TGF-β1 serum values were determined between January 1998 and December 1999. Primary end point was all-cause mortality and secondary end point was the combination of all-cause mortality or hospitalization due to worsening heart failure or cardiac arrhythmias. RESULTS TGF-β1 was independently associated with the occurrence of the primary and secondary end points. The optimal cutoff for TGF-β1 to identify the primary end point was 12.9 ng/ml (area under the curve = 0.82, p = 0.004, sensitivity 100%, and specificity 57%) and to identify the secondary end point was 30.8 ng/ml (area under the curve = 0.72, p = 0.03, sensitivity 60%, and specificity 86%). LV ejection fraction and LV end-diastolic diameter were also independent predictors of the primary and secondary endpoints, respectively. CONCLUSION The described association between TGF-β1 and clinical outcome provides evidence towards the clinical value of TGF-β1 in Chagas disease.
Collapse
|