1
|
Yang Y, Ma K, Li S, Xiong T. Multifaceted role of nitric oxide in vascular dementia. Med Gas Res 2025; 15:496-506. [PMID: 40300885 DOI: 10.4103/mgr.medgasres-d-24-00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 05/01/2025] Open
Abstract
Vascular dementia is a highly heterogeneous neurodegenerative disorder induced by a variety of factors. Currently, there are no definitive treatments for the cognitive dysfunction associated with vascular dementia. However, early detection and preventive measures have proven effective in reducing the risk of onset and improving patient prognosis. Nitric oxide plays an integral role in various physiological and pathological processes within the central nervous system. In recent years, nitric oxide has been implicated in the regulation of synaptic plasticity and has emerged as a crucial factor in the pathophysiology of vascular dementia. At different stages of vascular dementia, nitric oxide levels and bioavailability undergo dynamic alterations, with a marked reduction in the later stages, which significantly contributes to the cognitive deficits associated with the disease. This review provides a comprehensive review of the emerging role of nitric oxide in the physiological and pathological processes underlying vascular dementia, focusing on its effects on synaptic dysfunction, neuroinflammation, oxidative stress, and blood‒brain barrier integrity. Furthermore, we suggest that targeting the nitric oxide soluble guanylate cyclase-cyclic guanosine monophosphate pathway through specific therapeutic strategies may offer a novel approach for treating vascular dementia, potentially improving both cognitive function and patient prognosis. The review contributes to a better understanding of the multifaceted role of nitric oxide in vascular dementia and to offering insights into future therapeutic interventions.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Kangrong Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shun Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Cao L, Chen C, Pi W, Zhang Y, Xue S, Yong VW, Xue M. Exploring medical gas therapy in hemorrhagic stroke treatment: A narrative review. Nitric Oxide 2025; 156:94-106. [PMID: 40127886 DOI: 10.1016/j.niox.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Hemorrhagic stroke (HS) is a neurological disorder caused by the rupture of cerebral blood vessels, resulting in blood seeping into the brain parenchyma and causing varying degrees of neurological impairment, including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). Current treatment methods mainly include hematoma evacuation surgery and conservative treatment. However, these methods have limited efficacy in enhancing neurological function and prognosis. The current challenge in treating HS lies in inhibiting the occurrence and progression of secondary brain damage after bleeding, which is a key factor affecting the prognosis of HS patients. Studies have shown that medical gas therapy is gaining more attention and has demonstrated various levels of neuroprotective effects on central nervous system disorders, such as hyperbaric oxygen, hydrogen sulfide, nitric oxide, carbon monoxide, and other inhalable gas molecules. These medical gas molecules primarily improve brain tissue damage and neurological dysfunction by regulating inflammation, oxidative stress, apoptosis, and other processes. However, many of these medical gasses also possess neurotoxic properties. Therefore, the use of medical gases in HS deserves further exploration and research. In this review, we will elucidate the therapeutic effects and study the advances in medical gas molecules in HS.
Collapse
Affiliation(s)
- Liang Cao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Chen Chen
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Sara Xue
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Orciani C, Foret MK, Cuello AC, Do Carmo S. Long-term nucleus basalis cholinergic lesions alter the structure of cortical vasculature, astrocytic density and microglial activity in Wistar rats. Neurobiol Aging 2025; 150:132-145. [PMID: 40121723 DOI: 10.1016/j.neurobiolaging.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Basal forebrain cholinergic neurons (BFCNs) are the sole source of cholinergic innervation to the cerebral cortex and hippocampus in humans and the primary source in rodents. This system undergoes early degeneration in Alzheimer's disease. BFCNs terminal synapses are involved in the regulation of the cerebral blood flow by making classical synaptic contacts with other neurons. Additionally, they are located in proximity to cortical cerebral blood vessels, forming connections with various cell types of the neurovascular unit (NVU), including vascular smooth muscle cells, endothelial cells, and astrocytic end-feet. However, the effects of the BFCNs input on NVU components remain unresolved. To address this issue, we immunolesioned the nucleus basalis by administering bilateral stereotaxic injections of the cholinergic immunotoxin 192-IgG-Saporin in 2.5-month-old Wistar rats. Seven months post-lesion, we observed a significant reduction in cortical vesicular acetylcholine transporter-immunoreactive synapses. This was accompanied by changes in the diameter of cortical capillaries and precapillary arterioles, as well as lower levels of vascular endothelial growth factor A (VEGF-A). Additionally, the cholinergic immunolesion increased the density of cortical astrocytes and microglia in the cortex. At these post-BFCN-lesion stages, astrocytic end-feet exhibited an increased co-localization with arterioles. The number of microglia in the parietal cortex correlated with cholinergic loss and exhibited morphological changes indicative of an intermediate activation state. This was supported by decreased levels of proinflammatory mediators IFN-γ, IL-1β, and KC/GRO (CXCL1), and by increased expression of M2 markers SOCS3, IL4Rα, YM1, ARG1, and Fizz1. Our findings offer a novel insight: that the loss of nucleus basalis cholinergic input negatively impacts cortical blood vessels, NVU components, and microglia phenotype.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Morgan K Foret
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - A Claudio Cuello
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
4
|
Buelow AA, Matney JE, Skillett SM, Ashley JD, Song J, Mixon C, Akbari Fakhrabadi A, Stanford M, Bemben DA, Larson DJ, Kellawan JM. Inhibition of CYP450 pathways reduces functional sympatholysis in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2025; 328:R642-R650. [PMID: 40257043 DOI: 10.1152/ajpregu.00173.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Functional sympatholysis, the blunting of sympathetic vasoconstriction during exercise, is critical for regulating exercise hyperemia. The role of cytochrome P450-2C9 (CYP450) pathways in functional sympatholysis remains unclear. A total of 21 participants (11 females) completed three study visits (2 experimental). Participants ingested a placebo (PLA) or CYP450 inhibitor fluconazole (FLZ) 120 min before testing in a double-blind, randomized, crossover design. Forearm blood flow (FBF) and mean arterial pressure (MAP) were continuously measured to calculate forearm vascular conductance (FVC) during baseline, -20 mmHg lower body negative pressure (LBNPrest), rhythmic handgrip exercise (Ex) at 20% maximum voluntary contraction, and exercise with LBNP (LBNPex). FLZ did not change FVC at baseline or during Ex (P > 0.05). However, adding LBNPex to Ex reduced FVC in the FLZ condition compared with PLA (PLA: 2 ± 12 Δ% vs. FLZ: -12 ± 13 Δ%, P < 0.001, d: 0.9). A significant change in FVC across time (baseline + LBNPrest vs. Ex + LBNPex) was observed (P < 0.001, [Formula: see text]: 0.8), along with significant effects of condition (PLA vs. FLZ) (P: 0.003, [Formula: see text]: 0.4) and their interaction (P: 0.05, [Formula: see text]: 0.2). Functional sympatholysis magnitude differed between conditions (PLA: 107 ± 41% vs. FLZ: 67 ± 50%, P: 0.001, r: 0.7). Therefore, CYP450 pathways are mechanistically involved in functional sympatholysis. However, CYP450 inhibition does not augment resting or exercising vascular responses without constrictor stimuli.NEW & NOTEWORTHY Evidence suggests that functional sympatholysis is an endothelial-dependent, nitric oxide and prostaglandin-independent process. We found that cytochrome P450-2C9 (CYP450-2C9) inhibition attenuated sympatholytic responses during dynamic handgrip exercise with superimposed lower body negative pressure. These data indicate that CYP450 pathways contribute to functional sympatholysis in young healthy humans.
Collapse
Affiliation(s)
- Alexander A Buelow
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Jacob E Matney
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Sarah M Skillett
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - John D Ashley
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jiwon Song
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, Texas, United States
| | - Chris Mixon
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Amir Akbari Fakhrabadi
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Matthew Stanford
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Debra A Bemben
- Bone Density Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Daniel J Larson
- Sports, Health, and Exercise Data Analytics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - J Mikhail Kellawan
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
5
|
Binder NK, de Alwis N, Fato BR, Beard S, Mangwiro YTM, Kadife E, Brownfoot F, Hannan NJ. Investigating the Impact of Maternal Obesity on Disease Severity in a Mouse Model of Preeclampsia. Nutrients 2025; 17:1586. [PMID: 40362895 PMCID: PMC12073173 DOI: 10.3390/nu17091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Preeclampsia is a leading cause of maternal and fetal morbidity and mortality, with obesity recognised as a significant risk factor. However, the direct contribution of obesity to the pathophysiology underpinning preeclampsia remains unclear. OBJECTIVES This study aimed to develop and characterise a diet-induced obese mouse model with superimposed preeclampsia to better understand the impact of obesity on disease pathogenesis. METHODS Female mice were fed either standard rodent chow or a high-fat diet from weaning. At 8 weeks of age, mice were mated. Pregnant mice were treated with L-NG-Nitro arginine methyl ester (L-NAME; to block nitric oxide production) from gestational day (D)7.5 to D17.5 to induce a preeclampsia-like phenotype. Blood pressure was measured on D14.5 and D17.5, followed by the collection of maternal and fetal tissues for histological, biochemical, and molecular analyses. RESULTS Obese dams exhibited significantly increased body, fat pad, and liver weights compared to lean controls. While L-NAME induced hypertension in the control mice, contrary to expectations, the L-NAME-induced hypertension was partially attenuated in obese dams, with significantly lower systolic and diastolic blood pressures at D14.5 and reduced systolic pressure at D17.5. Fetal weights were comparable between groups, however, placentas were significantly heavier with obesity. Endothelial function, inflammatory markers, and renal gene expression patterns suggested distinct physiological adaptations in obese preeclamptic-like mice. CONCLUSIONS These findings challenge the prevailing assumption that obesity drives hypertension, endothelial dysfunction, and inflammatory markers. The differential vascular and physiological responses observed in the obese dams highlight the complexity of obesity-preeclampsia interactions and underscore the need for refined preclinical models to disentangle mechanistic contributions. This work has implications for personalised management strategies and targeted therapeutic interventions in obese pregnancies at risk of preeclampsia.
Collapse
Affiliation(s)
- Natalie K. Binder
- Therapeutics Discovery & Vascular Function in Pregnancy Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (N.K.B.); (N.d.A.); (B.R.F.); (S.B.); (Y.T.M.M.)
| | - Natasha de Alwis
- Therapeutics Discovery & Vascular Function in Pregnancy Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (N.K.B.); (N.d.A.); (B.R.F.); (S.B.); (Y.T.M.M.)
| | - Bianca R. Fato
- Therapeutics Discovery & Vascular Function in Pregnancy Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (N.K.B.); (N.d.A.); (B.R.F.); (S.B.); (Y.T.M.M.)
| | - Sally Beard
- Therapeutics Discovery & Vascular Function in Pregnancy Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (N.K.B.); (N.d.A.); (B.R.F.); (S.B.); (Y.T.M.M.)
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | - Yeukai T. M. Mangwiro
- Therapeutics Discovery & Vascular Function in Pregnancy Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (N.K.B.); (N.d.A.); (B.R.F.); (S.B.); (Y.T.M.M.)
| | - Elif Kadife
- Obstetrics Diagnostics and Therapeutics Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (E.K.); (F.B.)
| | - Fiona Brownfoot
- Obstetrics Diagnostics and Therapeutics Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (E.K.); (F.B.)
| | - Natalie J. Hannan
- Therapeutics Discovery & Vascular Function in Pregnancy Group, University of Melbourne, Mercy Hospital for Women, Heidelberg 3084, Australia; (N.K.B.); (N.d.A.); (B.R.F.); (S.B.); (Y.T.M.M.)
| |
Collapse
|
6
|
da Silva GC, Amaral MNS, Peruchetti DB, Lemos VS. Upregulation of COX-2 and NADPH Oxidase and Reduced eNOS in Perivascular Adipose Tissue Are Associated With Resistance Artery Dysfunction and Hypertension in Naturally Aged Mice. J Gerontol A Biol Sci Med Sci 2025; 80:glaf050. [PMID: 40037608 DOI: 10.1093/gerona/glaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 03/06/2025] Open
Abstract
Aging is a major risk factor for cardiovascular disease, with hypertension being the most common outcome. Hypertension often stems from resistance arteries endothelial dysfunction. Recent research highlights the pivotal role of perivascular adipose tissue (PVAT) in regulating endothelial function. We hypothesized that PVAT senescence contributes to vascular dysfunction and hypertension during aging. We showed that naturally aged mice developed hypertension and elevated pro-inflammatory cytokines levels. Moreover, resistance mesenteric arteries showed impaired vascular relaxation that was normalized by apocynin, an antioxidant. The vascular dysfunction was endothelium- and PVAT-dependent, and marked by: decreased nitric oxide- and cyclooxygenase-dependent vascular relaxation, decreased expression of endothelial nitric oxide synthase, and increased cyclooxygenase 2 and NADPH oxidase subunits p22phox and gp91phox expressions in the endothelium and PVAT. Additionally, we observed that PVAT shows greater signs of senescence, particularly with higher p16 expression, indicating that PVAT is more prone to age-related cellular aging. Our findings suggest that in resistance mesenteric arteries PVAT-derived factors are crucial for triggering and amplifying vascular dysfunction in aging, leading to hypertension. The underlying mechanisms involve downregulation of endothelial nitric oxide synthase-derived nitric oxide, NADPH oxidase-dependent oxidative stress, and cyclooxygenase 2-derived vascular contractile factors. This research improves our understanding of the mechanisms behind age-related vascular dysfunction and associated hypertension and opens perspectives for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Grazielle Caroline da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Faculty of Health, Centro Universitário de Lavras (UNILAVRAS), Lavras, Brazil
| | - Maisa Nascimento Soares Amaral
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Hansen TW, Ripa RS. Advances in Imaging Techniques for Assessing Myocardial Microcirculation in People with Diabetes : An Overview of Current Techniques, Emerging Techniques, and Clinical Applications. Diabetes Ther 2025; 16:785-797. [PMID: 40048055 PMCID: PMC12006633 DOI: 10.1007/s13300-025-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 04/18/2025] Open
Abstract
Microangiopathy is a key complication of diabetes, adversely effecting several organs including the heart, kidneys, eyes, and nerves. This review focuses on myocardial microvascular dysfunction, a condition characterized by altered vasomotion and long-term structural changes to coronary arterioles, resulting in impaired regulation of blood flow in response to varying oxygen demands of cardiomyocytes. Presence of myocardial microvascular dysfunction is associated with increased risk of cardiovascular disease, even in the absence of obstructive coronary artery disease. Several noninvasive imaging techniques to assess coronary physiology have significantly enhanced our understanding of the myocardial microcirculation. These methods allow for detailed visualization and quantification of blood flow, endothelial function, and inflammation in the microvasculature, providing critical insights into the early stages of microvascular disease in diabetes. A significant area of development is the use of advanced hybrid imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI). The integration of advanced imaging technologies with artificial intelligence is also a key future direction. Overall, these advancements aim to improve the early detection and management of microvascular complications in diabetes, ultimately enhancing outcomes and quality of life. The aim of this review is to provide an overview of both established and emerging noninvasive imaging techniques for assessing myocardial microvascular dysfunction.
Collapse
Affiliation(s)
- Tine Willum Hansen
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus S Ripa
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Hu B, Lin H, Quan X, Sun F, Zhang F, Zhang F, Wang Y, Chang Y, Wang J, Duan X, Yu M. An artificial-enzyme-equipped immunoregulator blocks platelet-mediated breast cancer hematogenous metastasis. Biomaterials 2025; 322:123380. [PMID: 40318603 DOI: 10.1016/j.biomaterials.2025.123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Platelet activation and adhesion on the surface of circulating tumor cells (CTCs) assist them in surviving within the vasculature and acquiring enhanced migratory potential. Simultaneously, protected by surrounding/covering "micro-thrombi," CTCs evade immune surveillance in circulation, thereby promoting hematogenous tumor metastasis. Based on this, we designed a self-assembling nanoenzyme drug GSNO@B (NO donor-modified GOx self-assembled with the hydrophobic drug BMS-202) against platelet-mediated tumor metastasis. This strategy involves the depletion of glucose by GOx, which inhibits platelets activity and reduces forming the micro-aggregation. Concurrently, the nanoenzyme in situ releases NO further diminishes the protective adhesion and micro-aggregation of platelet on the tumor cells surface, thereby exposing them in shear forces and immune recognition in the circulatory system. Concurrently, the disintegration of the nanoenzyme GSNO@B releases the immune checkpoint inhibitor BMS-202, further facilitating the immune clearance of CTCs. Therefore, through a three-step strategy, GSNO@B effectively suppresses primary tumors growth and metastatic tumors formation by blocking the platelet-mediated hematogenous tumor metastasis pathway.
Collapse
Affiliation(s)
- Ben Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaolong Quan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fushan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fengling Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunhua Chang
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades F-75015, Paris, 75005, France
| | - Jigang Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineer Technology Research and Development Center, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Xiaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Institut des Matériaux Poreux de Paris, École Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris, 75005, France.
| |
Collapse
|
9
|
Anzhelika A, Boris N, Alexandr N, Georgy T, Andrey M, Dmitry K, Leonid R, Leonid S, Andrey M. Erectile dysfunction in railway station workers: A randomized study of different treatment approaches. Urologia 2025:3915603251334076. [PMID: 40285655 DOI: 10.1177/03915603251334076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
INTRODUCTION The profession of a locomotive engineer involves stress, lack of adequate sleep and rest, and a sedentary lifestyle, all of which can contribute to the development of erectile dysfunction (ErD) as well as arterial hypertension. MATERIALS AND METHODS Consecutive patients of the railway hospital in Barnaul with arterial hypertension aged 30-60 who work as machinists or assistant locomotive drivers were enrolled. Those who have symptoms of ErD were randomized into three groups: group 1 received an endogenous nitric oxide-synthase (NOS) activator, group 2 received a combination of endogenous NOS activator and phosphodiesterase type 5 inhibitor (PDE-5i), and group 3 received no additional treatment for ErD. 20 individuals belonged to the control group without ErD. A follow-up was conducted after 2 and 4 months. RESULTS A total of 85 individuals were examined (65 with symptoms of ErD). After 2 months of treatment, no significant changes in biomarkers and LDF (laser Doppler flowmetry) values were observed in groups 1 and 3. In group 2, ET-1 (endothelin-1) and hs-CRP (high-sensitivity C-reactive protein) returned to reference levels, and ischemic manifestations decreased. After 4 months, group 1 had increased mean blood flow and hs-CRP returned to reference levels. Group 2 showed improved microhemodynamics and biomarkers values. Group 2 patients had a higher IIEF and ICF total scores. CONCLUSION The combination of hypotensive drugs, PDE-5i, and NOS activator was the most effective method of treatment, improving hemodynamics and reparative properties of the endothelium by removing the substrate for thrombus formation. Treatment with an NO-synthase activator was shown to partially eliminate pathological processes in the endothelium.
Collapse
Affiliation(s)
- Arkhipova Anzhelika
- Altai Regional Clinical Perinatal Center "DAR", Ministry of Health of Russia, Barnaul, Russian Federation
| | - Neymark Boris
- Urology Department of Clinical Hospital "Russian Railways-Medicine" of Barnaul, Barnaul, Russian Federation
| | - Neymark Alexandr
- Department of Urology and Andrology With the Course of Advanced Training, Altai State Medical University of the Ministry of Health of Russia, Barnaul, Russian Federation
| | - Tyshkevich Georgy
- Institute of the Clinical Medicine Named after N.V. Sklifosovsky, Sechenov University, Moscow, Russia
| | - Morozov Andrey
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Rapoport Leonid
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Spivak Leonid
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Momot Andrey
- National Medical Research Center of Hematology, Ministry of Health of Russia; Hemostasis Laboratory of the Clinical Research Center of the Scientific Cluster of the Altai State Medical University, Ministry of Health of Russia, Barnaul, Russian Federation
| |
Collapse
|
10
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
11
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025:10.1007/s00204-025-03997-2. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
12
|
Luo T, Yao L, Wu Y, Zhang Y, Lu L, He P, Li N, Dong X, Liu Z. Ultrasound-Stimulated Microbubbles Cavitation Combined with Nitric Oxide Signaling Pathway to Alleviate Tumor Hypoperfusion and Hypoxia in MC38 Tumor Model. Acad Radiol 2025:S1076-6332(25)00267-3. [PMID: 40234163 DOI: 10.1016/j.acra.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025]
Abstract
RATIONALE AND OBJECTIVES Ultrasound-stimulated microbubbles cavitation (USMC) has been proved to improve tumor blood perfusion, which is closely related to the rise in nitric oxide (NO) bioavailability. This study was aimed to investigate whether the co-administration of USMC and NO signaling molecule could contribute to a further enhancement of tumor perfusion. MATERIALS AND METHODS Ninety-six MC38 tumor-bearing mice were divided into eight groups to compare the efficacy of different NO-related molecules alone and in combination with USMC, including L-arginine (L-Arg), NOC-18 and sodium nitrite (SN). To better evaluate the changes of tumor perfusion, six mice in each group received contrast-enhanced ultrasound imaging and the other six received ultra-resolution microscopy before and after treatment. Differences in NO generation and tumor hypoxia after treatments were also compared to identify an ideal co-therapy strategy. Further, inhibitors of NO synthase and NO receptor were adopted to explore mechanisms of the co-therapy in improving tumor perfusion. RESULTS Contrast-enhanced ultrasound imaging and ultra-resolution microscopy showed that USMC and SN had a positive synergistic effect in improving tumor perfusion. NO synthase inhibitor failed to block this effect while NO receptor inhibitor did. The tumor perfusion enhancement accompanied with the alleviation of tumor hypoxia and the increase of NO production. L-Arg and NOC-18 did not demonstrate synergistic effects with USMC. CONCLUSION Co-administration of USMC and NO pathway is a promising modality to alleviate tumor hypoperfusion and hypoxia, among which SN is an effective reagent playing a positive synergistic effect with USMC.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Lei Yao
- Department of Ultrasound, Army 75th Group Military Hospital, Dali, Yunnan, China (L.Y.)
| | - You Wu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Yi Zhang
- Department of Ultrasound, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, China (Y.Z.)
| | - Lian Lu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.); Department of Ultrasound, the 900th Hospital of the PLA Joint Logistic Support Force, Fuzhou, Fujian, China (L.L.)
| | - Peng He
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.); Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (P.H.)
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.).
| |
Collapse
|
13
|
Savulescu-Fiedler I, Baz RO, Baz RA, Scheau C, Gegiu A. Coronary Artery Spasm: From Physiopathology to Diagnosis. Life (Basel) 2025; 15:597. [PMID: 40283152 PMCID: PMC12029111 DOI: 10.3390/life15040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Coronary artery spasm (CAS) is a reversible vasoconstriction of normal or atherosclerotic epicardial coronary arteries with a subsequent reduction in myocardial blood flow, leading to myocardial ischemia, myocardial infarction, severe arrhythmias, or even sudden death. It is an entity that should be recognized based on a particular clinical presentation. Numerous differences exist between CAS and obstructive coronary disease in terms of mechanisms, risk factors, and therapeutic solutions. The gold standard for CAS diagnosis is represented by transitory and reversible occlusion of the coronary arteries at spasm provocation test, which consists of an intracoronary administration of Ach, ergonovine, or methylergonovine during angiography. The pathophysiology of CAS is not fully understood. However, the core of CAS is represented by vascular smooth muscle cell contraction, with a circadian pattern. The initiating event of this contraction may be represented by endothelial dysfunction, inflammation, or autonomic nervous system unbalance. Our study explores the intricate balance of these factors and their clinical relevance in the management of CAS.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Radu Andrei Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Andrei Gegiu
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| |
Collapse
|
14
|
Benavides-Córdoba V, Palacios M, Vonk-Noordegraaf A. Historical milestones and future horizons: exploring the diagnosis and treatment evolution of the pulmonary arterial hypertension in adults. Expert Opin Pharmacother 2025; 26:743-753. [PMID: 40091694 DOI: 10.1080/14656566.2025.2480764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Pulmonary hypertension is a life-threatening condition characterized by elevated mean pulmonary arterial pressure and vascular resistance. Significant advances in diagnosis and treatment have been achieved over the 20th and 21st centuries, yet challenges remain in improving long-term outcomes. AREAS COVERED This review discusses the historical milestones in understanding and pharmacotherapy of the pulmonary arterial hypertension (PAH). A comprehensive literature search was conducted to explore the earliest reports of each approved medication for pulmonary hypertension, along with historical papers detailing the pathophysiological and diagnostic development. Additionally, the search aimed to identify novel therapeutic strategies, including repositioned drugs and emerging targets. EXPERT OPINION While current therapies, such as prostacyclin analogs and PDE5 inhibitors, improve functional capacity and hemodynamics, they face limitations, including costs, administration, and a predominantly vasodilatory approach. Additionally, the limitations of current clinical trial designs for rare diseases like pulmonary arterial hypertension hinder the evaluation of potentially effective drugs. These challenges underscore the urgent need for translational research to optimize trial methodologies, accelerating the development of new therapies. Innovative approaches, such as drug repositioning and the exploration of novel molecular targets, are critical to overcoming these barriers and ensuring timely, effective, and affordable treatment options for patients with PAH.
Collapse
Affiliation(s)
| | - Mauricio Palacios
- Department of Physiological Sciences, Pharmacology, Universidad del Valle, Cali, Colombia
| | - Anton Vonk-Noordegraaf
- Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Li Q, Yu S, Wang Y, Zhao H, Gao Z, Du H, Yang H, Shen L, Zhou H. Programmable embedded bioprinting for one-step manufacturing of arterial models with customized contractile and metabolic functions. Trends Biotechnol 2025; 43:918-945. [PMID: 39779422 DOI: 10.1016/j.tibtech.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level. This dual-scale approach enhances vascular smooth muscle cell (VSMC) function by regulating contractile and synthetic pathways. The VECTOR method facilitates the construction of 3D arterial structures that closely replicate natural coronary architectures, significantly improving contractility and metabolic function. Moreover, the resulting multilayered arterial models (AMs) exhibit precise responses to pharmacological stimuli, similar to native arteries. This work highlights the critical role of structural mimicry in tissue functionality and advances the replication of complex tissues in vitro.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shuyuan Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yuxuan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hui Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China
| | - Ziqi Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huilong Du
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Luqi Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China.
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
16
|
Rabeya I, Meesungnoen J, Jay-Gerin JP. Oxygen Depletion and the Role of Cellular Antioxidants in FLASH Radiotherapy: Mechanistic Insights from Monte Carlo Radiation-Chemical Modeling. Antioxidants (Basel) 2025; 14:406. [PMID: 40298624 PMCID: PMC12024430 DOI: 10.3390/antiox14040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
FLASH radiotherapy is a novel irradiation modality that employs ultra-high mean dose rates exceeding 40-150 Gy/s, far surpassing the typical ~0.03 Gy/s used in conventional radiotherapy. This advanced technology delivers high doses of radiation within milliseconds, effectively targeting tumors while minimizing damage to the surrounding healthy tissues. However, the precise mechanism that differentiates responses between tumor and normal tissues is not yet understood. This study primarily examines the ROD hypothesis, which posits that oxygen undergoes transient radiolytic depletion following a radiation pulse. We developed a computational model to investigate the effects of dose rate on radiolysis in an aqueous environment that mimics a confined cellular space subjected to instantaneous pulses of energetic protons. This study employed the multi-track chemistry Monte Carlo simulation code, IONLYS-IRT, which has been optimized to model this radiolysis in a homogeneous and aerated medium. This medium is composed primarily of water, alongside carbon-based biological molecules (RH), radiation-induced bio-radicals (R●), glutathione (GSH), ascorbate (AH-), nitric oxide (●NO), and α-tocopherol (TOH). Our model closely monitors the temporal variations in these components, specifically focusing on oxygen consumption, from the initial picoseconds to one second after exposure. Simulations reveal that cellular oxygen is transiently depleted primarily through its reaction with R● radicals, consistent with prior research, but also with glutathione disulfide radical anions (GSSG●-) in roughly equal proportions. Notably, we show that, contrary to some reports, the peroxyl radicals (ROO●) formed are not neutralized by recombination reactions. Instead, these radicals are rapidly neutralized by antioxidants present in irradiated cells, with AH- and ●NO proving to be the most effective in preventing the propagation of harmful peroxidation chain reactions. Moreover, our model identifies a critical dose rate threshold below which the FLASH effect, as predicted by the ROD hypothesis, cannot fully manifest. By comparing our findings with existing experimental data, we determine that the ROD hypothesis alone cannot entirely explain the observed FLASH effect. Our findings indicate that antioxidants might significantly contribute to the FLASH effect by mitigating radiation-induced cellular damage and, in turn, enhancing cellular radioprotection. Additionally, our model lends support to the hypothesis that transient oxygen depletion may partially contribute to the FLASH effect observed in radiotherapy. However, our findings indicate that this mechanism alone is insufficient to fully explain the phenomenon, suggesting the involvement of additional mechanisms or factors and warranting further investigation.
Collapse
Affiliation(s)
| | | | - Jean-Paul Jay-Gerin
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (I.R.); (J.M.)
| |
Collapse
|
17
|
Zahi A, Driouech M, Hakkou Z, Mansouri F, El Hajji F, Ziyyat A, Mekhfi H, Bnouham M, Legssyer A. Vasorelaxant effect of fennel seeds (Foeniculum vulgare Mill) extracts on rat mesenteric arteries: Assessment of phytochemical profiling and antioxidant potential. Fitoterapia 2025; 181:106359. [PMID: 39725088 DOI: 10.1016/j.fitote.2024.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension is a serious health problems and a leading cause of adult mortality worldwide. Foeniculum. vulgare Mill, a plant traditionally used for various ailments, including cardiovascular disorders such as hypertension. AIM OF THE STUDY The objective of the study is to verify the vasorelaxant effect of fennel seeds on the isolated and perfused mesenteric vascular beds in rats. MATERIALS AND METHODS The vasorelaxant effect of the aqueous extract of F. vulgare (AEFv) seeds was tested on mesenteric arteries, both intact and denuded, precontracted with phenylephrine. Extracts from liquid-liquid extraction of F. vulgare were screened to find the active fraction. The mechanism of action of the active butanolic fraction (BFFv) was studied using inhibitors like L-NAME (nitric oxide synthase inhibitor), ODQ (guanylate cyclase inhibitor), indomethacin (cyclooxygenase inhibitor), potassium channel blockers (tetraethylammonium TEA, and glibenclamide), and atropine (a muscarinic receptor antagonist). Moreover, the antioxidant properties of AEFv and BFFv were evaluated using DPPH radical scavenging, β-carotene linoleic acid, and ferric-reducing power assays; total flavonoids and phenolics of AEFv and BFFv were measured using Folin-Ciocalteu and aluminum chloride colorimetric assays; HPLC-DAD analysis and acute toxicity of BFFv in mice were also performed. RESULTS AEFv caused a concentration-dependent vasodilatory response in intact mesenteric arteries (Emax = 81.73 ± 0.36 %). This effect was significantly reduced after endothelium removal. The butanolic fraction showed the highest vasorelaxant effect. The vasodilatory effect was attenuated by L-NAME, ODQ, indomethacin, TEA, glibenclamide, and atropine, indicating involvement of the NO/GMPc pathway, potassium channels, and muscarinic receptors. Additionally, fennel extracts demonstrated excellent antioxidant activity and high concentrations of flavonoids and phenolic compounds. HPLC-DAD analysis of the butanolic fraction revealed an abundance of phenolic acids. Acute toxicity studies of BFFv showed no toxic effects. CONCLUSION Our findings support the traditional use of Foeniculum vulgare seeds for preventing cardiovascular disorders associated with vascular dysfunction, highlighting their vasorelaxant and antioxidant properties.
Collapse
Affiliation(s)
- Amal Zahi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Mounia Driouech
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Zineb Hakkou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco; Higher Institute of Nursing Professions and Health Techniques, 60000 Oujda, Morocco.
| | - Farid Mansouri
- Laboratory of Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed First University, BP-717, 60000 Oujda, Morocco; High School of Education and Training, Mohammed I University, BP-410, 60000 Oujda, Morocco.
| | - Fatima El Hajji
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| |
Collapse
|
18
|
Koike S, Norikura T, Taneichi A, Yasuda K, Yano R. Impact of the Warm Compress Method Conducted by Nurses Before Venipuncture on Blood Nitric Oxide Concentration. JOURNAL OF INFUSION NURSING 2025; 48:106-113. [PMID: 40047606 PMCID: PMC11875400 DOI: 10.1097/nan.0000000000000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Adequate venous dilation is important for successful venipuncture and infusion insertion. While the warm compress method is commonly used, its mechanism remains unclear. This study investigated the impact of the warm compress method on blood nitric oxide (NO) concentration, known for its vasodilatory properties. Using a pre-and post-intervention design, participants underwent warm compress application on the non-dominant arm. The blood NO concentration, vein cross-sectional area, and skin temperature were measured pre-and post-intervention. A warm compress was applied at 39 °C to 42 °C for 5 minutes. The skin temperature was measured pre-intervention and after applying pressure with a tourniquet; a vein cross-sectional area image was acquired using ultrasonography, and 2 mL blood was drawn to measure NO. Post-intervention, skin temperature was measured, vein cross-sectional area images were obtained, and blood was similarly collected. Data were analyzed using the Wilcoxon signed-rank sum test. Among the 19 participants (7 men and 12 women; mean age: 42.6 ± 7.5 years), significant differences were observed in skin temperature (32.05 °C versus 39.40 °C), vein cross-sectional area (11.4 mm versus 14.8 mm2), and blood NO concentration (12.45 µmol/L and 11.18 µmol/L) pre- and post-intervention, possibly because the action of blood NO on vascular smooth muscle cells was promoted, leading to blood NO consumption.
Collapse
Affiliation(s)
- Shotaro Koike
- Author Affiliations: Department of Nursing (Koike, Norikura, and Taneichi), Aomori University of Health and Welfare, Hamadate, Aomori, Japan; and Department of Nursing (Yasuda), Faculty of Health Sciences (Yano), Hokkaido University, Sapporo, Hokkaido, Japan
- Shotaro Koike, PhD, RN, PHN, is an associate professor at Aomori University of Health and Welfare in Japan. He lectures nursing college and master’s students on fundamental nursing skills and physical assessments and provides an introduction to nursing. He also specializes in nursing skills, especially blood collection and intravenous injections. Moreover, he has engaged in research for approximately 15 years. Dr Koike is a councilor of the Japanese Nursing Art and Science Council. He is also the recipient of numerous awards at Japanese academic conferences. Toshio Norikura, PhD, RD, is an associate professor at Aomori University of Health and Welfare in Japan. He specializes in biochemistry and has published numerous papers on myocytes and amino acid analyses. Dr Norikura provides basic education to nutrition students and also supervises the research of master’s and doctoral students at the graduate school. Akira Taneichi, MS, RN, PHN, is an assistant professor at Aomori University of Health and Welfare in Japan. He is familiar with intervention research in the nursing field and participates in many nursing technology conferences. He is passionate about teaching nursing skills to undergraduate students and teaches infusion therapy. Kae Yasuda, PhD, RN, is a specially appointed assistant professor at Hokkaido University in Japan. She has been conducting research on nursing techniques for many years, specializing in vasodilation procedures performed by nurses. She has collected basic data on various techniques for dilating blood vessels and has published her research in various publications. Dr Yasuda teaches nursing skills to undergraduate students and has made various contributions to the field of nursing. Rika Yano, PhD, RN, PHN, is a professor at Hokkaido University, one of the leading educational and research institutions in Japan. She is one of the leading nursing researchers in Japan and has served as director and council member of various Japanese academic conferences. Dr Yano specializes in nursing skills and nursing education and has extensive experience teaching nursing college students, as well as master’s and doctoral graduate students. Dr Yano has published numerous articles in collaboration with her graduate students
| | - Toshio Norikura
- Author Affiliations: Department of Nursing (Koike, Norikura, and Taneichi), Aomori University of Health and Welfare, Hamadate, Aomori, Japan; and Department of Nursing (Yasuda), Faculty of Health Sciences (Yano), Hokkaido University, Sapporo, Hokkaido, Japan
- Shotaro Koike, PhD, RN, PHN, is an associate professor at Aomori University of Health and Welfare in Japan. He lectures nursing college and master’s students on fundamental nursing skills and physical assessments and provides an introduction to nursing. He also specializes in nursing skills, especially blood collection and intravenous injections. Moreover, he has engaged in research for approximately 15 years. Dr Koike is a councilor of the Japanese Nursing Art and Science Council. He is also the recipient of numerous awards at Japanese academic conferences. Toshio Norikura, PhD, RD, is an associate professor at Aomori University of Health and Welfare in Japan. He specializes in biochemistry and has published numerous papers on myocytes and amino acid analyses. Dr Norikura provides basic education to nutrition students and also supervises the research of master’s and doctoral students at the graduate school. Akira Taneichi, MS, RN, PHN, is an assistant professor at Aomori University of Health and Welfare in Japan. He is familiar with intervention research in the nursing field and participates in many nursing technology conferences. He is passionate about teaching nursing skills to undergraduate students and teaches infusion therapy. Kae Yasuda, PhD, RN, is a specially appointed assistant professor at Hokkaido University in Japan. She has been conducting research on nursing techniques for many years, specializing in vasodilation procedures performed by nurses. She has collected basic data on various techniques for dilating blood vessels and has published her research in various publications. Dr Yasuda teaches nursing skills to undergraduate students and has made various contributions to the field of nursing. Rika Yano, PhD, RN, PHN, is a professor at Hokkaido University, one of the leading educational and research institutions in Japan. She is one of the leading nursing researchers in Japan and has served as director and council member of various Japanese academic conferences. Dr Yano specializes in nursing skills and nursing education and has extensive experience teaching nursing college students, as well as master’s and doctoral graduate students. Dr Yano has published numerous articles in collaboration with her graduate students
| | - Akira Taneichi
- Author Affiliations: Department of Nursing (Koike, Norikura, and Taneichi), Aomori University of Health and Welfare, Hamadate, Aomori, Japan; and Department of Nursing (Yasuda), Faculty of Health Sciences (Yano), Hokkaido University, Sapporo, Hokkaido, Japan
- Shotaro Koike, PhD, RN, PHN, is an associate professor at Aomori University of Health and Welfare in Japan. He lectures nursing college and master’s students on fundamental nursing skills and physical assessments and provides an introduction to nursing. He also specializes in nursing skills, especially blood collection and intravenous injections. Moreover, he has engaged in research for approximately 15 years. Dr Koike is a councilor of the Japanese Nursing Art and Science Council. He is also the recipient of numerous awards at Japanese academic conferences. Toshio Norikura, PhD, RD, is an associate professor at Aomori University of Health and Welfare in Japan. He specializes in biochemistry and has published numerous papers on myocytes and amino acid analyses. Dr Norikura provides basic education to nutrition students and also supervises the research of master’s and doctoral students at the graduate school. Akira Taneichi, MS, RN, PHN, is an assistant professor at Aomori University of Health and Welfare in Japan. He is familiar with intervention research in the nursing field and participates in many nursing technology conferences. He is passionate about teaching nursing skills to undergraduate students and teaches infusion therapy. Kae Yasuda, PhD, RN, is a specially appointed assistant professor at Hokkaido University in Japan. She has been conducting research on nursing techniques for many years, specializing in vasodilation procedures performed by nurses. She has collected basic data on various techniques for dilating blood vessels and has published her research in various publications. Dr Yasuda teaches nursing skills to undergraduate students and has made various contributions to the field of nursing. Rika Yano, PhD, RN, PHN, is a professor at Hokkaido University, one of the leading educational and research institutions in Japan. She is one of the leading nursing researchers in Japan and has served as director and council member of various Japanese academic conferences. Dr Yano specializes in nursing skills and nursing education and has extensive experience teaching nursing college students, as well as master’s and doctoral graduate students. Dr Yano has published numerous articles in collaboration with her graduate students
| | - Kae Yasuda
- Author Affiliations: Department of Nursing (Koike, Norikura, and Taneichi), Aomori University of Health and Welfare, Hamadate, Aomori, Japan; and Department of Nursing (Yasuda), Faculty of Health Sciences (Yano), Hokkaido University, Sapporo, Hokkaido, Japan
- Shotaro Koike, PhD, RN, PHN, is an associate professor at Aomori University of Health and Welfare in Japan. He lectures nursing college and master’s students on fundamental nursing skills and physical assessments and provides an introduction to nursing. He also specializes in nursing skills, especially blood collection and intravenous injections. Moreover, he has engaged in research for approximately 15 years. Dr Koike is a councilor of the Japanese Nursing Art and Science Council. He is also the recipient of numerous awards at Japanese academic conferences. Toshio Norikura, PhD, RD, is an associate professor at Aomori University of Health and Welfare in Japan. He specializes in biochemistry and has published numerous papers on myocytes and amino acid analyses. Dr Norikura provides basic education to nutrition students and also supervises the research of master’s and doctoral students at the graduate school. Akira Taneichi, MS, RN, PHN, is an assistant professor at Aomori University of Health and Welfare in Japan. He is familiar with intervention research in the nursing field and participates in many nursing technology conferences. He is passionate about teaching nursing skills to undergraduate students and teaches infusion therapy. Kae Yasuda, PhD, RN, is a specially appointed assistant professor at Hokkaido University in Japan. She has been conducting research on nursing techniques for many years, specializing in vasodilation procedures performed by nurses. She has collected basic data on various techniques for dilating blood vessels and has published her research in various publications. Dr Yasuda teaches nursing skills to undergraduate students and has made various contributions to the field of nursing. Rika Yano, PhD, RN, PHN, is a professor at Hokkaido University, one of the leading educational and research institutions in Japan. She is one of the leading nursing researchers in Japan and has served as director and council member of various Japanese academic conferences. Dr Yano specializes in nursing skills and nursing education and has extensive experience teaching nursing college students, as well as master’s and doctoral graduate students. Dr Yano has published numerous articles in collaboration with her graduate students
| | - Rica Yano
- Author Affiliations: Department of Nursing (Koike, Norikura, and Taneichi), Aomori University of Health and Welfare, Hamadate, Aomori, Japan; and Department of Nursing (Yasuda), Faculty of Health Sciences (Yano), Hokkaido University, Sapporo, Hokkaido, Japan
- Shotaro Koike, PhD, RN, PHN, is an associate professor at Aomori University of Health and Welfare in Japan. He lectures nursing college and master’s students on fundamental nursing skills and physical assessments and provides an introduction to nursing. He also specializes in nursing skills, especially blood collection and intravenous injections. Moreover, he has engaged in research for approximately 15 years. Dr Koike is a councilor of the Japanese Nursing Art and Science Council. He is also the recipient of numerous awards at Japanese academic conferences. Toshio Norikura, PhD, RD, is an associate professor at Aomori University of Health and Welfare in Japan. He specializes in biochemistry and has published numerous papers on myocytes and amino acid analyses. Dr Norikura provides basic education to nutrition students and also supervises the research of master’s and doctoral students at the graduate school. Akira Taneichi, MS, RN, PHN, is an assistant professor at Aomori University of Health and Welfare in Japan. He is familiar with intervention research in the nursing field and participates in many nursing technology conferences. He is passionate about teaching nursing skills to undergraduate students and teaches infusion therapy. Kae Yasuda, PhD, RN, is a specially appointed assistant professor at Hokkaido University in Japan. She has been conducting research on nursing techniques for many years, specializing in vasodilation procedures performed by nurses. She has collected basic data on various techniques for dilating blood vessels and has published her research in various publications. Dr Yasuda teaches nursing skills to undergraduate students and has made various contributions to the field of nursing. Rika Yano, PhD, RN, PHN, is a professor at Hokkaido University, one of the leading educational and research institutions in Japan. She is one of the leading nursing researchers in Japan and has served as director and council member of various Japanese academic conferences. Dr Yano specializes in nursing skills and nursing education and has extensive experience teaching nursing college students, as well as master’s and doctoral graduate students. Dr Yano has published numerous articles in collaboration with her graduate students
| |
Collapse
|
19
|
Liu Z, Lu J, Sha W, Lei T. Comprehensive treatment of diabetic endothelial dysfunction based on pathophysiological mechanism. Front Med (Lausanne) 2025; 12:1509884. [PMID: 40093018 PMCID: PMC11906411 DOI: 10.3389/fmed.2025.1509884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Vascular endothelium is integral to the regulation of vascular homeostasis and maintenance of normal arterial function in healthy individuals. Endothelial dysfunction is a significant contributor to the advancement of atherosclerosis, which can precipitate cardiovascular complications. A notable correlation exists between diabetes and endothelial dysfunction, wherein chronic hyperglycemia and acute fluctuations in glucose levels exacerbate oxidative stress. This results in diminished nitric oxide synthesis and heightened production of endothelin-1, ultimately leading to endothelial impairment. In clinical settings, it is imperative to implement appropriate therapeutic strategies aimed at enhancing endothelial function to prevent and manage diabetes-associated vascular complications. Various antidiabetic agents, including insulin, GLP-1 receptor agonists, sulfonylureas, DPP-4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, thiazolidinediones (TZDs), and metformin, are effective in mitigating blood glucose variability and improving insulin sensitivity by lowering postprandial glucose levels. Additionally, traditional Chinese medicinal compounds, such as turmeric extract, resveratrol, matrine alkaloids, tanshinone, puerarin, tanshinol, paeonol, astragaloside, berberine, and quercetin, exhibit hypoglycemic properties and enhance vascular function through diverse mechanisms. Consequently, larger randomized controlled trials involving both pharmacological and herbal interventions are essential to elucidate their impact on endothelial dysfunction in patients with diabetes. This article aims to explore a comprehensive approach to the treatment of diabetic endothelial dysfunction based on an understanding of its pathophysiology.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
21
|
Liu X, Liu H, Wang N, Lai S, Qiu C, Gao S, Huang T, Zhang W. The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury. Chem Biol Interact 2025; 408:111387. [PMID: 39824432 DOI: 10.1016/j.cbi.2025.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu2+ during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction. In the present study, we utilized three cardiac I/R model: isolated rat heart, in vivo model as well as cell culture, and demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu2+ during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction. Furthermore, we proved that the Cu2+ chelator TTM significantly mitigated the deleterious effects of Hcy and Cu2+ on CMECs and cardiac function both in vitro and in vivo. Mechanismly, the combinative effect of Hcy and Cu2+ are associated with the production of reactive oxygen species (ROS) and nitric oxide (NO) by NADPH oxidase (NOX) and endothelial nitric oxide synthase (eNOS), respectively. Subsequently, the overproduction of toxic peroxynitrite (ONOO-) induces CMECs necroptosis. The application of ROS scavengers in CMECs resulted in a notable reduction in necroptosis mediated by Hcy and Cu2+ under hypoxia/reperfusion (H/R) condition. These findings indicate that the mechanism by which Hcy and Cu2+ enhances cardiac dysfunction under I/R condition may be attributed to the stimulation of both NOX and eNOS activity, resulting in the generation of excessive ONOO- and subsequent necroptosis of CMECs.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Haipeng Liu
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Ning Wang
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Chengpeng Qiu
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Shansong Gao
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Tianxiang Huang
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China
| | - Wan Zhang
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China.
| |
Collapse
|
22
|
Yeo SG, Oh YJ, Lee JM, Kim SS, Park DC. A Narrative Review of the Expression and Role of Nitric Oxide in Endometriosis. Antioxidants (Basel) 2025; 14:247. [PMID: 40227209 PMCID: PMC11939776 DOI: 10.3390/antiox14030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/15/2025] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in cellular communication and plays a critical role in various biological processes. Given its dual role in the pathogenesis of endometriosis, we conducted a systematic literature review to explore its mechanisms further. Numerous studies have investigated the expression and role of NO in various diseases, including those in the field of gynecology. However, the expression and role of NO in endometriosis remain a topic of ongoing debate. Therefore, we conducted a comprehensive literature review using the Cochrane Library, EMBASE, Google Scholar, PubMed, and SCOPUS databases to evaluate the induction and role of NO in the pathogenesis of endometriosis. Of the 27 papers ultimately reviewed, 22 (81.4%) reported that NO contributes to the pathogenesis of endometriosis, 3 (11.1%) suggested that NO acts as a protective mechanism against endometriosis, and 2 studies (7.4%) found no association between NO and the pathogenesis of endometriosis. The expression and levels of NO in endometriosis were associated with pregnancy, infertility, menstruation, and pelvic pain. Research conducted on rats and mice demonstrated that NO, nNOS, eNOS, and iNOS play significant roles in the development of endometriosis. Most studies suggested that increased NO levels are associated with the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea; (S.G.Y.); (J.M.L.)
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Oh
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| | - Jae Min Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea; (S.G.Y.); (J.M.L.)
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
23
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2025; 26:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
24
|
Mi X, Wu D, Ito T, Kato Y, Nishimura A, Nishida M. TRP channels in cardiac mechano-redox coupling and diseases. J Cardiol 2025:S0914-5087(25)00064-4. [PMID: 39954724 DOI: 10.1016/j.jjcc.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Reactive oxygen species (ROS) produced by mechanically stretching cardiomyocytes is a crucial mediator to increase contractile force in accordance with the Frank-Starling law. However, excessive ROS production leads to oxidative stress, contributing to myocardial atrophic remodeling and cellular damage. NADPH oxidase, the primary enzyme responsible for ROS production localized on the plasma membrane and organelle membranes, plays a key role in membrane-oriented ROS signaling. Two isoforms of NADPH oxidase, Nox2 (constitutive) and Nox4 (inducible), are predominantly expressed in cardiomyocytes, each playing unique roles in different contexts. Recent studies have revealed that Nox proteins form protein signaling complexes with transient receptor potential (TRP) channel proteins, amplifying ROS signaling in hearts. This review presents the putative mechanism of protein-protein interaction between TRP and Nox and their pathophysiological significance in hearts and discusses therapeutic strategies targeting TRP-Nox protein interactions for the treatment of heart failure.
Collapse
Affiliation(s)
- Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Di Wu
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Science (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; National Institute for Physiological Science (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
25
|
Travezani TS, Nascimento MH, da Cunha TR, Santos RLD, Martin FL, Barauna VG. Infrared Spectroscopy Coupled with Machine Learning Algorithms to Investigate Vascular Dysfunction in Ovariectomy: An Animal Model Study. ACS OMEGA 2025; 10:3701-3708. [PMID: 39926520 PMCID: PMC11800005 DOI: 10.1021/acsomega.4c08831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
A decrease in female sex hormone levels in the body impairs vascular endothelium functioning, leading to vascular dysfunction associated with certain diseases. Animal models of ovariectomy are commonly used to understand its effects on vascular (dys)function. Fourier-transform infrared (FTIR) spectroscopy is a technique capable of extracting detailed molecular information and, as such, has been applied to various biological analyses. This study evaluated systemic changes in the ovariectomy model using mid-infrared spectroscopy. Thirty-eight serum samples from adult Wistar rats were analyzed and divided into 18 in the control group (SHAM) and 20 in the ovariectomized group (OVX). Bilateral ovariectomy was performed, followed by euthanasia of the rats after 15 days. The spectral collection was performed using the Bruker Alpha II equipment (Bruker, Germany), preprocessed, and analyzed using unsupervised analysis methods [principal component analysis (PCA)] and supervised analysis methods [partial least-squares discriminant analysis (PLS-DA)] (MATLAB 2023). For the PCA model, combinations between principal components (PCs) 1 to 4 were performed. Nevertheless, none of the PC combinations allowed a clear distinction between the OVX and SHAM groups. The PLS-DA model exhibited 66% sensitivity, 80% specificity, a false positive rate of 20%, and a false negative rate of 33%. The F-score was 0.727 and the accuracy was 72.7%. However, the y-permutation test demonstrated that this result was random. These results indicate that there is no significant difference in the systemic profile of rats subjected to ovariectomy surgery for 15 days when analyzed using mid-infrared spectroscopy.
Collapse
Affiliation(s)
- Tháfanys S. Travezani
- Department
of Physiological Sciences, Federal University
of Espirito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória 29047-105, Espírito
Santo, Brazil
| | - Márcia H.
C. Nascimento
- Department
of Chemistry, Federal University of Espirito
Santo, Av. Fernando Ferrari,
514 - Goiabeiras, Vitória 29075-910, Espírito Santo, Brazil
| | - Tagana R. da Cunha
- Department
of Physiological Sciences, Federal University
of Espirito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória 29047-105, Espírito
Santo, Brazil
| | - Roger L. dos Santos
- Department
of Physiological Sciences, Federal University
of Espirito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória 29047-105, Espírito
Santo, Brazil
| | - Francis L. Martin
- Francis
L. Martin: Clinical Research Centre, Blackpool
Teaching Hospitals NHS Foundation Trust, Blackpool Victoria Hospital, Whinney Heys Road, Blackpool FY3 8NR, U.K.
| | - Valerio G. Barauna
- Department
of Physiological Sciences, Federal University
of Espirito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória 29047-105, Espírito
Santo, Brazil
| |
Collapse
|
26
|
Ambrogi EK, Li Y, Chandra P, Mirica KA. Employing Triphenylene-Based, Layered, Conductive Metal-Organic Framework Materials as Electrochemical Sensors for Nitric Oxide in Aqueous Media. ACS Sens 2025; 10:553-562. [PMID: 39804802 DOI: 10.1021/acssensors.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SANO = 6.7 ± 1.2 and 5.7 ± 1.1 for Ni3(HHTP)2 and Cu3(HHTP)2, respectively) for detecting micromolar concentrations of NO. Zinc-based MOF electrodes offered more limited enhancement (SANO = 3.1 ± 0.5), while the cobalt-based MOF analog had intrinsic redox activity at potentials close to NO oxidation, which interfered with sensing. Combining MOFs with a conductive polymer improved electrode stability under repeated electrochemical scanning (14 ± 3% decrease in signal over 10 scans). The stabilized Ni3(HHTP)2@polymer-coated electrodes were able to detect NO at physiologically relevant concentrations (LOD = 9.0 ± 4.8 nM) in amperometric sensing experiments, and exhibited moderate selectivity against ascorbic acid and nitrite (log kj,NO = -1.3 ± 0.3 and -0.83 ± 0.68 for ascorbic acid and nitrite, respectively). This study demonstrates that layered, conductive 2D MOFs have promising applicability for NO detection in aqueous environments.
Collapse
Affiliation(s)
- Emma K Ambrogi
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| | - Yuxin Li
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| | - Priyanshu Chandra
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| |
Collapse
|
27
|
Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, Brugaletta S, Campuzano V, Egea G, Dantas AP. Extracellular Vesicles as Mediators of Endothelial Dysfunction in Cardiovascular Diseases. Int J Mol Sci 2025; 26:1008. [PMID: 39940780 PMCID: PMC11816526 DOI: 10.3390/ijms26031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This comprehensive review aims to provide a thorough overview of the vital role that extracellular vesicles (EVs) play in endothelial dysfunction, particularly emphasizing how physiological factors-such as sex and aging-along with significant cardiovascular risk factors, influence this process. The review covers studies ranging from the first description of EVs in 1945 to contemporary insights into their biological roles in intercellular signaling and endothelial dysfunction. A comprehensive analysis of peer-reviewed articles and reviews indexed in the PubMed database was conducted to compile the information. Initially, Medical Subject Headings (MeSH) terms included keywords aimed at providing general knowledge about the role of EVs in the regulation of endothelial signaling, such as "extracellular vesicles", "endothelium", and "intercellular signaling". Subsequently, terms related to the pathophysiological implications of EV interactions with endothelial dysfunction and cardiovascular disease were added, including "cardiovascular disease", "sex", "aging", "atherosclerosis", "obesity", and "diabetes". Additionally, the potential applications of EVs in cardiovascular disease were explored using the MeSH terms "extracellular vesicles", "cardiovascular disease", "biomarker", and "therapeutic strategy". The results of this bibliographical review reveal that EVs have the capacity to induce various cellular responses within the cardiovascular system and play a significant role in the complex landscape of endothelial dysfunction and cardiovascular disease. The composition of the EV cargo is subject to modification by pathophysiological conditions such as sex, aging, and cardiovascular risk factors, which result in a complex regulatory influence on endothelial function and neighboring cells when released from a dysfunctional endothelium. Moreover, the data suggest that this field still requires further exploration, as EV biology is continuously evolving, presenting a dynamic and engaging area for research. A deeper understanding of the molecular cargo involved in EV-endothelium interactions could yield valuable biomarkers for monitoring cardiovascular disease progression and facilitate the development of innovative bioengineered therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Francisco Rafael Jimenez-Trinidad
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Sergi Calvo-Gomez
- Department of Biomedical Sciences, School of Medicine, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain;
| | - Manel Sabaté
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Rare Diseases Biomedical Research Network Center (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center of Medical Genetics, University of Antwerpen, 2659 Edegem, Belgium
| | - Ana Paula Dantas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
28
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
29
|
Al-Gully J, Oliveri F, Forouzanfar JP, Montero-Cabezas JM, Jukema JW, den Haan MC, Al Amri I, Bingen BO. Prognostic role of con-/discordant coronary flow reserve and microvascular resistance in coronary microvascular disease: a systematic review and network meta-analysis. Open Heart 2025; 12:e003055. [PMID: 39842937 PMCID: PMC11759884 DOI: 10.1136/openhrt-2024-003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Coronary microvascular disease (CMD) is defined as impaired coronary flow reserve (CFR) and/or increased microvascular resistance (MR) without significant epicardial coronary stenosis. This definition allows for discordant CFR and MR values within patients with CMD. The aim of this meta-analysis is to characterise the prognostic value and pathophysiological backgrounds of CFR and MR con-/discordance. METHODS A systematic search (PROSPERO CRD42024573004) identified studies determining CFR and MR in patients without significant epicardial coronary artery disease. Patients were divided into four groups: (1) normal CFR and MR, (2) abnormal CFR and MR, (3) abnormal CFR with normal MR and (4) normal CFR with abnormal MR and analysed for all-cause mortality and major adverse cardiovascular events (MACE). RESULTS We identified four studies representing 2310 total participants. Group B had the highest MACE (OR: 3.23; 95% CI 1.95 to 5.36) and mortality rate (OR: 2.27; 95% CI 1.12 to 4.58) compared with group A. Group C, associated with female sex, showed significantly higher MACE (OR: 2.07; 95% CI 1.25 to 3.45) but not mortality (OR: 1.89; 95% CI 0.92 to 3.88) compared with group A. In group D, associated with high body mass index, MACE and mortality rates did not differ significantly from group A (OR: 1.19; 95% CI 0.67 to 2.11 and OR: 0.55; 95% CI 0.16 to 1.90, respectively). CONCLUSIONS Abnormal CFR and MR are associated with a high risk of MACE and death. Abnormal CFR and normal MR are associated with an increased MACE-but not death. MACE and mortality risk in discordantly normal CFR and abnormal MR are low. Our findings show the need for tailoring CFR and MR diagnostic thresholds to patient characteristics and raise questions about the presence of CMD in patients with abnormal MR with normal CFR.
Collapse
Affiliation(s)
- Jin Al-Gully
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Women's Heart Health Clinic, Leiden University Medical Center, Leiden, The Netherlands
| | - Federico Oliveri
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Jessica Parisa Forouzanfar
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Women's Heart Health Clinic, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Johan Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Melina Cynthia den Haan
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Women's Heart Health Clinic, Leiden University Medical Center, Leiden, The Netherlands
| | - Ibtihal Al Amri
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Women's Heart Health Clinic, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian Oscar Bingen
- Department of Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Women's Heart Health Clinic, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Palevsky HI, Butrous G, Elliott CG. Introducing Historical Vignettes in Pulmonary Circulation. Pulm Circ 2025; 15:e70061. [PMID: 39980709 PMCID: PMC11839388 DOI: 10.1002/pul2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Harold I. Palevsky
- Perelman School of Medicine of the University of Pennsylvania, Penn Presbyterian Medical CenterPhiladelphiaPennsylvaniaUSA
| | | | - C. Gregory Elliott
- Department of Pulmonary and Critical Care MedicineIntermountain Medical CenterMurrayUtahUSA
| |
Collapse
|
31
|
Chahal S, Raj RG, Kumar R. Risk of Type 1 Diabetes Mellitus in SARS-CoV-2 Patients. Curr Diabetes Rev 2025; 21:e240524230298. [PMID: 38798206 DOI: 10.2174/0115733998290807240522045553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Recent studies have found that a link between people with type 1 diabetes mellitus (T1DM) are at higher risk of morbidity as well as mortality from COVID-19 infection, indicating a need for vaccination. T1DM appears to impair innate and adaptive immunity. The overabundance of pro-inflammatory cytokines produced in COVID-19 illness that is severe and potentially fatal is known as a "cytokine storm." Numerous cohorts have revealed chronic inflammation as a key risk factor for unfavorable COVID-19 outcomes. TNF-α, interleukin (IL)-1a, IL-1, IL-2, IL-6, and other cytokines were found in higher concentrations in patients with T1DM. Even more importantly, oxidative stress contributes significantly to the severity and course of COVID- 19's significant role in the progression and severity of COVID-19 diseases. Severe glucose excursions, a defining characteristic of type 1 diabetes, are widely recognized for their potent role as mediating agents of oxidative stress via several routes, such as heightened production of advanced glycation end products (AGEs) and activation of protein kinase C (PKC). Furthermore, persistent endothelial dysfunction and hypercoagulation found in T1DM may impair microcirculation and endothelium, which could result in the development of various organ failure and acute breathing syndrome.
Collapse
Affiliation(s)
- Shweta Chahal
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rojin G Raj
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
32
|
Crystal GJ, Pagel PS. Perspectives on the History of Coronary Physiology: Discovery of Major Principles and Their Clinical Correlates. J Cardiothorac Vasc Anesth 2025; 39:220-243. [PMID: 39278733 DOI: 10.1053/j.jvca.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Coronary circulation plays an essential role in delivering oxygen and metabolic substrates to satisfy the considerable energy demand of the heart. This article reviews the history that led to the current understanding of coronary physiology, beginning with William Harvey's revolutionary discovery of systemic blood circulation in the 17th century, and extending through the 20th century when the major mechanisms regulating coronary blood flow (CBF) were elucidated: extravascular compressive forces, metabolic control, pressure-flow autoregulation, and neural pathways. Pivotal research studies providing evidence for each of these mechanisms are described, along with their clinical correlates. The authors describe the major role played by researchers in the 19th century, who formulated basic principles of hemodynamics, such as Poiseuille's law, which provided the conceptual foundation for experimental studies of CBF regulation. Targeted research studies in coronary physiology began in earnest around the turn of the 20th century. Despite reliance on crude experimental techniques, the pioneers in coronary physiology made groundbreaking discoveries upon which our current knowledge is predicated. Further advances in coronary physiology were facilitated by technological developments, including methods to measure phasic CBF and its regional distribution, and by biochemical discoveries, including endothelial vasoactive molecules and adrenergic receptor subtypes. The authors recognize the invaluable contribution made by basic scientists toward the understanding of CBF regulation, and the enormous impact that this fundamental information has had on improving clinical diagnosis, decision-making, and patient care.
Collapse
Affiliation(s)
- George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL.
| | - Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
33
|
Iredahl F, Tesselaar E, Jonasson H, Wilhelms D, Henricson J. Concentration-dependent microvascular responses to repeated iontophoresis of acetylcholine. Microvasc Res 2025; 157:104749. [PMID: 39357644 DOI: 10.1016/j.mvr.2024.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Iontophoresis studies face challenges due to the unknown absolute drug dose delivered and the possible effect of the current used in drug delivery on the microvessels, known as current-induced vasodilation. This study aimed to investigate how various concentrations of acetylcholine (ACh), delivered through transdermal iontophoresis using repeated current pulses, impact the recovery profile of the microvascular response. METHODS The study included fifteen healthy volunteers, and microvascular responses to five concentrations of iontophorised ACh (ranging from 0.0055 mM to 55 mM) and sterile water were assessed at six forearm skin sites using polarized reflectance spectroscopy. Iontophoresis at each concentration involved three consecutive pulses separated 8 recovery periods. RESULTS Current-induced responses were more pronounced for lower concentrations of ACh and for sterile water. With repeated pulses, lower concentrations of ACh exhibited a recovery profile more akin to higher concentrations. PERSPECTIVE Through repeated iontophoresis of ACh, microvascular responses exhibit variation based on the drug concentration and the number of pulses administered. These variations are likely attributed to changes in skin conductivity and permeability.
Collapse
Affiliation(s)
- Fredrik Iredahl
- Primary Health Care Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| | - Erik Tesselaar
- Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Hanna Jonasson
- Department of Biomedical Engineering, Linköping University, Sweden
| | - Daniel Wilhelms
- Department of Emergency Medicine in Linköping, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Joakim Henricson
- Department of Emergency Medicine in Linköping, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Horikoshi T, Nakamura T, Yamada R, Yoshizaki T, Watanabe Y, Uematsu M, Kobayashi T, Sato A. Association between carotid plaque progression and persistent endothelial dysfunction in an infarct-related coronary artery in STEMI survivors. Heart Vessels 2025; 40:36-46. [PMID: 39068224 PMCID: PMC11717882 DOI: 10.1007/s00380-024-02444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Persistent coronary endothelial dysfunction predicts future adverse events; however, performing multiple invasive endothelial function tests is difficult in actual clinical practice. This study examined the association between carotid plaque progression and persistent coronary endothelial dysfunction using serial assessments of the coronary vasomotor response to acetylcholine (ACh) in the infarct-related artery (IRA) among patients with ST-elevation acute myocardial infarction (STEMI). This study included 169 consecutive patients with a first STEMI due to the left anterior descending coronary artery (LAD) occlusion who underwent successful percutaneous coronary intervention. The vasomotor response to ACh in the LAD was measured within two weeks after acute myocardial infarction (AMI) (first test) and repeated at six months (second test) after AMI. Ultrasonography of the bilateral common carotid artery and internal carotid artery was performed during the acute phase, and the thickest intima-media thickness (IMT) of either artery was measured as the maximum IMT. After six months, the IMT at the site of maximal IMT was re-measured to determine the carotid plaque progression. Finally, 87 STEMI patients analyzed. At 6 months, 25 patients (28.7%) showed carotid plaque progression. In a multivariable analysis, carotid plaque progression was identified as an independent predictor of persistent coronary endothelial dysfunction, both in terms of coronary diameter response [odd ratio (OR) 3.22, 95% confidence interval (95% CI) 1.13-9.15, p = 0.03] and coronary flow response [OR 2.65, 95% CI 1.01-7.00, p = 0.04]. Independently, carotid plaque progression is linked to persistent endothelial dysfunction in the IRA among STEMI survivors.
Collapse
Affiliation(s)
- Takeo Horikoshi
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan.
| | - Takamitsu Nakamura
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Ryota Yamada
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Toru Yoshizaki
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Yosuke Watanabe
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Manabu Uematsu
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Tsuyoshi Kobayashi
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| |
Collapse
|
35
|
de Jong EAM, Namba HF, Boerhout CKM, Feenstra RGT, Woudstra J, Vink CEM, Appelman Y, Beijk MAM, Piek JJ, van de Hoef TP. Assessment of coronary endothelial dysfunction using contemporary coronary function testing. Int J Cardiol 2025; 418:132640. [PMID: 39395717 DOI: 10.1016/j.ijcard.2024.132640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The established diagnosis of coronary endothelial dysfunction (CED) is through the response to low-dose acetylcholine during invasive coronary function testing (CFT). Current diagnostic criteria encompass deficient epicardial vasodilation and/or insufficient increase in coronary blood flow (CBF) calculated from additional Doppler flow velocity measurements. The aim is to evaluate the diagnostic yield of using angiographic epicardial vasomotion and CBF as single criteria for diagnosing CED during CFT. METHODS A total of 110 patients with angina and non-obstructive coronary arteries who underwent clinically indicated CFT were included. CED was defined as any reduction in epicardial diameter through quantitative coronary angiography and/or < 50 % increase in CBF compared to baseline after low-dose acetylcholine. RESULTS Based on current diagnostic criteria, 78 % of patients (N = 86/110) was diagnosed with CED. When only considering epicardial diameter, 24 % CED (N = 21/86) and 50 % severe CED diagnoses (N = 19/38) were missed. When only considering CBF, 27 % CED (N = 23/86) and 18 % severe CED diagnoses (N = 7/38) were missed. A similar diagnostic yield for CED detection was found for both parameters (OR: 0.913, 95 %CI 0.481-1.726, p = 0.763). The incidence of CFT diagnoses was comparable among all groups. CONCLUSIONS As single parameters, both epicardial diameter and CBF were ineffective in accurately diagnosing CED compared to the current diagnostic criteria. Combining both parameters is necessary to diagnose the complete spectrum of CED, as missed diagnoses of deficient CBF responses (e.g., microvascular CED) and epicardial vasomotion (e.g., epicardial CED) might occur when relying on these parameters as single diagnostic criteria for CED.
Collapse
Affiliation(s)
- Elize A M de Jong
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; UMC Utrecht, Department of Cardiology, Utrecht, the Netherlands
| | - Hanae F Namba
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Coen K M Boerhout
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Rutger G T Feenstra
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Janneke Woudstra
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Caitlin E M Vink
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Yolande Appelman
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marcel A M Beijk
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jan J Piek
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | | |
Collapse
|
36
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
38
|
Pham DL, Cox K, Ko ML, Ko GYP. Peptide Lv and Angiogenesis: A Newly Discovered Angiogenic Peptide. Biomedicines 2024; 12:2851. [PMID: 39767758 PMCID: PMC11672992 DOI: 10.3390/biomedicines12122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance KCa channels (KCa3.1) in vascular endothelial cells. Peptide Lv is upregulated in the retinas of patients with early proliferative diabetic retinopathy, a disease involving pathological angiogenesis. This review will provide an overview of peptide Lv, its known bioactivities in vitro and in vivo, and its clinical relevance, with a focus on its role in angiogenesis. As there is more about peptide Lv to be explored, this article serves as a foundation for possible future developments of peptide Lv-related therapeutics to treat or prevent diseases.
Collapse
Affiliation(s)
- Dylan L. Pham
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Kelsey Cox
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, TX 77802, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
39
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
40
|
Kopaliani I, Elsaid B, Speier S, Deussen A. Immune and Metabolic Mechanisms of Endothelial Dysfunction. Int J Mol Sci 2024; 25:13337. [PMID: 39769104 PMCID: PMC11728141 DOI: 10.3390/ijms252413337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Endothelial dysfunction is a strong prognostic factor in predicting the development of cardiovascular diseases. Dysfunctional endothelium loses its homeostatic ability to regulate vascular tone and prevent overactivation of inflammation, leading to vascular dysfunction. These functions are critical for vascular homeostasis and arterial pressure control, the disruption of which may lead to hypertension. Hypertension itself can also cause endothelial dysfunction, as endothelial cells are susceptible to haemodynamic changes. Although it is unclear which of those factors appear first, they create a vicious circle further damaging multiple organs, including the heart and vessels. There are also sex-specific differences in homeostatic functions of the endothelium regarding vessel tone regulation, which may contribute to differences in arterial blood pressure between men and women. Even more importantly, there are sex-differences in the development of endothelial dysfunction and vessel remodelling. Hence, an understanding of the mechanisms of endothelial dysfunction and its contribution to pathological vascular remodelling during hypertension is of critical importance. This review addresses immunological and metabolic aspects in mechanisms of endothelial dysfunction and the resulting mechanisms in vascular remodelling with respect to arterial hypertension, including the potential role of sex-specific differences.
Collapse
Affiliation(s)
- Irakli Kopaliani
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany; (B.E.); (S.S.); (A.D.)
| | - Basant Elsaid
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany; (B.E.); (S.S.); (A.D.)
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo 1181, Egypt
| | - Stephan Speier
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany; (B.E.); (S.S.); (A.D.)
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andreas Deussen
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany; (B.E.); (S.S.); (A.D.)
| |
Collapse
|
41
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
42
|
Higashi Y. Noninvasive Assessment of Vascular Function: From Physiological Tests to Biomarkers. JACC. ASIA 2024; 4:898-911. [PMID: 39802992 PMCID: PMC11711812 DOI: 10.1016/j.jacasi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 01/16/2025]
Abstract
Vascular function is impaired by conditions such as hypertension, dyslipidemia, and diabetes as well as coronary risk factors including age, smoking, obesity, menopause and physical inactivity. Measurement of vascular function is useful not only for assessment of atherosclerosis itself but also in many other aspects such as understanding the pathophysiology, assessing treatment efficacy, and predicting prognosis of cardiovascular events. It is therefore important to accurately assess the extent of vascular function. A variety of vascular function assessments are currently used in clinical practice, including flow-mediated vasodilation, reactive hyperemia index, strain-gauge pulse plethysmographs, pulse wave velocity, augmentation index, intima media thickness, and chemical biomarkers. However, it is also true that there is no gold standard method for measuring vascular function in humans. To use vascular function effectively, it is necessary to understand the measurement-related pitfalls.
Collapse
Affiliation(s)
- Yukihito Higashi
- Address for correspondence: Dr Yukihito Higashi, Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
43
|
Santos EXD, Britto-Júnior J, Ribeiro JV, Junior GQ, Lima AT, Moraes MO, Moraes MEA, Antunes E, Schenka A, De Nucci G. Endothelium-derived 6-nitrodopamine is the major mechanism by which nitric oxide relaxes the rabbit isolated aorta. Front Pharmacol 2024; 15:1507802. [PMID: 39640490 PMCID: PMC11619277 DOI: 10.3389/fphar.2024.1507802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
6-Nitrodopamine (6-ND) is the predominant catecholamine released from isolated vascular tissues in both mammals and reptiles, with its release being significantly reduced by the NO synthesis inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME). The vasorelaxation induced by 6-ND is unaffected by either L-NAME or the soluble guanylate cyclase (sGC) inhibitor, ODQ, indicating an alternative mechanism of action. The vasorelaxant effect appears to be mediated through selective antagonism of dopamine D2 receptors rather than traditional nitric oxide (NO)-mediated pathways. This study examined the basal release of 6-ND, dopamine, noradrenaline, and adrenaline from the rabbit thoracic aorta by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Additionally, the effects of 6-ND and the dopamine receptor antagonist L741,626 on relaxation responses and electric-field stimulation (EFS)-induced contractions in aortic rings were assessed. Nitric oxide pathway inhibitors, including L-NAME, ODQ, and methylene blue, were utilized to assess the involvement of this pathway in 6-ND-induced vasorelaxation. Concentration-response curves for norepinephrine, epinephrine, and dopamine were generated in the presence and absence of 6-ND and L-741,626. The rabbit isolated aorta presented the basal release of endothelium-derived dopamine and 6-ND. Furthermore, 6-nitrodopamine and L-741,626 induced concentration-dependent relaxations in endothelin-1 pre-contracted aortic rings. The relaxations were reduced by the mechanical removal of the endothelium but unaffected by pre-treatment with L-NAME, ODQ, or methylene blue. Pre-incubation with 6-ND significantly reduced dopamine-induced contractions, while noradrenaline- and adrenaline-induced contractions remained unchanged. The findings demonstrated that endothelium-derived 6-ND is the most potent endogenous relaxant of the rabbit isolated aorta, and the mechanism is independent of the NO pathway and involved the blockade of dopamine D2 receptors.
Collapse
Affiliation(s)
- Eric Xavier Dos Santos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Victor Ribeiro
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Gilberto Quirino Junior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Manoel Odorico Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Maria Elisabete A. Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Schenka
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty São Leopoldo Mandic, Campinas, São Paulo, Brazil
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
44
|
Nagy TL, Mikecs B, Lohinai ZM, Vág J. Dose-related effect of acetylcholine on human gingival blood flow. BMC Oral Health 2024; 24:1398. [PMID: 39551739 PMCID: PMC11571918 DOI: 10.1186/s12903-024-05169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND This study investigates the dose-response relationship of acetylcholine (ACh) on healthy human gingival blood flow (GBF). Understanding this dose-response relationship contributes to studying vasodilatory mechanisms in various pathological conditions. METHODS The study involved 22 young healthy men (21 - 32 years) to investigate the dose-response relationship of ACh on GBF. Semi-circular wells were created on the labial surface of the upper right second incisor (FDI #12) and upper left first incisor (FDI #21), including the gingival sulcus, for the application of drugs. ACh-chloride solutions at 0.1, 1, and 10 mg/mL were administered to the gingival sulcus of tooth FDI #12 with a Hamilton syringe. Physiological saline was applied on the contralateral side to FDI #21 as a control. The GBF was measured non-invasively by the laser speckle contrast imaging method in four 1mm high adjacent regions: coronal, midway1, midway2, and apical, and was expressed in a laser speckle perfusion unit (LSPU). After the baseline blood flow recording, ACh doses were applied sequentially, with washout periods in between. Data were statistically analyzed using a linear mixed model. RESULTS The GBF did not change on the saline site throughout the experiment. The GBF was significantly higher at the coronal region after all ACh doses (baseline: 218±31 LSPU, and 227±38 LSPU p < 0.05, 239±40 LSPU p < 0.001, 291±54 LSPU p < 0.001, respectively) compared to the saline. It was also elevated following 1 and 10 mg/mL at the midway1 (245±48 LSPU, p < 0.05, 293±65 LSPU p < 0.001). At midway2 and apical, only the 10 mg/mL dose was effective (285±71 LSPU, p < 0.001; 302±82 LSPU, p < 0.001). CONCLUSIONS Our findings suggest a dose-dependent vasodilation to ACh, emphasizing its role in human gingival microcirculation. Only the 10 mg/mL ACh could evoke remote vasodilation 3 mm from the application. The described method could facilitate the investigation of endothelium-dependent vasodilation in disorders affecting microcirculation, such as periodontitis or diabetes.
Collapse
Affiliation(s)
- Tamás László Nagy
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Semmelweis University, H-1088 Budapest, Szentkirályi utca 47, Budapest, Hungary
| | - Barbara Mikecs
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Semmelweis University, H-1088 Budapest, Szentkirályi utca 47, Budapest, Hungary
| | - Zsolt M Lohinai
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Semmelweis University, H-1088 Budapest, Szentkirályi utca 47, Budapest, Hungary
| | - János Vág
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Semmelweis University, H-1088 Budapest, Szentkirályi utca 47, Budapest, Hungary.
| |
Collapse
|
45
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
46
|
Hong A, Vollett KDW, Cheng HLM. A Nitric Oxide-Sensing T1 Contrast Agent for In Vivo Molecular MR Imaging of Inflammatory Disease. ACS Sens 2024; 9:5374-5383. [PMID: 39377688 DOI: 10.1021/acssensors.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Nitric oxide (NO) is a signaling molecule that not only appears in the very early stage of inflammatory disease but also persists in chronic conditions. Its detection in vivo can, therefore, potentially enable early disease detection and treatment monitoring. Due to its transient nature and low abundance, however, noninvasive and deep-tissue imaging of NO dynamics is challenging. In this study, we present a magnetic resonance imaging (MRI) contrast agent based on a manganese porphyrin for specific imaging of NO. This agent is activated by NO, binds to tissue protein, accumulates so long as NO is actively produced, and confers a substantial bright contrast on T1-weighted MRI. In vitro tests confirm the specificity of activation by NO over other reactive oxygen or nitrogen species, absence of inflammation induced by the contrast agent, and sensitivity to NO levels in the tens of micromolar. In vivo demonstration in a mouse model of stress-induced acute myocardial inflammation revealed an over 2.2-times increase in T1 reduction in the inflamed heart compared to a healthy heart. This new NO-activatable T1 contrast agent holds the potential to provide early diagnosis of inflammatory disease, characterize different stages of inflammation, and ultimately guide the design of novel anti-inflammation therapeutics.
Collapse
Affiliation(s)
- Anlan Hong
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E2, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Canada
| | - Kyle D W Vollett
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E2, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3E2, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| |
Collapse
|
47
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
48
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
49
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
50
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|