1
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Irisin prevents visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Peptides 2025; 188:171394. [PMID: 40154794 DOI: 10.1016/j.peptides.2025.171394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Visceral hypersensitivity and impaired gut barrier function, accompanied by minor inflammation, are crucial components of the pathophysiology of irritable bowel syndrome (IBS). Research has demonstrated that corticotropin-releasing factor (CRF) and toll-like receptor 4 (TLR4) signaling mutually activate to produce proinflammatory cytokines, which modulate these gastrointestinal changes. Irisin, a myokine, has been shown to inhibit TLR4-proinflammatory cytokine signaling, thereby improving inflammation driven by obesity and metabolic syndrome. Based on this, we hypothesized that irisin could improve visceral hypersensitivity and impaired gut barrier function induced by lipopolysaccharide (LPS) or CRF (IBS rat models), and tested this hypothesis. The visceral pain threshold, triggered by colonic balloon distention, was assessed by electrophysiologically monitoring abdominal muscle contractions in male Sprague-Dawley rats. Colonic permeability was evaluated by measuring the amount of Evans blue dye absorbed within the colonic tissue. Intraperitoneal irisin prevented LPS-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Irisin also prevented CRF-induced gastrointestinal alterations. The beneficial effects of irisin in the LPS model were reversed by compound C, an AMP-activated protein kinase (AMPK) inhibitor; NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor; sulpiride or domperidone, a dopamine D2 receptor antagonist; atropine and intracisternal injection of SB-334867, a selective orexin 1 receptor antagonist. Overall, these findings suggest that irisin improves visceral sensation and colonic barrier function through AMPK, NO and dopamine D2, cholinergic and brain orexin signaling in IBS model. Thus, irisin may be a promising therapeutic agent for treating IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| |
Collapse
|
2
|
Fan G, Liu Y, Tao L, Wang D, Huang Y, Yang X. Sodium butyrate alleviates colitis by inhibiting mitochondrial ROS mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167756. [PMID: 40044062 DOI: 10.1016/j.bbadis.2025.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unclear causes and limited treatment options. Sodium butyrate (NaB), a byproduct of dietary fiber in the intestine, has demonstrated efficacy in treating inflammation. However, the precise anti-inflammatory mechanisms of NaB in colon inflammation remain largely unexplored. This study aims to investigate the effects of NaB on dextran sulfate sodium (DSS)-induced colitis in rats. The findings indicate that oral administration of NaB effectively prevent colitis and reduce levels of serum or colon inflammatory factors. Additionally, NaB demonstrated in vitro inhibition of RAW264.7 inflammation cytokines induced by LPS, along with suppression of the ERK and NF-κB signaling pathway activation. Moreover, NaB mitigated LPS and Nigericin-induced RAW264.7 pyroptosis by reducing indicators of mitochondrial damage, including increased mitochondrial membrane potential (JC-1) levels and decreased Mito-ROS production. NaB increases ZO-1 and Occludin expression in CaCo2 cells by inhibiting RAW264.7 pyroptosis. These results suggest that NaB could be utilized as a therapeutic agent or dietary supplement to alleviate colitis.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Limei Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yizhu Huang
- Singao Xiamen Company, Xiamen 361006, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Hou S, Wang C, Ma X, Zhao J, Wang J, Fang Y, Liu H, Ding H, Guo J, Lu W. Methylmercury Chloride Exposure Affects Oocyte Maturation Through AMPK/mTOR-Mediated Mitochondrial Autophagy. Int J Mol Sci 2025; 26:3603. [PMID: 40332119 PMCID: PMC12026530 DOI: 10.3390/ijms26083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mercury, a prevalent heavy metal, negatively impacts oocyte maturation. However, the exact mechanism by which methylmercury chloride (MMC) affects this process remains elusive. The present study found that MMC administration triggered meiotic failure in oocytes by disrupting cumulus cell expansion, leading to compromised spindle apparatus and altered chromosomal architecture, which are crucial for oocyte development. This disruption is characterized by abnormal microtubule organization and defective chromosome alignment. Additionally, MMC exposure caused oxidative stress-induced apoptosis due to mitochondrial dysfunction, as indicated by decreased mitochondrial membrane potential, mitochondrial content, mitochondrial DNA copy number, and adenosine triphosphate levels. Proteomic analysis identified 97 differentially expressed proteins, including P62, an autophagy marker. Our results confirmed that MMC induced autophagy, particularly through the hyperactivation of the mitochondrial autophagy to remove damaged and normal mitochondria. The mitochondrial reactive oxygen species (ROS) scavenger Mito-TEMPO alleviated oxidative stress and mitochondrial autophagy levels, suggesting that mitochondrial ROS initiates this autophagic response. Notably, MMC activates mitochondrial autophagy via the monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway due to mitochondrial dysfunction. In vivo studies in mice revealed that MMC exposure decreased reproductive performance, attributed to excessive mitochondrial autophagy leading to reduced oocyte quality. Overall, these findings demonstrate that MMC exposure impairs oocyte maturation via the hyperactivation of mitochondrial autophagy induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shengkui Hou
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Caiyu Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Yi Fang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Hongyu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - He Ding
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Wenfa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| |
Collapse
|
4
|
Jing J, Yang F, Wang K, Cui M, Kong N, Wang S, Qiao X, Kong F, Zhao D, Ji J, Tang L, Gao J, Cong Y, Ding D, Chen K. UFMylation of NLRP3 Prevents Its Autophagic Degradation and Facilitates Inflammasome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406786. [PMID: 39985286 PMCID: PMC12005806 DOI: 10.1002/advs.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/29/2025] [Indexed: 02/24/2025]
Abstract
NLRP3 (NOD, LRR and pyrin domain-containing protein 3) inflammasome is important for host defense against infections and maintaining homeostasis. Aberrant activation of NLRP3 inflammasome is closely related to various inflammatory diseases. Post-translational modifications are critical for NLRP3 inflammasome regulation. However, the mechanism of NLRP3 inflammasome activation remains incompletely understood. Here, it is demonstrated that the Ufm1 E3 ligase Ufl1 mediated UFMylation is essential for NLRP3 inflammasome activation. Mechanistically, Ufl1 binds and UFMylates NLRP3 in the priming stage of NLRP3 activation, thereby sustaining the stability of NLRP3 by preventing NLRP3 K63-linked ubiquitination and the subsequent autophagic degradation. It is further demonstrated that myeloid cell-specific Ufl1 or Ufm1 deficiency in mice significantly alleviated inflammatory responses and tissue damage following lipopolysaccharide (LPS)-induced endotoxemia and alum-induced peritonitis. Thus, the findings offer new insights into potential therapeutic targets for NLRP3 inflammasome-related diseases by targeting the UFMylation system.
Collapse
Affiliation(s)
- Jiongjie Jing
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Fan Yang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Ke Wang
- Shanghai Key Laboratory of Maternal Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Mintian Cui
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Ni Kong
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Shixi Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Xiaoyue Qiao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Fanyu Kong
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Dongyang Zhao
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jinlu Ji
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Lunxian Tang
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jiaxin Gao
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yu‐Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou311121China
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Shanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
- Shanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
5
|
Yanuarso PB, Djer MM, Hendarto A, Pudjiadi AH, Rachmadi L, Wibowo H, Advani N, Murni IK, Kekalih A, Sukardi R, Dilawar I, Susanti DS, Supriatna N. Effect of the modified Atkins diet on NLRP3, caspase-1, IL-ιβ, and IL-10 in patients with tetralogy of Fallot undergoing open-heart surgery: A randomized controlled trial. NARRA J 2025; 5:e2138. [PMID: 40352165 PMCID: PMC12059825 DOI: 10.52225/narra.v5i1.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Cardiopulmonary bypass in tetralogy of Fallot (TOF) corrective surgery induces hyperinflammation by activating NLRP3, caspase-1, and interleukin-ιβ (IL-ιβ), subsequently triggering an interleukin-10 (IL-10) response. Despite its known metabolic and anti-inflammatory effects, the impact of the modified Atkins diet (MAD) in pediatric cardiac surgery remains unexplored, with no studies on its use in TOF patients undergoing open-heart surgery. The aim of this study was to assess the effect of MAD on the expression of NLRP3, caspase-1, IL-ιβ, and IL-10, in TOF patients undergoing open-heart surgery. A double-arm, randomized-controlled trial was conducted with 44 TOF patients. The treatment group (n = 22) received the MAD, a low-carbohydrate, high-fat regimen with unrestricted fat and protein intake for at least 14 days preoperatively, while the control group (n = 22) followed a standard diet without carbohydrate restriction. Blood plasma and infundibulum heart tissues were collected for analysis. Whole blood samples were collected using a winged infusion needle before the intervention, an Abbocath infusion needle after 14 days of intervention, and a syringe without a needle connected to an arterial line in patients undergoing open-heart surgery at 6, 24, and 48 hours post-surgical correction. Infundibulum heart tissues were collected during the open-heart surgery. This study demonstrated significant differences in NLRP3 protein expression (p = 0.015), caspase-1 protein expression (p = 0.001), and IL-10 levels between after intervention and 6-, 24-, and 48-hours post-surgery in the MAD group compared to the control group. In contrast, no significant differences in IL-10 levels were observed in the control group between after intervention and 48 hours post-surgery (p = 0.654). In conclusion, MAD may modulate perioperative inflammation in TOF patients undergoing open-heart surgery by downregulating NLRP3 and caspase-1 expression while sustaining IL-10 levels. Despite reduced NLRP3 and caspase-1 expression, unchanged IL-ιβ levels indicate alternative regulatory mechanisms.
Collapse
Affiliation(s)
- Piprim B. Yanuarso
- Department of Child and Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Child and Health, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Mulyadi M. Djer
- Department of Child and Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Child and Health, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Aryono Hendarto
- Department of Child and Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Child and Health, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Antonius H. Pudjiadi
- Department of Child and Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Child and Health, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Integrated Laboratory for Diagnostic and Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Najib Advani
- Department of Child and Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Child and Health, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Indah K. Murni
- Department of Child and Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Child and Health, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Aria Kekalih
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Community Medicine, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rubiana Sukardi
- Integrated Cardiac Center, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ismail Dilawar
- Department of Cardiothoracic Surgery, Jakarta Heart Center Hospital, Jakarta, Indonesia
| | - Dhama S. Susanti
- Integrated Cardiac Center, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Novianti Supriatna
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
6
|
Santos JMD, Touguinha L, Bridi R, Andreazza AC, Bick DLU, Davidson CB, Dos Santos AF, Machado KA, Scariot FJ, Delamare LAP, Salvador M, Branco CS. Could the inhibition of systemic NLRP3 inflammasome mediate central redox effects of yerba mate? An in silico and pre-clinical translational approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119518. [PMID: 39987999 DOI: 10.1016/j.jep.2025.119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Empirically, Ilex paraguariensis A. St. Hil, or yerba-mate, has been used by natives of South America as a stimulant. Nowadays, this plant has gained popularity due to its neuroprotective effects. However, there are few studies on the biochemical-molecular mechanisms of action involved in its effect. AIM OF THE STUDY Chemically characterize an aqueous extract of yerba mate (YME) and evaluate if it could suppress the aberrant inflammatory response related to neurodegeneration. MATERIALS AND METHODS Macrophages and microglia cells were exposed to lipopolysaccharide (LPS; 100 ng/mL) plus nigericin (100 μM) or quinolinic acid (QA; 5 mM). Cellular viability, oxidative, and inflammatory markers were evaluated. Chemical matrix (HPLC - DAD), antioxidant activity, safety profile in vitro and in vivo, and an in silico docking of main targets were also assessed. RESULTS Pre-treatment with YME (15 μg/mL) prevented impairments in redox metabolism and inflammatory markers in BV-2 cells. In macrophages, YME showed similar results to MCC950, an inflammasome inhibitor. YME presented 282.88 mg EAG/g total phenolic content and a redox capacity of 32.94 ± 1.30 μg/mL (IC50), and its major compounds were chlorogenic acid > rutin > ferulic acid > catechin > sinapic acid. Chlorogenic acid and rutin presented a high affinity to the MCC950 region. Additionally, YME did not cause genotoxicity and was safe in vivo. CONCLUSION YME has significantly affected macrophages and microglia by regulating the NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Júlia Maiara Dos Santos
- Oxidative Stress & Antioxidants Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, 95070-560, Brazil.
| | - Luciana Touguinha
- Oxidative Stress & Antioxidants Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, 95070-560, Brazil.
| | - Raquel Bridi
- Departamento de Química Farmocológica y Toxicológica, Universidad de Chile, Calle Dr. Carlos Lorca Tobar, 964, Región Metropolitana, Santiago, 8380494, Chile.
| | - Ana Cristina Andreazza
- Pharmacology & Toxicology Department, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, Ontario, ON M5S 1A8, Canada.
| | - Djenifer Leticia Ulrich Bick
- Cell Culture & Bioactive Effects Laboratory, Franciscan University, Rua Silva Jardim, 1323, Santa Maria, Rio Grande do Sul, 97010-492, Brazil.
| | - Carolina Bordin Davidson
- Cell Culture & Bioactive Effects Laboratory, Franciscan University, Rua Silva Jardim, 1323, Santa Maria, Rio Grande do Sul, 97010-492, Brazil.
| | - André Flores Dos Santos
- Advanced Laboratory for Research and Development in Computational Nanotechnology and Virtual Reality, Franciscan University, Rua Silva Jardim, 1323, Santa Maria, Rio Grande do Sul, 97010-492, Brazil.
| | - Kolinski Alencar Machado
- Cell Culture & Bioactive Effects Laboratory, Franciscan University, Rua Silva Jardim, 1323, Santa Maria, Rio Grande do Sul, 97010-492, Brazil.
| | - Fernando Joel Scariot
- Enology and Applied Microbiology Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, 95070-560, Brazil.
| | - Longaray Ana Paula Delamare
- Enology and Applied Microbiology Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, 95070-560, Brazil.
| | - Mirian Salvador
- Oxidative Stress & Antioxidants Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, 95070-560, Brazil.
| | - Catia Santos Branco
- Oxidative Stress & Antioxidants Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, 95070-560, Brazil.
| |
Collapse
|
7
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Mukherjee D, Satyavolu S, Thomas A, Cioffi S, Li Y, Chan ER, Wen K, Huang AY, Jain MK, Dubyak GR, Nayak L. Neutrophil KLF2 regulates inflammasome-dependent neonatal mortality from endotoxemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637657. [PMID: 39990480 PMCID: PMC11844471 DOI: 10.1101/2025.02.11.637657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Preterm neonates die at a significantly higher rate from sepsis than full-term neonates, attributable to their dysregulated immune response. In addition to tissue destruction caused directly by bacterial invasion, an overwhelming cytokine response by the immune cells to bacterial antigens also results in collateral damage. Sepsis leads to decreased gene expression of a critical transcription factor, Krüppel-like factor-2 (KLF2), a tonic repressor of myeloid cell activation. Using a murine model of myeloid- Klf2 deletion, we show that loss of KLF2 is associated with decreased survival after endotoxemia in a developmentally dependent manner, with increased mortality at postnatal day 4 (P4) compared to P12 pups. This survival is significantly increased by neutrophil depletion. P4 knockout pups have increased pro-inflammatory cytokine levels after endotoxemia compared to P4 controls or P12 pups, with significantly increased levels of IL-1β, a product of the activation of the NLRP3 inflammasome complex. Loss of myeloid-KLF2 at an earlier postnatal age leads to a greater increase in NLRP3 priming and activation and greater IL-1β release by BMNs. Inhibition of NLRP3 inflammasome activation by MCC950 significantly increased survival after endotoxemia in P4 pups. Transcriptomic analysis of bone marrow neutrophils showed that loss of myeloid-KLF2 is associated with gene enrichment of pro-inflammatory pathways in a developmentally dependent manner. These data suggest that targeting KLF2 could be a novel strategy to decrease the pro-inflammatory cytokine storm in neonatal sepsis and improve survival in neonates with sepsis. Summary sentence KLF2 regulates the developmental response to endotoxin in neonatal mice through the NLRP3 inflammasome signaling pathway.
Collapse
|
9
|
Karmakar V, Chain M, Majie A, Ghosh A, Sengupta P, Dutta S, Mazumder PM, Gorain B. Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis. Inflammopharmacology 2025; 33:461-484. [PMID: 39806051 DOI: 10.1007/s10787-024-01629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels. Recently, efforts have focused on regulating the production of the NLRP3 inflammasome, which plays a critical role in the disease's progression due to its dysregulation. Inhibition of NLRP3 inflammasome has shown the potential to modulate the production of MMP-13, caspase-1, IL-1β, etc., which has been reflected by positive responses in different preclinical and clinical studies. Aiming inhibition of this NLRP3 inflammasome, several compounds are in different stages of research owing to bring a novel agent for the treatment of osteoarthritis. This review summarizes the mechanistic pathways linking NLRP3 activation to osteoarthritis development and discusses the progress in new therapeutics aimed at effective treatment.
Collapse
Affiliation(s)
- Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Mayukh Chain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
10
|
Lin P, Qian Z, Liu S, Ye X, Xue P, Shao Y, Zhao J, Guan Y, Liu Z, Chen Y, Wang Q, Yi Z, Zhu M, Yu M, Ling D, Li F. A Single-Cell RNA Sequencing Guided Multienzymatic Hydrogel Design for Self-Regenerative Repair in Diabetic Mandibular Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410962. [PMID: 39436107 DOI: 10.1002/adma.202410962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru0 and Ru4+ components. This design facilitates efficient NO elimination via Ru0 while simultaneously exhibiting ROS scavenging properties through Ru4+. Consequently, MEBTHS orchestrates macrophage reprogramming by neutralizing ROS and reversing NO-mediated mitochondrial metabolism, thereby rejuvenating bone marrow-derived mesenchymal stem cells and endothelial cells within diabetic mandibular defects, producing newly formed bone with quality comparable to that of normal bone. The scRNA-seq guided multienzymatic hydrogel design fosters the restoration of self-regenerative repair, marking a significant advancement in bone tissue engineering.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Zhouyang Qian
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanbiao Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangjie Shao
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunan Guan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigao Yi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| |
Collapse
|
11
|
Giraud E, Fiette L, Melanitou E. Type 1 diabetes and parasite infection: An exploratory study in NOD mice. PLoS One 2024; 19:e0308868. [PMID: 39436890 PMCID: PMC11495574 DOI: 10.1371/journal.pone.0308868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 10/25/2024] Open
Abstract
Microorganisms have long been suspected to influence the outcome of immune-related syndromes, particularly autoimmune diseases. Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing beta cells of pancreatic islets, causing high glycemia levels. Genetics is part of its aetiology, but environmental factors, particularly infectious microorganisms, also play a role. Bacteria, viruses, and parasites influence the outcome of T1D in mice and humans. We used nonobese diabetic (NOD) mice, which spontaneously develop T1D, to investigate the influence of a parasitic infection, leishmaniasis. Leishmania amazonensis is an intracellular eukaryotic parasite that replicates predominantly in macrophages and is responsible for cutaneous leishmaniasis. The implication of Th1 immune responses in T1D and leishmaniasis led us to study this parasite in the NOD mouse model. We previously constructed osteopontin knockout mice with a NOD genetic background and demonstrated that this protein plays a role in the T1D phenotype. In addition, osteopontin (OPN) has been found to play a role in the immune response to various infectious microorganisms and to be implicated in other autoimmune conditions, such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in mice. We present herein data demonstrating the role of OPN in the response to Leishmania in NOD mice and the influence of this parasitic infection on T1D. This exploratory study aimed to investigate the environmental infectious component of the autoimmune response, including Th1 immunity, which is common to both T1D and leishmaniasis.
Collapse
Affiliation(s)
- Emilie Giraud
- Chemogenomic and Biological Screening Core Facility, C2RT, CNRS UMR 3523, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laurence Fiette
- Human Histopathology, and Animal Models Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Evie Melanitou
- Department of Parasites & Insect-Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Lichtenstein J, Sterpu I, Lindqvist PG. Does Omega-3 supplementation increase profuse postpartum hemorrhage? A hospital-based register study. Acta Obstet Gynecol Scand 2024. [PMID: 39427322 DOI: 10.1111/aogs.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Although Omega-3 is thought to have anticoagulative properties, the potential untoward effects of Omega-3 during pregnancy have not been investigated. No previous studies have been made to specifically assess its effect on postpartum hemorrhage (PPH). Our aim was to determine if an association exists between Omega-3 intake during pregnancy and profuse PPH or massive PPH. MATERIAL AND METHODS Data on all deliveries that occurred at Karolinska University Hospital during the years 2007-2011 (n = 41 139) was collected from the medical record of Obstetrix, maternal health and delivery chart system. Women with reported Omega-3 use in early pregnancy were considered exposed and all other as unexposed. Bivariate and adjusted multivariate analysis was performed on main outcomes. RESULTS Omega-3 use was associated with 25% increased odds of PPH (adjusted odds ratio (aOR) 1.25, 95% confidence interval [CI] (1.06-1.47)) and a more than doubled odds of massive PPH (aOR 2.36, 95% CI 1.26-4.44). In addition, there was a minor increase in the amount of blood loss. Although few, women on low-dose discontinued terminated at 36th week showed no significant association to blood loss measurements. CONCLUSIONS Our observational findings showed 25% higher odds of PPH and two times higher odds of massive PPH in women who reported using Omega-3 in early pregnancy. Our findings give some support to advocate discontinued use of Omega-3 in late pregnancy.
Collapse
Affiliation(s)
- Julia Lichtenstein
- Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Irene Sterpu
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Hospital Huddinge, Stockholm, Sweden
| | - Pelle G Lindqvist
- Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Lu ZX, Liu LX, Fu Z, Wang SN, Sun CN, Yu WG, Lu XZ. Chitosan oligosaccharides alleviate macrophage pyroptosis and protect sepsis mice via activating the Nrf2/GPX4 pathway. Int J Biol Macromol 2024; 277:133899. [PMID: 39019361 DOI: 10.1016/j.ijbiomac.2024.133899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In the process of sepsis, excessive occurrence of pyroptosis, a form of programmed cell death acting as a defense mechanism against pathogens, can disrupt immune responses, thus leading to tissue damage and organ dysfunction. Chitosan oligosaccharide (COS), derived from chitosan degradation, has demonstrated diverse beneficial effects. However, its impact on sepsis-induced pyroptosis remains unexplored. In the present study, ATP/LPS was utilized to induce canonical-pyroptosis in THP-1 cells, while bacterial outer membrane vesicles (OMV) were employed to trigger non-canonical pyroptosis in RAW264.7 cells. Our results revealed a dose-dependent effect of COS on both types of pyroptosis. This was evidenced by a reduction in the expression of pro-inflammatory cytokines, as well as crucial regulatory proteins involved in pyroptosis. In addition, COS inhibited the cleavage of caspase-1 and GSDMD, and reduced ASC oligomerization. The underlying mechanism revealed that COS acts an antioxidant, reducing the release of pyroptosis-induced ROS and malondialdehyde (MDA) by upregulation the expression and promoting the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), which led to an elevation of glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD). Notably, the actions of COS were completely reversed by the Nrf2 inhibitor. Consequently, COS intervention increased the survival rate of sepsis.
Collapse
Affiliation(s)
- Zhong-Xia Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lu-Xin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zheng Fu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Sheng-Nan Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chang-Ning Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wen-Gong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.; Key Laboratory of Glycoscience &Glycotechnology of Shandong Province, Qingdao 266003, China
| | - Xin-Zhi Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China..
| |
Collapse
|
14
|
Stevenson AC, Clemens T, Pairo-Castineira E, Webb DJ, Weller RB, Dibben C. Higher ultraviolet light exposure is associated with lower mortality: An analysis of data from the UK biobank cohort study. Health Place 2024; 89:103328. [PMID: 39094281 DOI: 10.1016/j.healthplace.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
We aimed to examine associations between ultraviolet (UV) exposure and mortality among older adults in the United Kingdom (UK). We used data from UK Biobank participants with two UV exposures, validated with measured vitamin D levels: solarium use and annual average residential shortwave radiation. Associations between the UV exposures, all-cause and cause-specific mortality were examined as adjusted hazard ratios. The UV exposures were inversely associated with all-cause, cardiovascular disease (CVD) and cancer mortality. Solarium users were also at a lower risk of non-CVD/non-cancer mortality. The benefits of UV exposure may outweigh the risks in low-sunlight countries.
Collapse
Affiliation(s)
| | - Tom Clemens
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - David J Webb
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; University Clinical Research Centre, Western General Hospital, Edinburgh, UK
| | - Richard B Weller
- Centre for Inflammation Research and Edinburgh Skin Network, University of Edinburgh, Edinburgh, UK.
| | - Chris Dibben
- School of Geosciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
17
|
Zhou J, Zhang Y, Yang T, Zhang K, Li A, Li M, Peng X, Chen M. Causal relationships between lung cancer and sepsis: a genetic correlation and multivariate mendelian randomization analysis. Front Genet 2024; 15:1381303. [PMID: 39005629 PMCID: PMC11239446 DOI: 10.3389/fgene.2024.1381303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background Former research has emphasized a correlation between lung cancer (LC) and sepsis, but the causative link remains unclear. Method This study used univariate Mendelian Randomization (MR) to explore the causal relationship between LC, its subtypes, and sepsis. Linkage Disequilibrium Score (LDSC) regression was used to calculate genetic correlations. Multivariate MR was applied to investigate the role of seven confounding factors. The primary method utilized was inverse-variance-weighted (IVW), supplemented by sensitivity analyses to assess directionality, heterogeneity, and result robustness. Results LDSC analysis revealed a significant genetic correlation between LC and sepsis (genetic correlation = 0.325, p = 0.014). Following false discovery rate (FDR) correction, strong evidence suggested that genetically predicted LC (OR = 1.172, 95% CI 1.083-1.269, p = 8.29 × 10-5, P fdr = 2.49 × 10-4), squamous cell lung carcinoma (OR = 1.098, 95% CI 1.021-1.181, p = 0.012, P fdr = 0.012), and lung adenocarcinoma (OR = 1.098, 95% CI 1.024-1.178, p = 0.009, P fdr = 0.012) are linked to an increased incidence of sepsis. Suggestive evidence was also found for small cell lung carcinoma (Wald ratio: OR = 1.156, 95% CI 1.047-1.277, p = 0.004) in relation to sepsis. The multivariate MR suggested that the partial impact of all LC subtypes on sepsis might be mediated through body mass index. Reverse analysis did not find a causal relationship (p > 0.05 and P fdr > 0.05). Conclusion The study suggests a causative link between LC and increased sepsis risk, underscoring the need for integrated sepsis management in LC patients.
Collapse
Affiliation(s)
- Jiejun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Youqian Zhang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
O'Keefe ME, Dubyak GR, Abbott DW. Post-translational control of NLRP3 inflammasome signaling. J Biol Chem 2024; 300:107386. [PMID: 38763335 PMCID: PMC11245928 DOI: 10.1016/j.jbc.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammasomes serve as critical sensors for disruptions to cellular homeostasis, with inflammasome assembly leading to inflammatory caspase activation, gasdermin cleavage, and cytokine release. While the canonical pathways leading to priming, assembly, and pyroptosis are well characterized, recent work has begun to focus on the role of post-translational modifications (PTMs) in regulating inflammasome activity. A diverse array of PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, and glycosylation, exert both activating and inhibitory influences on members of the inflammasome cascade through effects on protein-protein interactions, stability, and localization. Dysregulation of inflammasome activation is associated with a number of inflammatory diseases, and evidence is emerging that aberrant modification of inflammasome components contributes to this dysregulation. This review provides insight into PTMs within the NLRP3 inflammasome pathway and their functional consequences on the signaling cascade and highlights outstanding questions that remain regarding the complex web of signals at play.
Collapse
Affiliation(s)
- Meghan E O'Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
19
|
Hudson BN, Purves JT, Hughes FM, Nagatomi J. Enzyme-induced hypoxia leads to inflammation in urothelial cells in vitro. Int Urol Nephrol 2024; 56:1565-1575. [PMID: 38133728 DOI: 10.1007/s11255-023-03900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To determine the contributions of different durations of hypoxia to NLRP3 inflammasome activation in urothelial cells and how ischemic changes in bladder tissues is an important chemical que that leads to pathological changes seen in BOO. METHODS A rat urothelial cell line (MYP3) was exposed to either a short duration (2 h) or long duration (6 h) of enzyme-induced hypoxia. Following exposure to a short duration of hypoxia, NO and ATP concentrations were measured from supernatant media and caspase-1 levels were measured from cell lysates. In a separate experiment, cells were fixed following hypoxia exposure and immunostained for HIF-1α stabilization. RESULTS Although short exposure of low oxygen conditions resulted in a hypoxic response in MYP3 cells, as indicated by HIF-1α stabilization and increased NO activity, NLRP3 inflammasome activation was not observed as caspase-1 activity remained unchanged. However, exposure of MYP3 cells to a longer duration of hypoxia resulted in an increase in intracellular caspase-1 activity. Furthermore, treatment with antioxidant (GSH) or TXNIP inhibitor (verapamil) attenuated the hypoxia-induced increase in caspase-1 levels indicating that hypoxia primarily drives inflammation through a ROS-mediated TXNIP/NLRP3 pathway. CONCLUSION We conclude that hypoxia induced bladder damage requires a duration that is more likely related to elevated storage pressures/hypoxia, seen in later stages of BOO, as compared to shorter duration pressure elevation/hypoxia that is encountered in normal micturition cycles or early in the BOO pathology where storage pressures are still normal.
Collapse
Affiliation(s)
- Britney N Hudson
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634-0905, USA
| | - J Todd Purves
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634-0905, USA
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634-0905, USA
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Jiro Nagatomi
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634-0905, USA.
| |
Collapse
|
20
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Cell type-dependent response to benzo(a)pyrene exposure of human placental cell lines under normoxic, hypoxic, and pro-inflammatory conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116287. [PMID: 38579532 DOI: 10.1016/j.ecoenv.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1β. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1β secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Research & Development, IQProducts, 9727 DL, Groningen, the Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
21
|
Yu T, Hou D, Zhao J, Lu X, Greentree WK, Zhao Q, Yang M, Conde DG, Linder ME, Lin H. NLRP3 Cys126 palmitoylation by ZDHHC7 promotes inflammasome activation. Cell Rep 2024; 43:114070. [PMID: 38583156 PMCID: PMC11130711 DOI: 10.1016/j.celrep.2024.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome hyperactivation contributes to many human chronic inflammatory diseases, and understanding how NLRP3 inflammasome is regulated can provide strategies to treat inflammatory diseases. Here, we demonstrate that NLRP3 Cys126 is palmitoylated by zinc finger DHHC-type palmitoyl transferase 7 (ZDHHC7), which is critical for NLRP3-mediated inflammasome activation. Perturbing NLRP3 Cys126 palmitoylation by ZDHHC7 knockout, pharmacological inhibition, or modification site mutation diminishes NLRP3 activation in macrophages. Furthermore, Cys126 palmitoylation is vital for inflammasome activation in vivo. Mechanistically, ZDHHC7-mediated NLRP3 Cys126 palmitoylation promotes resting NLRP3 localizing on the trans-Golgi network (TGN) and activated NLRP3 on the dispersed TGN, which is indispensable for recruitment and oligomerization of the adaptor ASC (apoptosis-associated speck-like protein containing a CARD). The activation of NLRP3 by ZDHHC7 is different from the termination effect mediated by ZDHHC12, highlighting versatile regulatory roles of S-palmitoylation. Our study identifies an important regulatory mechanism of NLRP3 activation that suggests targeting ZDHHC7 or the NLRP3 Cys126 residue as a potential therapeutic strategy to treat NLRP3-related human disorders.
Collapse
Affiliation(s)
- Tao Yu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dan Hou
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jiaqi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xuan Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Wendy K Greentree
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Qian Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Don-Gerard Conde
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Nandi D, Debnath M, Forster J, Pandey A, Bharadwaj H, Patel R, Kulkarni A. Nanoparticle-mediated co-delivery of inflammasome inhibitors provides protection against sepsis. NANOSCALE 2024; 16:4678-4690. [PMID: 38317511 DOI: 10.1039/d3nr05570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The NLRP3 inflammasome, a multiprotein complex responsible for triggering the release of pro-inflammatory cytokines, plays a crucial role in inducing the inflammatory response associated with sepsis. While small molecule inhibitors of the NLRP3 inflammasome have been investigated for sepsis management, delivering NLRP3 inhibitors has been accompanied by several challenges, primarily related to the drug formulation, delivery route, stability, and toxicity. Many existing inflammasome inhibitors either show higher liver toxicity or require a high dosage to efficiently impede the inflammasome complex assembly. Moreover, the potential synergistic effects of combining multiple inflammasome inhibitors in sepsis therapy remain largely unexplored. Therefore, a rational approach is essential for presenting the potential administration of NLRP3 small molecule inhibitors to inhibit NLRP3 inflammasome activation effectively. In this context, we present a lipid nanoparticle-based dual-drug delivery system loaded with MCC 950 and disulfiram, demonstrating markedly higher efficiency compared to an equivalent amount of free-drug combinations and individual drug nanoparticles in vitro. This combination therapy substantially improved the in vivo survival rate of mice for LPS-induced septic peritonitis. Additionally, the synergistic approach illustrated a significant reduction in the expression of active caspase-1 as well as IL-1β inhibition integral components in the NLRP3 pathway. This study underscores the importance of integrating combination therapies facilitated by nanoparticle delivery to address the limitations of small molecule inflammasome inhibitors.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
| | - Ankit Pandey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| | - Hariharan Bharadwaj
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, Massachusetts 01107, United States.
| | - Ruchi Patel
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, Massachusetts 01107, United States.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
23
|
Basak B, Akashi-Takamura S. IRF3 function and immunological gaps in sepsis. Front Immunol 2024; 15:1336813. [PMID: 38375470 PMCID: PMC10874998 DOI: 10.3389/fimmu.2024.1336813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-β (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-β) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.
Collapse
Affiliation(s)
- Bristy Basak
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
24
|
Lee J, Ou JHJ. HCV-induced autophagy and innate immunity. Front Immunol 2024; 15:1305157. [PMID: 38370419 PMCID: PMC10874285 DOI: 10.3389/fimmu.2024.1305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
The interplay between autophagy and host innate immunity has been of great interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-recognition receptors (PRRs) that recognize pathogens-associated molecular patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged organelles and protein aggregates to lysosomes for degradation and recycling. Autophagy is also an innate immune response of cells to trap pathogens in membrane vesicles for removal. However, HCV controls the autophagic pathway and uses autophagic membranes to enhance its replication. Mitophagy, a selective autophagy targeting mitochondria, alters the dynamics and metabolism of mitochondria, which play important roles in host antiviral responses. HCV also alters mitochondrial dynamics and promotes mitophagy to prevent premature cell death and attenuate the interferon (IFN) response. In addition, the dysregulation of the inflammasomal response by HCV leads to IFN resistance and immune tolerance. These immune evasion properties of HCV allow HCV to successfully replicate and persist in its host cells. In this article, we discuss HCV-induced autophagy/mitophagy and its associated immunological responses and provide a review of our current understanding of how these processes are regulated in HCV-infected cells.
Collapse
Affiliation(s)
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
25
|
Facchin BM, Lubschinski TL, Moon YJK, de Oliveira PGF, Beck BK, da Silva Buss Z, Pollo LAE, Biavatti MW, Sandjo LP, Dalmarco EM. Evaluation of the anti-inflammatory effect of 1,4-dihydropyridine derivatives. Fundam Clin Pharmacol 2024; 38:168-182. [PMID: 37558213 DOI: 10.1111/fcp.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Inflammation is a physiological event that protects the organism against different factors that lead to loss of tissue homeostasis. Dihydropyridine (DHP) derivatives are heterocyclic compounds known for their different biological activities, including anti-inflammatory activities. OBJECTIVE To evaluate the anti-inflammatory activity of 1,4-dihydropyridine (1,4-DHP) derivatives using anti-inflammatory models in vitro, in RAW264.7 cells induced by lipopolysaccharide (LPS) and in vivo using the acute lung injury (ALI) model in mice. RESULTS Fifteen compounds derived from 1,4-DHP were tested in RAW264.7 cells for their cytotoxic effect and cell viability. Thereafter, only the six compounds that showed the highest cell viability were tested for the production or inhibition of the pro-inflammatory cytokine interleukin 6 (IL-6). The best compound (compound 4) was tested for its anti-inflammatory effects in vitro and in vivo, showing inhibition of nitric oxide (NO), pro-inflammatory cytokines, increased phagocytic activity, and an increase in IL-10 in vitro. In in vivo tests, compound 4 also reduces the levels of NO, myeloperoxidase (MPO) activity, leukocyte migration, and exudation, as well as reducing the levels of tumor necrosis factor-alpha (TNF-α) and IL-6 and preventing the loss in the lung architecture. CONCLUSION This compound showed important anti-inflammatory activity, with a significant ability to reduce the production of pro-inflammatory mediators and increase the phagocytic activity of macrophages and anti-inflammatory mediator secretion (IL-10). These findings led us to hypothesize that this compound can repolarize the macrophage response to an anti-inflammatory profile (M2). Moreover, it was also able to maintain its anti-inflammatory activity in vivo experiments.
Collapse
Affiliation(s)
- Bruno Matheus Facchin
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Yeo Jim Kinoshita Moon
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Bianca Klafke Beck
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
26
|
Hu Y, He S, Xu X, Cui X, Wei Y, Zhao C, Ye H, Zhao J, Liu Q. Shenhuangdan decoction alleviates sepsis-induced lung injury through inhibition of GSDMD-mediated pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117047. [PMID: 37586442 DOI: 10.1016/j.jep.2023.117047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis-induced lung injury is closely associated with it remarkable morbidity and mortality. Shenhuangdan (SHD) decoction, a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for sepsis. However, the mechanism of SHD decoction in treating sepsis remains unclear. AIM OF THE STUDY This study aimed to evaluate the therapeutic effect of SHD decoction on sepsis-induced lung injury and its underlying mechanism. MATERIALS AND METHODS In this study, we established a mouse model of sepsis by cecum ligation and puncture (CLP) surgery. Firstly, seven-day survival analysis and histological staining of lung tissue were used to evaluate the therapeutic effect of SHD decoction on lung injury in septic mice. Multifactor microarray was used to detect cytokine expression changes in serum and bronchoalveolar lavage fluid (BALF). Subsequently, the main components in medicated serum of SHD decoction were inspected by Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The material basis of SHD decoction and potential interaction mechanisms were analysed by systemic pharmacology. To confirm the reliability of network pharmacology for predicting outcomes, we used molecular docking techniques to identify interactions between the core components and targets of SHD. Finally, TUNEL staining, immunofluorescence and western blotting were used to explore the mechanism of SHD decoction through the inhibition of GSDMD-mediated pyroptosis in septic mice. RESULTS SHD was found to be effective in reducing the mortality and alleviating lung pathological damage in septic mice. Multifactor microarray results showed that SHD can reduce the expression of inflammation factors (IL-18, IL-1β, IL-5, IL-6 and TNF-α) in serum and BALF of septic mice. There were 22 major blood-entry components detected by UPLC-MS/MS. Then, combined with the network pharmacological analysis, it is evident that the main components of SHD for sepsis are Renshen-ginsenoside Rh2, Danshen-tanshinone IIA and Dahuang-rhein. The main targets were IL-1β and caspase-1, which were related to GSDMD-mediated pyroptosis signalling pathway. Molecular docking exhibited that Renshen-ginsenoside Rh2, Danshen-tanshinone IIA and Dahuang-rhein can closely bind to GSDMD, IL-1β and caspase-1. In addition, TUNEL staining and immunohistochemistry demonstrated that SHD alleviated the expression of GSDMD protein. The western blotting showed that SHD significantly inhibited the protein expression levels of NLRP3, GSDMD, GSDMD-N, cleved caspase-1, caspase-1 and ASC in lung tissue. CONCLUSIONS Our study revealed that SHD improves CLP-induced lung injury by blocking the GSDMD-mediated pyroptosis signalling pathway in septic mice. This study provides evidence to support that SHD had a potential therapeutic effect on sepsis.
Collapse
Affiliation(s)
- Yahui Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| | - Xuran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| | - Yiming Wei
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China; Beijing University of Chinese Medicine, Beijing 100010, China.
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China; Capital Medical University, Beijing 100069, China.
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China; Capital Medical University, Beijing 100069, China.
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| |
Collapse
|
27
|
Wang S, Jiang D, Huang F, Qian Y, Qi M, Li H, Wang X, Wang Z, Wang K, Wang Y, Du P, Zhan B, Zhou R, Chu L, Yang X. Therapeutic effect of Echinococcus granulosus cyst fluid on bacterial sepsis in mice. Parasit Vectors 2023; 16:450. [PMID: 38066526 PMCID: PMC10709918 DOI: 10.1186/s13071-023-06021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-β) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Shuying Wang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feifei Huang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yayun Qian
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Meitao Qi
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Zhi Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Kaigui Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
28
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
31
|
Wang W, Wang H, Sun T. N 6-methyladenosine modification: Regulatory mechanisms and therapeutic potential in sepsis. Biomed Pharmacother 2023; 168:115719. [PMID: 37839108 DOI: 10.1016/j.biopha.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by multiple biological and clinical features. N6-methyladenosine (m6A) modification is the most common type of RNA modifications in eukaryotes and plays an important regulatory role in various biological processes. Recently, m6A modification has been found to be involved in the regulation of immune responses in sepsis. In addition, several studies have shown that m6A modification is involved in sepsis-induced multiple organ dysfunctions, including cardiovascular dysfunction, acute lung injury (ALI), acute kidney injury (AKI) and etc. Considering the complex pathogenesis of sepsis and the lack of specific therapeutic drugs, m6A modification may be the important bond in the pathophysiological process of sepsis and even therapeutic targets. This review systematically highlights the recent advances regarding the roles of m6A modification in sepsis and sheds light on their use as treatment targets for sepsis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Xu Z, Tang W, Xie Q, Cao X, Zhang M, Zhang X, Chai J. Dimethyl fumarate attenuates cholestatic liver injury by activating the NRF2 and FXR pathways and suppressing NLRP3/GSDMD signaling in mice. Exp Cell Res 2023; 432:113781. [PMID: 37722551 DOI: 10.1016/j.yexcr.2023.113781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
The progression of cholestasis is characterized by excessive accumulation of bile acids (BAs) in the liver, which leads to oxidative stress (OS), inflammation and liver injury. There are currently limited treatments for cholestasis. Therefore, appropriate drugs for cholestasis treatment need to be developed. Dimethyl fumarate (DMF) has been widely used in the treatment of various diseases and exerts antioxidant and anti-inflammatory effects, but its effect on cholestatic liver disease remains unclarified. We fed mice 3,5-diethoxycarbonyl-1,4-dihydrocollidine or cholic acid to induce cholestatic liver injury and treated these mice with DMF to evaluate its protective ability. Alanine aminotransferase, aspartate aminotransferase, and total liver BAs were assessed as indicators of liver function. The levels of OS, liver inflammation, transporters and metabolic enzymes were also measured. DMF markedly altered the relative ALT and AST levels and enhanced the liver antioxidant capacity. DMF regulated the MST/NRF2 signaling pathway to protect against OS and reduced liver inflammation through the NLRP3/GSDMD signaling pathway. DMF also regulated the levels of BA transporters by promoting FXR protein expression. These findings provide new strategies for the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Ziqian Xu
- School of Medicine, Chongqing University, Chongqing 400030, China; Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wan Tang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiaoling Xie
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xinyu Cao
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mengni Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jin Chai
- School of Medicine, Chongqing University, Chongqing 400030, China; Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China; The Second Affiliated Hospital, University of South China, Hengyang 421001, China.
| |
Collapse
|
33
|
Sharma AK, Ismail N. Non-Canonical Inflammasome Pathway: The Role of Cell Death and Inflammation in Ehrlichiosis. Cells 2023; 12:2597. [PMID: 37998332 PMCID: PMC10670716 DOI: 10.3390/cells12222597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Activating inflammatory caspases and releasing pro-inflammatory mediators are two essential functions of inflammasomes which are triggered in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). The canonical inflammasome pathway involves the activation of inflammasome and its downstream pathway via the adaptor ASC protein, which causes caspase 1 activation and, eventually, the cleavage of pro-IL-1b and pro-IL-18. The non-canonical inflammasome pathway is induced upon detecting cytosolic lipopolysaccharide (LPS) by NLRP3 inflammasome in Gram-negative bacteria. The activation of NLRP3 triggers the cleavage of murine caspase 11 (human caspase 4 or caspase 5), which results in the formation of pores (via gasdermin) to cause pyroptosis. Ehrlichia is an obligately intracellular bacterium which is responsible for causing human monocytic ehrlichiosis (HME), a potentially lethal disease similar to toxic shock syndrome and septic shock syndrome. Several studies have indicated that canonical and non-canonical inflammasome activation is a crucial pathogenic mechanism that induces dysregulated inflammation and host cellular death in the pathophysiology of HME. Mechanistically, the activation of canonical and non-canonical inflammasome pathways affected by virulent Ehrlichia infection is due to a block in autophagy. This review aims to explore the significance of non-canonical inflammasomes in ehrlichiosis, and how the pathways involving caspases (with the exception of caspase 1) contribute to the pathophysiology of severe and fatal ehrlichiosis. Improving our understanding of the non-canonical inflammatory pathway that cause cell death and inflammation in ehrlichiosis will help the advancement of innovative therapeutic, preventative, and diagnostic approaches to the treatment of ehrlichiosis.
Collapse
Affiliation(s)
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
34
|
Ding W, Huang L, Wu Y, Su J, He L, Tang Z, Zhang M. The role of pyroptosis-related genes in the diagnosis and subclassification of sepsis. PLoS One 2023; 18:e0293537. [PMID: 37939116 PMCID: PMC10631697 DOI: 10.1371/journal.pone.0293537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Pyroptosis is a new form of programmed cell death recognized as crucial in developing sepsis. However, there is limited research on the mechanism of pyroptosis-related genes in sepsis-related from the Gene Expression Omnibus (GEO) database and standardized. The expression levels of pyroptosis-related genes were extracted, and differential expression analysis was conducted. A prediction model was constructed using random forest (RF), support vector machine (SVM), weighted gene co-expression new analysis (WGCNA), and nomogram techniques to assess the risk of sepsis. The relationship between pyroptosis-related subgroups and the immune microenvironment and inflammatory factors was studied using consistent clustering algorithms, principal component analysis (PCA), single-sample genomic enrichment analysis (ssGSEA), and immune infiltration. A risk prediction model based on 3 PRGs has been constructed and can effectively predict the risk of sepsis. Patients with sepsis can be divided into two completely different subtypes of pyroptosis-related clusters. Cluster B is highly correlated with the lower proportion of Th17 celld and has lower levels of expression of inflammatory factors. This study utilizes mechanical learning methods to further investigate the pathogenesis of sepsis, explore potential biomarkers, provide effective molecular targets for its diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wencong Ding
- Department of Nephrology, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Laping Huang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Yifeng Wu
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Junwei Su
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Liu He
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Zhongxiang Tang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Min Zhang
- Department of Nephrology, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| |
Collapse
|
35
|
Bornancin F, Dekker C. A phospho-harmonic orchestra plays the NLRP3 score. Front Immunol 2023; 14:1281607. [PMID: 38022631 PMCID: PMC10654991 DOI: 10.3389/fimmu.2023.1281607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
NLRP3 is a prototypical sensor protein connecting cellular stress to pro-inflammatory signaling. A complex array of regulatory steps is required to switch NLRP3 from an inactive state into a primed entity that is poised to assemble an inflammasome. Accumulating evidence suggests that post-translational mechanisms are critical. In particular, phosphorylation/dephosphorylation and ubiquitylation/deubiquitylation reactions have been reported to regulate NLRP3. Taken individually, several post-translational modifications appear to be essential. However, it remains difficult to understand how they may be coordinated, whether there is a unique sequence of regulatory steps accounting for the functional maturation of NLRP3, or whether the sequence is subject to variations depending on cell type, the stimulus, and other parameters such as the cellular context. This review will focus on the regulation of the NLRP3 inflammasome by phosphorylation and dephosphorylation, and on kinases and phosphatases that have been reported to modulate NLRP3 activity. The aim is to try to integrate the current understanding and highlight potential gaps for further studies.
Collapse
Affiliation(s)
| | - Carien Dekker
- Discovery Sciences Department, Novartis Biomedical Research, Basel, Switzerland
| |
Collapse
|
36
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
37
|
Dumbuya JS, Chen X, Du J, Li S, Liang L, Xie H, Zeng Q. Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model. Int Immunopharmacol 2023; 123:110758. [PMID: 37556997 DOI: 10.1016/j.intimp.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is characterised by long-term cognitive impairment and psychiatric illness in sepsis survivors, associated with increased morbidity and mortality. There is a lack of effective therapeutics for SAE. Molecular hydrogen (H2) plays multiple roles in septic diseases by regulating neuroinflammation, reducing oxidative stress parameters, regulating signalling pathways, improving mitochondrial dysfunction, and regulating astrocyte and microglia activation. Here we report the protective effect of hydrogen-rich saline in the juvenile SAE rat model and its possible underlying mechanisms. Rats were injected intraperitoneally with lipopolysaccharide at a dose of 5 mg/kg to induce sepsis; Hydrogen-rich saline (HRS) was administered 1 h after LPS induction at a dose of 5 ml/kg and nigericin at 1 mg/kg 1 h before LPS injection. H&E staining for neuronal damage, TUNEL assay for detection of apoptotic cells, immunofluorescence, ELISA protocol for inflammatory cytokines and 8-OHdG determination and western blot analysis to determine the effect of HRS in LPS-induced septic rats. Rats treated with HRS showed decreased TNF-α and IL-1β expression levels. HRS treatment enhanced the activities of antioxidant enzymes (SOD, CAT and GPX) and decreased MDA and MPO activities. The number of MMP-9 and NLRP3 positive immunoreactivity cells decreased in the HRS-treated group. Subsequently, GFAP, IBA-1 and CD86 immunoreactivity were reduced, and CD206 increased after HRS treatment. 8-OHdG expression was decreased in the HRS-treated rats. Western blot analysis showed decreased NLRP3, ASC, caspase-1, MMP-2/9, TLR4 and Bax protein levels after HRS treatment, while Bcl-2 expression increased after HRS treatment. These data demonstrated that HRS attenuated neuroinflammation, NLRP3 inflammasome activation, neuronal injury, and mitochondrial damage via NLRP3/Caspase-1/TLR4 signalling in the juvenile rat model, making it a potential therapeutic agent in the treatment of paediatric SAE.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Xinxin Chen
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Jiang Du
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Hairui Xie
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China.
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China.
| |
Collapse
|
38
|
Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol 2023; 53:e2350382. [PMID: 37382218 DOI: 10.1002/eji.202350382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimolecular complex that plays a fundamental role in inflammation. Optimal activation of NLRP3 inflammasome is crucial for host defense against pathogens and the maintenance of immune homeostasis. Aberrant NLRP3 inflammasome activity has been implicated in various inflammatory diseases. Posttranslational modifications (PTMs) of NLRP3, a key inflammasome sensor, play critical roles in directing inflammasome activation and controlling the severity of inflammation and inflammatory diseases, such as arthritis, peritonitis, inflammatory bowel disease, atherosclerosis, and Parkinson's disease. Various NLRP3 PTMs, including phosphorylation, ubiquitination, and SUMOylation, could direct inflammasome activation and control inflammation severity by affecting the protein stability, ATPase activity, subcellular localization, and oligomerization of NLRP3 as well as the association between NLRP3 and other inflammasome components. Here, we provide an overview of the PTMs of NLRP3 and their roles in controlling inflammation and summarize potential anti-inflammatory drugs targeting NLRP3 PTMs.
Collapse
Affiliation(s)
- Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Li Z, Chen Y, Jiang X, Lu P, Wang C, Li Z, Yu X, Yang Z, Ma S, Du S, Tai Z, Li X, Zhang S, Jiang Y, Qin C. Novel Sulfonylurea-Based NLRP3 Inflammasome Inhibitor for Efficient Treatment of Nonalcoholic Steatohepatitis, Endotoxic Shock, and Colitis. J Med Chem 2023; 66:12966-12989. [PMID: 37695288 DOI: 10.1021/acs.jmedchem.3c00894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The NLRP3 inflammasome is a critical component of innate immunity involved in the pathophysiology of various inflammatory diseases. In this study, we designed and synthesized a series of NLRP3 inflammasome inhibitors based on MCC950. Specifically, we optimized the furan moiety, which is considered to be potentially associated with drug-induced liver injury. The representative inhibitor N14, 4-(2-(dimethylamino)ethyl)-N-((1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)benzenesulfonamide, not only maintains the NLRP3 inhibitory activity of MCC950 with IC50 of 25 nM but also demonstrates improved tolerability in human hepatic cells line and mouse primary hepatocytes. In addition, N14 exhibits superior pharmacokinetic properties, with an oral bioavailability of 85.2%. In vivo studies demonstrate that N14 is more effective than MCC950 in multiple NLRP3-related animal model diseases, including nonalcoholic steatohepatitis, lethal septic shock, and colitis. Our research has provided a lead compound that directly targets the NLRP3 inflammasome and can be developed as a novel therapeutic candidate for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yiming Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaolin Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Penghui Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chengli Wang
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhimin Li
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xinyue Yu
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zixuan Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shanshan Du
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhengfu Tai
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
40
|
Cakir-Aktas C, Bodur E, Yemisci M, van Leyen K, Karatas H. 12/15-lipoxygenase inhibition attenuates neuroinflammation by suppressing inflammasomes. Front Cell Neurosci 2023; 17:1277268. [PMID: 37822799 PMCID: PMC10562712 DOI: 10.3389/fncel.2023.1277268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Lipoxygenases (LOXs) have essential roles in stroke, atherosclerosis, diabetes, and hypertension. 12/15-LOX inhibition was shown to reduce infarct size and brain edema in the acute phase of experimental stroke. However, the significance of 12/15-LOX on neuroinflammation, which has an essential role in the pathophysiology of stroke, has not been clarified yet. Methods In this study, ischemia/recanalization (I/R) was performed by occluding the proximal middle cerebral artery (pMCAo) in mice. Either the 12/15-LOX inhibitor (ML351, 50 mg/kg) or its solvent (DMSO) was injected i.p. at recanalization after 1 h of occlusion. Mice were sacrificed at 6, 24, and 72-h after ischemia induction. Infarct volumes were calculated on Nissl-stained sections. Neurological deficit scoring was used for functional analysis. Lipid peroxidation was determined by the MDA assay, and the inflammatory cytokines IL-6, TNF-alpha, IL-1beta, IL-10, and TGF-beta were quantified by ELISA. The inflammasome proteins NLRP1 and NLRP3, 12/15-LOX, and caspase-1 were detected with immunofluorescence staining. Results Infarct volumes, neurological deficit scores, and lipid peroxidation were significantly attenuated in ML351-treated groups at 6, 24, and 72-h. ELISA results revealed that the pro-inflammatory cytokines IL-1beta, IL-6, and TNF-alpha were significantly decreased at 6-h and/or 24-h of I/R, while the anti-inflammatory cytokines IL-10 and TNF-alpha were increased at 24-h or 72-h of ML351 treatment. NLRP1 and NLRP3 immunosignaling were enhanced at three time points after I/R, which were significantly diminished by the ML351 application. Interestingly, NLRP3 immunoreactivity was more pronounced than NLRP1. Hence, we proceeded to study the co-localization of NLRP3 immunoreactivity with 12/15-LOX and caspase-1, which indicated that NLRP3 was co-localized with 12/15-LOX and caspase-1 signaling. Additionally, NLRP3 was found in neurons at all time points but in non-neuronal cells 72 h after I/R. Discussion These results suggest that 12/15-LOX inhibition suppresses ischemia-induced inflammation in the acute and subacute phases of stroke via suppressing inflammasome activation. Understanding the mechanisms underlying lipid peroxidation and its associated pathways, like inflammasome activation, may have broader implications for the treatment of stroke and other neurological diseases characterized by neuroinflammation.
Collapse
Affiliation(s)
- Canan Cakir-Aktas
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Ebru Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Hulya Karatas
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
41
|
曹 海, 张 玮, 李 明, 杨 燕, 李 玉. [Isodopharicin C inhibits NLRP3 inflammasome activation and alleviates septic shock in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1476-1484. [PMID: 37814861 PMCID: PMC10563096 DOI: 10.12122/j.issn.1673-4254.2023.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate the effect of Isodopharicin C (Iso C), a traditional Chinese herbal medicine extract, on NLRP3 inflammasome activation and lipopolysaccharide (LPS)-induced septic shock in mice. METHODS Murine bone marrow-derived macrophages (BMDM) and human monocytic THP-1 cells were stimulated with LPS before treatment with different NLRP3 inflammasome agonists to activate canonical NLRP3 inflammasomes. The non-canonical NLRP3 inflammasomes were activated by intracellular LPS transfection, and AIM2 inflammasomes were activated with poly A: T. The cleavage of caspase-1 induced by NLRP3 activation was measured using Western blotting. The levels of NLRP3-dependent and -independent pro-inflammatory cytokines in the cell culture supernatant were detected using ELISA, and the intracellular potassium ion concentration was measured using ICP-OES. In the animal experiment, C57BL/6J mouse models of septic shock (induced by intraperitoneal LPS injection) were treated with Iso C, and the levels of IL-1β, TNF-α and IL-6 in the serum and peritoneal lavage fluid were detected using ELISA. The survival time of the mice was observed within 48 h after LPS injection and a survival curve was plotted. RESULTS In BMDM cells, Iso C dose-dependently inhibited the activation of canonical NLRP3 inflammasomes and non-canonical NLRP3 inflammasomes (P<0.05) without obviously affecting the secretion levels of TNF-α and IL-6 (P>0.05), the activation of AIM2 inflammasomes (P>0.05), or K + efflux, the upstream signaling of NLRP3 activation (P>0.05). Iso C inhibited the activation of canonical NLRP3 inflammasomes in human THP-1 cells. In septic C57BL/6J mice, Iso C treatment significantly reduced IL-1β levels in the serum and peritoneal lavage fluid, and prolonged the survival time of the mice (P<0.05). CONCLUSION Iso C specifically inhibits NLRP3 inflammasome activation and alleviates septic shock in mice, and can serve as a potential small molecule compound for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- 海若 曹
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, school of laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 玮 张
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 明远 李
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 燕青 杨
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 玉云 李
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, school of laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
42
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
43
|
Shao S, Zhou D, Feng J, Liu Y, Baturuhu, Yin H, Zhan D. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne) 2023; 14:1124334. [PMID: 37465127 PMCID: PMC10351979 DOI: 10.3389/fendo.2023.1124334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression. Therefore, immune-modulatory therapies have great potential for novel sepsis therapies. Ubiquitination is an essential post-translational protein modification, which has been known to be intimately involved in innate and adaptive immune responses. Several E3 ubiquitin ligases have been implicated in innate immune signaling and T-cell activation and differentiation. In this article, we review the current literature and discuss the role of E3 ligases in the regulation of immune response and their effects on the course of sepsis to provide insights into the prevention and therapy for sepsis.
Collapse
Affiliation(s)
- Shasha Shao
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Obstetrics and Gynecology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baturuhu
- Department of Neurosurgery Intensive Care Unit (ICU), People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Huimei Yin
- Department of Emergency Medicine, People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Daqian Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, Wen J, Shi W, Wei Z, Yang Y, Zou W, Zhao J, Xiao X, Bai Z, Zhan X. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med 2023; 29:84. [PMID: 37400760 DOI: 10.1186/s10020-023-00671-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/29/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Abnormal activation of NLRP3 inflammasome is related to a series of inflammatory diseases, including type 2 diabetes, gouty arthritis, non-alcoholic steatohepatitis (NASH), and neurodegenerative disorders. Therefore, targeting NLRP3 inflammasome is regarded as a potential therapeutic strategy for many inflammatory diseases. A growing number of studies have identified tanshinone I (Tan I) as a potential anti-inflammatory agent because of its good anti-inflammatory activity. However, its specific anti-inflammatory mechanism and direct target are unclear and need further study. METHODS IL-1β and caspase-1 were detected by immunoblotting and ELISA, and mtROS levels were measured by flow cytometry. Immunoprecipitation was used to explore the interaction between NLRP3, NEK7 and ASC. In a mouse model of LPS-induced septic shock, IL-1β levels in peritoneal lavage fluid and serum were measured by ELISA. Liver inflammation and fibrosis in the NASH model were analyzed by HE staining and immunohistochemistry. RESULTS Tan I inhibited the activation of NLRP3 inflammasome in macrophages, but had no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, Tan I inhibited NLRP3 inflammasome assembly and activation by targeting NLRP3-ASC interaction. Furthermore, Tan I exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including septic shock and NASH. CONCLUSIONS Tan I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC, and exhibits protective effects in mouse models of LPS-induced septic shock and NASH. These findings suggest that Tan I is a specific NLRP3 inhibitor and may be a promising candidate for treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, North SiChuan Medical College, Nanchong, 637000, China
| | - Hongbin Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, 075000, China
| | - Zhixian Hong
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Luo
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaorong Hou
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Guang Xu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhie Fang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Lutong Ren
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ziying Wei
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhaofang Bai
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaoyan Zhan
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
45
|
Luther T, Bülow-Anderberg S, Persson P, Franzén S, Skorup P, Wernerson A, Hultenby K, Palm F, Schiffer TA, Frithiof R. Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F571-F580. [PMID: 37102685 DOI: 10.1152/ajprenal.00294.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Sheep develop sepsis-associated acute kidney injury (SA-AKI) during experimental sepsis despite normal to increased renal oxygen delivery. A disturbed relation between oxygen consumption (V̇o2) and renal Na+ transport has been demonstrated in sheep and in clinical studies of AKI, which could be explained by mitochondrial dysfunction. We investigated the function of isolated renal mitochondria compared with renal oxygen handling in an ovine hyperdynamic model of SA-AKI. Anesthetized sheep were randomized to either an infusion of live Escherichia coli with resuscitative measures (sepsis group; n = 13 animals) or served as controls (n = 8 animals) for 28 h. Renal V̇o2 and Na+ transport were repeatedly measured. Live cortical mitochondria were isolated at baseline and at the end of the experiment and assessed in vitro with high-resolution respirometry. Sepsis markedly reduced creatinine clearance, and the relation between Na+ transport and renal V̇o2 was decreased in septic sheep compared with control sheep. Cortical mitochondrial function was altered in septic sheep with a reduced respiratory control ratio (6.0 ± 1.5 vs. 8.2 ± 1.6, P = 0.006) and increased complex II-to-complex I ratio during state 3 (1.6 ± 0.2 vs. 1.3 ± 0.1, P = 0.0014) mainly due to decreased complex I-dependent state 3 respiration (P = 0.016). However, no differences in renal mitochondrial efficiency or mitochondrial uncoupling were found. In conclusion, renal mitochondrial dysfunction composed of a reduction of the respiratory control ratio and an increased complex II/complex I relation in state 3 was demonstrated in an ovine model of SA-AKI. However, the disturbed relation between renal V̇o2 and renal Na+ transport could not be explained by a change in renal cortical mitochondrial efficiency or uncoupling.NEW & NOTEWORTHY We studied the function of renal cortical mitochondria in relation to oxygen consumption in an ovine model of sepsis with acute kidney injury. We demonstrated changes in the electron transport chain induced by sepsis consisting of a reduced respiratory control ratio mainly by a reduced complex I-mediated respiration. Neither an increase in mitochondrial uncoupling nor a reduction in mitochondrial efficiency was demonstrated and cannot explain why oxygen consumption was unaffected despite reduced tubular transport.
Collapse
Affiliation(s)
- Tomas Luther
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Sara Bülow-Anderberg
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Palm
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Mokhtar DM, Sayed RKA, Zaccone G, Alesci A, Hussein MM. The potential role of the pseudobranch of molly fish (Poecilia sphenops) in immunity and cell regeneration. Sci Rep 2023; 13:8665. [PMID: 37248336 PMCID: PMC10227048 DOI: 10.1038/s41598-023-34044-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
The pseudobranch is a gill-like structure that exhibits great variations in structure and function among fish species, and therefore, it has remained a topic of investigation for a long time. This study was conducted on adult Molly fish (Poecilia sphenops) to investigate the potential functions of their pseudobranch using histological, histochemical, immunohistochemical analysis, and scanning electron microscopy. The pseudobranch of Molly fish was of embedded type. It comprised many rows of parallel lamellae that were fused completely throughout their length by a thin connective tissue. These lamellae consisted of a central blood capillary, surrounded by large secretory pseudobranch cells (PSCs). Immunohistochemical analysis revealed the expression of PSCs for CD3, CD45, iNOS-2, and NF-κB, confirming their role in immunity. Furthermore, T-lymphocytes-positive CD3, leucocytes-positive CD45, and dendritic cells-positive CD-8 and macrophage- positive APG-5 could be distinguished. Moreover, myogenin and TGF-β-positive PSCs were identified, in addition to nests of stem cells- positive SOX-9 were detected. Melanocytes, telocytes, and GFAP-positive astrocytes were also demonstrated. Scanning electron microscopy revealed that the PSCs were covered by microridges, which may increase the surface area for ionic exchange. In conclusion, pseudobranch is a highly specialized structure that may be involved in immune response, ion transport, acid-base balance, as well as cell proliferation and regeneration.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, 98168, Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
47
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
48
|
Liu Y, Lei YX, Li JW, Ma YZ, Wang XY, Meng FH, Wu YJ, Wang N, Liang J, Zhao CQ, Yang Y, Chen GX, Yu SX. G Protein-Coupled Receptor 120 Mediates Host Defense against Clostridium perfringens Infection through Regulating NOD-like Receptor Family Pyrin Domain-Containing 3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7119-7130. [PMID: 37115810 DOI: 10.1021/acs.jafc.3c01242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clostridium perfringens is a major cause of infectious foodborne disease, frequently associated with the consumption of raw and undercooked food. Despite intensive studies on clarifying C. perfringens pathogenesis, the molecular mechanisms of host-pathogen interactions remain poorly understood. In soft tissue and mucosal infection models, Gpr120-/- mice, G protein-coupled receptor 120 (GPR120), are more susceptible to C. perfringens infection. Gpr120 deficiency leads to a low survival rate (30 and 10%, p < 0.01), more bacterial loads in the muscle (2.26 × 108 ± 2.08 × 108 CFUs/g, p < 0.01), duodenum (2.80 × 107 ± 1.61 × 107 CFUs/g, p < 0.01), cecum (2.50 × 108 ± 2.05 × 108 CFUs/g, p < 0.01), and MLN (1.23 × 106 ± 8.06 × 105 CFUs/g, p < 0.01), less IL-18 production in the muscle (8.54 × 103 ± 1.20 × 103 pg/g, p < 0.01), duodenum (3.34 × 103 ± 2.46 × 102 pg/g, p < 0.01), and cecum (3.81 × 103 ± 5.29 × 102 pg/g, p < 0.01), and severe organ injury. Obviously, GPR120 facilitates IL-18 production and pathogen control via potassium efflux-dependent NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling. Mechanistically, GPR120 interaction with NLRP3 potentiates the NLRP3 inflammasome assembly. Thus, this study uncovers a novel role of GPR120 in host protection and reveals that GPR120 may be a potential therapeutic target for limiting pathogen infection.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot 010031, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jian-Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Ze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Cai-Quan Zhao
- College of Biological Science and Technology, Bao Tou Teachers' College, Baotou 014030, China
| | - Yang Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Guang-Xin Chen
- Institutes of Biomedical Sciences, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
49
|
Guo Y, Gu D, Huang T, Li A, Zhou Y, Kang X, Meng C, Xiong D, Song L, Jiao X, Pan Z. Salmonella Enteritidis T1SS protein SiiD inhibits NLRP3 inflammasome activation via repressing the mtROS-ASC dependent pathway. PLoS Pathog 2023; 19:e1011381. [PMID: 37155697 DOI: 10.1371/journal.ppat.1011381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/18/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasome activation is an essential innate immune defense mechanism against Salmonella infections. Salmonella has developed multiple strategies to avoid or delay inflammasome activation, which may be required for long-term bacterial persistence. However, the mechanisms by which Salmonella evades host immune defenses are still not well understood. In this study, Salmonella Enteritidis (SE) random insertion transposon library was screened to identify the key factors that affect the inflammasome activation. The type I secretion system (T1SS) protein SiiD was demonstrated to repress the NLRP3 inflammasome activation during SE infection and was the first to reveal the antagonistic role of T1SS in the inflammasome pathway. SiiD was translocated into host cells and localized in the membrane fraction in a T1SS-dependent and partially T3SS-1-dependent way during SE infection. Subsequently, SiiD was demonstrated to significantly suppress the generation of mitochondrial reactive oxygen species (mtROS), thus repressing ASC oligomerization to form pyroptosomes, and impairing the NLRP3 dependent Caspase-1 activation and IL-1β secretion. Importantly, SiiD-deficient SE induced stronger gut inflammation in mice and displayed NLRP3-dependent attenuation of the virulence. SiiD-mediated inhibition of NLRP3 inflammasome activation significantly contributed to SE colonization in the infected mice. This study links bacterial T1SS regulation of mtROS-ASC signaling to NLRP3 inflammasome activation and reveals the essential role of T1SS in evading host immune responses.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Tingting Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Ang Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| |
Collapse
|
50
|
Guo J, Luo Y, Zuo J, Teng J, Shen B, Liu X. Echinacea Polyphenols Inhibit NLRP3-Dependent Pyroptosis, Apoptosis, and Necroptosis via Suppressing NO Production during Lipopolysaccharide-Induced Acute Lung Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7289-7298. [PMID: 37154470 DOI: 10.1021/acs.jafc.2c08382] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PANoptosis is an intricate programmed death pathway that involves the interaction between pyroptosis, apoptosis, and necroptosis. We systematically explored the protective effect of Echinacea polyphenols (EPP) against the lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the underlying mechanisms both in vitro and in vivo. We noted that EPP pretreatment could significantly alleviate LPS-induced lung tissue injury and pulmonary edema. EPP inhibited the PANoptosis by regulating the expression of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, gasdermin D, caspase-8, caspase-3, and mixed lineage kinase domain-like protein. Meanwhile, a comparative study of EPP and inducible nitric oxide synthase inhibitor S-methylisothiourea sulfate indicated that EPP may play a preprotective role in inhibiting PANoptosis via reducing the activity of inducible nitric oxide synthase and the production of nitric oxide (NO) during ALI. Our results clearly indicated that PANoptosis existed in LPS-induced ALI, and EPP pretreatment could provide obvious protective effects to LPS-induced ALI by inhibiting PANoptosis, which may be related to NO production.
Collapse
Affiliation(s)
- Jingjing Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Teng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|