1
|
Ichikawa M, Matsuoka Y, Hasebe T. Coronary arterial repair in patients with stable angina pectoris or acute coronary syndrome after ultrathin biodegradable polymer sirolimus-eluting stent implantation at 1-year follow-up by coronary angioscopy. Catheter Cardiovasc Interv 2023; 102:1012-1019. [PMID: 37925619 DOI: 10.1002/ccd.30899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Imaging modality-based evidence is limited that compares the extent of coronary arterial repair after percutaneous coronary intervention between patients with stable angina pectoris (SAP) and those with acute coronary syndrome (ACS). METHODS Between December 2018 and November 2021, a single-center, nonrandomized, observational study was conducted in 92 patients with SAP (n = 42) or ACS (n = 50), who were implanted with Orsiro sirolimus-eluting stent (O-SES) providing a hybrid (active and passive) coating and underwent 1-year follow-up by coronary angioscopy (CAS) after implantation. CAS assessed neointimal coverage (NIC), maximum yellow plaque (YP), and mural thrombus (MT). RESULTS Baseline clinical characteristics were comparable between the SAP and ACS groups. The follow-up periods were comparable between the two groups (390.1 ± 69.9 vs. 390.6 ± 65.7 days, p = 0.99). The incidences of MT at 1 year after implantation were comparable between the two groups (11.4% vs. 11.1%, p = 0.92). The proportions of "Grade 1" in dominant NIC grades were highest in both groups, and the proportions of maximum YP grades and MT were comparable between the two groups. CONCLUSION O-SES-induced coronary arterial repair at the site of stent implantation, irrespective of the types of coronary artery disease.
Collapse
Affiliation(s)
- Minoru Ichikawa
- Department of Cardiology, Higashi-Osaka City Medical Center, Osaka, Japan
| | - Yuki Matsuoka
- Department of Cardiology, Higashi-Osaka City Medical Center, Osaka, Japan
| | - Terumitsu Hasebe
- Department of Radiology, Tokai University School of Medicine, Kanagawa, Japan
- Department of Radiology, Tokai University Hachioji Hospital, Tokyo, Japan
- Vascular and Interventional Center, Tokai University Hachioji Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Wu JJ, Way JAH, Brieger D. A Review of the Ultrathin Orsiro Biodegradable Polymer Drug-eluting Stent in the Treatment of Coronary Artery Disease. Heart Int 2019; 13:17-24. [PMID: 36274821 PMCID: PMC9559229 DOI: 10.17925/hi.2019.13.2.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 09/26/2023] Open
Abstract
Drug-eluting stents (DES) have revolutionised the treatment of coronary artery disease (CAD) in patients undergoing percutaneous coronary intervention. In recent years, there has been a focus on a new generation of DES, such as biodegradable polymer DES (BP-DES). This novel stent platform was developed with the hope of eliminating the risk of very late stent thrombosis associated with the current gold-standard durable polymer DES (DP-DES). Ultrathin Orsiro BP-DES (Biotronik, Bülach, Switzerland) are based on a cobalt-chromium stent platform that is coated with a bioresorbable polymer coating containing sirolimus. These devices have one of the thinnest struts available in the current market and have the theoretical benefit of reducing a chronic inflammatory response in the vessel wall. In 2019, the United States Food and Drug Administration (FDA) approved the use of Orsiro BP-DES in patients with CAD based on promising results in recent landmark trials, such as BIOFLOW V and BIOSTEMI. The aim of the present review article was to discuss the history of stent technology and the continued opportunities for improvements, focusing on the potential benefits of Orsiro BP-DES.
Collapse
Affiliation(s)
- James J Wu
- Sydney Medical School, The University of Sydney, Camperdown, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Concord, Australia
| | - Joshua AH Way
- Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - David Brieger
- Sydney Medical School, The University of Sydney, Camperdown, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Concord, Australia
| |
Collapse
|
3
|
Jambunathan R, Basavanna D, Vani P, Neuss M, Janbandhu P. One-year outcomes of a NeoHexa sirolimus-eluting coronary stent system with a biodegradable polymer in all-comers coronary artery disease patients: Results from NeoRegistry in India. World J Cardiol 2019; 11:200-208. [PMID: 31523398 PMCID: PMC6715581 DOI: 10.4330/wjc.v11.i8.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Biodegradable polymer drug-eluting stents (BP-DES) have shown to reduce restenosis rates and have low rates of stent thrombosis. The present postmarketing surveillance assessed 1-year clinical outcomes of patients who had received NeoHexa DES in real practice.
AIM To investigate 1-year clinical outcomes of Neohexa DES in real practice.
METHODS Data obtained from a single-center cohort of patients who had received NeoHexa stents as part of routine treatment of coronary artery disease (CAD) were retrospectively investigated. The primary study endpoint was the rate of major adverse cardiac events (MACEs) defined as the composite of death, myocardial infarction (MI), and target lesion revascularization (TLR) during the follow-up at 1 mo, 6 mo, and 1 year after the index procedure.
RESULTS A total of 129 patients with 172 lesions were enrolled. The most common comorbid conditions were hypertension (49.61%) and diabetes mellitus (39.53%). Procedural success was achieved in all patients, and no in-hospital MACE was reported. The incidence of composite MACE at 30 d, 6 mo, and 1 year was 0.78%, 3.94%, and 4.87%, respectively. The rate of possible and probable late stent thrombosis was 0.78%. The cumulative incidences of death, MI, and TLR at 1 year were 2.44%, 0.81%, and 1.63%, respectively.
CONCLUSION The relatively low rates of MACE and stent thrombosis in this study support safety and performance of NeoHexa stents, suggesting it to be an effective alternative to other contemporary stents for the treatment of de novo lesions in native coronary arteries.
Collapse
Affiliation(s)
| | - Dinesh Basavanna
- Cauvery Heart and Multispecialty Hospital, Mysore, Karnataka 570011, India
- Department of Cardiology Mysore Medical College and Research Institute, Mysore, Karnataka 570001, India
| | - Preeti Vani
- Medical Division, Sahajanand Laser Technology Ltd., Gandhinagar, Gujarat 382027, India
| | - Malte Neuss
- Medical Division, Sahajanand Laser Technology Ltd., Gandhinagar, Gujarat 382027, India
- Manemed Research and Development, Roeckumstr, Bonn 53123, Germany
| | - Prashant Janbandhu
- Medical Division, Sahajanand Laser Technology Ltd., Gandhinagar, Gujarat 382027, India
| |
Collapse
|
4
|
Surya Prakasa Rao V, Narayana Rao ASV, Kapardhi PLN, Shah PK, Viswanath R, Mehetre SG, Srivastava AK. Safety and Performance of Sirolimus-Eluting Coronary Stent System with Biodegradable Polymer: A Retrospective Analysis in Real-World Patient Population. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/wjcd.2017.75015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Chen W, Habraken TCJ, Hennink WE, Kok RJ. Polymer-Free Drug-Eluting Stents: An Overview of Coating Strategies and Comparison with Polymer-Coated Drug-Eluting Stents. Bioconjug Chem 2015; 26:1277-88. [PMID: 26041505 DOI: 10.1021/acs.bioconjchem.5b00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clinical evaluations have proven the efficacy of drug-elution stents (DES) in reduction of in-stent restenosis rates as compared to drug-free bare metal stents (BMS). Typically, DES are metal stents that are covered with a polymer film loaded with anti-inflammatory or antiproliferative drugs that are released in a sustained manner. However, although favorable effects of the released drugs have been observed, the polymer coating as such has been associated with several adverse clinical effects, such as late stent thrombosis. Elimination of the polymeric carrier of DES may therefore potentially lead to safer DES. Several technologies have been developed to design polymer-free DES, such as the use of microporous stents and inorganic coatings that can be drug loaded. Several drugs, including sirolimus, tacrolimus, paclitaxel, and probucol have been used in the design of carrier-free stents. Due to the function of the polymeric coating to control the release kinetics of a drug, polymer-free stents are expected to have a faster drug elution rate, which may affect the therapeutic efficacy. However, several polymer-free stents have shown similar efficacy and safety as the first-generation DES, although the superiority of polymer-free DES has not been established in clinical trials.
Collapse
Affiliation(s)
- Weiluan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tom C J Habraken
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, Zhang Y, Li Z, Wang G. Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11695-11712. [PMID: 26011753 DOI: 10.1021/acsami.5b01993] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Drug-eluting stents (DES) have become more widely used by cardiologists than bare metal stents (BMS) because of their better ability to control restenosis. However, recognized negative events, particularly including delayed or incomplete endothelialization and late stent thrombosis, have caused concerns over the long-term safety of DES. Although stent-based drug delivery can facilitate a drug's release directly to the restenosis site, a burst of drug release can seriously affect the pharmacological action and is a major factor accounting for adverse effects. Therefore, the drug release rate has become an important criterion in evaluating DES. The factors affecting the drug release rate include the drug carrier, drug, coating methods, drug storage, elution direction, coating thickness, pore size in the coating, release conditions (release medium, pH value, temperature), and hemodynamics after the stent implantation. A better understanding of how these factors influence drug release is particularly important for the reasonable use of efficient control strategies for drug release. This review summarizes the factors influencing the drug release from DES and presents strategies for enhancing the control of the drug's release, including the stent design, the application of absorbable stents, the development of new polymers, and the application of nanocarriers and improvements in the coating technology. Therefore, this paper provides a reference for the preparation of novel controlled slow-release DES.
Collapse
Affiliation(s)
- Tingzhang Hu
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jiali Yang
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Cui
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Qiong Rao
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lili Tan
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhang
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Zhenggong Li
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Guixue Wang
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|