1
|
Sadasivan C, Gagnon LR, Hazra D, Wang K, Youngson E, Thomas J, Chan AY, Paterson DI, McAlister FA, Dzwiniel T, Tymchak W, Christian S, Oudit GY. Early genetic screening and cardiac intervention in patients with cardiomyopathies in a multidisciplinary clinic. ESC Heart Fail 2025; 12:1942-1955. [PMID: 39740200 PMCID: PMC12055407 DOI: 10.1002/ehf2.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/19/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
AIMS Patients with cardiomyopathies are a heterogeneous group of patients who experience high morbidity and mortality. Early cardiac assessment and intervention with access to genetic counselling in a multidisciplinary Cardiomyopathy Clinic may improve outcomes and prevent progression to advanced heart failure. METHODS AND RESULTS Our prospective cohort study was conducted at a multidisciplinary Cardiomyopathy Clinic with 421 patients enrolled (42.5% female, median age 58 years), including 224 patients with dilated cardiomyopathy (DCM, 42.9% female, median age 57 years), 72 with hypertrophic cardiomyopathy (HCM, 43.1% female, median age 60 years), 79 with infiltrative cardiomyopathy (65.8% female, median age 70 years) and 46 who were stage A/at risk for genetic cardiomyopathy (54.3% female, median age 36 years). Patients were seen in follow-up at a median of 18 months. A pathogenic/likely pathogenic variant was identified in 28.5% of the total cohort, including 33.3% of the DCM cohort (28% TTN mutations) and 34.1% of the HCM cohort (60% MYBPC3 and 20% MYH7) who underwent genetic testing. The use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/angiotensin receptor neprilysin inhibitor (48.3-69.5% of total cohort, P < 0.001), β-blockers (58.4-72.4%, P < 0.001), mineralocorticoid receptor antagonists (33.9-41.4%, P = 0.0014) and sodium/glucose cotransporter-2 inhibitors (5.3-27.9%, P < 0.001) all increased at follow-up. Precision-based therapies were also implemented, including tafamidis for transthyretin amyloidosis (n = 21), enzyme replacement therapy for Fabry disease (n = 14) and mavacamten (n = 4) for HCM. Optimization of medications and devices resulted in improvements in left ventricular ejection fraction (LVEF) from 27% to 43% at follow-up for DCM patients with reduced LVEF at baseline (P < 0.001) and reduction in left ventricular mass index (LVMI) from 156 g/m2 to 128 g/m2 at follow-up for HCM patients with abnormal LVMI at baseline (P = 0.009). Optimization of therapies was associated with stable plasma biomarkers in stage B patients while lowering levels of BNP (619-517.5 pg/mL, P = 0.048), NT-proBNP (777.5-356 ng/L, P < 0.001) and hsTropT (31-22 ng/L, P = 0.005) at follow-up relative to baseline values for stage C patients. Despite stage B patients having overt cardiomyopathy at baseline, stage A and B patients had a similarly high probability of survival (χ2 = 0.204, P = 0.652). The overall cardiovascular mortality rate was low at 1.7% for the cohort (0.5% for stage B and 3.3% for stage C) over a median of 34-month follow-up. CONCLUSION Our study demonstrates that a multidisciplinary cardiomyopathy clinic can improve the clinical profiles of patients with diverse genetic cardiomyopathies.
Collapse
Affiliation(s)
- Chandu Sadasivan
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Luke R. Gagnon
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Deepan Hazra
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Erik Youngson
- The Alberta Strategy for Patient Oriented Research Support Unit (AbSPORU)EdmontonABCanada
- Provincial Research Data ServicesAlberta Health ServicesEdmontonABCanada
| | - Jissy Thomas
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Anita Y.M. Chan
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | | | - Finlay A. McAlister
- The Alberta Strategy for Patient Oriented Research Support Unit (AbSPORU)EdmontonABCanada
- Division of General Internal Medicine, Department of Medicine, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Tara Dzwiniel
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Wayne Tymchak
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Susan Christian
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
2
|
Yigit G, Kaulfuß S, Wollnik B. Understanding inherited cardiomyopathies: clinical aspects and genetic determinants. MED GENET-BERLIN 2025; 37:103-111. [PMID: 40207042 PMCID: PMC11976403 DOI: 10.1515/medgen-2025-2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Cardiomyopathies (CMs) are a clinically heterogeneous group of cardiovascular diseases characterized by structural and functional abnormalities of the heart muscle in the absence of coronary artery disease, hypertension, valve disease, or congenital heart disease as a leading cause. The phenotypic spectrum of CMs ranges from silent heart failure to symptomatic heart failure and sudden cardiac death, and CMs are one of the leading causes of cardiovascular morbidity worldwide. CMs are highly heritable, although a clear distinction between inherited and acquired forms remains challenging, particularly due to observed incomplete penetrance and variable expressivity of inherited CMs. Based on their specific morphological phenotypes and functional characteristics, CMs can be divided into at least 5 different subgroups: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ACM), restrictive cardiomyopathy (RCM), and (left ventricular) non-compaction cardiomyopathy (LVNC), which show both clinical as well as genetic overlap. Since the identification of pathogenic variants in MYH7 as a genetic cause of HCM in 1990, enormous progress has been made in understanding genetic factors contributing to cardiomyopathies. Currently, over 100 genes have been associated with at least one of the CM subtypes, providing a deeper understanding of the cellular basis of genetic heart failure syndromes, unveiling new insights into the molecular biology of heart function in both health and disease, and, thereby, facilitating the development of novel therapeutic strategies and personalized treatment approaches.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human GeneticsUniversity Medical Center GöttingenHeinrich-Düker-Weg 1237073GöttingenGermany
| | - Silke Kaulfuß
- Institute of Human GeneticsUniversity Medical Center GöttingenHeinrich-Düker-Weg 1237073GöttingenGermany
| | - Bernd Wollnik
- Georg-August University GöttingenInstitute of Human GeneticsHeinrich-Düker-Weg 1237073GöttingenGermany
| |
Collapse
|
3
|
Wen J, Campbell S, Moore J, Lehman W, Rynkiewicz M. Screening single nucleotide changes to tropomyosin to identify novel cardiomyopathy mutants. J Mol Cell Cardiol 2025; 203:82-90. [PMID: 40268117 DOI: 10.1016/j.yjmcc.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Inherited cardiomyopathy is a broad class of heart disease that includes pathological cardiac remodeling such as hypertrophic and dilated cardiomyopathy, affecting 1/250-1/500 people worldwide. In many cases, mutations in proteins that make up the sarcomere, the basic subcellular unit of contraction, alter thin filament regulation and are the root cause of hypertrophic and dilated cardiomyopathy. Initially, compensations can maintain cardiac function, so patients may remain asymptomatic for years before a major cardiac episode. Early therapeutic intervention could rescue the deleterious effects of mutations thereby avoiding pathological remodeling, so prediction of potential outcomes and severity of as yet uncharacterized and known mutants of uncertain significance is critical. To accomplish this goal, we begin with the structure of the thin filament containing actin, tropomyosin, and troponin in its regulatory B- and C-states, incorporate all potential single nucleotide mutations to the tropomyosin sequence (over 1700 unique mutations), and then measure the interaction energy between tropomyosin and actin after energy minimization. Analysis of the database thus generated shows the tropomyosin residues resulting in large changes in tropomyosin-actin interaction, and therefore most likely to be deleterious to function. Some of these mutants have been observed in human patients, whereas others are novel. Global analysis further refines hotspots of mutation-sensitive, coiled-coil tropomyosin residues affecting actin interactions. Altogether, the database will allow research to focus in great depth on key candidates for functional analysis, for instance, by assaying in vitro motility and engineered heart tissue mechanics and assessing outcomes in animal models.
Collapse
Affiliation(s)
- Jian Wen
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jeffrey Moore
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Akbari T, Hammersley DJ, May CYY, Halliday BP, Prasad SK. The Impact of Cardio-Renal-Metabolic Profile in Dilated Cardiomyopathy. Curr Cardiol Rep 2025; 27:89. [PMID: 40410614 PMCID: PMC12102121 DOI: 10.1007/s11886-025-02241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2025] [Indexed: 05/25/2025]
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy is an important contributor to heart failure burden worldwide. With an aging population and rising multimorbidity, in this review, we describe the prevalence of metabolic syndrome and renal failure in patients with dilated cardiomyopathy and focus on common underlying mechanisms, evaluate outcomes in these patients and highlight newer therapeutic strategies. RECENT FINDINGS A significant proportion of patients with dilated cardiomyopathy has concomitant metabolic syndrome and renal disease. This combination of multimorbidity portends worse prognosis and often presents unique challenges in treatment given the complex interplay and shared pathophysiological pathways. Optimization of the cardio-renal-metabolic profile should be a key consideration in the management of patients with dilated cardiomyopathy. Therapeutic strategies targeting common pathophysiological pathways are needed in order to improve overall outcomes.
Collapse
Affiliation(s)
- Tamim Akbari
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel J Hammersley
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- King's College Hospital, NHS Foundation Trust, London, UK
| | | | - Brian P Halliday
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sanjay K Prasad
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
- CMR Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
| |
Collapse
|
5
|
Gargouri R, Ammous-Boukhris N, Hssairi M, Mosbah A, Jabeur M, Feki W, Mnif Z, Mokdad-Gargouri R, Abid L, Gargouri L. A novel likely pathogenic variant in the mitochondrial ribosomal protein L44 (MRPL44) associated with hypertrophic cardiomyopathy in Tunisian patients. Mol Biol Rep 2025; 52:483. [PMID: 40402202 DOI: 10.1007/s11033-025-10556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic heart disease with a wide range of clinical manifestations, from asymptomatic cases to heart failure and sudden cardiac death. OBJECTIVES To identify the disease-causing variants in patients with severe HCM by carrying on clinical examination and genetic analysis through 2 generations in a single family. PATIENTS AND METHODS Family 'members underwent comprehensive cardiovascular examinations. Whole-exome sequencing was carried on the proband, a girl of five-years old followed by co-segregation and in silico analyses. RESULTS The proband harboured a homozygous variant, NM_022915.5: c.198_205delinsTA; p.(Trp66_His69 delinsCysAsn), in the MRPL44 gene, leading to a shorter protein. This variant is novel, being absent in ClinVar and Human Gene Mutation Database (HGMD) and classified as VUS according to American College of Medical Genetics and Genomics (ACMG) criteria. Co-segregation analyses revealed that the proband's parents and her sister were heterozygous carriers, her other sister was wild-type, and her affected brother was homozygous for the mutation. In silico analysis showed significant structural differences in the mutated mL44 protein, disrupting its interaction with ribosomal complex components and impairing translation and protein synthesis. CONCLUSIONS This study reports a novel MRPL44 variant associated with HCM in a Tunisian family. This finding expands current knowledge of genetic variations linked to mitochondrial cardiomyopathy and highlights the importance of genetic testing for diagnosis and management of cardiomyopathy.
Collapse
Affiliation(s)
- Rania Gargouri
- Department of Cardiology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia.
| | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, Laboratory of Eukaryotes Molecular Biotechnology, University of Sfax, Sfax, Tunisia
| | - Manel Hssairi
- Department of Pediatrics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Amor Mosbah
- Biotechnopole Sidi Thabet, ISBST, BVBGR-LR11ES31, University of Manouba, Manouba, Tunisia
| | - Mariem Jabeur
- Department of Cardiology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Wiem Feki
- Department of Radiology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Zeineb Mnif
- Department of Radiology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, Laboratory of Eukaryotes Molecular Biotechnology, University of Sfax, Sfax, Tunisia
| | - Leila Abid
- Department of Cardiology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Lamia Gargouri
- Department of Pediatrics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Khattab E, Myrianthefs MM, Sakellaropoulos S, Alexandrou K, Mitsis A. Precision medicine applications in dilated cardiomyopathy: Advancing personalized care. Curr Probl Cardiol 2025; 50:103076. [PMID: 40381754 DOI: 10.1016/j.cpcardiol.2025.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Dilated cardiomyopathy (DCM) is a prevalent cardiac disorder affecting 1 in 250-500 individuals, characterized by ventricular dilation and impaired systolic function, leading to heart failure and increased mortality, including sudden cardiac death. DCM arises from genetic and environmental factors, such as drug-induced, inflammatory, and viral causes, resulting in diverse yet overlapping phenotypes. Advances in precision medicine are revolutionizing DCM management by leveraging genetic and molecular profiling for tailored diagnostic and therapeutic approaches. This review highlights comprehensive diagnostic evaluations, genetic discoveries, and multi-omics approaches integrating genomic, transcriptomic, proteomic, and metabolomic data to enhance understanding of DCM pathophysiology. Innovative risk stratification methods, including machine learning, are improving predictions of disease progression. Despite these advancements, the current one-size-fits-all management strategy contributes to persistently high morbidity and mortality. Emerging targeted therapies, such as CRISPR/Cas9 genome editing, aetiology-specific interventions, and pharmacogenomics, are reshaping treatment paradigms. Precision medicine holds promise for optimizing DCM diagnosis, treatment, and outcomes, aiming to reduce the burden of this debilitating condition.
Collapse
Affiliation(s)
- Elina Khattab
- Cardiology Department, Consultant Interventional Cardiologist, Nicosia General Hospital, State Health Services Organization, 215, Old Road Nicosia-Limassol, Nicosia 2029, Cyprus
| | - Michael M Myrianthefs
- Cardiology Department, Consultant Interventional Cardiologist, Nicosia General Hospital, State Health Services Organization, 215, Old Road Nicosia-Limassol, Nicosia 2029, Cyprus
| | - Stefanos Sakellaropoulos
- Department of Internal Medicine, Cardiology Clinic, Kantonsspital Baden, Baden 5404, Switzerland
| | - Kyriakos Alexandrou
- Department of Nursing, School of Health Sciences, Cyprus University of Technology; Archiepiskopou Kyprianou 30, Limassol 3036, Cyprus
| | - Andreas Mitsis
- Cardiology Department, Consultant Interventional Cardiologist, Nicosia General Hospital, State Health Services Organization, 215, Old Road Nicosia-Limassol, Nicosia 2029, Cyprus.
| |
Collapse
|
7
|
Kramarenko DR, Jurgens SJ, Pinto YM, Bezzina CR, Amin AS. Polygenic Risk Scores in Dilated Cardiomyopathy: Towards the Future. Curr Cardiol Rep 2025; 27:87. [PMID: 40369171 PMCID: PMC12078399 DOI: 10.1007/s11886-025-02239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE OF REVIEW Genome-wide association studies (GWASs) have recently shown that common genetic variations significantly affect the risk of developing dilated cardiomyopathy (DCM). This has enabled the development of polygenic scores (PGSs), which aim to aggregate the impact of multiple common genetic variants across the genome to provide an overall genetic risk score for disease manifestation and disease severity. In this review, we discuss the latest findings pertaining to GWASs and PGSs for DCM and various ways in which PGSs could improve the management of patients with DCM or risk of developing DCM. RECENT FINDINGS In 2024 the two largest GWAS meta-analyses for DCM were published. Notably, both studies produced PGSs that were able to discriminate healthy subjects from DCM patients which brings promise for potential clinical application of the scores. Large-scale GWAS have identified common genetic variants associated with DCM, leading to the development of PGS, which show strong associations with disease risk and hold potential for clinical applications. However, before clinical implementation, further research is needed to explore their utility in real-world settings and across diverse populations.
Collapse
Affiliation(s)
- Daria R Kramarenko
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Sean J Jurgens
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
- Department of Clinical Cardiology, Heart Center, Amsterdam University Medical Centers, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Ahmad S Amin
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands.
- Department of Clinical Cardiology, Heart Center, Amsterdam University Medical Centers, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| |
Collapse
|
8
|
Kellermayer D, Șulea CM, Tordai H, Benke K, Pólos M, Ágg B, Stengl R, Csonka M, Radovits T, Merkely B, Szabolcs Z, Kellermayer M, Kiss B. Marfan syndrome cardiomyocytes show excess of titin isoform N2BA and extended sarcomeric M-band. J Gen Physiol 2025; 157:e202413690. [PMID: 40062891 PMCID: PMC11893164 DOI: 10.1085/jgp.202413690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 05/13/2025] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant disease caused by mutations in the gene (FBN1) of fibrillin-1, a major determinant of the extracellular matrix (ECM). Functional impairment in the cardiac left ventricle (LV) of these patients is usually a consequence of aortic valve disease. However, LV passive stiffness may also be affected by chronic changes in mechanical load and ECM dysfunction. Passive stiffness is determined by the giant sarcomeric protein titin that has two main cardiac splice isoforms: the shorter and stiffer N2B and the longer and more compliant N2BA. Their ratio is thought to reflect myocardial response to pathologies. Whether this ratio and titin's sarcomeric layout is altered in MFS is currently unknown. Here, we studied LV samples from MFS patients carrying FBN1 mutation, collected during aortic root replacement surgery. We found that the N2BA:N2B titin ratio was elevated, indicating a shift toward the more compliant isoform. However, there were no alterations in the total titin content compared with healthy humans based on literature data. Additionally, while the gross sarcomeric structure was unaltered, the M-band was more extended in the MFS sarcomere. We propose that the elevated N2BA:N2B titin ratio reflects a general adaptation mechanism to the increased volume overload resulting from the valvular disease and the direct ECM disturbances so as to reduce myocardial passive stiffness and maintain diastolic function in MFS.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Cristina M. Șulea
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Roland Stengl
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
| | - Máté Csonka
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hungarian Marfan Foundation, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Biophysical Virology Research Group, Budapest, Hungary
| | - Balázs Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Galanti K, Dabbagh GS, Ricci F, Gallina S, Giansante R, Jacob R, Obeng-Gyimah E, Cooper LT, Prasad SK, Birnie DH, Landstrom AP, Mohammed SF, Mohiddin S, Khanji MY, Chahal AA. Dilated cardiomyopathy evaluation with Imagenomics: combining multimodal cardiovascular imaging and genetics. ESC Heart Fail 2025. [PMID: 40275589 DOI: 10.1002/ehf2.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/16/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by the presence of left ventricular dilatation and systolic dysfunction unexplained by abnormal loading conditions or coronary artery disease. However, a broad range of phenotypic manifestations, encompassing isolated scar, DCM with preserved ejection fraction, and overt DCM, should be regarded as a diagnostic classification representing a broad spectrum of underlying aetiologies, including both inherited and acquired heart muscle disorders. A multimodal non-invasive imaging approach is essential for accurate morpho-functional assessment of cardiac chambers and is key to establish the cardiac phenotype and to rule out an underlying ischaemic aetiology. Furthermore, advanced imaging techniques enable deep cardiovascular phenotyping and non-invasive tissue characterization. The aim of this review is to propose a systematic approach to the diagnosis of DCM, emphasizing the importance of genetics and clinical findings for a precise and practical clinical approach. Also, we strive to qualify the role of cardiac imaging in the diagnosis of DCM, particularly on the relevance of novel techniques and clinical utility of actionable parameters to improve current diagnostic schemes and risk stratification algorithms. We further elaborate on the role of cardiac imaging to deliver optimal guidance to aetiology-based therapeutic approaches, verification of treatment response and disease progression monitoring.
Collapse
Affiliation(s)
- Kristian Galanti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- University Cardiology Division, Heart Department, SS. Annunziata Polyclinic, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- University Cardiology Division, Heart Department, SS. Annunziata Polyclinic, Chieti, Italy
| | - Roberta Giansante
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ron Jacob
- The Heart and Vascular Institute, Lancaster General Health/Penn Medicine, Lancaster, Pennsylvania, USA
| | - Edmond Obeng-Gyimah
- Perelman Clinical Electrophysiology Section, Cardiovascular Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie T Cooper
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay K Prasad
- The Heart and Vascular Institute, Lancaster General Health/Penn Medicine, Lancaster, Pennsylvania, USA
- Department of Cardiology, Royal Brompton Hospital, London, UK
- Department of Cardiovascular Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | - David H Birnie
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics (A.P.L.), School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Saidi Mohiddin
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mohammed Y Khanji
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Heart Centre, Barts Health NHS Trust, London, UK
- Barts Health NHS Trust, Newham University Hospital, London, UK
| | - Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| |
Collapse
|
10
|
Gerritse M, van Ham WB, Denning C, van Veen TAB, Maas RGC. Characteristics and pharmacological responsiveness in hiPSC models of inherited cardiomyopathy. Pharmacol Ther 2025; 272:108845. [PMID: 40250811 DOI: 10.1016/j.pharmthera.2025.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/20/2025]
Abstract
Inherited cardiomyopathies are a major cause of heart failure in all age groups, often with an onset in adolescence or early adult life. More than a thousand variants in approximately one hundred genes are associated with cardiomyopathies. Interestingly, many genetic cardiomyopathies display overlapping phenotypical defects in patients, despite the diversity of the initial pathogenic variants. Understanding how the underlying pathophysiology of genetic cardiomyopathies leads to these phenotypes will improve insights into a patient's disease course, and creates the opportunity for conceiving treatment strategies. Moreover, therapeutic strategies can be used to treat multiple cardiomyopathies based on shared phenotypes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer reliable, high-throughput models for studying molecular and cellular characteristics of hereditary cardiomyopathies. hiPSC-CMs are produced relatively easily, either by directly originating them from patients, or by introducing patient-specific genetic variants in healthy lines. This review evaluates 90 studies on 24 cardiomyopathy-associated genes and systematically summarises the morphological and functional phenotypes observed in hiPSC-CMs. Additionally, treatment strategies applied in cardiomyopathic hiPSC-CMs are compiled and scored for effectiveness. Multiple overlapping phenotypic defects were identified in cardiomyocytes with different variants, whereas certain characteristics were only associated with specific genetic variants. Based on these findings, common mechanisms, therapeutic prospects, and considerations for future research are discussed with the aim to improve clinical translation from hiPSC-CMs to patients.
Collapse
Affiliation(s)
- Merel Gerritse
- Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Utrecht, 3584 CS Utrecht, the Netherlands; Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands.
| | - Willem B van Ham
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands.
| | - Chris Denning
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Toon A B van Veen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands.
| | - Renee G C Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Utrecht, 3584 CS Utrecht, the Netherlands; Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
11
|
Zhu B, Cheng H, Li J, Hu Y, Ge X. Decoding mitochondrial stress genes in DCM: towards precision diagnosis and therapy. Hereditas 2025; 162:57. [PMID: 40217309 PMCID: PMC11987231 DOI: 10.1186/s41065-025-00399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/25/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Mitochondrial oxidative stress (ROS) is a crucial factor in the pathogenesis of dilated cardiomyopathy (DCM). Despite its significance, robust biomarkers for assessing its role remain scarce. This study investigates ROS mechanisms in DCM and identifies associated biomarkers, offering fresh insights into diagnosis and treatment. METHODS We sourced transcriptomic data from the GEO database and mitochondrial oxidative stress-related genes from GeneCards. Using consensus clustering, we identified 64 genes associated with mitochondrial oxidative stress in DCM and further isolated five hub genes through protein-protein interaction and machine learning techniques. These genes were analyzed for functions related to immunity, drug sensitivity, and single-cell localization. Concurrently, we collected blood samples from DCM patients to validate the hub genes' expression. RESULTS The study identified five hub genes related to mitochondrial oxidative stress: VCL, ABCB1, JAK2, KDR, and NGF. Expression analysis revealed high levels of VCL, ABCB1, KDR, and NGF in the non-failing (NF) group, while JAK2 was elevated in the DCM group (p < 0.05). Diagnostic efficacy, measured by area under the curve (AUC), was significant for VCL (76.4), ABCB1 (80.1), JAK2 (68.2), KDR (78.1), and NGF (71.8). Moreover, several drugs were identified as potential regulators of these hub genes, including Topotecan, CDK9_5576, Acetalax, Afatinib, and GSK591. Notably, VCL showed increased expression in DCM patient blood samples, consistent with transcriptomic and single-cell findings. CONCLUSION This research highlights key genes associated with mitochondrial oxidative stress-VCL, ABCB1, JAK2, KDR, NGF-that show differential expression in DCM and myocardial infarction. These findings underscore their diagnostic potential and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Cardiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu Province, 215028, China
| | - Hai Cheng
- Department of Cardiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu Province, 215028, China
| | - Jiawei Li
- Department of Cardiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu Province, 215028, China
| | - Yangyang Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiaoning Ge
- Department of Cardiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu Province, 215028, China.
| |
Collapse
|
12
|
Rasheed S, Jha M, Waheed A, Farooq U, Fatima A, Haq IU, Khan U, Wardak AB, Gul MH. The potential of CRISPR-Cas9 in cardiovascular medicine: a focus on hereditary cardiomyopathies. Ann Med Surg (Lond) 2025; 87:1801-1803. [PMID: 40212198 PMCID: PMC11981303 DOI: 10.1097/ms9.0000000000003170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/02/2025] [Indexed: 04/13/2025] Open
Affiliation(s)
| | - Mayank Jha
- Government Medical College and New Civil Hospital, Surat, India
| | - Aiman Waheed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Umer Farooq
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | | | - Usman Khan
- Hayatabad Medical Complex, Peshawar, Pakistan
| | | | | |
Collapse
|
13
|
Cardoso I, Nunes S, Brás P, Viegas JM, Marques Antunes M, Ferreira A, Almeida I, Custódio I, Trigo C, Laranjo S, Graça R, Cruz Ferreira R, Oliveira M, Aguiar Rosa S, Antunes D. The contribution of genetics to the understanding and management of cardiomyopathies: Part 1. Rev Port Cardiol 2025; 44:245-254. [PMID: 39988112 DOI: 10.1016/j.repc.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025] Open
Abstract
Genetics has assumed a pivotal role in clarifying the pathophysiology of cardiomyopathies, facilitating molecular diagnosis, and enabling effective family screening. The advent of next-generation sequencing has revolutionized genetic testing by enabling cost-effective, high-throughput analysis. It is imperative for cardiovascular physicians to mainstream genetic testing into their clinical decision-making. Although a definitive genotype-phenotype correlation may not always be evident, several genotypes have emerged as valuable risk predictors for disease severity and progression. European guidelines emphasize the importance of genetic tests for predicting clinical outcome in cardiomyopathies. While further research is essential to bridge existing gaps in the genetic evidence on cardiomyopathies, there is considerable potential for significant advancements.
Collapse
Affiliation(s)
- Isabel Cardoso
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal.
| | - Sofia Nunes
- Medical Genetics Department, Dona Estefânia Hospital, Central Lisbon Hospital and University Centre, Lisbon, Portugal
| | - Pedro Brás
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - José Miguel Viegas
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Miguel Marques Antunes
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - André Ferreira
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Inês Almeida
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Inês Custódio
- Medical Genetics Department, Dona Estefânia Hospital, Central Lisbon Hospital and University Centre, Lisbon, Portugal
| | - Conceição Trigo
- Serviço de Cardiologia Pediátrica, Centro de Referência de Cardiopatias Congénitas do CHULC, Hospital de Santa Marta, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network Guard-Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Sérgio Laranjo
- Serviço de Cardiologia Pediátrica, Centro de Referência de Cardiopatias Congénitas do CHULC, Hospital de Santa Marta, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network Guard-Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal; CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Rafael Graça
- GenoMed - Diagnósticos de Medicina Molecular, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Rui Cruz Ferreira
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Mário Oliveira
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Centro Clínico Académico de Lisboa, Lisboa, Portugal; Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, CHLC, Lisbon, Portugal; Institute of Physiology and CCUL, Faculty of Medicine of Lisbon, Portugal; Cardiology Center, Hospital CUF Tejo, Lisbon, Portugal
| | - Sílvia Aguiar Rosa
- Serviço de Cardiologia, Centro de Referência de Miocardiopatias do Centro Hospitalar Universitário de Lisboa Central (CHULC), Santa Marta Hospital, CHULC, EPE, Lisboa, Portugal; Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Centro Clínico Académico de Lisboa, Lisboa, Portugal; CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal; Centro Clínico Académico de Lisboa, Lisboa, Portugal
| | - Diana Antunes
- Medical Genetics Department, Dona Estefânia Hospital, Central Lisbon Hospital and University Centre, Lisbon, Portugal; GenoMed - Diagnósticos de Medicina Molecular, Instituto de Medicina Molecular, Lisbon, Portugal
| |
Collapse
|
14
|
Wang X, Lang Z, Yan Z, Xu J, Zhang J, Jiao L, Zhang H. Dilated cardiomyopathy: from genes and molecules to potential treatments. Mol Cell Biochem 2025:10.1007/s11010-025-05269-0. [PMID: 40155570 DOI: 10.1007/s11010-025-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Dilated cardiomyopathy is a myocardial condition marked by the enlargement of the heart's ventricular chambers and the gradual decline in systolic function, frequently resulting in congestive heart failure. Dilated cardiomyopathy has obvious familial characteristics, and mutations in related pathogenic genes can account for about 50% of patients with dilated cardiomyopathy. The most common genes related to dilated cardiomyopathy include TTN, LMNA, MYH7, etc. With more and more research on these genes, it will undoubtedly provide more potential targets and therapeutic pathways for the treatment of dilated cardiomyopathy. In addition, myocardial inflammation, myocardial metabolism abnormalities and cardiomyocyte apoptosis all have an important impact on the pathogenesis of dilated cardiomyopathy. Approximately half of sudden deaths among children and adolescents, along with the majority of patients undergoing heart transplantation, stem from cardiomyopathy. Therefore, precise and prompt clinical diagnosis holds paramount importance. Currently, diagnosis primarily hinges on the patient's medical background and imaging tests, with the significance of genetic testing steadily gaining prominence. The primary treatment for dilated cardiomyopathy remains heart transplantation. However, the scarcity of donors and the risk of severe immune rejection underscore the pressing need for novel therapies. Presently, research is actively exploring preclinical treatments like stem cell therapy as potential solutions.
Collapse
Affiliation(s)
- Xiumei Wang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zekun Lang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zeyi Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jinyuan Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Lianhang Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China.
| |
Collapse
|
15
|
Bahl A, Seth S, Dhandapany PS, Mittal A, Chockalingam P, Ahamed H, Subramanian M, Nampoothiri S, Namboodiri N, Das S, Vaidya V, Anantharaman R, Khullar M, Rani DS, Thangaraj K, Naik N, Sivasubbu S, Roy D, Bang VH, Banerjee PS, Chandra Rath P, Sinha DP, Yadav R, Dastidar DG. Genetic testing of cardiomyopathies: Position statement of the Cardiological Society of India. Indian Heart J 2025:S0019-4832(25)00059-8. [PMID: 40157570 DOI: 10.1016/j.ihj.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/22/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Affiliation(s)
- Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Priya Chockalingam
- Centre for Inherited Heart Diseases, Department of Cardiology, Kauvery Hospital, Chennai, India
| | - Hisham Ahamed
- Department of Cardiology, Amrita Institute of Medical Sciences and Research, Kochi, India
| | | | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kochi, Kerala, India
| | - Narayanan Namboodiri
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Soumi Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vanya Vaidya
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajaram Anantharaman
- Centre for Inherited Heart Diseases, Department of Cardiology, Kauvery Hospital, Chennai, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepa Selvi Rani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Debabrata Roy
- Department of Cardiology, Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, India
| | | | - Partha Sarathi Banerjee
- Manipal Hospital, Kolkata, India; Formerly Department of Cardiology, Medical College, Kolkata, India
| | | | | | - Rakesh Yadav
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
16
|
Năstasie OC, Radu DA, Onciul S, Drăgoescu MB, Popa-Fotea NM. Nexilin mutations, a cause of chronic heart failure: A state-of-the-art review starting from a clinical case. World J Cardiol 2025; 17:100290. [PMID: 40161564 PMCID: PMC11947951 DOI: 10.4330/wjc.v17.i3.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/12/2025] [Accepted: 02/18/2025] [Indexed: 03/21/2025] Open
Abstract
Heart failure (HF) is a medical condition associated with high morbidity and mortality, despite ongoing advances in diagnosis and treatment. Among the various causes of HF, cardiomyopathies are particularly significant and must be thoroughly diagnosed and characterized from the outset. In this review, we aim to present a brief overview of cardiomyopathies as a driver of HF, with a specific focus on the genetic causes, particularly nexilin (NEXN) cardiomyopathy, illustrated by a clinical case. The case involves a 63-year-old male who presented with HF symptoms at moderate exertion. Six months prior, he had been asymptomatic, and a routine transthoracic echocardiography had shown a preserved left ventricular ejection fraction (LVEF). However, during the current evaluation, transthoracic echocardiography revealed a dilated left ventricle with a severely reduced LVEF of 30%. Subsequent coronary angiography ruled out ischemic heart disease, while cardiac magnetic resonance imaging indicated a non-inflammatory, non-infiltrative dilated cardiomyopathy with extensive LV fibrosis. Genetic testing identified a heterozygous in-frame deletion variant in the NEXN gene [c.1949_1951del, p.(Gly650del)], classified as likely pathogenic. State-of-the-art HF treatment was initiated, including cardiac resynchronization therapy with defibrillator support. Following treatment, the patient's symptoms resolved, and LVEF improved to 42%. Interestingly, this patient experienced the onset of symptoms and left ventricular dysfunction within just six months, a much faster progression compared to previously documented cases where the G650del NEXN variant is typically linked to a more gradual development of dilated cardiomyopathy. Current literature offers limited data on patients with NEXN mutations, and the connection between this gene and both dilated and hypertrophic cardiomyopathies remains an area of active research.
Collapse
Affiliation(s)
| | - Dan-Andrei Radu
- Laboratory of Interventional Cardiology, Carol Davila Central Military University Emergency Hospital, Bucharest 010825, Romania
- Cardio-Thoracic Department, University of Medicine and Pharmacy "Carol Davila", Bucharest 050474, Romania
| | - Sebastian Onciul
- Department of Cardiology, Clinical Emergency Hospital, Bucharest 014461, Romania
- Cardio-Thoracic Department, University of Medicine and Pharmacy "Carol Davila", Bucharest 050474, Romania
| | | | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital, Bucharest 014461, Romania
- Cardio-Thoracic Department, University of Medicine and Pharmacy "Carol Davila", Bucharest 050474, Romania.
| |
Collapse
|
17
|
He P, Chang H, Qiu Y, Wang Z. Mitochondria associated membranes in dilated cardiomyopathy: connecting pathogenesis and cellular dysfunction. Front Cardiovasc Med 2025; 12:1571998. [PMID: 40166597 PMCID: PMC11955654 DOI: 10.3389/fcvm.2025.1571998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, yet therapeutic options remain limited. While traditional research has focused on mechanisms such as energy deficits and calcium dysregulation, increasing evidence suggests that mitochondria-associated membranes (MAMs) could provide new insights into understanding and treating DCM. In this narrative review, we summarize the key role of MAMs, crucial endoplasmic reticulum (ER)-mitochondria interfaces, in regulating cellular processes such as calcium homeostasis, lipid metabolism, and mitochondrial dynamics. Disruption of MAMs function may initiate pathological cascades, including ER stress, inflammation, and cell death. These disruptions in MAM function lead to further destabilization of cellular homeostasis. Identifying MAMs as key modulators of cardiac health may provide novel insights for early diagnosis and targeted therapies in DCM.
Collapse
Affiliation(s)
- Pingge He
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongbo Chang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueqing Qiu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhentao Wang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Tao S, Yu L, Li J, Wu J, Xia X, Li Y, Yang D, Zhang W. Efficacy and safety of Chinese classical prescriptions for dilated cardiomyopathy: a systematic review and Bayesian network meta-analysis. Syst Rev 2025; 14:59. [PMID: 40069806 PMCID: PMC11895376 DOI: 10.1186/s13643-025-02802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Chinese classical prescriptions (CCPs) are commonly utilized in China as an adjuvant treatment for dilated cardiomyopathy (DCM). Nevertheless, there was insufficient systematic evidence data to show the advantages of CCPs plus current conventional therapy (CT) against DCM. This network meta-analysis (NMA) sought to evaluate and prioritize the six different CCP types' respective efficacies for DCM. METHODS A comprehensive search was conducted from the databases' inception to November 30, 2024, to extract RCTs that addressed the use of CCPs in conjunction with CT for DCM. The databases included PubMed, Embase, Web of Science Core Collection, Cochrane Library, ProQuest, China National Knowledge Infrastructure (CNKI), China Science Periodical Database (CSPD), Chinese Citation Database (CCD), Chinese Biomedical Literature Database (CBM), and ClinicalTrials.gov. The Cochrane Risk of Bias assessment tool was used to evaluate the quality of the included RCTs. Surface under the cumulative ranking curve (SUCRA) probability values was employed to rank the relative efficacy. Bayesian network meta-analysis was applied to evaluate the efficacy of various CCPs. This review was registered with PROSPERO (CRD42024586365). RESULTS Following the application of inclusion and exclusion criteria, 27 eligible RCTs involving 2019 patients were included. The evaluated outcomes included clinical effectiveness rate (CER), left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), brain natriuretic peptide (BNP), cardiac output (CO), hypersensitive C-reactive protein (hs-CRP), and six-min walk test (6MWT). According to the NMA, Zhigancao decoction (ZGCD), Zhenwu decoction (ZWD), Shenfu decoction (SFD), Shengmai powder (SMP), Yangxin decoction (YXD), and Buyang Huanwu decoction (BYHW) in addition to CT considerably enhanced DCM treatment outcomes when compared to CT alone. SMP + CT (MD = 12.75, 95%CI 8.28-17.22) showed the highest probability of being the best treatment on account of the enhancement of LVEF. SFD + CT was most likely to be the optimal intervention for LVEDD decrease (MD = -4.68, 95%CI -8.73 to -0.62). YXD + CT (MD = -4.47, 95%CI -4.47 to -4.47) had the highest likelihood of being the optimal therapy for reducing LVESD. ZGCD + CT seemed to be the most promising intervention on the improvement in hs-CRP (MD = -2.82, 95%CI -3.60 to -2.04) and 6MWT (MD = 141.00, 95%CI 136.57 to 145.43). However, the optimal CCP for improving BNP and CO could not be identified based on the present studies. No significant adverse events emerged in the included studies. CONCLUSION This NMA indicated that adding CCPs to current CT treatment had a favorable effect on DCM. In light of the clinical efficacy and other outcomes, SMP + CT, SFD + CT, YXD + CT, and ZGCD + CT demonstrated a preferred improvement in patients with DCM when combined. Furthermore, additional larger RCTs with longer follow-up periods and standardized outcome reporting are required to give more solid evidence to support our findings due to the small sample size of the current studies and the presence of risk of bias.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Cardiology, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ji Wu
- Department of Cardiology, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Xia
- Department of Cardiology, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghao Li
- Department of Cardiology, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuang Yang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenjie Zhang
- Department of Cardiology, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Nelson AC, Molley TG, Gonzalez G, Kirkland NJ, Holman AR, Masutani EM, Chi NC, Engler AJ. Vinculin haploinsufficiency impairs integrin-mediated costamere remodeling on stiffer microenvironments. J Mol Cell Cardiol 2025; 200:1-10. [PMID: 39793757 PMCID: PMC11875886 DOI: 10.1016/j.yjmcc.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization. Analyses of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) harboring either VCL c.659dupA or VCL c.74del7 heterozygous VCL frameshift variants revealed that these VCL mutant hPSC-CMs exhibited heightened contractile strain energy, morphological maladaptation, and sarcomere disarray on stiffened matrix. Mechanosensitive recruitment of costameric talin 2, paxillin, focal adhesion kinase, and α-actinin was significantly reduced in vinculin variant cardiomyocytes. Despite poorly formed costamere complexes and sarcomeres, elevated expression of integrin β1 and cortical actin on stiff substrates may rescue force transmission on stiff substrates, an effect that is recapitulated in WT CMs by ligating integrin receptors and blocking mechanosensation. Together, these data support that heterozygous loss of VCL contributes to adverse cardiomyocyte remodeling by impairing adhesion-mediated force transmission from the costamere to the cytoskeleton. (191 words).
Collapse
Affiliation(s)
- Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Thomas G Molley
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gisselle Gonzalez
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Natalie J Kirkland
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Evan M Masutani
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Adam J Engler
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2025; 22:183-198. [PMID: 39394525 PMCID: PMC12046608 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
21
|
van der Pijl R, Nusayr E, Strom J, Slater R, Gohlke J, Hourani Z, Saripalli C, Kolb J, Hermanson K, Brynnel O, Smith JE, Labeit S, Methawasin M, Granzier H. Importance of N2BA Titin in Maintaining Cardiac Homeostasis and Its Role in Dilated Cardiomyopathy. Circ Heart Fail 2025; 18:e012083. [PMID: 39932400 PMCID: PMC11905908 DOI: 10.1161/circheartfailure.124.012083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/20/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND TTN (titin) is the third myofilament type of the cardiac sarcomere and performs important functions that include generating passive tension. Changes in TTN expression are associated with cardiac dysfunction, and TTN is one of the main genes linked to dilated cardiomyopathy (DCM). DCM is frequently associated with changes in the expression of N2BA (compliant cardiac TTN isoform), 1 of the 2 major TTN isoforms found in the heart (the other isoform being the N2B [stiff cardiac TTN isoform]). Whether altered expression of N2BA TTN causes DCM or is a secondary change remains unclear. METHODS Here, we present a mouse model, the TtnΔ112-158 model, which specifically shortens the proline, glutamate, valine, lysine region of the N2BA isoform. RESULTS Echocardiography and pressure-volume analysis revealed a DCM phenotype characterized by systolic dysfunction and dilation. RNA sequencing studies showed the absence of proline, glutamate, valine, lysine exons, as expected, but also reduced expressions of exons specific to the N2BA isoform of TTN. Protein studies revealed a reduction in the overall expression level of the N2BA isoform with a concomitant increase in N2B TTN, with preserved TT (total TTN) levels. Passive tension was modestly increased in the TtnΔ112-158 model. Western blotting revealed that the N2BA TTN-associated protein MARP1 (muscle ankyrin repeat protein 1) is downregulated during both the pre-DCM and DCM phase. Downregulation of MARP1 coincided with the downregulation of the transcription factor Gata-4 (GATA binding protein 4), an MARP1-regulating and interacting protein, which is associated with DCM development. CONCLUSIONS Thus, N2BA TTN is essential for maintaining cardiac health, and perturbed N2BA-MARP1 signaling contributes to DCM development.
Collapse
Affiliation(s)
- Robbert van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Eyad Nusayr
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Rebecca Slater
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Kyra Hermanson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Odhin Brynnel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - John E. Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Siegfried Labeit
- Medical Faculty Mannheim, Department of Integrative Pathophysiology, DZHK Partner Site Mannheim-Heidelberg, Germany (S.L.)
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.v.d.P., E.N., J.S., R.S., J.G., Z.H., C.S., J.K., K.H., O.B., J.E.S., M.M., H.G.)
| |
Collapse
|
22
|
Del Monte A, Sarkozy A, Verbrugge FH. Atrial Fibrillation Management with Guideline-Directed Medical Therapy and Comorbidity Treatment in Heart Failure Patients. Card Electrophysiol Clin 2025; 17:63-73. [PMID: 39893038 DOI: 10.1016/j.ccep.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Atrial myopathy is the underlying pathophysiological substrate of atrial fibrillation and contributes to the risk of heart failure as well. Atrial myopathy is caused by classic risk factors such as obesity, inflammation, diabetes, hypertension, and frequent alcohol use, in addition to structural heart and lung diseases that cause atrial pressure or volume overload. An optimal management of atrial fibrillation includes careful assessment of contributors to atrial myopathy, which can be treated by guideline-recommended medical therapies for heart failure, adequate control of congestion, and treatment of comorbid conditions such as sleep apnea syndrome. This approach works synergistically with rhythm control.
Collapse
Affiliation(s)
- Alvise Del Monte
- Heart Rhythm Management Centre, University Hospital Brussels, Jette, Belgium
| | - Andrea Sarkozy
- Heart Rhythm Management Centre, University Hospital Brussels, Jette, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frederik H Verbrugge
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium; Centre for Cardiovascular Diseases, University Hospital Brussels, Laarbeeklaan 101, Jette 1090, Belgium.
| |
Collapse
|
23
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
24
|
Manzi L, Buongiorno F, Narciso V, Florimonte D, Forzano I, Castiello DS, Sperandeo L, Paolillo R, Verde N, Spinelli A, Cristiano S, Avvedimento M, Canonico ME, Bardi L, Giugliano G, Gargiulo G. Acute Heart Failure and Non-Ischemic Cardiomyopathies: A Comprehensive Review and Critical Appraisal. Diagnostics (Basel) 2025; 15:540. [PMID: 40075788 PMCID: PMC11899404 DOI: 10.3390/diagnostics15050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Acute heart failure (AHF) is a complex clinical syndrome characterized by the rapid or gradual onset of symptoms and/or signs of heart failure (HF), leading to an unplanned hospital admission or an emergency department visit. AHF is the leading cause of hospitalization in patients over 65 years, thus significantly impacting public health care. However, its prognosis remains poor with high rates of mortality and rehospitalization. Many pre-existing cardiac conditions can lead to AHF, but it can also arise de novo due to acute events. Therefore, understanding AHF etiology could improve patient management and outcomes. Cardiomyopathies (CMPs) are a heterogeneous group of heart muscle diseases, including dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), non-dilated cardiomyopathy (NDLVC), and arrhythmogenic right ventricular cardiomyopathy (ARVC), that frequently present with HF. Patients with CMPs are under-represented in AHF studies compared to other etiologies, and therefore therapeutic responses and prognoses remain unknown. In DCM, AHF represents the most frequent cause of death despite treatment improvements. Additionally, DCM is the first indication for heart transplant (HT) among young and middle-aged adults. In HCM, the progression to AHF is rare and more frequent in patients with concomitant severe left ventricle (LV) obstruction and hypertrophy or severe LV systolic dysfunction. HF is the natural evolution of patients with RCM and HF is associated with poor outcomes irrespective of RCM etiology. Furthermore, while the occurrence of AHF is rare among patients with ARVC, this condition in NDLVC patients is currently unknown. In this manuscript, we assessed the available evidence on AHF in patients with CMPs. Data on clinical presentation, therapeutic management, and clinical outcomes according to specific CMPs are limited. Future HF studies assessing the clinical presentation, treatment, and prognosis of specific CMPs are warranted.
Collapse
Affiliation(s)
- Lina Manzi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Federica Buongiorno
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Viviana Narciso
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Domenico Florimonte
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Imma Forzano
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Domenico Simone Castiello
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Luca Sperandeo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Nicola Verde
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
- Department of Cardiology, AORN Cardarelli, 80131 Naples, Italy
| | - Alessandra Spinelli
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Stefano Cristiano
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Marisa Avvedimento
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Mario Enrico Canonico
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Luca Bardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Giuseppe Giugliano
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| | - Giuseppe Gargiulo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy; (L.M.); (F.B.); (V.N.); (D.F.); (I.F.); (D.S.C.); (L.S.); (R.P.); (N.V.); (A.S.); (S.C.); (M.A.); (M.E.C.); (L.B.); (G.G.)
| |
Collapse
|
25
|
Bergan N, Prachee I, Curran L, McGurk KA, Lu C, de Marvao A, Bai W, Halliday BP, Gregson J, O’Regan DP, Ware JS, Tayal U. Systematic Review, Meta-Analysis, and Population Study to Determine the Biologic Sex Ratio in Dilated Cardiomyopathy. Circulation 2025; 151:442-459. [PMID: 39895490 PMCID: PMC11827689 DOI: 10.1161/circulationaha.124.070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) appears to be diagnosed twice as often in male than in female patients. This could be attributed to underdiagnosis in female patients or sex differences in susceptibility. Up to 30% of cases have an autosomal dominant monogenic cause, where equal sex prevalence would be expected. The aim of this systematic review, meta-analysis, and population study was to assess the sex ratio in patients with DCM, stratified by genetic status, and evaluate whether this is influenced by diagnostic bias. METHODS A literature search identified DCM patient cohorts with discernible sex ratios. Exclusion criteria were studies with a small (n<100), pediatric, or peripartum population. Meta-analysis and metaregression compared the proportion of female participants for an overall DCM cohort and the following subtypes: all genetic DCM, individual selected DCM genes (TTN and LMNA), and gene-elusive DCM. Population DCM sex ratios generated from diagnostic codes were also compared with those from sex-specific means using the UK Biobank imaging cohort; this established ICD coded, novel imaging-first, and genotype first determined sex ratios. RESULTS A total of 99 studies, with 37 525 participants, were included. The overall DCM cohort had a 0.30 female proportion (95% CI, 0.28-0.32), corresponding to a male:female ratio (M:F) of 2.38:1. This was similar to patients with an identified DCM variant (0.31 [95% CI, 0.26-0.36]; M:F 2.22:1; P=0.56). There was also no significant difference when compared with patients with gene-elusive DCM (0.30 [95% CI, 0.24-0.37]; M:F 2.29:1; P=0.81). Furthermore, the ratio within autosomal dominant gene variants was not significantly different for TTN (0.28 [95% CI, 0.22-0.36]; M:F 2.51:1; P=0.82) or LMNA (0.35 [95% CI, 0.27-0.44]; M:F 1.84:1; P=0.41). Overall, the sex ratio for DCM in people with disease attributed to autosomal dominant gene variants was similar to the all-cause group (0.34 [95% CI, 0.28-0.40]; M:F 1.98:1; P=0.19). In the UK Biobank (n=47 549), DCM defined by International Classification of Diseases, 10th revision, coding had 4.5:1 M:F. However, implementing sex-specific imaging-first and genotype-first diagnostic approaches changed this to 1.7:1 and 2.3:1, respectively. CONCLUSIONS This study demonstrates that DCM is twice as prevalent in male patients. This was partially mitigated by implementing sex-specific DCM diagnostic criteria. The persistent male excess in genotype-positive patients with an equally prevalent genetic risk suggests additional genetic or environmental drivers for sex-biased penetrance. REGISTRATION URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42023451944.
Collapse
Affiliation(s)
- Natalie Bergan
- National Heart Lung Institute, Imperial College London, UK (N.B., L.C., K.A.M., B.P.H., J.S.W., U.T.)
| | - Ishika Prachee
- Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK (I.P., B.P.H., J.S.W., U.T.)
| | - Lara Curran
- National Heart Lung Institute, Imperial College London, UK (N.B., L.C., K.A.M., B.P.H., J.S.W., U.T.)
| | - Kathryn A. McGurk
- National Heart Lung Institute, Imperial College London, UK (N.B., L.C., K.A.M., B.P.H., J.S.W., U.T.)
- MRC Laboratory of Medical Sciences, London, UK (K.A.M., C.L., A.d.M., D.P.O., J.S.W.)
| | - Chang Lu
- MRC Laboratory of Medical Sciences, London, UK (K.A.M., C.L., A.d.M., D.P.O., J.S.W.)
| | - Antonio de Marvao
- MRC Laboratory of Medical Sciences, London, UK (K.A.M., C.L., A.d.M., D.P.O., J.S.W.)
- Department of Women and Children’s Health and British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, UK (A.d.M.)
| | - Wenjia Bai
- Biomedical Image Analysis Group, Department of Computing, London, UK (W.B.)
- Department of Brain Sciences, London, UK (W.B.)
| | - Brian P. Halliday
- National Heart Lung Institute, Imperial College London, UK (N.B., L.C., K.A.M., B.P.H., J.S.W., U.T.)
- Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK (I.P., B.P.H., J.S.W., U.T.)
| | - John Gregson
- London School of Hygiene and Tropical Medicine, UK (J.G.)
| | - Declan P. O’Regan
- Institute of Clinical Sciences, London, UK (D.P.O.)
- MRC Laboratory of Medical Sciences, London, UK (K.A.M., C.L., A.d.M., D.P.O., J.S.W.)
| | - James S. Ware
- National Heart Lung Institute, Imperial College London, UK (N.B., L.C., K.A.M., B.P.H., J.S.W., U.T.)
- Imperial College Healthcare NHS Trust, London, UK (J.S.W.)
- MRC Laboratory of Medical Sciences, London, UK (K.A.M., C.L., A.d.M., D.P.O., J.S.W.)
- Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK (I.P., B.P.H., J.S.W., U.T.)
| | - Upasana Tayal
- National Heart Lung Institute, Imperial College London, UK (N.B., L.C., K.A.M., B.P.H., J.S.W., U.T.)
- Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK (I.P., B.P.H., J.S.W., U.T.)
- The George Institute for Global Health, UK (U.T.)
| |
Collapse
|
26
|
Sun W, Zhang J, Li S, Fu W, Liu Y, Liu M, Dong J, Zhao X, Li X. TAB2 deficiency induces dilated cardiomyopathy by promoting mitochondrial calcium overload in human iPSC-derived cardiomyocytes. Mol Med 2025; 31:42. [PMID: 39905300 PMCID: PMC11792723 DOI: 10.1186/s10020-025-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND TGF-β-activated kinase 1 binding protein 2 (TAB2) is an intermediary protein that links Tumor necrosis factor receptor 1 (TNFR1) and other receptor signals to the TGF-β-activated kinase 1 (TAK1) signaling complex. TAB2 frameshift mutations have been linked to dilated cardiomyopathy (DCM), while the exact mechanism needs further investigation. METHODS In this study, we generated a TAB2 compound heterozygous knockout cell line in induced pluripotent stem cells (iPSCs) derived from a healthy individual using CRISPR/Cas9 technology. IPSCs are not species-dependent, are readily accessible, and raise fewer ethical concerns. RESULTS TAB2 disruption had no impact on the cardiac differentiation of iPSCs and led to confirmed TAB2 deficiency in human iPSC-derived cardiomyocytes (hiPSC-CMs). TAB2-deficient hiPSC-CMs were found to develop phenotypic features of DCM, such as distorted sarcomeric ultrastructure, decreased contractility and energy production, and mitochondrial damage at day 30 post differentiation. Paradoxically, TAB2 knockout cell lines showed abnormal calcium handling after 40 days, later than reduced contractility, suggesting that the main cause of impaired contractility was abnormal energy production due to mitochondrial damage. As early as day 25, TAB2 knockout cardiomyocytes showed significant mitochondrial calcium overload, which can lead to mitochondrial damage. Furthermore, TAB2 knockout activated receptor-interacting protein kinase 1 (RIPK1), leading to an increase in mitochondrial calcium uniporter (MCU) expression, thereby augmenting the uptake of mitochondrial calcium ions. Finally, the application of the RIPK1 inhibitor Nec-1s prevents the progression of these phenotypes. CONCLUSIONS In summary, TAB2 abatement cardiomyocytes mimic dilated cardiomyopathy in vitro. This finding emphasizes the importance of using a human model to study the underlying mechanisms of this specific disease. More importantly, the discovery of a unique pathogenic pathway introduces a new notion for the future management of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Wenrui Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Shuang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wanrong Fu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Mengduan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Longhu Zhonghuan Road No. 1, Jinshui District, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
Moradi A, Khoshniyat S, Nzeako T, Khazeei Tabari MA, Olanisa OO, Tabbaa K, Alkowati H, Askarianfard M, Daoud D, Oyesanmi O, Rodriguez A, Lin Y. The Future of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 Gene Therapy in Cardiomyopathies: A Review of Its Therapeutic Potential and Emerging Applications. Cureus 2025; 17:e79372. [PMID: 40130092 PMCID: PMC11930791 DOI: 10.7759/cureus.79372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Cardiomyopathies, among the leading causes of heart failure and sudden cardiac death, are often driven by genetic mutations affecting the heart's structural proteins. Despite significant advancements in understanding the genetic basis of hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC), effective long-term therapies remain limited. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) gene editing offers a promising therapeutic strategy to address these genetic disorders at their root. CRISPR-Cas9 enables precise modification of pathogenic variants (PVs) in genes encoding sarcomeric and desmosomal proteins, which are frequently implicated in cardiomyopathies. By inducing site-specific double-stranded breaks in DNA, followed by repair through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), this system allows for targeted correction of mutations. In preclinical models, CRISPR-Cas9 has shown promise in correcting HCM-associated mutations in β-myosin heavy chain 7 (MYH7), preventing disease phenotypes such as ventricular hypertrophy and myocardial fibrosis. Similarly, gene editing has successfully rectified DCM-linked mutations in Titin (TTN) and LMNA, resulting in improved heart function and reduced pathological remodeling. For ARVC, CRISPR-Cas9 has demonstrated the ability to repair mutations in desmosomal genes such as plakophilin 2 (PKP2), thereby restoring normal cardiac function and cellular adhesion. Despite these successes, challenges remain, including mosaicism, delivery efficiency, and off-target effects. Nevertheless, CRISPR-Cas9 represents a transformative approach to treating genetic cardiomyopathies, potentially offering long-lasting cures by directly addressing their underlying genetic causes.
Collapse
Affiliation(s)
- Ali Moradi
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Sina Khoshniyat
- Biomedicine, School of Sciences, La Trobe University, Melbourne, AUS
| | | | | | | | - Kutiba Tabbaa
- Cardiology, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Hamza Alkowati
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | | | - Daoud Daoud
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Olu Oyesanmi
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Angelina Rodriguez
- Family Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Yizhi Lin
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| |
Collapse
|
28
|
Bonowicz K, Jerka D, Piekarska K, Olagbaju J, Stapleton L, Shobowale M, Bartosiński A, Łapot M, Bai Y, Gagat M. CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment. Cells 2025; 14:131. [PMID: 39851560 PMCID: PMC11763404 DOI: 10.3390/cells14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD). The technology's ability to correct single-gene mutations with high precision and efficiency positions it as a groundbreaking tool in cardiovascular therapy. Recent developments have extended the capabilities of CRISPR-Cas9 to include mitochondrial genome editing, a critical advancement for addressing mitochondrial dysfunctions often linked to cardiovascular disorders. Despite its promise, significant challenges remain, including off-target effects, ethical concerns, and limitations in delivery methods, which hinder its translation into clinical practice. This article also explores the ethical and regulatory considerations surrounding gene editing technologies, emphasizing the implications of somatic versus germline modifications. Future research efforts should aim to enhance the accuracy of CRISPR-Cas9, improve delivery systems for targeted tissues, and ensure the safety and efficacy of treatments in the long term. Overcoming these obstacles could enable CRISPR-Cas9 to not only treat but also potentially cure genetically driven cardiovascular diseases, heralding a new era in precision medicine for cardiovascular health.
Collapse
Affiliation(s)
- Klaudia Bonowicz
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Dominika Jerka
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Klaudia Piekarska
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Janet Olagbaju
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Laura Stapleton
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Munirat Shobowale
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Andrzej Bartosiński
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Magdalena Łapot
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Yidong Bai
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| |
Collapse
|
29
|
Hanna AD, Chang T, Ho KS, Yee RSZ, Walker WC, Agha N, Hsu CW, Jung SY, Dickinson ME, Samee MAH, Ward CS, Lee CS, Rodney GG, Hamilton SL. Mechanisms underlying dilated cardiomyopathy associated with FKBP12 deficiency. J Gen Physiol 2025; 157:e202413583. [PMID: 39661086 PMCID: PMC11633665 DOI: 10.1085/jgp.202413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a highly prevalent and genetically heterogeneous condition that results in decreased contractility and impaired cardiac function. The FK506-binding protein FKBP12 has been implicated in regulating the ryanodine receptor in skeletal muscle, but its role in cardiac muscle remains unclear. To define the effect of FKBP12 in cardiac function, we generated conditional mouse models of FKBP12 deficiency. We used Cre recombinase driven by either the α-myosin heavy chain, (αMHC) or muscle creatine kinase (MCK) promoter, which are expressed at embryonic day 9 (E9) and E13, respectively. Both conditional models showed an almost total loss of FKBP12 in adult hearts compared with control animals. However, only the early embryonic deletion of FKBP12 (αMHC-Cre) resulted in an early-onset and progressive DCM, increased cardiac oxidative stress, altered expression of proteins associated with cardiac remodeling and disease, and sarcoplasmic reticulum Ca2+ leak. Our findings indicate that FKBP12 deficiency during early development results in cardiac remodeling and altered expression of DCM-associated proteins that lead to progressive DCM in adult hearts, thus suggesting a major role for FKBP12 in embryonic cardiac muscle.
Collapse
Affiliation(s)
- Amy D. Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin S. Ho
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Nadia Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Mary E. Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Christopher S. Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - George G. Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Susan L. Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Satish T, Hong KN, Kaski JP, Greenberg BH. Challenges in Cardiomyopathy Gene Therapy Clinical Trial Design. JACC. HEART FAILURE 2025; 13:154-166. [PMID: 39545889 DOI: 10.1016/j.jchf.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
Gene therapy has emerged as a possible treatment for progressive, debilitating Mendelian cardiomyopathies with limited therapeutic options. This paper arises from discussions at the 2023 Cardiovascular Clinical Trialists Forum and highlights several challenges relevant to gene therapy clinical trials, including low prevalence and high phenotypic heterogeneity of Mendelian cardiomyopathies, outcome selection complexities and resulting regulatory uncertainty, and immune responses to the adeno-associated viral vectors that are being used in ongoing studies. Avenues to address these challenges such as natural history studies, external controls, novel regulatory pathways, and immunosuppression are discussed. Relevant cases of recent therapy approvals are highlighted. Ultimately, this work aims to broadly frame discussions on and provide potential future avenues for clinical trial design for rare cardiomyopathy gene therapies.
Collapse
Affiliation(s)
- Tejus Satish
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly N Hong
- University of California San Diego Health, San Diego, California, USA
| | - Juan Pablo Kaski
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Barry H Greenberg
- University of California San Diego Health, San Diego, California, USA.
| |
Collapse
|
31
|
Li X, Xu Y, Chen X, Liu J, He W, Wang S, Yin H, Zhou X, Song Y, Peng L, Chen Y. Prognostic value of enhanced cine cardiac MRI-based radiomics in dilated cardiomyopathy. Int J Cardiol 2025; 418:132617. [PMID: 39370047 DOI: 10.1016/j.ijcard.2024.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Early precise identification of high-risk dilated cardiomyopathy (DCM) phenotype is essential for clinical decision-making and patient surveillance. The aim of the study was to assess the prognostic value of enhanced cine cardiac magnetic resonance (CMR)-based radiomics in DCM. METHODS We prospectively enrolled 401 (training set: 281; test set: 120) DCM patients. Radiomic features were extracted from enhanced cine images of entire left ventricular wall and selected by the least absolute shrinkage and selection operator. Different predictive models were built using logistic regression classifier to predict all-cause mortality and heart transplantation. Model performances were compared with the area under the receiver operating characteristic curves (AUCs). Kaplan-Meier curves, log-rank test, and Cox regression were used for survival analysis. RESULTS Endpoint events occurred in 65 patients over a median follow-up period of 25.4 months. 13 radiomic features were finally selected. The Rad_Combined model integrating clinical characteristics, CMR parameters and radiomics features achieved the best performance with an AUC of 0.836 and 0.835 in the training and test sets, respectively. High-risk groups with endpoint events defined by the Rad_Combined model had significantly shorter survival time than low-risk group in both the training [Hazard Ratio (HR) = 7.74, P < 0.001] and test sets (HR = 4.84, P < 0.001). CONCLUSION The Rad_Combined model might serve as an effective tool to help risk stratification and clinical decision-making for patients with DCM. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1800017058 by the ethics committee of West China hospital,Sichuan University.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenzhang He
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Simeng Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongkun Yin
- Infervision Medical Technology Co., Ltd, Beijing, China
| | - Xiaoyue Zhou
- Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yang Song
- Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Acuña-Ochoa JG, Balderrábano-Saucedo NA, Cepeda-Nieto AC, Alvarado-Cervantes MY, Ibarra-Garcia VL, Barr D, Gage MJ, Pfeiffer R, Hu D, Barajas-Martinez H. A De Novo Mutation in ACTC1 and a TTN Variant Linked to a Severe Sporadic Infant Dilated Cardiomyopathy Case. Case Rep Genet 2024; 2024:9517735. [PMID: 39759977 PMCID: PMC11699985 DOI: 10.1155/crig/9517735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Structural or electrophysiologic cardiac anomalies may compromise cardiac function, leading to sudden cardiac death (SCD). Genetic screening of families with severe cardiomyopathies underlines the role of genetic variations in cardiac-specific genes. The present study details the clinical and genetic characterization of a malignant dilated cardiomyopathy (DCM) case in a 1-year-old Mexican child who presented a severe left ventricular dilation and dysfunction that led to SCD. A total of 132 genes (48 structure- and 84 electrical-related genes) were examined by next generation sequencing to identify potential causative mutations in comparison to control population. In silico analysis identified only two deleterious heterozygous mutations within an evolutionarily well-conserved region of the sarcomeric genes ACTC1/cardiac actin (c.664G > A/p.Ala222Thr) and TTN/titin (c.33250G > A/p.Glu11084Lys). Further pedigree analysis revealed the father of the index case to carry with the TTN mutation. Surprisingly, the ACTC1 mutation was not harbored by any first-degree family member. Computational 3D modeling of the mutated proteins showed electrostatic and conformational shifts of cardiac actin compared to wild-type version, as well as changes in the stability of the compact/folded states of titin that normally contributes to avoid mechanic damage. In conclusion, our findings suggest a likely pathogenic de novo mutation in ACTC1 in coexpression of a TTN variant as possible causes of an early onset of a severe DCM and premature death. These results may increase the known clinical pathogenic variations that may critically alter the structure of the heart, whose fatality could be prevented when rapidly detected.
Collapse
Affiliation(s)
- Jose G. Acuña-Ochoa
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
| | - Norma A. Balderrábano-Saucedo
- Cardiomyopathies and Arrhythmias Research Laboratory/Department, Federico Gómez Children's Hospital of Mexico, Mexico 06720, Mexico
| | - Ana C. Cepeda-Nieto
- Molecular Genomics Laboratory/Department, Faculty of Medicine, Universidad Autónoma de Coahuila, Saltillo, Coahuila 25000, Mexico
| | - Maria Y. Alvarado-Cervantes
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
| | - Vianca L. Ibarra-Garcia
- Therapeutic Innovation Program/Division, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Daniel Barr
- Chemistry Department, University of Mary, Bismarck, North Dakota 58504, USA
| | - Matthew J. Gage
- Chemistry Department, University of Massachusetts at Lowell, Lowell, Massachusetts, 01854, USA
| | - Ryan Pfeiffer
- Molecular Genetics Department, Masonic Medical Research Institute, Utica, New York 13501, USA
| | - Dan Hu
- Molecular Genetics Department, Masonic Medical Research Institute, Utica, New York 13501, USA
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hector Barajas-Martinez
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
- Department of Pharmacology and Physiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Esteban-Fernández A, Anguita-Sánchez M, Rosillo N, Bernal Sobrino JL, Del Prado N, Fernández-Pérez C, Rodríguez-Padial L, Elola Somoza FJ. Comprehensive analysis of clinical characteristics, management, and prognosis in patients with dilated cardiomyopathy discharged from Spanish hospitals. Hellenic J Cardiol 2024:S1109-9666(24)00268-9. [PMID: 39710048 DOI: 10.1016/j.hjc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Dilated cardiomyopathy (DCM) is a leading cause of heart failure (HF) characterized by left ventricular dilatation and systolic dysfunction not explained by abnormal loading conditions. Despite its prevalence, DCM's epidemiology and prognosis remain poorly studied in our country. METHODS A retrospective observational study encompassed patients discharged from all Spanish public hospitals between 2016 and 2021 diagnosed with DCM. Data were extracted from the Minimum Basic Data Set. The study focused on hospital admissions, comorbidities, in-hospital mortality, and readmission rates for circulatory system diseases at 30 and 365 days. RESULTS Among 27,402 index episodes, DCM was the primary diagnosis in 12.4%, predominantly affecting men (72.5%). In-hospital mortality was 8.7%, with significant predictors including cardiogenic shock (OR: 12.4, 95% CI: 9.6-15.9), advanced or metastatic cancer (OR: 4.3, 95% CI: 3.8-5.0), renal failure (OR: 2.4, 95% CI: 2.2-2.7), and chronic liver disease (OR: 2.4, 95% CI: 2.1-2.8). Readmission rates were 7.9% at 30 days and 25.5% at 365 days, predominantly due to HF. Multivariate analysis identified age (IRR: 1.02, 95% CI: 1.01-1.02), female sex (IRR: 0.87, 95% CI: 0.79-0.96), severe hematological diseases (IRR: 2.12, 95% CI: 1.45-3.10), and metastatic cancer (IRR: 1.65, 95% CI: 1.31-2.07) as predictors of 30-day readmissions. At 365 days, predictors included age (IRR: 1.02, 95% CI: 1.01-1.02), female sex (IRR: 0.80, 95% CI: 0.74-0.86), severe hematological diseases (IRR: 2.43, 95% CI: 1.66-3.56), and renal failure (IRR: 1.42, 95% CI: 1.31-1.55). CONCLUSION This study highlights the substantial hospitalization burden and mortality risk among DCM patients, emphasizing the necessity for advanced management strategies and specialized cardiac care.
Collapse
Affiliation(s)
- Alberto Esteban-Fernández
- Cardiology Department, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain; Faculty of Health Sciences, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, Madrid, Spain.
| | - Manuel Anguita-Sánchez
- Cardiology Department, Hospital Universitario Reina Sofía, Córdoba, Spain; The Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba University, Córdoba, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nicolás Rosillo
- Institute for the Improvement of Health Care (IMAS Foundation), Madrid, Spain; Preventive Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Náyade Del Prado
- Institute for the Improvement of Health Care (IMAS Foundation), Madrid, Spain
| | - Cristina Fernández-Pérez
- Institute for the Improvement of Health Care (IMAS Foundation), Madrid, Spain; Preventive Medicine Department, Área Sanitaria de Santiago y Barbanza, Instituto de Investigaciones Sanitarias de Santiago, Santiago de Compostela (A Coruña), Spain
| | | | | |
Collapse
|
34
|
Wang H, Zhao R, Wang J, Han X, Li K, Gao Y, Wang Y, Ma A, Wang T, Du Y. A potential pathogenic mutation of LAMA4 in a Chinese family with dilated cardiomyopathy and conduction system disease. Medicine (Baltimore) 2024; 103:e40875. [PMID: 39686469 PMCID: PMC11651427 DOI: 10.1097/md.0000000000040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by ventricular dilation and poor systolic function. Approximately half of idiopathic DCM cases are assigned to genetic causes in familial or apparently sporadic cases, and more than 50 genes are reported to cause DCM. However, genetic basis of most DCM patients still keeps unknown and require further study. Clinical data, family histories, and blood samples were collected from the proband and family members in a Chinese family presenting with DCM and conduction system disease. A genetic analysis was performed using next generation sequencing (NGS). Bioinformatic analysis was performed to predict the pathogenic consequence of gene mutation. A missense heterozygous mutation c.652G > A (p.G218R) in Laminin Subunit Alpha-4 (LAMA4) gene was identified in proband and his 2 brothers with relevant clinical symptoms. Individuals without carrying this mutation in this family had no symptoms or cardiac structural abnormality related to DCM or conduction system disease. The p.G218R mutation is located in a conservative area within the laminin epidermal growth factor (EGF)-like domain of LAMA4 with uncertain significance in ClinVar archive. Bioinformatic analysis predicted p.G218R mutation as deleterious and pathogenic damaging in DCM patients. Our results reported a potential pathogenic mutation associated with DCM, which may provide further insight into genetic contributions of LAMA4 gene mutations to DCM phenotypes.
Collapse
Affiliation(s)
- Huaigen Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ronghui Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaojiao Wang
- Department of Anaesthesiology and Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Xiu Han
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kaifeng Li
- Department of Cardiovascular Medicine, Luonan County Hospital, Xi’an, Shaanxi, China
| | - Yafeng Gao
- Department of Cardiovascular Medicine, Luonan County Hospital, Xi’an, Shaanxi, China
| | - Ya Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Molecular Cardiology (Xi’an Jiaotong University), Xi’an, Shaanxi, China
- Shaanxi International Science & Technology Cooperation Base for Cardiovascular Precision Medicine, Xi’an, Shaanxi, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Molecular Cardiology (Xi’an Jiaotong University), Xi’an, Shaanxi, China
- Shaanxi International Science & Technology Cooperation Base for Cardiovascular Precision Medicine, Xi’an, Shaanxi, China
| | - Yuan Du
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
35
|
Figueiral M, Paldino A, Fazzini L, Pereira NL. Genetic Biomarkers in Heart Failure: From Gene Panels to Polygenic Risk Scores. Curr Heart Fail Rep 2024; 21:554-569. [PMID: 39405019 DOI: 10.1007/s11897-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a comprehensive overview of the current understanding of genetic markers associated with heart failure (HF) and its underlying causative diseases, such as cardiomyopathies. It highlights the relevance of genetic biomarkers in diagnosing HF, predicting prognosis, potentially identifying its preclinical stages and identifying targets to enable the implementation of individualized medicine approaches. RECENT FINDINGS The prevalence of HF is increasing due to an aging population but with greater access to disease-modifying therapies. Advanced diagnostic tools such as cardiac magnetic resonance, nuclear imaging, and AI-enabled diagnostic testing are now being utilized to further characterize HF patients. Additionally, the importance of genetic testing in HF diagnosis and management is increasingly being recognized. Genetic biomarkers, including single nucleotide polymorphisms (SNPs) and rare genetic variants, are emerging as crucial tools for diagnosing HF substrates, determining prognosis and increasingly directing therapy. These genetic insights are key to optimizing HF management and delivering personalized treatment tailored to individual patients. HF is a complex syndrome affecting millions globally, characterized by high mortality and significant economic burden. Understanding the underlying etiologies of HF is essential for improving management and clinical outcomes. Recent advances highlight the use of multimodal assessments, including AI-enabled diagnostics and genetic testing, to better characterize and manage HF. Genetic biomarkers are particularly promising in identifying preclinical HF stages and providing personalized treatment options. The genetic contribution to HF is heterogeneous, with both monogenic and polygenic bases playing a role. These developments underscore the shift towards personalized medicine in HF management.
Collapse
Affiliation(s)
- Marta Figueiral
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alessia Paldino
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Luca Fazzini
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Zheng SL, Henry A, Cannie D, Lee M, Miller D, McGurk KA, Bond I, Xu X, Issa H, Francis C, De Marvao A, Theotokis PI, Buchan RJ, Speed D, Abner E, Adams L, Aragam KG, Ärnlöv J, Raja AA, Backman JD, Baksi J, Barton PJR, Biddinger KJ, Boersma E, Brandimarto J, Brunak S, Bundgaard H, Carey DJ, Charron P, Cook JP, Cook SA, Denaxas S, Deleuze JF, Doney AS, Elliott P, Erikstrup C, Esko T, Farber-Eger EH, Finan C, Garnier S, Ghouse J, Giedraitis V, Guðbjartsson DF, Haggerty CM, Halliday BP, Helgadottir A, Hemingway H, Hillege HL, Kardys I, Lind L, Lindgren CM, Lowery BD, Manisty C, Margulies KB, Moon JC, Mordi IR, Morley MP, Morris AD, Morris AP, Morton L, Noursadeghi M, Ostrowski SR, Owens AT, Palmer CNA, Pantazis A, Pedersen OBV, Prasad SK, Shekhar A, Smelser DT, Srinivasan S, Stefansson K, Sveinbjörnsson G, Syrris P, Tammesoo ML, Tayal U, Teder-Laving M, Thorgeirsson G, Thorsteinsdottir U, Tragante V, Trégouët DA, Treibel TA, Ullum H, Valdes AM, van Setten J, van Vugt M, Veluchamy A, Verschuren WMM, Villard E, Yang Y, Asselbergs FW, Cappola TP, Dube MP, Dunn ME, Ellinor PT, Hingorani AD, Lang CC, Samani NJ, Shah SH, Smith JG, Vasan RS, et alZheng SL, Henry A, Cannie D, Lee M, Miller D, McGurk KA, Bond I, Xu X, Issa H, Francis C, De Marvao A, Theotokis PI, Buchan RJ, Speed D, Abner E, Adams L, Aragam KG, Ärnlöv J, Raja AA, Backman JD, Baksi J, Barton PJR, Biddinger KJ, Boersma E, Brandimarto J, Brunak S, Bundgaard H, Carey DJ, Charron P, Cook JP, Cook SA, Denaxas S, Deleuze JF, Doney AS, Elliott P, Erikstrup C, Esko T, Farber-Eger EH, Finan C, Garnier S, Ghouse J, Giedraitis V, Guðbjartsson DF, Haggerty CM, Halliday BP, Helgadottir A, Hemingway H, Hillege HL, Kardys I, Lind L, Lindgren CM, Lowery BD, Manisty C, Margulies KB, Moon JC, Mordi IR, Morley MP, Morris AD, Morris AP, Morton L, Noursadeghi M, Ostrowski SR, Owens AT, Palmer CNA, Pantazis A, Pedersen OBV, Prasad SK, Shekhar A, Smelser DT, Srinivasan S, Stefansson K, Sveinbjörnsson G, Syrris P, Tammesoo ML, Tayal U, Teder-Laving M, Thorgeirsson G, Thorsteinsdottir U, Tragante V, Trégouët DA, Treibel TA, Ullum H, Valdes AM, van Setten J, van Vugt M, Veluchamy A, Verschuren WMM, Villard E, Yang Y, Asselbergs FW, Cappola TP, Dube MP, Dunn ME, Ellinor PT, Hingorani AD, Lang CC, Samani NJ, Shah SH, Smith JG, Vasan RS, O'Regan DP, Holm H, Noseda M, Wells Q, Ware JS, Lumbers RT. Genome-wide association analysis provides insights into the molecular etiology of dilated cardiomyopathy. Nat Genet 2024; 56:2646-2658. [PMID: 39572783 PMCID: PMC11631752 DOI: 10.1038/s41588-024-01952-y] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2024] [Indexed: 12/12/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation. We report a genome-wide association study and multi-trait analysis of DCM (14,256 cases) and three left ventricular traits (36,203 UK Biobank participants). We identified 80 genomic risk loci and prioritized 62 putative effector genes, including several with rare variant DCM associations (MAP3K7, NEDD4L and SSPN). Using single-nucleus transcriptomics, we identify cellular states, biological pathways, and intracellular communications that drive pathogenesis. We demonstrate that polygenic scores predict DCM in the general population and modify penetrance in carriers of rare DCM variants. Our findings may inform the design of genetic testing strategies that incorporate polygenic background. They also provide insights into the molecular etiology of DCM that may facilitate the development of targeted therapeutics.
Collapse
Affiliation(s)
- Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Douglas Cannie
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Miller
- Division of Biosciences, University College London, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isabelle Bond
- Institute of Cardiovascular Science, University College London, London, UK
| | - Xiao Xu
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Catherine Francis
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Antonio De Marvao
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Doug Speed
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society/Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Anna Axelsson Raja
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joshua D Backman
- Analytical Genetics, Regeneron Genetics Center, Tarrytown, NY, USA
| | - John Baksi
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Kiran J Biddinger
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Boersma
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Utrecht, the Netherlands
| | - Jeffrey Brandimarto
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Philippe Charron
- Sorbonne Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Diseases, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
- APHP, Department of Genetics, Pitié-Salpêtrière Hospital, Paris, France
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Stuart A Cook
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
- British Heart Foundation Data Science Centre, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
- Laboratory of Excellence GENMED (Medical Genomics), Paris, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Alexander S Doney
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Deparment of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sophie Garnier
- Sorbonne Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Diseases, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Jonas Ghouse
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Daniel F Guðbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Brian P Halliday
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
| | - Hans L Hillege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isabella Kardys
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Utrecht, the Netherlands
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Brandon D Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Kenneth B Margulies
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James C Moon
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Ify R Mordi
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michael P Morley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Lori Morton
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mahdad Noursadeghi
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen University Hospital, Copenhagen, Denmark
| | - Anjali T Owens
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin N A Palmer
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Antonis Pantazis
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ole B V Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Sanjay K Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Akshay Shekhar
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Diane T Smelser
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Sundararajan Srinivasan
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Mari-Liis Tammesoo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Upasana Tayal
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - David-Alexandre Trégouët
- Laboratory of Excellence GENMED (Medical Genomics), Paris, France
- Univ. Bordeaux, INSERM, BPH, Bordeaux, France
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | | | - Ana M Valdes
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marion van Vugt
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Abirami Veluchamy
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - W M Monique Verschuren
- Department Life Course, Lifestyle and Health, Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eric Villard
- Sorbonne Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Diseases, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Yifan Yang
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Folkert W Asselbergs
- Institute of Cardiovascular Science, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Thomas P Cappola
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie-Pierre Dube
- Montreal Heart Institute, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael E Dunn
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Tuanku Muhriz Chair, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Svati H Shah
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK.
- Health Data Research UK, University College London, London, UK.
- British Heart Foundation Data Science Centre, London, UK.
| |
Collapse
|
37
|
Kubanek M, Binova J, Piherova L, Krebsova A, Kotrc M, Hartmannova H, Hodanova K, Musalkova D, Stranecky V, Palecek T, Chaloupka A, Grochova I, Krejci J, Petrkova J, Melenovsky V, Kmoch S, Kautzner J. Genotype is associated with left ventricular reverse remodelling and early events in recent-onset dilated cardiomyopathy. ESC Heart Fail 2024; 11:4127-4138. [PMID: 39129193 PMCID: PMC11631235 DOI: 10.1002/ehf2.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
AIMS Recent-onset dilated cardiomyopathy (RODCM) is characterized by heterogeneous aetiology and diverse clinical outcomes, with scarce data on genotype-phenotype correlates. Our aim was to correlate individual RODCM genotypes with left ventricular reverse remodelling (LVRR) and clinical outcomes. METHODS AND RESULTS In this prospective study, a total of 386 Czech RODCM patients with symptom duration ≤6 months underwent genetic counselling and whole-exome sequencing (WES). The presence of pathogenic (class 5) or likely pathogenic (class 4) variants in a set of 72 cardiomyopathy-related genes was correlated with the occurrence of all-cause death, heart transplantation, or implantation of a ventricular assist device (primary outcome) and/or ventricular arrhythmia event (secondary outcome). LVRR was defined as an improvement of left ventricular ejection fraction to >50% or ≥10% absolute increase, with a left ventricular end-diastolic diameter ≤33 mm/m2 or ≥10% relative decrease. Median follow-up was 41 months. RODCM was familial in 98 (25%) individuals. Class 4-5 variants of interest (VOIs) were identified in 125 (32%) cases, with 69 (18%) having a single titin-truncating variant (TTNtv) and 56 (14%) having non-titin (non-TTN) VOIs. The presence of class 4-5 non-TTN VOIs, but not of TTNtv, heralded a lower probability of 12-month LVRR and proved to be an independent baseline predictor both of the primary and the secondary outcome. The negative result of genetic testing was a strong protective baseline variable against occurrence of life-threatening ventricular arrhythmias. Detection of class 4-5 VOIs in genes coding nuclear envelope proteins was another independent predictor of both study outcomes at baseline and also of life-threatening ventricular arrhythmias after 12 months. Class 4-5 VOIs of genes coding cytoskeleton were associated with an increased risk of life-threatening ventricular arrhythmias after baseline assessment. A positive family history of dilated cardiomyopathy alone only related to a lower probability of LVRR at 12 months and at the final follow-up. CONCLUSIONS RODCM patients harbouring class 4-5 non-TTN VOIs are at higher risk of progressive heart failure and life-threatening ventricular arrhythmias. Genotyping may improve their early risk stratification at baseline assessment.
Collapse
Affiliation(s)
- Milos Kubanek
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, ERN GUARD‐Heart, IKEMPragueCzech Republic
| | - Jana Binova
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
- Institute of Physiology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Lenka Piherova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Research Unit for Rare DiseasesCharles UniversityPragueCzech Republic
| | - Alice Krebsova
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, ERN GUARD‐Heart, IKEMPragueCzech Republic
| | - Martin Kotrc
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
- Institute of Physiology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Hana Hartmannova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Research Unit for Rare DiseasesCharles UniversityPragueCzech Republic
| | - Katerina Hodanova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Research Unit for Rare DiseasesCharles UniversityPragueCzech Republic
| | - Dita Musalkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Research Unit for Rare DiseasesCharles UniversityPragueCzech Republic
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Research Unit for Rare DiseasesCharles UniversityPragueCzech Republic
| | - Tomas Palecek
- Department of Cardiovascular Medicine, Second Department of Medicine, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
| | - Anna Chaloupka
- First Internal Clinic of Cardio‐AngiologySt. Anne's University Hospital and Medical School of Masaryk UniversityBrnoCzech Republic
| | - Ilga Grochova
- First Internal Clinic of Cardio‐AngiologySt. Anne's University Hospital and Medical School of Masaryk UniversityBrnoCzech Republic
| | - Jan Krejci
- First Internal Clinic of Cardio‐AngiologySt. Anne's University Hospital and Medical School of Masaryk UniversityBrnoCzech Republic
| | - Jana Petrkova
- Department of Internal Medicine I – CardiologyUniversity Hospital OlomoucOlomoucCzech Republic
- Department of Pathological Physiology, Faculty of Medicine and DentistryPalacky University OlomoucOlomoucCzech Republic
| | - Vojtech Melenovsky
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Stanislav Kmoch
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Research Unit for Rare DiseasesCharles UniversityPragueCzech Republic
| | - Josef Kautzner
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
38
|
Tran DD, Lien NTK, Tung NV, Huu NC, Nguyen PT, Tien DA, Thu DTH, Huy BQ, Oanh TTK, Lien NTP, Hien NT, Lan NN, Thanh LT, Duc NM, Hoang NH. Three Novel Pathogenic Variants in Unrelated Vietnamese Patients with Cardiomyopathy. Diagnostics (Basel) 2024; 14:2709. [PMID: 39682617 DOI: 10.3390/diagnostics14232709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Cardiomyopathy, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), is a major cause of heart failure (HF) and a leading indication for heart transplantation. Of these patients, 20-50% have a genetic cause, so understanding the genetic basis of cardiomyopathy will provide knowledge about the pathogenesis of the disease for diagnosis, treatment, prevention, and genetic counseling for families. Methods: This study collected nine patients from different Vietnamese families for genetic analysis at The Cardiovascular Center, E Hospital, Hanoi, Vietnam. The patients were diagnosed with cardiomyopathy based on clinical symptoms. Whole-exome sequencing (WES) was performed in the Vietnamese patients to identify variants associated with cardiomyopathy, and the Sanger sequencing method was used to validate the variants in the patients' families. The influence of the variants was predicted using in silico analysis tools. Results: Nine heterozygous variants were detected as a cause of disease in the patients, three of which were novel variants, including c.284C>G, p.Pro95Arg in the MYL2 gene, c.2356A>G, p.Thr786Ala in the MYH7 gene, and c.1223T>A, p.Leu408Gln in the DES gene. Two other variants were pathogenic variants (c.602T>C, p.Ile201Thr in the MYH7 gene and c.1391G>C, p.Gly464Ala in the PTPN11 gene), and four were variants of uncertain significance in the ACTA2, ANK2, MYOZ2, and PRKAG2 genes. The results of the in silico prediction software showed that the identified variants were pathogenic and responsible for the patients' DCM. Conclusions: Our results contribute to the understanding of cardiomyopathy pathogenesis and provide a basis for diagnosis, treatment, prevention, and genetic counseling.
Collapse
Affiliation(s)
- Dac Dai Tran
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Cong Huu
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Phan Thao Nguyen
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Do Anh Tien
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Doan Thi Hoai Thu
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Bui Quang Huy
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Tran Thi Kim Oanh
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | | | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Str., Dong Da, Hanoi 100000, Vietnam
| | - Le Tat Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Minh Duc
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- National Research Center for Medicinal Plant Germplasm & Breeding, National Institute of Medicinal Materials, Thanh Tri, Hanoi 100000, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
39
|
Lin Z, Dai F, Li B, Zhao Y, Wang C. Integrating Circle-Seq with transcriptomics reveals genome-wide characterization of extrachromosomal circular DNA for dilated cardiomyopathy. Biol Direct 2024; 19:125. [PMID: 39614284 DOI: 10.1186/s13062-024-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) are commonly found in various tumors and play a critical role in promoting oncogenesis. However, little is known about the characteristics and nature of eccDNAs in human heart failure. The aim of this study was to comprehensively analyze eccDNAs in human heart failure caused by dilated cardiomyopathy (DCM) and explore their potential functions. METHODS Circle-Seq and RNA-Seq were performed in cardiac tissue samples obtained from patients with DCM and healthy controls to identify eccDNAs and corresponding genes. Inward PCR, outward PCR and Sanger sequencing were conducted to validate the circular structure of eccDNAs. Bioinformatics was employed to probe the transcriptional activity of eccDNAs and their potential roles in the development of DCM. Ligase assisted minicircle accumulation strategy was used to synthesize a 500 bp circular DNA with a random sequence. RESULTS EccDNAs originated from all chromosomes, with the majority being less than 1 kb in size and about half containing genes or gene fragments. They were derived from specific repeat elements and primarily mapped to 5'UTR, 3'UTR, and CpG islands. Gene-rich chromosomes 17 and 19 exhibited higher eccDNA enrichment. Sequence motifs flanking eccDNA junction sites displayed frequent nucleotide repeats. The circular structure of eccDNAs were confirmed. Integration of Circle-Seq and RNA-Seq data identified that large eccDNAs can be directly transcribed in non-dividing cardiomyocytes, indicating their potential roles in gene expression. Small circular DNA elicited a stronger cytokine response than linear DNA with the same sequence. CONCLUSIONS Our work provided a detailed profiling of eccDNAs in both healthy and DCM hearts and demonstrated the potential functions of both large and small eccDNAs. These findings enhance the comprehension of the role of eccDNAs in cardiac pathophysiology and establish a theoretical foundation for future investigations on eccDNAs in DCM.
Collapse
Affiliation(s)
- Zhenhao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Fangjie Dai
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563099, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China.
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
| |
Collapse
|
40
|
Jordan E, Ni H, Parker P, Kinnamon DD, Owens A, Lowes B, Shenoy C, Martin CM, Judge DP, Fishbein DP, Stoller D, Minami E, Kransdorf E, Smart F, Haas GJ, Huggins GS, Ewald GA, Diamond J, Wilcox JE, Jimenez J, Wang J, Tallaj J, Drazner MH, Hofmeyer M, Wheeler MT, Pinzon OW, Shah P, Gottlieb SS, Katz S, Shore S, Tang WHW, Hershberger RE, DCM Precision Medicine study of the DCM Consortium. Implementing Precision Medicine for Dilated Cardiomyopathy: Insights from The DCM Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.22.24317816. [PMID: 39649582 PMCID: PMC11623749 DOI: 10.1101/2024.11.22.24317816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Clinical genetic evaluation of dilated cardiomyopathy (DCM) is implemented variably or not at all. Identifying needs and barriers to genetic evaluations will enable strategies to enhance precision medicine care. Methods An online survey was conducted in June 2024 among cardiologist investigators of the DCM Consortium from US advanced heart failure/transplant (HF/TX) programs to collect demographics, training, program characteristics, genetic evaluation practices for DCM, and implementation needs. An in-person discussion followed. Results Twenty-five cardiologists (28% female, 12% Hispanic, 68% White) participated in the survey and 15 in the discussion; genetics training backgrounds varied greatly. Clinical genetic testing for DCM was conducted by all programs with annual uptake ranging from 5%-70% (median 25%). Thirteen respondents (52%) did not use selection criteria for testing whereas others selected patients based on specific clinical and family history data. Eight (32%) ordered testing by themselves, and the remainder had testing managed mostly by a genetic counselor or others with genetic expertise (16/17; 94%). Six themes were distilled from open-ended responses regarding thoughts for the future and included access to genetics services, navigating uncertainty, knowledge needs, cost concerns, family-based care barriers, and institutional infrastructure limitations. Following an in-person discussion, four areas were identified for focused effort: improved reimbursement for genetic services, genetic counselor integration with HF/TX teams, improved provider education resources, and more research to find missing heritability and to resolve uncertain results. Conclusions HF/TX programs have implementation challenges in the provision of DCM genetic evaluations; targeted plans to facilitate precision medicine for DCM are needed.
Collapse
Affiliation(s)
- Elizabeth Jordan
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Hanyu Ni
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Patricia Parker
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Daniel D. Kinnamon
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Anjali Owens
- Center for Inherited Cardiovascular Disease, Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brian Lowes
- University of Nebraska Medical Center, Omaha, NE
| | | | | | | | | | | | | | - Evan Kransdorf
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Frank Smart
- Louisiana State University Health Sciences Center, New Orleans, LA
| | - Garrie J. Haas
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Gordon S. Huggins
- Cardiology Division, Tufts Medical Center and Tufts University School of Medicine, Boston, MA
| | | | | | - Jane E. Wilcox
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Javier Jimenez
- Miami Cardiac & Vascular Institute, Baptist Health South, Miami, FL
| | - Jessica Wang
- University of California Los Angeles Medical Center, Los Angeles, CA
| | - Jose Tallaj
- University of Alabama at Birmingham; Washington, DC
| | - Mark H. Drazner
- University of Texas Southwestern Medical Center; Washington, DC
| | - Mark Hofmeyer
- MedStar Health Research Institute, Medstar Washington Hospital Center, Washington, DC
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Palak Shah
- Inova Schar Heart and Vascular, Falls Church, VA
| | | | - Stuart Katz
- New York University Langone Medical Center, New York, NY
| | | | - W. H. Wilson Tang
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Ray E. Hershberger
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | | |
Collapse
|
41
|
Tao S, Yu L, Li J, Wu J, Yang D, Xue T, Zhang L, Xie Z, Huang X. Stem cell therapy for non-ischemic dilated cardiomyopathy: a systematic review and meta-analysis. Syst Rev 2024; 13:276. [PMID: 39516841 PMCID: PMC11546504 DOI: 10.1186/s13643-024-02701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Stem cell therapy is the transplantation of human cells to aid the healing of damaged or wounded tissues and cells. Only a few small-scale trials have been conducted to investigate stem cell therapy for non-ischemic dilated cardiomyopathy (DCM). We aimed to perform a systematic review and meta-analysis to assess the efficacy and safety of stem cell therapy for DCM. METHODS A comprehensive search of the databases of PubMed, Embase, Web of Science Core Collection, Cochrane Library, and ProQuest was conducted from their inception to June 30, 2024, to access randomized controlled trials (RCTs) that were centered on stem cell therapy for DCM. The primary outcome was left ventricular ejection fraction (LVEF), and the secondary outcomes included left ventricular end-diastolic dimension (LVEDD), left ventricular end-diastolic volume (LVEDV), 6-min walk test (6MWT), NYHA functional classification, quality of life (QoL) such as Minnesota Living with Heart Failure Questionnaire (MLHFQ) and Kansas City Cardiomyopathy Questionnaire (KCCQ), N-terminal pro-brain natriuretic peptide (NT-proBNP), and VO2 peak. Moreover, major adverse cardiovascular events (MACEs) were also recorded. The Cochrane risk-of-bias assessment tool was used to evaluate the quality of the included RCTs, and the certainty of the evidence was assessed using the GRADE method. Sensitivity analysis was taken into consideration to determine the stability of the results. This review was registered with PROSPERO (CRD42024568912). RESULTS Eleven RCTs involving 637 participants were included in the quantitative analysis. The results indicated that there was a significant increase in mean LVEF (MD = 4.84, 95% CI 3.25-6.42, P < 0.00001) and considerable decrease in LVEDV (MD = - 29.51, 95% CI - 58.07 to - 0.95, P = 0.04) and NT-proBNP (MD = - 737.55, 95% CI - 904.28 to - 570.82, P < 0.00001) in DCM patients treated with stem cell therapy compared with controls. Stem cell therapy was also related to the improvement in functional capacity, as evaluated by 6MWT (MD = 44.32, 95% CI 34.70 - 53.94, P < 0.00001) and NYHA functional classification (MD = - 0.63, 95% CI - 0.96 to - 0.30, P = 0.0002). It also had positive effects on improving QoL, including significantly decreasing MLHFQ score (MD = - 16.60, 95% CI - 26.57 to - 6.63, P = 0.001) and increasing the KCCQ score (MD = 14.76, 95% CI 7.76 - 21.76, P < 0.0001). No significant differences were observed in LVEDD, VO2 peak, and MACEs between the two groups. The GRADE analysis revealed that the evidence was graded from low to moderate. Sensitivity analysis of the results suggested that the results were stable. CONCLUSION The systematic review and meta-analysis indicates that stem cell therapy may be an effective and safe approach to improve cardiac function and quality of life in DCM patients. Nevertheless, given the limitations of existing studies, larger well-designed RCTs are required to confirm and support our findings.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China.
| | - Ji Wu
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Deshuang Yang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Tiantian Xue
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Lanxin Zhang
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Zicong Xie
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanchun Huang
- Department of Cardiology, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Dörr M, Böhm M, Erdmann E, Groß S, Mahabadi AA, Nauck M, Nickening G, Schultheiss HP, Staudt A, Werdan K, Waagstein F, Hjalmarson Å, Felix SB. Multicentre, randomized, double-blind, prospective study on the effects of ImmunoAdSorptiOn on cardiac function in patients with Dilated CardioMyopathy (IASO-DCM): Rationale and design. Eur J Heart Fail 2024; 26:2464-2473. [PMID: 39359033 DOI: 10.1002/ejhf.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Pilot studies indicate that immunoadsorption with subsequent IgG substitution (IA/IgG) induces beneficial effects in patients with dilated cardiomyopathy (DCM) and heart failure. This placebo-controlled study investigates whether IA/IgG treatment enhances left ventricular (LV) systolic function as compared to a control group receiving pseudo-treatment. METHODS This multicentre, randomized, double-blind, parallel-group trial aims to include 200 patients with heart failure due to DCM (LV ejection fraction [LVEF] <40%) on optimized guideline-directed heart failure medication. Participants are randomly assigned in a 1:1 ratio to IA/IgG using protein-A columns, or to pseudo-immunoadsorption followed by an intravenous infusion without IgG. Follow-up visits take place by telephone after 1 and 3 months and at the study centres after 6, 12 and 24 months. The primary efficacy endpoint is the change in LVEF from baseline to 6 months determined by contrast echocardiography, analysed at a core lab. In addition, LV end-diastolic and end-systolic volumes will be analysed as secondary endpoints over the entire study period to assess whether IA/IgG affects LV remodelling. As main secondary outcome, a composite of all-cause death, cardiac resuscitation, hospitalization for heart failure, and need for cardiac surgery to improve myocardial pump function will be evaluated after 24 months. In addition, exploratory outcomes as well as safety endpoints related to the treatment will be assessed throughout the whole study period. CONCLUSION IASO-DCM is a randomized study which will provide comprehensive insights into the effects of immunoadsorption with subsequent IgG substitution in patients with DCM.
Collapse
Affiliation(s)
- Marcus Dörr
- Department of Internal Medicine B, University Medicine, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Saarland University, Homburg, Germany
| | - Erland Erdmann
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Stefan Groß
- Department of Internal Medicine B, University Medicine, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald, Germany
| | - Amir-Abbas Mahabadi
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine, Greifswald, Germany
| | - Georg Nickening
- Department of Internal Medicine II - Pneumology/Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Alexander Staudt
- Helios-Kliniken Schwerin, Department of Cardiology and Angiology, Schwerin, Germany
| | - Karl Werdan
- Department of Internal Medicine III - Cardiology, Angiology and Internal Intensive Care Medicine, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Finn Waagstein
- Wallenberg Laboratory, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Åke Hjalmarson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald, Germany
| |
Collapse
|
43
|
Murre C, Patta I, Mishra S, Hu M. Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology. Trends Immunol 2024; 45:851-860. [PMID: 39438171 DOI: 10.1016/j.it.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.
Collapse
Affiliation(s)
- Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| | - Indumathi Patta
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
44
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
45
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
46
|
Yu D, Tao L, Song L, Lai K, Jiang H, Liu Z, Xiao H. Integrated multi-omics approach revealed TTNtv c.13254T>G causing dilated cardiomyopathy in mice. PLoS One 2024; 19:e0311670. [PMID: 39365793 PMCID: PMC11452030 DOI: 10.1371/journal.pone.0311670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Titin-truncating variant (TTNtv) is the most common genetic cause of dilated cardiomyopathy (DCM). In the previous study, we found a novel heterozygous TTNtv c.13254T>G (p.Tyr4418Ter) associated with DCM, but lacking functional evidence. The purpose of this study is to demonstrate the pathogenicity of TTNtv c.13254T>G. We constructed a mouse model with TTNtv Y4370* on exon 45 by CRISPR/Cas9-mediated genome engineering to imitate the TTNtv. c.13254T>G. Transmission electron microscope (TEM), immunohistochemistry, western blot (WB), Transcriptome sequencing (RNA-seq), and tandem Mass Tag (TMT) proteome analysis were performed on the mutant (KO) and WT mice cardiac tissue. Multi-omics association analysis was performed to observe the damages of cardiac tissue, and changes of inflammatory factors and Titin protein. TEM results showed that TTNtv Y4370* may lead to broken myofibrils, sparse myofilament structure, and broken Z-line and H-zone in many places of cardiac tissue of KO mice. Immunohistochemistry showed a significant increase in cTnT and TNF-α expression level in KO mice cardiac tissue. RNA-seq and TMT proteome enrichment analysis further strengthened that TTNtv Y4370* led to cardiac injury and inflammatory response in KO mice. In summary, TTNtv c.13254T>G contributed to the cardiac injury, inflammatory response and construct alterations in mice, that is TTNtv c.13254T>G may cause DCM in mice. These functional evidence of TTNtv c.13254T>G have important significance for follow-up genetic research of DCM in human.
Collapse
Affiliation(s)
- Dan Yu
- Division of Cardiac Surgery & Wuhan Clinical Research Center for Cardiomyopathy, Wuhan Asia Heart Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Liang Tao
- Division of Cardiac Surgery & Wuhan Clinical Research Center for Cardiomyopathy, Wuhan Asia Heart Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Laichun Song
- Division of Cardiac Surgery & Wuhan Clinical Research Center for Cardiomyopathy, Wuhan Asia Heart Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Kaisheng Lai
- Department of Science Research Centre, BestNovo (Beijing) Medical Laboratory, Beijing, P.R. China
| | - Hui Jiang
- Department of Science Research Centre, BestNovo (Beijing) Medical Laboratory, Beijing, P.R. China
| | - Zhe Liu
- Department of Science Research Centre, BestNovo (Beijing) Medical Laboratory, Beijing, P.R. China
| | - Hongyan Xiao
- Division of Cardiac Surgery & Wuhan Clinical Research Center for Cardiomyopathy, Wuhan Asia Heart Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
47
|
Anastasiou V, Papazoglou AS, Gossios T, Zegkos T, Daios S, Moysidis DV, Koutsiouroumpa O, Parcharidou D, Tziomalos G, Katranas S, Rouskas P, Didagelos M, Karamitsos T, Ziakas A, McKenna WJ, Kamperidis V, Efthimiadis GK. Prognostic implications of genotype findings in non-ischaemic dilated cardiomyopathy: A network meta-analysis. Eur J Heart Fail 2024; 26:2155-2168. [PMID: 39078390 DOI: 10.1002/ejhf.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Evidence on the relative impact of diverse genetic backgrounds associated with non-ischaemic dilated cardiomyopathy (DCM) remains contradictory. This study sought to synthesize the available data regarding long-term outcomes of different gene groups in DCM. METHODS AND RESULTS Electronic databases were systematically screened to identify studies reporting prognostic data on pre-specified gene groups. Those included pathogenic/likely pathogenic (P/LP) variants, truncating titin variants (TTNtv), lamin A/C variants (LMNA), and desmosomal proteins. Outcomes were divided into composite adverse events (CAEs), malignant ventricular arrhythmic events (MVAEs) and heart failure events (HFEs). A total of 26 studies (n = 7255) were included in the meta-analysis and 6791 patients with genotyped DCM were analysed. Patients with P/LP variants had a higher risk for CAEs (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.67-2.65), MVAEs (OR 1.86, 95% CI 1.52-2.26), and HFEs (OR 2.01, 95% CI 1.08-3.73) than genotype-negative patients. The presence of TTNtv was linked to a higher risk for CAEs (OR 1.78, 95% CI 1.20-2.63), but not MVAEs or HFEs. LMNA and desmosomal groups suffered a higher risk for CAEs, MVAEs, and HFEs compared to non-LMNA and non-desmosomal groups, respectively. When genes were indirectly compared, the presence of LMNA resulted in a more detrimental effect that TTNtv, with respect to all composite outcomes but no significant difference was found between LMNA and desmosomal genes. Desmosomal genes harboured a higher risk for MVAEs compared to TTNtv. CONCLUSIONS Different genetic substrates associated with DCM result in divergent natural histories. Routine utilization of genetic testing should be employed to refine risk stratification and inform therapeutic strategies in DCM.
Collapse
Affiliation(s)
- Vasileios Anastasiou
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Thomas Gossios
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Zegkos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Daios
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ourania Koutsiouroumpa
- Evidence Synthesis Methods Team, Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
| | - Despoina Parcharidou
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tziomalos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotiris Katranas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pavlos Rouskas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthaios Didagelos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Karamitsos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Ziakas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William J McKenna
- Institute of Cardiovascular Medicine, University College London, London, UK
| | - Vasileios Kamperidis
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios K Efthimiadis
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
48
|
Shlobin NA, Thijs RD, Benditt DG, Zeppenfeld K, Sander JW. Sudden death in epilepsy: the overlap between cardiac and neurological factors. Brain Commun 2024; 6:fcae309. [PMID: 39355001 PMCID: PMC11443455 DOI: 10.1093/braincomms/fcae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
People with epilepsy are at risk of premature death, of which sudden unexpected death in epilepsy (SUDEP), sudden cardiac death (SCD) and sudden arrhythmic death syndrome (SADS) are the primary, partly overlapping, clinical scenarios. We discuss the epidemiologies, risk factors and pathophysiological mechanisms for these sudden death events. We reviewed the existing evidence on sudden death in epilepsy. Classification of sudden death depends on the presence of autopsy and expertise of the clinician determining aetiology. The definitions of SUDEP, SCD and SADS lead to substantial openings for overlap. Seizure-induced arrhythmias constitute a minority of SUDEP cases. Comorbid cardiovascular conditions are the primary determinants of increased SCD risk in chronic epilepsy. Genetic mutations overlap between the states, yet whether these are causative, associated or incidentally present is often unclear. Risk stratification for sudden death in people with epilepsy requires a multidisciplinary approach, including a review of clinical history, toxicological analysis and complete autopsy with histologic and, preferably, genetic examination. We recommend pursuing genetic testing of relatives of people with epilepsy who died suddenly, mainly if a post-mortem genetic test contained a Class IV/V (pathogenic/likely pathogenic) gene variant. Further research may allow more precise differentiation of SUDEP, SCD and SADS and the development of algorithms for risk stratification and preventative strategies.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
| | - David G Benditt
- Cardiac Arrhythmia and Syncope Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Fei L, Zhang J, Zhuo D. A statistical model to identify hereditary and epigenetic fusion genes associated with dilated cardiomyopathy. Front Genet 2024; 15:1438887. [PMID: 39411373 PMCID: PMC11473313 DOI: 10.3389/fgene.2024.1438887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a heart condition that causes enlarged and weakened left ventricles and affects the heart's ability to pump blood effectively. Most genetic etiology still needs to be understood. Previously, we have used the known germline hereditary fusion genes (HFGs) to identify HFGs associated with multiple myeloma and leukemia. In this study, we have developed a statistical model to study fusion transcripts discovered from the left ventricles of 122 DCM patients and 252 GTEx (Genotype Tissue Expression) healthy controls to discover novel HFGs, ranging from 4% to 87.7%, and EFGs, ranging from 4% to 99.2%, associated with DCM. This discovery of numerous novel HFGs and EFGs associated with DCM provides first-hand evidence that DCM results from interactive developmental consequences between germline genetic and environmental abnormalities and paves the way for future research and diagnostic and therapeutic applications, instilling hope for the future of DCM treatment.
Collapse
Affiliation(s)
- Ling Fei
- Department of Cardiology, Chengdu Xinhua Hospital, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- Department of Cardiology, Changzhou Central Hospital, Tianjin Medical University, Cangzhou, Hebei, China
| | - Degen Zhuo
- SplicingCodes, BioTailor Inc, Miami, FL, United States
| |
Collapse
|
50
|
Zeng X, Zeng Q, Wang X, Li K, Wu J, Luo J. Causal association between 1400 metabolites and dilated cardiomyopathy: a bidirectional two-sample Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1423142. [PMID: 39329103 PMCID: PMC11424463 DOI: 10.3389/fendo.2024.1423142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a cardiac disease with a poor prognosis of unclear etiology. Previous studies have shown that metabolism is associated with DCM. This study investigates the causal relationship between 1400 metabolites and DCM using a two-sample Mendelian randomization (MR) approach. Methods The study utilized data from the OpenGWAS database, comprising 355,381 Europeans, including 1,444 DCM cases. A total of 1,400 metabolites were evaluated for their causal association with DCM. Instrumental variables (IVs) were selected based on genetic variation and used in the MR analysis. The primary analysis method was inverse variance weighting (IVW), supplemented by weighted median-based estimation and sensitivity analyses. Results Of the 1,400 metabolites analyzed, 52 were identified as causally associated with DCM. The analysis revealed both positively and negatively correlated metabolites with DCM risk. Notable findings include the positive correlation of Tryptophan betaine and 5-methyluridine (ribothymidine) levels, and an inverse association of Myristoleate and Erythronate levels with DCM. Conclusions The study provides significant insights into the metabolites potentially involved in the pathogenesis of DCM. These findings could pave the way for new therapeutic strategies and biomarker identification in DCM management.
Collapse
Affiliation(s)
- Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
| | - Qingfeng Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
| | - Xianggui Wang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Kening Li
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Jincheng Wu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Jianping Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|