1
|
Żera T, Paleczny B, Siński M, Conde SV, Narkiewicz K, Ponikowski P, Paton JF, Niewiński P. Translating physiology of the arterial chemoreflex into novel therapeutic interventions targeting carotid bodies in cardiometabolic disorders. J Physiol 2025; 603:2487-2516. [PMID: 40186613 PMCID: PMC12072261 DOI: 10.1113/jp285081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
This review resulted from a conference on the pathological role of arterial chemoreflex and carotid bodies in cardiometabolic diseases held at the 27th Congress of the Polish Cardiac Society in September 2023 in Poznan, Poland. It reflects the contribution of Polish researchers and their international collaborations, which have been fundamental in the development of the field. Aberrant activity of the carotid bodies leads to both high tonicity and increased sensitivity of the arterial chemoreflex with resultant sympathoexcitation in chronic heart failure, resistant hypertension and obstructive sleep apnoea. This observation has led to several successful attempts of removing or denervating the carotid bodies as a therapeutic option in humans. Regrettably, such interventions are accompanied by serious respiratory and acid-base balance side-effects. Rather than a single stereotyped reaction, arterial chemoreflex comprises an integrative multi-system response to a variety of stimulants and its specific reflex components may be individually conveyed at varying intensities. Recent research has revealed that carotid bodies express diverse receptors, synthesize a cocktail of mediators, and respond to a plethora of metabolic, hormonal and autonomic nervous stimuli. This state-of-the-art summary discusses exciting new discoveries regarding GLP-1 receptors, purinergic receptors, the glutamate-GABA system, efferent innervation and regulation of blood flow in the carotid body and how they open new avenues for novel pharmacological treatments selectively targeting specific receptors, mediators and neural pathways to correct distinct responses of the carotid body-evoked arterial chemoreflex in cardiometabolic diseases. The carotid body offers novel and advantageous therapeutic opportunities for future consideration by trialists.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical PhysiologyMedical University of WarsawWarsawPoland
| | - Bartłomiej Paleczny
- Department of Physiology and PathophysiologyWroclaw Medical UniversityWroclawPoland
| | - Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular DiseasesMedical University of WarsawWarsawPoland
| | - Sílvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisbonPortugal
| | - Krzysztof Narkiewicz
- Department of Hypertension and DiabetologyMedical University of GdańskGdańskPoland
| | - Piotr Ponikowski
- Institute of Heart DiseasesWroclaw Medical UniversityWroclawPoland
| | - Julian F.R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Piotr Niewiński
- Institute of Heart DiseasesWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
2
|
Ahn HB, Park J, Choi HJ, Choi HM, Hwang IC, Yoon YE, Cho GY. Cardiopulmonary exercise test with bicycle stress echocardiography for predicting adverse cardiac events in patients with stage A or B heart failure. Am J Prev Cardiol 2025; 21:100913. [PMID: 39758436 PMCID: PMC11697780 DOI: 10.1016/j.ajpc.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Background Given the high prevalence of stage A or B heart failure (HF), comprehensive screening for new-onset HF is cost-prohibitive. Therefore, further risk stratification is warranted to identify at-risk patients. This study aimed to evaluate the prognostic utility of cardiopulmonary exercise test (CPET) with bicycle stress echocardiography (BSE) in patients with stage A or B HF. Methods Among 687 consecutive patients who underwent CPET-BSE, 410 with stage A or B HF were analyzed. The association between the CPET-BSE parameters and adverse cardiac events (hospitalization for HF or cardiac-related death) was analyzed using the Cox proportional hazard model under univariate and multivariate analyses. Results After a median 9 years of follow-up, 47 (11.5 %) of the 410 patients had events. In the univariable analysis, age, diuretics, BUN, creatinine, peak oxygen uptake (VO2), ventilatory efficiency (VE/VCO2), time to VT and peak exercise, left atrial volume index, rest and exercise E/e', and tricuspid regurgitation velocity demonstrated significant parameters. In multivariate analysis, VE/VCO2 (hazard ratio [HR] 1.205, 95 % CI 1.095-1.327) and VO2 at peak exercise (HR 1.164, 95 % CI 1.022-1.325), time to VT (HR 0.993, 95 % CI 0.989-0.997), and exercise E/e' (HR 1.582, 95 % CI 1.199-2.087) were only independent predictors for events. Conclusions In patients with stage A or B HF, four parameters of CPET-BSE were good predictors of future development of HF or cardiac death. If patients are unable to perform complete exercise, the time to VT may serve as a sufficiently predictive parameter for clinical events.
Collapse
Affiliation(s)
- Houng-Beom Ahn
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| | - Jiesuck Park
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| | - Hye Jung Choi
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| | - Hong-Mi Choi
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| | - In-Chang Hwang
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| | - Yeonyee E. Yoon
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| | - Goo-Yeong Cho
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Seoul, Republic of Korea
| |
Collapse
|
3
|
Eser P, Käesermann D, Calamai P, Kalberer A, Stütz L, Huber S, Duffin J, Wilhelm M. Excess ventilation and chemosensitivity in patients with inefficient ventilation and chronic coronary syndrome or heart failure: a case-control study. Front Physiol 2025; 15:1509421. [PMID: 39911179 PMCID: PMC11794504 DOI: 10.3389/fphys.2024.1509421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Background In patients with chronic coronary syndromes (CCS), increased ventilation/carbon dioxide production (V ˙ E/V ˙ CO2) slope has been found to predict disease progression and mortality, similarly to patients with heart failure (HF); however, increased chemosensitivity, a well-established predictor for mortality in patients with HF, has rarely been assessed in patients with CCS. Method Patients with CCS, HF with reduced ejection fraction (EF < 50%), healthy controls (45+ years), and young healthy adults (<35 years) were recruited. For patients, aV ˙ E/V ˙ CO2 slope ≥36 was an inclusion criterion. The Duffin rebreathing method was used to determine the resting end-expiratory partial pressure of carbon dioxide (PETCO2), ventilatory recruitment threshold (VRT), and slope (sensitivity) during a hyperoxic (150 mmHg O2) and hypoxic (50 mmHg O2) rebreathing test to determine the central and peripheral chemosensitivity. Results In patients with CCS, HF, controls, and young healthy adults, medianV ˙ E/V ˙ CO2 slopes were 40.2, 41.3, 30.5, and 28.0, respectively. Both patient groups had similarly reduced hyperoxic VRT (at PETCO2 42.1 and 43.2 mmHg) compared to 46.0 and 48.8 mmHg in the control and young healthy adults. Neither hypoxic VRT nor hyper- or hypoxic slopes were significantly different in patients compared to controls. Both patient groups had lower resting PETCO2 than controls, but only patients with HF had increased breathing frequency and rapid shallow breathing at rest. Conclusion In patients with HF and/or CCS and excess ventilation, central chemoreflex VRT was reduced independently of the presence of HF. Low VRTs were related to resting excess ventilation in patients with CCS or HF; however, rapid shallow breathing at peak exercise was present only in patients with HF. Clinical trial registration number NCT05057884.
Collapse
Affiliation(s)
- Prisca Eser
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominic Käesermann
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pietro Calamai
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anja Kalberer
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laura Stütz
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarina Huber
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - James Duffin
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
| | - Matthias Wilhelm
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Eser P, Calamai P, Kalberer A, Stuetz L, Huber S, Kaesermann D, Guler S, Wilhelm M. Improved exercise ventilatory efficiency with nasal compared to oral breathing in cardiac patients. Front Physiol 2024; 15:1380562. [PMID: 39165283 PMCID: PMC11334221 DOI: 10.3389/fphys.2024.1380562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 08/22/2024] Open
Abstract
Objectives: To assess whether nasal breathing improves exercise ventilatory efficiency in patients with heart failure (HF) or chronic coronary syndromes (CCS). Background: Exercise inefficient ventilation predicts disease progression and mortality in patients with cardiovascular diseases. In healthy people, improved ventilatory efficiency with nasal compared to oral breathing was found. Methods: Four study groups were recruited: Patients with HF, patients with CCS, old (age≥45 years) and young (age 20-40 years) healthy control subjects. After a 3-min warm-up, measurements of 5 min with once nasal and once oral breathing were performed in randomized order at 50% peak power on cycle ergometer. Ventilation and gas exchange parameters measured with spiroergometry were analysed by Wilcoxon paired-sample tests and linear mixed models adjusted for sex, height, weight and test order. Results: Groups comprised 15 HF, CCS, and young control and 12 old control. Ventilation/carbon dioxide production (V ˙ E/V ˙ CO2), ventilation (V ˙ E), breathing frequency (fR), and end-tidal oxygen partial pressure (PETO2) were significantly lower and tidal volume and end-tidal carbon dioxide partial pressure (PETCO2) significantly higher during nasal compared to oral breathing in all groups, with large effect sizes for most parameters. For patients with HF, medianV ˙ E/V ˙ CO2 was 35% lower, fR 26% lower, and PETCO2 10% higher with nasal compared to oral breathing, respectively. Exercise oscillatory ventilation (EOV) was present in 6 patients and markedly reduced with nasal breathing. Conclusion: Nasal breathing during submaximal exercise significantly improved ventilatory efficiency and abnormal breathing patterns (rapid shallow breathing and EOV) in 80% of our patients with HF and CCS.
Collapse
Affiliation(s)
- Prisca Eser
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pietro Calamai
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anja Kalberer
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laura Stuetz
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarina Huber
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominic Kaesermann
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabina Guler
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Wilhelm
- Centre for Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
6
|
Hope K, Chant B, Hinton T, Kendrick AH, Nightingale AK, Paton JFR, Hart EC. Ventilatory Efficiency Is Reduced in People With Hypertension During Exercise. J Am Heart Assoc 2023; 12:e024335. [PMID: 37345800 PMCID: PMC10356072 DOI: 10.1161/jaha.121.024335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 06/23/2023]
Abstract
Background An elevated ventilatory efficiency slope during exercise (minute ventilation/volume of expired CO2; VE/VCO2 slope) is a strong prognostic indicator in heart failure. It is elevated in people with heart failure with preserved ejection, many of whom have hypertension. However, whether the VE/VCO2 slope is also elevated in people with primary hypertension versus normotensive individuals is unknown. We hypothesize that there is a spectrum of ventilatory inefficiency in cardiovascular disease, reflecting an increasingly abnormal physiological response to exercise. The aim of this study was to evaluate the VE/VCO2 slope in patients with hypertension compared with age-, peak oxygen consumption-, and sex-matched healthy subjects. Methods and Results Ramped cardiovascular pulmonary exercise tests to peak oxygen consumption were completed on a bike ergometer in 55 patients with primary hypertension and 24 normotensive controls. The VE/VCO2 slope was assessed from the onset of exercise to peak oxygen consumption. Data were compared using unpaired Student t test. Age (mean±SD, 66±6 versus 64±6 years; P=0.18), body mass index (25.4±3.5 versus 24±2.4 kg/m2; P=0.13), and peak oxygen consumption (23.2±6.6 versus 24±7.3 mL/min per kg; P=0.64) were similar between groups. The VE/VCO2 slope was elevated in the hypertensive group versus controls (31.8±4.5 versus 28.4±3.4; P=0.002). Only 27% of the hypertensive group were classified as having a normal VE/VCO2 slope (20-30) versus 71% in the control group. Conclusions Ventilatory efficiency is impaired people with hypertension without a diagnosis of heart failure versus normotensive individuals. Future research needs to establish whether those patients with hypertension with elevated VE/VCO2 slopes are at risk of developing future heart failure.
Collapse
Affiliation(s)
- Katrina Hope
- Bristol Heart Institute CardioNomics Research Group, School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Ben Chant
- Bristol Heart Institute CardioNomics Research Group, School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Thomas Hinton
- Bristol Heart Institute CardioNomics Research Group, School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Adrian H. Kendrick
- Bristol Heart Institute CardioNomics Research Group, School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- Department of Respiratory MedicineUniversity Hospitals Bristol National Health Service Foundation TrustBristolUnited Kingdom
| | - Angus K. Nightingale
- Bristol Heart Institute CardioNomics Research Group, School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- Department of CardiologyBristol Heart Institute, University Hospitals Bristol National Health Service Foundation TrustBristolUnited Kingdom
| | - Julian F. R. Paton
- Department of Physiology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Emma C. Hart
- Bristol Heart Institute CardioNomics Research Group, School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
7
|
Giannoni A, Borrelli C, Gentile F, Sciarrone P, Spießhöfer J, Piepoli M, Richerson GB, Floras JS, Coats AJS, Javaheri S, Emdin M, Passino C. Autonomic and respiratory consequences of altered chemoreflex function: clinical and therapeutic implications in cardiovascular diseases. Eur J Heart Fail 2023; 25:642-656. [PMID: 36907827 PMCID: PMC10989193 DOI: 10.1002/ejhf.2819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The importance of chemoreflex function for cardiovascular health is increasingly recognized in clinical practice. The physiological function of the chemoreflex is to constantly adjust ventilation and circulatory control to match respiratory gases to metabolism. This is achieved in a highly integrated fashion with the baroreflex and the ergoreflex. The functionality of chemoreceptors is altered in cardiovascular diseases, causing unstable ventilation and apnoeas and promoting sympathovagal imbalance, and it is associated with arrhythmias and fatal cardiorespiratory events. In the last few years, opportunities to desensitize hyperactive chemoreceptors have emerged as potential options for treatment of hypertension and heart failure. This review summarizes up to date evidence of chemoreflex physiology/pathophysiology, highlighting the clinical significance of chemoreflex dysfunction, and lists the latest proof of concept studies based on modulation of the chemoreflex as a novel target in cardiovascular diseases.
Collapse
Affiliation(s)
- Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Jens Spießhöfer
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Aachen, Aachen, Germany
| | | | | | - John S Floras
- Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | - Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, Ohio, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio, and Division of Cardiology, The Ohio State University, Columbus, Ohio USA
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
8
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
9
|
Caravita S, Faini A, Vignati C, Pelucchi S, Salvioni E, Cattadori G, Baratto C, Torlasco C, Contini M, Villani A, Malfatto G, Perger E, Lombardi C, Piperno A, Agostoni P, Parati G. Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure. Eur J Heart Fail 2022; 24:1940-1949. [PMID: 35867685 PMCID: PMC9804720 DOI: 10.1002/ejhf.2628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/09/2023] Open
Abstract
AIMS Intravenous iron therapy can improve symptoms in patients with heart failure, anaemia and iron deficiency. The mechanisms underlying such an improvement might involve chemoreflex sensing and nocturnal breathing patterns. METHODS AND RESULTS Patients with heart failure, reduced left ventricular ejection fraction, anaemia (haemoglobin <13 g/dl in men; <12 g/dl in women) and iron deficiency (ferritin <100 or 100-299 μg/L with transferrin saturation <20%) were 2:1 randomized to patient-tailored intravenous ferric carboxymaltose dose or placebo. Chemoreflex sensitivity cardiorespiratory sleep study, symptom assessment and cardiopulmonary exercise test were performed before and 2 weeks after the last treatment dose. Fifty-eight patients (38 active arm/20 placebo arm) completed the study. Intravenous iron was associated with less severe symptoms, higher haemoglobin (12.5 ± 1.4 vs. 11.7 ± 1.0 mg/dl, p < 0.05) and improved haematinic parameters. Ferric carboxymaltose improved the central hypercapnic ventilatory response (-25.8%, p < 0.05 vs. placebo), without changes in peripheral chemosensitivity. In particular, the central hypercapnic ventilatory responses passed from 4.6 ± 6.5 to 2.9 ± 2.9 L/min/mmHg after ferric carboxymaltose and from 4.4 ± 4.6 to 4.6 ± 3.9 L/min/mmHg after placebo (ptreatment*condition = 0.046). In patients presenting with sleep-related breathing disorder, apnoea-hypopnoea index was reduced with active treatment as compared to placebo (12 ± 11 vs. 19 ± 13 events/h, p < 0.05). After ferric carboxymaltose, but not after placebo, both peak oxygen uptake (VO2 ) increased (Δ1.1 ± 2.0 ml/kg/min, p < 0.05) and VO2 /workload slope was steeper (Δ0.67 ± 1.7 L/min/W, p < 0.01). CONCLUSIONS Intravenous ferric carboxymaltose improves the hypercapnic ventilatory response and sleep-related breathing disorders in patients with heart failure, anaemia and iron deficiency. These newly described findings, along with improved oxygen delivery to exercising muscles, likely contribute to the favourable effects of ferric carboxymaltose in anaemic patients with heart failure.
Collapse
Affiliation(s)
- Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly,Department of Management, Information and Production EngineeringUniversity of BergamoDalmineItaly
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | | | - Sara Pelucchi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | | | | | - Claudia Baratto
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | | | - Alessandra Villani
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Gabriella Malfatto
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Elisa Perger
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Carolina Lombardi
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly,Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Alberto Piperno
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCSMilanItaly,Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly,Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
10
|
Kulej-Lyko K, Niewinski P, Tubek S, Krawczyk M, Kosmala W, Ponikowski P. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction − a role of tonic activity and acute reflex response. Front Physiol 2022; 13:911636. [PMID: 36111161 PMCID: PMC9470150 DOI: 10.3389/fphys.2022.911636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral chemoreceptors (PChRs) play a significant role in maintaining adequate oxygenation in the bloodstream. PChRs functionality comprises two components: tonic activity (PChT) which regulates ventilation during normoxia and acute reflex response (peripheral chemosensitivity, PChS), which increases ventilation following a specific stimulus. There is a clear link between augmented PChS and exercise intolerance in patients with heart failure with reduced ejection fraction. It has been also shown that inhibition of PChRs leads to the improvement in exercise capacity. However, it has not been established yet: 1) whether similar mechanisms take part in heart failure with preserved ejection fraction (HFpEF) and 2) which component of PChRs functionality (PChT vs. PChS) is responsible for the benefit seen after the acute experimental blockade. To answer those questions we enrolled 12 stable patients with HFpEF. All participants underwent an assessment of PChT (attenuation of minute ventilation in response to low-dose dopamine infusion), PChS (enhancement of minute ventilation in response to hypoxia) and a symptom-limited cardiopulmonary exercise test on cycle ergometer. All tests were placebo-controlled, double-blinded and performed in a randomized order. Under resting conditions and at normoxia dopamine attenuated minute ventilation and systemic vascular resistance (p = 0.03 for both). These changes were not seen with placebo. Dopamine also decreased ventilatory and mean arterial pressure responses to hypoxia (p < 0.05 for both). Inhibition of PChRs led to a decrease in V˙E/V˙CO2 comparing to placebo (36 ± 3.6 vs. 34.3 ± 3.7, p = 0.04), with no effect on peak oxygen consumption. We found a significant relationship between PChT and the relative decrement of V˙E/V˙CO2 on dopamine comparing to placebo (R = 0.76, p = 0.005). There was a trend for correlation between PChS (on placebo) and V˙E/V˙CO2 during placebo infusion (R = 0.56, p = 0.059), but the relative improvement in V˙E/V˙CO2 was not related to the change in PChS (dopamine vs. placebo). We did not find a significant relationship between PChT and PChS. In conclusion, inhibition of PChRs in HFpEF population improves ventilatory efficiency during exercise. Increased PChS is associated with worse (higher) V˙E/V˙CO2, whereas PChT predicts an improvement in V˙E/V˙CO2 after PChRs inhibition. This results may be meaningful for patient selection in further clinical trials involving PChRs modulation.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | | | - Wojciech Kosmala
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
11
|
Kulej-Lyko K, Niewinski P, Tubek S, Ponikowski P. Contribution of Peripheral Chemoreceptors to Exercise Intolerance in Heart Failure. Front Physiol 2022; 13:878363. [PMID: 35492596 PMCID: PMC9046845 DOI: 10.3389/fphys.2022.878363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors (PChRs), because of their strategic localization at the bifurcation of the common carotid artery and along the aortic arch, play an important protective role against hypoxia. Stimulation of PChRs evokes hyperventilation and hypertension to maintain adequate oxygenation of critical organs. A relationship between increased sensitivity of PChRs (hyperreflexia) and exercise intolerance (ExIn) in patients with heart failure (HF) has been previously reported. Moreover, some studies employing an acute blockade of PChRs (e.g., using oxygen or opioids) demonstrated improvement in exercise capacity, suggesting that hypertonicity is also involved in the development of ExIn in HF. Nonetheless, the precise mechanisms linking dysfunctional PChRs to ExIn remain unclear. From the clinical perspective, there are two main factors limiting exercise capacity in HF patients: subjective perception of dyspnoea and muscle fatigue. Both have many determinants that might be influenced by abnormal signalling from PChRs, including: exertional hyperventilation, oscillatory ventilation, ergoreceptor oversensitivity, and augmented sympathetic tone. The latter results in reduced muscle perfusion and altered muscle structure. In this review, we intend to present the milieu of abnormalities tied to malfunctioning PChRs and discuss their role in the complex relationships leading, ultimately, to ExIn.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
12
|
Gentile F, Borrelli C, Sciarrone P, Buoncristiani F, Spiesshoefer J, Bramanti F, Iudice G, Vergaro G, Emdin M, Passino C, Giannoni A. Central Apneas Are More Detrimental in Female Than in Male Patients With Heart Failure. J Am Heart Assoc 2022; 11:e024103. [PMID: 35191313 PMCID: PMC9075076 DOI: 10.1161/jaha.121.024103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Central apneas (CA) are a frequent comorbidity in patients with heart failure (HF) and are associated with worse prognosis. The clinical and prognostic relevance of CA in each sex is unknown. Methods and Results Consecutive outpatients with HF with either reduced or mildly reduced left ventricular ejection fraction (n=550, age 65±12 years, left ventricular ejection fraction 32%±9%, 21% women) underwent a 24‐hour ambulatory polygraphy to evaluate CA burden and were followed up for the composite end point of cardiac death, appropriate implantable cardioverter‐defibrillator shock, or first HF hospitalization. Compared with men, women were younger, had higher left ventricular ejection fraction, had lower prevalence of ischemic etiology and of atrial fibrillation, and showed lower apnea‐hypopnea index (expressed as median [interquartile range]) at daytime (3 [0–9] versus 10 [3–20] events/hour) and nighttime (10 [3–21] versus 23 [11–36] events/hour) (all P<0.001), despite similar neurohormonal activation and HF therapy. Increased chemoreflex sensitivity to either hypoxia or hypercapnia (evaluated in 356 patients, 65%, by a rebreathing test) was less frequent in women (P<0.001), but chemoreflex sensitivity to hypercapnia was a predictor of apnea‐hypopnea index in both sexes. At adjusted survival analysis, daytime apnea‐hypopnea index ≥15 events/hour (hazard ratio [HR], 2.70; 95% CI, 1.06–7.34; P=0.037), nighttime apnea‐hypopnea index ≥15 events/hour (HR, 2.84; 95% CI, 1.28–6.32; P=0.010), and nighttime CA index ≥10 events/hour (HR, 5.01; 95% CI, 1.88–13.4; P=0.001) were independent predictors of the primary end point in women but not in men (all P>0.05), also after matching women and men for possible confounders. Conclusions In chronic HF, CA are associated with a greater risk of adverse events in women than in men.
Collapse
Affiliation(s)
- Francesco Gentile
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,University Hospital Pisa Italy
| | - Chiara Borrelli
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,University Hospital Pisa Italy
| | - Paolo Sciarrone
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,University Hospital Pisa Italy
| | | | | | | | - Giovanni Iudice
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy
| | - Giuseppe Vergaro
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | - Michele Emdin
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | - Claudio Passino
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | - Alberto Giannoni
- Fondazione Toscana G. MonasterioCNR-Regione Toscana Pisa Italy.,Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| |
Collapse
|
13
|
Why Levosimendan Improves the Clinical Condition of Patients With Advanced Heart Failure: A Holistic Approach. J Card Fail 2021; 28:509-514. [PMID: 34763079 DOI: 10.1016/j.cardfail.2021.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND In advanced heart failure (HF), levosimendan increases peak oxygen uptake (VO2). We investigated whether peak VO2 increase is linked to cardiovascular, respiratory, or muscular performance changes. METHODS AND RESULTS Twenty patients hospitalized for advanced HF underwent, before and shortly after levosimendan infusion, 2 different cardiopulmonary exercise tests: (a) a personalized ramp protocol with repeated arterial blood gas analysis and standard spirometry including alveolar-capillary gas diffusion measurements at rest and at peak exercise, and (b) a step incremental workload cardiopulmonary exercise testing with continuous near-infrared spectroscopy analysis and cardiac output assessment by bioelectrical impedance analysis.Levosimendan significantly decreased natriuretic peptides, improved peak VO2 (11.3 [interquartile range 10.1-12.8] to 12.6 [10.2-14.4] mL/kg/min, P < .01) and decreased minute ventilation to carbon dioxide production relationship slope (47.7 ± 10.7 to 43.4 ± 8.1, P < .01). In parallel, spirometry showed only a minor increase in forced expiratory volume, whereas the peak exercise dead space ventilation was unchanged. However, during exercise, a smaller edema formation was observed after levosimendan infusion, as inferable from the changes in diffusion components, that is, the membrane diffusion and capillary volume. The end-tidal pressure of CO2 during the isocapnic buffering period increased after levosimendan (from 28 ± 3 mm Hg to 31 ± 2 mm Hg, P < .01). During exercise, cardiac output increased in parallel with VO2. After levosimendan, the total and oxygenated tissue hemoglobin, but not deoxygenated hemoglobin, increased in all exercise phases. CONCLUSIONS In advanced HF, levosimendan increases peak VO2, decreases the formation of exercise-induced lung edema, increases ventilation efficiency owing to a decrease of reflex hyperventilation, and increases cardiac output and muscular oxygen delivery and extraction.
Collapse
|
14
|
Vignati C, De Martino F, Muratori M, Salvioni E, Tamborini G, Bartorelli A, Pepi M, Alamanni F, Farina S, Cattadori G, Mantegazza V, Agostoni P. Rest and exercise oxygen uptake and cardiac output changes 6 months after successful transcatheter mitral valve repair. ESC Heart Fail 2021; 8:4915-4924. [PMID: 34551212 PMCID: PMC8712840 DOI: 10.1002/ehf2.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
Aims Changes in peak exercise oxygen uptake (VO2) and cardiac output (CO) 6 months after successful percutaneous edge‐to‐edge mitral valve repair (pMVR) in severe primary (PMR) and functional mitral regurgitation (FMR) patients are unknown. The aim of the study was to assess the efficacy of pMVR at rest by echocardiography, VO2 and CO (inert gas rebreathing) measurement and during cardiopulmonary exercise test with CO measurement. Methods and results We evaluated 145 and 115 patients at rest and 98 and 66 during exercise before and after pMVR, respectively. After successful pMVR, significant reductions in MR and NYHA class were observed in FMR and PMR patients. Cardiac ultrasound showed reverse remodelling (left ventricular end‐diastolic volume from 158 ± 63 mL to 147 ± 64, P < 0.001; ejection fraction from 51 ± 15 to 48 ± 14, P < 0.001; pulmonary artery systolic pressure (PASP) from 43 ± 13 to 38 ± 8 mmHg, P < 0.001) in the entire population. These changes were significant in PMR (n = 62) and a trend in FMR (n = 53), except for PASP, which decreased in both groups. At rest, CO and stroke volume (SV) increased in FMR with a concomitant reduction in arteriovenous O2 content difference [ΔC(a‐v)O2]. Peak exercise, CO and SV increased significantly in both groups (CO from 5.5 ± 1.4 L/min to 6.3 ± 1.5 and from 6.2 ± 2.4 to 6.7 ± 2.0, SV from 57 ± 19 mL to 66 ± 20 and from 62 ± 20 to 69 ± 20, in FMR and PMR, respectively), whereas peak VO2 was unchanged and ΔC(a‐v)O2 decreased. Conclusions These data confirm pMVR‐induced clinical improvement and reverse ventricular remodelling at a 6‐month analysis and show, in spite of an increase in CO, an unchanged exercise performance, which is achieved through a ‘more physiological’ blood flow distribution and O2 extraction behaviour. Direct rest and exercise CO should be measured to assess pMVR efficacy.
Collapse
Affiliation(s)
- Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | | | | | | | | | - Antonio Bartorelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Francesco Alamanni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | | | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Pachen M, Abukar Y, Shanks J, Lever N, Ramchandra R. Regulation of Coronary Blood Flow by the Carotid Body Chemoreceptors in Ovine Heart Failure. Front Physiol 2021; 12:681135. [PMID: 34122147 PMCID: PMC8195281 DOI: 10.3389/fphys.2021.681135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors, which are primary sensors of systemic hypoxia and their activation produces respiratory, autonomic, and cardiovascular adjustments critical for body homeostasis. We have previously shown that carotid chemoreceptor stimulation increases directly recorded cardiac sympathetic nerve activity (cardiac SNA) which increases coronary blood flow (CoBF) in conscious normal sheep. Previous studies have shown that chemoreflex sensitivity is augmented in heart failure (HF). We hypothesized that carotid chemoreceptor stimulation would increase CoBF to a greater extent in HF than control sheep. Experiments were conducted in conscious HF sheep and control sheep (n = 6/group) implanted with electrodes to record diaphragmatic electromyography (dEMG), flow probes to record CoBF as well as arterial pressure. There was a significant increase in mean arterial pressure (MAP), CoBF and coronary vascular conductance (CVC) in response to potassium cyanide (KCN) in both groups of sheep. To eliminate the effects of metabolic vasodilation, the KCN was repeated while the heart was paced at a constant level. In this paradigm, the increase in CoBF and CVC was augmented in the HF group compared to the control group. Pre-treatment with propranolol did not alter the CoBF or the CVC increase in the HF group indicating this was not mediated by an increase in cardiac sympathetic drive. The pressor response to CB activation was abolished by pre-treatment with intravenous atropine in both groups, but there was no change in the CoBF and vascular conductance responses. Our data suggest that in an ovine model of HF, carotid body (CB) mediated increases in CoBF and CVC are augmented compared to control animals. This increase in CoBF is mediated by an increase in cardiac SNA in the control group but not the HF group.
Collapse
Affiliation(s)
- Mridula Pachen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Yonis Abukar
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Nigel Lever
- Department of Medicine, University of Auckland and Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Bittencourt L, Javaheri S, Servantes DM, Pelissari Kravchychyn AC, Almeida DR, Tufik S. In patients with heart failure, enhanced ventilatory response to exercise is associated with severe obstructive sleep apnea. J Clin Sleep Med 2021; 17:1875-1880. [PMID: 33949944 DOI: 10.5664/jcsm.9396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Patients with chronic heart failure (CHF) while undergoing exercise test, frequently exhibit elevated ratio of minute ventilation over CO₂ output (VE/VCO₂ slope). One of the factors contributing to this elevated slope is increased chemosensitivity to CO₂, as this slope significantly correlates with the slope of the ventilatory response to CO₂ rebreathing at rest. A previous study in patients with CHF and central sleep apnea (CSA) has shown the highest VE/VCO2 slope during exercise was associated with the most severe CSA. In the current study, we tested the hypothesis that in patients with CHF and obstructive sleep apnea (OSA), the highest VE/VCO₂ slope is also associated with most severe OSA. If correct, it implies that in CHF, augmented instability in the negative feedback system controlling breathing predisposes to both OSA and CSA. METHODS This preliminary study involved 70 patients with stable CHF and spectrum of OSA severity who underwent full night polysomnography, echocardiography, and cardiopulmonary exercise testing. Peak oxygen consumption (VO₂ max) and VE/VCO₂ slope were calculated. RESULTS There were significant positive correlations between apnea hypopnea index (AHI) and VE/VCO₂ slope (r= 0.359; p=0.002). In the regression model, involving relevant variable, age, body mass index, gender, VE/VCO₂ slope, VO₂, and left ventricular ejection fraction, AHI retained significance with VE/VCO₂. CONCLUSIONS In patients with CHF, the VE/VCO₂ slope obtained during exercise correlates significantly to the severity of OSA suggesting that an elevated CO₂ response should increase suspicion for presence of severe OSA, a treatable disorder that is potentially associated with excess mortality. CLINICAL TRIAL REGISTRATION: REGISTRY ClinicalTrials.gov; Title: Comparison Between Exercise Training and CPAP Treatment for Patients With Heart Failure and Sleep Apnea; Identifier: NCT01538069; URL: https://clinicaltrials.gov/ct2/show/record/NCT01538069.
Collapse
Affiliation(s)
- Lia Bittencourt
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | - Sérgio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Spiesshoefer J, Herkenrath S, Harre K, Kahles F, Florian A, Yilmaz A, Mohr M, Naughton M, Randerath W, Emdin M, Passino C, Regmi B, Dreher M, Boentert M, Giannoni A. Sleep-Disordered Breathing and Nocturnal Hypoxemia in Precapillary Pulmonary Hypertension: Prevalence, Pathophysiological Determinants, and Clinical Consequences. Respiration 2021; 100:865-876. [PMID: 33910200 DOI: 10.1159/000515602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The clinical relevance and interrelation of sleep-disordered breathing and nocturnal hypoxemia in patients with precapillary pulmonary hypertension (PH) is not fully understood. METHODS Seventy-one patients with PH (age 63 ± 15 years, 41% male) and 35 matched controls were enrolled. Patients with PH underwent clinical examination with assessment of sleep quality, daytime sleepiness, 6-minute walk distance (6MWD), overnight cardiorespiratory polygraphy, lung function, hypercapnic ventilatory response (HCVR; by rebreathing technique), amino-terminal pro-brain natriuretic peptide (NT-proBNP) levels, and cardiac MRI (n = 34). RESULTS Prevalence of obstructive sleep apnea (OSA) was 68% in patients with PH (34% mild, apnea-hypopnea index [AHI] ≥5 to <15/h; 34% moderate to severe, AHI ≥15/h) versus 5% in controls (p < 0.01). Only 1 patient with PH showed predominant central sleep apnea (CSA). Nocturnal hypoxemia (mean oxygen saturation [SpO2] <90%) was present in 48% of patients with PH, independent of the presence of OSA. There were no significant differences in mean nocturnal SpO2, self-reported sleep quality, 6MWD, HCVR, and lung and cardiac function between patients with moderate to severe OSA and those with mild or no OSA (all p > 0.05). Right ventricular (RV) end-diastolic (r = -0.39; p = 0.03) and end-systolic (r = -0.36; p = 0.04) volumes were inversely correlated with mean nocturnal SpO2 but not with measures of OSA severity or daytime clinical variables. CONCLUSION OSA, but not CSA, is highly prevalent in patients with PH, and OSA severity is not associated with nighttime SpO2, clinical and functional status. Nocturnal hypoxemia is a frequent finding and (in contrast to OSA) relates to structural RV remodeling in PH.
Collapse
Affiliation(s)
- Jens Spiesshoefer
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Muenster, Münster, Germany.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Simon Herkenrath
- Bethanien Hospital Solingen, Solingen, Germany.,Institute for Pneumology at the University of Cologne, Solingen, Germany
| | - Katharina Harre
- Department of Neurology with Institute for Translational Neurology, University Hospital Muenster, Münster, Germany
| | - Florian Kahles
- Department of Cardiology, Vascular Medicine and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Anca Florian
- Department of Cardiology I, University Hospital Muenster, Münster, Germany
| | - Ali Yilmaz
- Department of Cardiology I, University Hospital Muenster, Münster, Germany
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Münster, Germany
| | - Matthew Naughton
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Winfried Randerath
- Bethanien Hospital Solingen, Solingen, Germany.,Institute for Pneumology at the University of Cologne, Solingen, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| | - Binaya Regmi
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Matthias Boentert
- Department of Neurology with Institute for Translational Neurology, University Hospital Muenster, Münster, Germany.,Department of Medicine, UKM Marienhospital Steinfurt, Steinfurt, Germany
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
| |
Collapse
|
18
|
Dommasch M, Steger A, Barthel P, Huster KM, Müller A, Sinnecker D, Laugwitz KL, Penzel T, Lubinski A, Flevari P, Harden M, Friede T, Kääb S, Merkely B, Sticherling C, Willems R, Huikuri HV, Bauer A, Malik M, Zabel M, Schmidt G, The EU-CERT-ICD investigators. Nocturnal respiratory rate predicts ICD benefit: A prospective, controlled, multicentre cohort study. EClinicalMedicine 2021; 31:100695. [PMID: 33554086 PMCID: PMC7846675 DOI: 10.1016/j.eclinm.2020.100695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Implantable cardioverter defibrillators (ICDs) prevent sudden cardiac death. ICD implantation decisions are currently based on reduced left ventricular ejection fraction (LVEF≤35%). However, in some patients, the non-arrhythmic death risk predominates thus diminishing ICD-therapy benefits. Based on previous observations, we tested the hypothesis that compared to the others, patients with nocturnal respiratory rate (NRR) ≥18 breaths per minute (brpm) benefit less from prophylactic ICD implantations. METHODS This prospective cohort study was a pre-defined sub-study of EU-CERT-ICD trial conducted at 44 centers in 15 EU countries between May 12, 2014, and September 6, 2018. Patients with ischaemic or non-ischaemic cardiomyopathy were included if meeting primary prophylactic ICD implantation criteria. The primary endpoint was all-cause mortality. NRR was assessed blindly from pre-implantation 24-hour Holters. Multivariable models and propensity stratification evaluated the interaction between NRR and the ICD mortality effect. This study is registered with ClinicalTrials.gov (NCT0206419). FINDINGS Of the 2,247 EU-CERT-ICD patients, this sub-study included 1,971 with complete records. In 1,363 patients (61.7 (12) years; 244 women) an ICD was implanted; 608 patients (63.2 (12) years; 108 women) were treated conservatively. During a median 2.5-year follow-up, 202 (14.8%) and 95 (15.6%) patients died in the ICD and control groups, respectively. NRR statistically significantly interacted with the ICD mortality effect (p = 0.0070). While the 1,316 patients with NRR<18 brpm showed a marked ICD benefit on mortality (adjusted HR 0.529 (95% CI 0.376-0.746); p = 0.0003), no treatment effect was demonstrated in 655 patients with NRR≥18 brpm (adjusted HR 0.981 (95% CI 0.669-1.438); p = 0.9202). INTERPRETATION In the EU-CERT-ICD trial, patients with NRR≥18 brpm showed limited benefit from primary prophylactic ICD implantation. Those with NRR<18 brpm benefitted substantially. FUNDING European Community's 7th Framework Programme FP7/2007-2013 (602299).
Collapse
Affiliation(s)
- Michael Dommasch
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Alexander Steger
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Petra Barthel
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Katharina M Huster
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Alexander Müller
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Daniel Sinnecker
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Penzel
- Interdisciplinary Sleep Medicine Center, Charité Universitätsmedizin Berlin, Germany
| | - Andrzej Lubinski
- Department of Cardiology, Medical University of Lodz Hospital, Lodz, Poland
| | - Panagiota Flevari
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Markus Harden
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Heart Center University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Kääb
- German Center for Cardiovascular Research partner site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany
| | - Bela Merkely
- Department of Cardiology, Semmelweis University Heart Center, Budapest, Hungary
| | | | - Rik Willems
- University Hospitals of Leuven, Leuven, Belgium
| | - Heikki V. Huikuri
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Axel Bauer
- German Center for Cardiovascular Research partner site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Munich University Clinic, Munich, Germany
- University Hospital for Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria
| | - Marek Malik
- Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Internal Medicine and Cardiology, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Markus Zabel
- Department of Cardiology and Pneumology, Heart Center University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Georg Schmidt
- Klinikum rechts der Isar, Medizinische Klinik und Poliklinik I, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research partner site Munich Heart Alliance, Munich, Germany
| | | |
Collapse
|
19
|
Keir DA, Duffin J, Floras JS. Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure. Front Physiol 2020; 11:595486. [PMID: 33447244 PMCID: PMC7802759 DOI: 10.3389/fphys.2020.595486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) induces chronic sympathetic activation. This disturbance is a consequence of both compensatory reflex disinhibition in response to lower cardiac output and patient-specific activation of one or more excitatory stimuli. The result is the net adrenergic output that exceeds homeostatic need, which compromises cardiac, renal, and vascular function and foreshortens lifespan. One such sympatho-excitatory mechanism, evident in ~40-45% of those with HFrEF, is the augmentation of carotid (peripheral) chemoreflex ventilatory and sympathetic responsiveness to reductions in arterial oxygen tension and acidosis. Recognition of the contribution of increased chemoreflex gain to the pathophysiology of HFrEF and to patients' prognosis has focused attention on targeting the carotid body to attenuate sympathetic drive, alleviate heart failure symptoms, and prolong life. The current challenge is to identify those patients most likely to benefit from such interventions. Two assumptions underlying contemporary test protocols are that the ventilatory response to acute hypoxic exposure quantifies accurately peripheral chemoreflex sensitivity and that the unmeasured sympathetic response mirrors the determined ventilatory response. This Perspective questions both assumptions, illustrates the limitations of conventional transient hypoxic tests for assessing peripheral chemoreflex sensitivity and demonstrates how a modified rebreathing test capable of comprehensively quantifying both the ventilatory and sympathoneural efferent responses to peripheral chemoreflex perturbation, including their sensitivities and recruitment thresholds, can better identify individuals most likely to benefit from carotid body intervention.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
| |
Collapse
|
20
|
Corte RC, De Sá J, Carlos R, Felismino AS, Cruz NO, Onofre T, Pereira E, Bruno S. Ventilation Dispersion Index as an Objective Evaluation Tool of Exercise Oscillatory Ventilation in Patients With Heart Failure. J Card Fail 2020; 27:419-426. [PMID: 33038533 DOI: 10.1016/j.cardfail.2020.09.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise oscillatory ventilation (EOV) is related to worse prognosis in patients with heart failure (HF). However, its determination is subjective and there is no standard measure to identify it. The aim of the study was to evaluate and characterize the EOV of patients with HF using the ventilation dispersion index (VDI). METHODS AND RESULTS Patients underwent cardiopulmonary exercise testing (CPX), EOV was assessed by 2 reviewers and the VDI was calculated. The receiver operator curve analysis was used to assess the ability of the VDI to predict EOV. Pearson's correlation test was performed to determine the relationship between VDI and CPX variables. Forty-three patients with HF underwent CPX and were divided into 2 groups: with a VDI of less than 0.601 and a VDI of 0.601 or greater. An area under the curve of 0.759 was observed in the receiver operator curve analysis between VDI and EOV (P = .008). The VDI showed a significant correlation with the ventilatory CPX variables. According to the cut-off point obtained on the receiver operator curve, patients with a VDI of 0.601 or greater had lower left ventricular ejection fraction and higher values of resting minute ventilation and peak minute ventilation. CONCLUSIONS The VDI proved to be a good predictor of EOV in patients with HF.
Collapse
Affiliation(s)
- Renata Cristina Corte
- Cardiovascular and metabolic rehabilitation laboratory, postgraduate physical therapy program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Joceline De Sá
- Cardiovascular and metabolic rehabilitation laboratory, physical therapy department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Renata Carlos
- Cardiovascular and metabolic rehabilitation laboratory, postgraduate physical therapy program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Amanda Soares Felismino
- Cardiovascular and metabolic rehabilitation laboratory, postgraduate physical therapy program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Nicole Oliver Cruz
- Cardiovascular and metabolic rehabilitation laboratory, postgraduate physical therapy program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Tatiana Onofre
- Cardiovascular and metabolic rehabilitation laboratory, postgraduate physical therapy program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Eliane Pereira
- Integrated medicine department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil
| | - Selma Bruno
- Cardiovascular and metabolic rehabilitation laboratory, physical therapy department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
21
|
Murata M, Adachi H, Nakade T, Kobayashi Y, Agostoni P. Relationship between ventilatory pattern and peak VO 2 and area M regulates the respiratory system during exercise. J Cardiol 2020; 76:521-528. [PMID: 32636127 DOI: 10.1016/j.jjcc.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Exertional dyspnea is a major symptom of heart failure. We investigated the tidal volume (TV)-the respiratory rate (RR) regulation according to the peak O2 uptake (VO2) during cardiopulmonary exercise testing (CPET) for clarifying exercise ventilatory pattern. METHODS We enrolled 1111 patients (66±13 years old, 68% men) who had undergone CPET at our hospital. We investigated the relationship between TV and RR and drew the TV/height-RR figure according to the %peak VO2. RESULTS During exercise, TV was greater, illustrated as higher %peak VO2. However, RR was weakly correlated with %peak VO2. Adjusted with age, height, sex, each point of RR, and %peak VO2, TV during exercise highly correlated with age, height, each point of RR, and % peak VO2 (R=0.726 to 0.821, p<0.01). In the figure, regardless of the %peak VO2, TV/height and RR values were linearly related at rest, as well as at the point of anaerobic threshold, respiratory compensation, and peak exercise point, with each of these lines converging onto a single area (area M). The TV-RR slope values at early phase were also lower at lower %peak VO2. CONCLUSIONS We identified three ventilatory regularities during exercise. First, TV increases as greater %peak VO2. Second, the line relating TV/height and RR at each reference point during the incremental exercise test converged onto area M. Finally, the TV-RR slope at the early exercise phase was lower in patients with a lower %peak VO2. These ventilatory regularities may assist in elucidating the excise ventilatory pattern and help the diagnosis of exertional dyspnea.
Collapse
Affiliation(s)
- Makoto Murata
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, Maebashi, Gunma, Japan.
| | - Hitoshi Adachi
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, Maebashi, Gunma, Japan
| | - Taisuke Nakade
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, Maebashi, Gunma, Japan
| | - Yasuyuki Kobayashi
- Gunma Prefectural Cardiovascular Center, Department of Physiological Examination, Maebashi, Gunma, Japan
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy, Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Collins SÉ, Phillips DB, McMurtry MS, Bryan TL, Paterson DI, Wong E, Ezekowitz JA, Forhan MA, Stickland MK. The Effect of Carotid Chemoreceptor Inhibition on Exercise Tolerance in Chronic Heart Failure. Front Physiol 2020; 11:195. [PMID: 32226392 PMCID: PMC7080702 DOI: 10.3389/fphys.2020.00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Chronic heart failure (CHF) is characterized by heightened sympathetic nervous activity, carotid chemoreceptor (CC) sensitivity, marked exercise intolerance and an exaggerated ventilatory response to exercise. The purpose of this study was to determine the effect of CC inhibition on exercise cardiovascular and ventilatory function, and exercise tolerance in health and CHF. Methods Twelve clinically stable, optimally treated patients with CHF (mean ejection fraction: 43 ± 2.5%) and 12 age- and sex-matched healthy controls were recruited. Participants completed two time-to-symptom-limitation (TLIM) constant load cycling exercise tests at 75% peak power output with either intravenous saline or low-dose dopamine (2 μg⋅kg–1⋅min–1; order randomized). Ventilation was measured using expired gas data and operating lung volume data were determined during exercise by inspiratory capacity maneuvers. Cardiac output was estimated using impedance cardiography, and vascular conductance was calculated as cardiac output/mean arterial pressure. Results There was no change in TLIM in either group with dopamine (CHF: saline 13.1 ± 2.4 vs. dopamine 13.5 ± 1.6 min, p = 0.78; Control: saline 10.3 ± 1.2 vs. dopamine 11.5 ± 1.3 min, p = 0.16). In CHF patients, dopamine increased cardiac output (p = 0.03), vascular conductance (p = 0.01) and oxygen delivery (p = 0.04) at TLIM, while ventilatory parameters were unaffected (p = 0.76). In controls, dopamine improved vascular conductance at TLIM (p = 0.03), but no other effects were observed. Conclusion Our findings suggest that the CC contributes to cardiovascular regulation during full-body exercise in patients with CHF, however, CC inhibition does not improve exercise tolerance.
Collapse
Affiliation(s)
- Sophie É Collins
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Devin B Phillips
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - M Sean McMurtry
- Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tracey L Bryan
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - D Ian Paterson
- Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eric Wong
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Justin A Ezekowitz
- Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary A Forhan
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,G.F. MacDonald Centre for Lung Health, Covenant Health, Edmonton, AB, Canada
| |
Collapse
|
23
|
Sinagra G, Corrà U, Contini M, Magrì D, Paolillo S, Perrone Filardi P, Sciomer S, Badagliacca R, Agostoni P. Choosing among β-blockers in heart failure patients according to β-receptors' location and functions in the cardiopulmonary system. Pharmacol Res 2020; 156:104785. [PMID: 32224252 DOI: 10.1016/j.phrs.2020.104785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Several large clinical trials showed a favorable effect of β-blocker treatment in patients with chronic heart failure (HF) as regards overall mortality, cardiovascular mortality, and hospitalizations. Indeed, the use of β-blockers is strongly recommended by current international guidelines, and it remains a cornerstone in the pharmacological treatment of HF. Although different types of β-blockers are currently approved for HF therapy, possible criteria to choose the best β-blocking agent according to HF patients' characteristics and to β-receptors' location and functions in the cardiopulmonary system are still lacking. In such a context, a growing body of literature shows remarkable differences between β-blocker types (β1-selective blockers versus β1-β2 blockers) with respect to alveolar-capillary gas diffusion and chemoreceptor response in HF patients, both factors able to impact on quality of life and, most likely, on prognosis. This review suggests an original algorithm for choosing among the currently available β-blocking agents based on the knowledge of cardiopulmonary pathophysiology. Particularly, starting from lung physiology and from some experimental models, it focuses on the mechanisms underlying lung mechanics, chemoreceptors, and alveolar-capillary unit impairment in HF. This paper also remarks the significant benefit deriving from the correct use of the different β-blockers in HF patients through a brief overview of the most important clinical trials.
Collapse
Affiliation(s)
- Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ugo Corrà
- Cardiology Department, Istituti Clinici Scientifici Maugeri, Veruno Institute, Veruno, Italy
| | | | - Damiano Magrì
- Department of Clinical and Molecular Medicine, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | | | - Susanna Sciomer
- Dipartimento Di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Roberto Badagliacca
- Dipartimento Di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy.
| |
Collapse
|
24
|
Sugimoto T. Acute Decompensated Heart Failure in Patients with Heart Failure with Preserved Ejection Fraction. Heart Fail Clin 2020; 16:201-209. [PMID: 32143764 DOI: 10.1016/j.hfc.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are few treatment options for acute decompensated heart failure patients with preserved ejection fraction, but an increasing number of patients with heart failure with preserved ejection fraction. A deeper understanding of the cause, diagnosis, and prognosis of heart failure with preserved ejection fraction may be informative for clinical practice or clinical decision making and therapeutic investigation in the acute care setting.
Collapse
Affiliation(s)
- Tadafumi Sugimoto
- Department of Clinical Laboratory, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan.
| |
Collapse
|
25
|
Cross TJ, Kim CH, Johnson BD, Lalande S. The interactions between respiratory and cardiovascular systems in systolic heart failure. J Appl Physiol (1985) 2019; 128:214-224. [PMID: 31774354 DOI: 10.1152/japplphysiol.00113.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) is a complex and multifaceted disease. The disease affects multiple organ systems, including the respiratory system. This review provides three unique examples illustrating how the cardiovascular and respiratory systems interrelate because of the pathology of HF. Specifically, these examples outline the impact of HF pathophysiology on 1) respiratory mechanics and the mechanical "cost" of breathing; 2) mechanical interactions of the heart and lungs; and on 3) abnormalities of pulmonary gas exchange during exercise, and how this may be applied to treatment. The goal of this review is to, therefore, raise the awareness that HF, though primarily a disease of the heart, is accompanied by marked pathology of the respiratory system.
Collapse
Affiliation(s)
- Troy James Cross
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester Minnesota
| | - Chul-Ho Kim
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester Minnesota
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester Minnesota
| | - Sophie Lalande
- Department of Kinesiology and Heath Education, University of Texas at Austin, Austin, Texas
| |
Collapse
|
26
|
Common Co-Morbidities in Heart Failure – Diabetes, Functional Mitral Regurgitation and Sleep Apnoea. ACTA ACUST UNITED AC 2019; 1:25-41. [PMID: 36262740 PMCID: PMC9536668 DOI: 10.36628/ijhf.2019.0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a condition that carries a considerable burden of disability many now related to co-existing co-morbidities. The drive to find newer effective therapies targeting novel mechanisms has led to a recent emphasis on treating common co-morbidities that are clustered around contemporary HF patients. Here is renewed contemporary co-morbidities that until recently have received little attention but which are now subject of considerable interest and potential therapeutic advance. These include, diabetes, functional mitral regurgitation and sleep disordered breathing. These three contemporary co-morbidities that have recently been subject to major trial evaluation will be reviewed in this paper.
Collapse
|
27
|
Qin R, Koike A, Nagayama O, Takayanagi Y, Wu L, Nishi I, Kato Y, Sato A, Yamashita T, Aonuma K, Ieda M. Clinical significance of respiratory compensation during exercise testing in cardiac patients. Biosci Trends 2018; 12:432-437. [PMID: 30101836 DOI: 10.5582/bst.2018.01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ventilation (VE) increases linearly with the increase of carbon dioxide output (VCO2) during cardiopulmonary exercise testing. VE-VCO2 slope rises in parallel with exercise intensity, reaches a turning point (called the RC point), then steepens because of respiratory compensation for lactic acidosis. While this RC point can be identified universally, it is undetectable in some patients. In this study we evaluated whether the respiratory compensation during exercise testing has clinical significance in cardiac patients. In total, 152 cardiac patients with a respiratory exchange ratio at peak exercise (peak R) of between 1.10 and 1.20 were enrolled. Cardiopulmonary parameters were compared between patients who manifested the RC point (n = 118) and those who did not (n = 34). The peak R did not significantly differ between these two groups. Compared to the patients without the RC point, those with the RC point had a higher oxygen uptake at peak exercise (peak VO2) (20.2 ± 5.3 vs 13.6 ± 3.4 mL/min/kg, p < 0.001), higher anaerobic threshold (AT) (12.4 ± 3.2 vs 9.2 ± 2.3 mL/min/kg, p < 0.001), and lower VE-VCO2 slope (31.7 ± 5.8 vs 37.8 ± 9.6, p = 0.001). Brain natriuretic peptide (BNP) tended to be lower in the patients with the RC point (175.4 ± 364.7 vs 327.9 ± 381.1 pg/mL, p = 0.067). Peak VO2, the marker of cardiopulmonary function, was found to be the independent predictor of the presence of the RC point. The present findings suggest that the phenomenon of respiratory compensation during heavy exercise indicates better cardiopulmonary function in cardiac patients within a prescribed range of effort.
Collapse
Affiliation(s)
- Rujie Qin
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba
| | - Akira Koike
- Medical Science, Faculty of Medicine, University of Tsukuba.,Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | | | - Yuta Takayanagi
- Department of Clinical Laboratory, University of Tsukuba Hospital
| | - Longmei Wu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Isao Nishi
- Department of Cardiology, Tsuchiura Clinical Education and Training Center, University of Tsukuba
| | | | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | | | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
28
|
Abstract
Periodic breathing during incremental cardiopulmonary exercise testing is a regularly recurring waxing and waning of tidal volume due to oscillations in central respiratory drive. Periodic breathing is a sign of respiratory control system instability, which may occur at rest or during exercise. The possible mechanisms responsible for exertional periodic breathing might be related to any instability of the ventilatory regulation caused by: (1) increased circulatory delay (i.e., circulation time from the lung to the brain and chemoreceptors due to reduced cardiac index leading to delay in information transfer), (2) increase in controller gain (i.e., increased central and peripheral chemoreceptor sensitivity to arterial partial pressure of oxygen and of carbon dioxide), or (3) reduction in system damping (i.e., baroreflex impairment). Periodic breathing during exercise is observed in several cardiovascular disease populations, but it is a particularly frequent phenomenon in heart failure due to systolic dysfunction. The detection of exertional periodic breathing is linked to outcome and heralds worse prognosis in heart failure, independently of the criteria adopted for its definition. In small heart failure cohorts, exertional periodic breathing has been abolished with several dedicated interventions, but results have not yet been confirmed. Accordingly, further studies are needed to define the role of visceral feedbacks in determining periodic breathing during exercise as well as to look for specific tools for preventing/treating its occurrence in heart failure.
Collapse
|
29
|
Physiological insights of exercise hyperventilation in arterial and chronic thromboembolic pulmonary hypertension. Int J Cardiol 2018; 259:178-182. [DOI: 10.1016/j.ijcard.2017.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022]
|
30
|
Weatherald J, Sattler C, Garcia G, Laveneziana P. Ventilatory response to exercise in cardiopulmonary disease: the role of chemosensitivity and dead space. Eur Respir J 2018; 51:51/2/1700860. [PMID: 29437936 DOI: 10.1183/13993003.00860-2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/11/2017] [Indexed: 12/30/2022]
Abstract
The lungs and heart are irrevocably linked in their oxygen (O2) and carbon dioxide (CO2) transport functions. Functional impairment of the lungs often affects heart function and vice versa The steepness with which ventilation (V'E) rises with respect to CO2 production (V'CO2 ) (i.e. the V'E/V'CO2 slope) is a measure of ventilatory efficiency and can be used to identify an abnormal ventilatory response to exercise. The V'E/V'CO2 slope is a prognostic marker in several chronic cardiopulmonary diseases independent of other exercise-related variables such as peak O2 uptake (V'O2 ). The V'E/V'CO2 slope is determined by two factors: 1) the arterial CO2 partial pressure (PaCO2 ) during exercise and 2) the fraction of the tidal volume (VT) that goes to dead space (VD) (i.e. the physiological dead space ratio (VD/VT)). An altered PaCO2 set-point and chemosensitivity are present in many cardiopulmonary diseases, which influence V'E/V'CO2 by affecting PaCO2 Increased ventilation-perfusion heterogeneity, causing inefficient gas exchange, also contributes to the abnormal V'E/V'CO2 observed in cardiopulmonary diseases by increasing VD/VT During cardiopulmonary exercise testing, the PaCO2 during exercise is often not measured and VD/VT is only estimated by taking into account the end-tidal CO2 partial pressure (PETCO2 ); however, PaCO2 is not accurately estimated from PETCO2 in patients with cardiopulmonary disease. Measuring arterial gases (PaO2 and PaCO2 ) before and during exercise provides information on the real (and not "estimated") VD/VT coupled with a true measure of gas exchange efficiency such as the difference between alveolar and arterial O2 partial pressure and the difference between arterial and end-tidal CO2 partial pressure during exercise.
Collapse
Affiliation(s)
- Jason Weatherald
- Dept of Medicine, Division of Respiratory Medicine, University of Calgary, Calgary, AB, Canada.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Caroline Sattler
- Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Gilles Garcia
- Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,These authors contributed equally to this work and are both last authors
| | - Pierantonio Laveneziana
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France .,Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée, Dépt "R3S", Pôle PRAGUES, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France.,These authors contributed equally to this work and are both last authors
| |
Collapse
|
31
|
Vainshelboim B, Amin A, Christle JW, Hebbal S, Ashley EA, Myers J. A method for determining exercise oscillatory ventilation in heart failure: Prognostic value and practical implications. Int J Cardiol 2017; 249:287-291. [DOI: 10.1016/j.ijcard.2017.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
|
32
|
McCallum GA, Sui X, Qiu C, Marmerstein J, Zheng Y, Eggers TE, Hu C, Dai L, Durand DM. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci Rep 2017; 7:11723. [PMID: 28916761 PMCID: PMC5601469 DOI: 10.1038/s41598-017-10639-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022] Open
Abstract
The ability to reliably and safely communicate chronically with small diameter (100–300 µm) autonomic nerves could have a significant impact in fundamental biomedical research and clinical applications. However, this ability has remained elusive with existing neural interface technologies. Here we show a new chronic nerve interface using highly flexible materials with axon-like dimensions. The interface was implemented with carbon nanotube (CNT) yarn electrodes to chronically record neural activity from two separate autonomic nerves: the glossopharyngeal and vagus nerves. The recorded neural signals maintain a high signal-to-noise ratio (>10 dB) in chronic implant models. We further demonstrate the ability to process the neural activity to detect hypoxic and gastric extension events from the glossopharyngeal and vagus nerves, respectively. These results establish a novel, chronic platform neural interfacing technique with the autonomic nervous system and demonstrate the possibility of regulating internal organ function, leading to new bioelectronic therapies and patient health monitoring.
Collapse
Affiliation(s)
- Grant A McCallum
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Qiu
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Joseph Marmerstein
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Yang Zheng
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Thomas E Eggers
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Chuangang Hu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Liming Dai
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7078, USA.
| |
Collapse
|
33
|
Hermand E, Lhuissier FJ, Richalet JP. Effect of dead space on breathing stability at exercise in hypoxia. Respir Physiol Neurobiol 2017; 246:26-32. [PMID: 28760461 DOI: 10.1016/j.resp.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Recent studies have shown that normal subjects exhibit periodic breathing when submitted to concomitant environmental (hypoxia) and physiological (exercise) stresses. A mathematical model including mass balance equations confirmed the short period of ventilatory oscillations and pointed out an important role of dead space in the genesis of these phenomena. Ten healthy subjects performed mild exercise on a cycloergometer in different conditions: rest/exercise, normoxia/hypoxia and no added dead space/added dead space (aDS). Ventilatory oscillations (V˙E peak power) were augmented by exercise, hypoxia and aDS (P<0.001, P<0.001 and P<0.01, respectively) whereas V˙E period was only shortened by exercise (P<0.001), with an 11-s period. aDS also increased V˙E (P<0.001), tidal volume (VT, P<0.001), and slightly augmented PETCO2 (P<0.05) and the respiratory frequency (P<0.05). These results confirmed our previous model, showing an exacerbation of breathing instability by increasing dead space. This underlines opposite effects observed in heart failure patients and normal subjects, in which added dead space drastically reduced periodic breathing and sleep apneas. It also points out that alveolar ventilation remains very close to metabolic needs and is not affected by an added dead space. Clinical Trial reg. n°: NCT02201875.
Collapse
Affiliation(s)
- Eric Hermand
- Université Paris 13, Sorbonne Paris Cité, Laboratoire "Hypoxie et poumon", EA2363, Bobigny, France.
| | - François J Lhuissier
- Université Paris 13, Sorbonne Paris Cité, Laboratoire "Hypoxie et poumon", EA2363, Bobigny, France; Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, Service de Physiologie, explorations fonctionnelles et médecine du sport, 93009 Bobigny, France
| | - Jean-Paul Richalet
- Université Paris 13, Sorbonne Paris Cité, Laboratoire "Hypoxie et poumon", EA2363, Bobigny, France.
| |
Collapse
|
34
|
Mezzani A, Giordano A, Komici K, Corrà U. Different Determinants of Ventilatory Inefficiency at Different Stages of Reduced Ejection Fraction Chronic Heart Failure Natural History. J Am Heart Assoc 2017; 6:JAHA.116.005278. [PMID: 28487387 PMCID: PMC5524084 DOI: 10.1161/jaha.116.005278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background It is not known whether determinants of ventilation (VE)/volume of exhaled carbon dioxide (VCO2) slope during incremental exercise may differ at different stages of reduced ejection fraction chronic heart failure natural history. Methods and Results VE/VCO2 slope was fitted up to lowest VE/VCO2 ratio, that is, a proxy of the VE/perfusion ratio devoid of nonmetabolic stimuli to ventilatory drive. VE/VCO2 slope tertiles were generated from our database (<27.5 [tertile 1], ≥27.5 to <32.0 [tertile 2], and ≥32.0 [tertile 3]), and 147 chronic heart failure patients with repeated tests yielding VE/VCO2 slopes in 2 different tertiles were selected. Determinants of VE/VCO2 slope changes across tertile pairs 1 versus 2, 2 versus 3, and 1 versus 3 were assessed by exploring changes in VE and VCO2 at lowest VE/VCO2 and those in VE/work rate (W) and VCO2/W slope. Resting and peak cardiac output (CO) were calculated as VO2/estimated arteriovenous O2 difference and the CO/W slope analyzed. Notwithstanding a progressively lower W with increasing tertile, VE at lowest VE/VCO2 and VE/W slope were significantly higher in tertiles 2 and 3 versus tertile 1. Conversely, VCO2 at lowest VE/VCO2 and CO/W slope significantly decreased across tertiles, whereas VCO2/W slope did not. Difference (Δ) in VE/W slope between tertiles accounted for 71% of ΔVE/VCO2 slope variance, with ΔVCO2/W slope explaining an additional 26% (model r=0.99; r2=0.97; P<0.0001). Similar results were obtained substituting ΔVCO2/W slope with ΔCO/W slope. Conclusions Ventilatory overactivation is the predominant cause of VE/VCO2 slope increase at initial stages of chronic heart failure, whereas hemodynamic impairment plays an additional role at more‐advanced pathophysiological stages.
Collapse
Affiliation(s)
- Alessandro Mezzani
- Exercise Pathophysiology Laboratory, Cardiac Rehabilitation Division, Istituti Clinici Scientifici Maugeri Spa SB-Scientific Institute of Veruno IRCCS, Veruno (NO), Italy
| | - Andrea Giordano
- Bioengineering Service, Istituti Clinici Scientifici Maugeri Spa SB-Scientific Institute of Veruno IRCCS, Veruno (NO), Italy
| | - Klara Komici
- Exercise Pathophysiology Laboratory, Cardiac Rehabilitation Division, Istituti Clinici Scientifici Maugeri Spa SB-Scientific Institute of Veruno IRCCS, Veruno (NO), Italy
| | - Ugo Corrà
- Exercise Pathophysiology Laboratory, Cardiac Rehabilitation Division, Istituti Clinici Scientifici Maugeri Spa SB-Scientific Institute of Veruno IRCCS, Veruno (NO), Italy
| |
Collapse
|
35
|
Caravita S, Faini A, Deboeck G, Bondue A, Naeije R, Parati G, Vachiéry JL. Pulmonary hypertension and ventilation during exercise: Role of the pre-capillary component. J Heart Lung Transplant 2016; 36:754-762. [PMID: 28131663 DOI: 10.1016/j.healun.2016.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Excessive exercise-induced hyperventilation and high prevalence of exercise oscillatory breathing (EOB) are present in patients with post-capillary pulmonary hypertension (PH) complicating left heart disease (LHD). Patients with pre-capillary PH have even higher hyperventilation but no EOB. We sought to determine the impact of a pre-capillary component of PH on ventilatory response to exercise in patients with PH and left heart disease. METHODS We retrospectively compared patients with idiopathic or heritable pulmonary arterial hypertension (PAH, n = 29), isolated post-capillary PH (IpcPH, n = 29), and combined post- and pre-capillary PH (CpcPH, n = 12). Diastolic pressure gradient (DPG = diastolic pulmonary artery pressure - pulmonary wedge pressure) was used to distinguish IpcPH (DPG <7 mm Hg) from CpcPH (DPG ≥7 mm Hg). RESULTS Pulmonary vascular resistance (PVR) was higher in PAH, intermediate in CpcPH, and low in IpcPH. All patients with CpcPH but 1 had PVR >3 Wood unit. Exercise-induced hyperventilation (high minute ventilation over carbon dioxide production, low end-tidal carbon dioxide) was marked in PAH, intermediate in CpcPH, and low in IpcPH (p < 0.001) and correlated with DPG and PVR. Prevalence of EOB decreased from IpcPH to CpcPH to PAH (p < 0.001). CONCLUSIONS Patients with CpcPH may have worse hemodynamics than patients with IpcPH and distinct alterations of ventilatory control, consistent with more exercise-induced hyperventilation and less EOB. This might be explained at least in part by the presence and extent of pulmonary vascular disease.
Collapse
Affiliation(s)
- Sergio Caravita
- Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Bruxelles, Belgium; Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale S. Luca IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale S. Luca IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Gael Deboeck
- Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Bruxelles, Belgium
| | - Antoine Bondue
- Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Bruxelles, Belgium
| | - Robert Naeije
- Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Bruxelles, Belgium
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale S. Luca IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Health Sciences, University of Milano-Bicocca, Milan, Italy
| | - Jean-Luc Vachiéry
- Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Bruxelles, Belgium.
| |
Collapse
|
36
|
Paleczny B, Olesińska M, Siennicka A, Niewiński P, Jankowska EA, Ponikowska B, Banasiak W, Von Haehling S, Anker SD, Ponikowski P. Central Chemoreceptor Sensitivity Is Not Enhanced in Contemporary Patients With Chronic Systolic Heart Failure Receiving Optimal Treatment. J Card Fail 2016; 23:83-87. [PMID: 27867115 DOI: 10.1016/j.cardfail.2016.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical and prognostic consequences of enhanced central chemosensitivity in the contemporary optimally treated patients with chronic heart failure (CHF) are unknown. METHODS AND RESULTS We studied central chemosensitivity (defined as hypercapnic ventilatory response [HCVR; L/min/mmHg]) in 161 CHF patients (mean left ventricular ejection fraction [LVEF] 31 ± 6%, all receiving a combination of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker and beta-blocker) and 55 sex- and age-matched healthy controls. HCVR did not differ between CHF patients and controls (median 0.63 vs 0.57 L/min-1/mmHg-1, P = .76). When the CHF patients were divided into tertiles according to their HCVR values, there were no significant differences in clinical characteristics (except for ischemic etiology, which was more frequent in those with the highest HCVR), results of the cardiopulmonary exercise testing, and indices of heart rate variability. During the follow-up (median 28 months, range 1-48 months, ≥15 months in all survivors), 21 patients died. HCVR was not related to survival in the Cox proportional hazards analysis. CONCLUSIONS Central chemosensitivity is not enhanced in contemporary, optimally treated CHF patients and its assessment does not provide significant clinical or prognostic information.
Collapse
Affiliation(s)
- Bartłomiej Paleczny
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland; Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.
| | - Martyna Olesińska
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Agnieszka Siennicka
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland; Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Piotr Niewiński
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Ewa A Jankowska
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland; Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Ponikowska
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Stephan Von Haehling
- Division of Innovative Clinical Trials, Department of Cardiology & Pulmonology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Stefan D Anker
- Division of Innovative Clinical Trials, Department of Cardiology & Pulmonology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Piotr Ponikowski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland; Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
37
|
Dubé BP, Agostoni P, Laveneziana P. Exertional dyspnoea in chronic heart failure: the role of the lung and respiratory mechanical factors. Eur Respir Rev 2016; 25:317-32. [DOI: 10.1183/16000617.0048-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 11/05/2022] Open
Abstract
Exertional dyspnoea is among the dominant symptoms in patients with chronic heart failure and progresses relentlessly as the disease advances, leading to reduced ability to function and engage in activities of daily living. Effective management of this disabling symptom awaits a better understanding of its underlying physiology.Cardiovascular factors are believed to play a major role in dyspnoea in heart failure patients. However, despite pharmacological interventions, such as vasodilators or inotropes that improve central haemodynamics, patients with heart failure still complain of exertional dyspnoea. Clearly, dyspnoea is not determined by cardiac factors alone, but likely depends on complex, integrated cardio-pulmonary interactions.A growing body of evidence suggests that excessively increased ventilatory demand and abnormal “restrictive” constraints on tidal volume expansion with development of critical mechanical limitation of ventilation, contribute to exertional dyspnoea in heart failure. This article will offer new insights into the pathophysiological mechanisms of exertional dyspnoea in patients with chronic heart failure by exploring the potential role of the various constituents of the physiological response to exercise and particularly the role of abnormal ventilatory and respiratory mechanics responses to exercise in the perception of dyspnoea in patients with heart failure.
Collapse
|
38
|
Mirizzi G, Giannoni A, Ripoli A, Iudice G, Bramanti F, Emdin M, Passino C. Prediction of the Chemoreflex Gain by Common Clinical Variables in Heart Failure. PLoS One 2016; 11:e0153510. [PMID: 27099934 PMCID: PMC4839709 DOI: 10.1371/journal.pone.0153510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Peripheral and central chemoreflex sensitivity, assessed by the hypoxic or hypercapnic ventilatory response (HVR and HCVR, respectively), is enhanced in heart failure (HF) patients, is involved in the pathophysiology of the disease, and is under investigation as a potential therapeutic target. Chemoreflex sensitivity assessment is however demanding and, therefore, not easily applicable in the clinical setting. We aimed at evaluating whether common clinical variables, broadly obtained by routine clinical and instrumental evaluation, could predict increased HVR and HCVR. METHODS AND RESULTS 191 patients with systolic HF (left ventricular ejection fraction--LVEF--<50%) underwent chemoreflex assessment by rebreathing technique to assess HVR and HCVR. All patients underwent clinical and neurohormonal evaluation, comprising: echocardiogram, cardiopulmonary exercise test (CPET), daytime cardiorespiratory monitoring for breathing pattern evaluation. Regarding HVR, multivariate penalized logistic regression, Bayesian Model Averaging (BMA) logistic regression and random forest analysis identified, as predictors, the presence of periodic breathing and increased slope of the relation between ventilation and carbon dioxide production (VE/VCO2) during exercise. Again, the above-mentioned statistical tools identified as HCVR predictors plasma levels of N-terminal fragment of proBNP and VE/VCO2 slope. CONCLUSIONS In HF patients, the simple assessment of breathing pattern, alongside with ventilatory efficiency during exercise and natriuretic peptides levels identifies a subset of patients presenting with increased chemoreflex sensitivity to either hypoxia or hypercapnia.
Collapse
Affiliation(s)
- Gianluca Mirizzi
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
- * E-mail:
| | - Alberto Giannoni
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Andrea Ripoli
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Giovanni Iudice
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Francesca Bramanti
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Michele Emdin
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
- Scuola Superiore Sant’Anna, Pisa, Italy
| | - Claudio Passino
- Department of Cardiology and Cardiovascular Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
- Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
39
|
Dhakal BP, Lewis GD. Exercise oscillatory ventilation: Mechanisms and prognostic significance. World J Cardiol 2016; 8:258-266. [PMID: 27022457 PMCID: PMC4807314 DOI: 10.4330/wjc.v8.i3.258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Alteration in breathing patterns characterized by cyclic variation of ventilation during rest and during exercise has been recognized in patients with advanced heart failure (HF) for nearly two centuries. Periodic breathing (PB) during exercise is known as exercise oscillatory ventilation (EOV) and is characterized by the periods of hyperpnea and hypopnea without interposed apnea. EOV is a non-invasive parameter detected during submaximal cardiopulmonary exercise testing. Presence of EOV during exercise in HF patients indicates significant impairment in resting and exercise hemodynamic parameters. EOV is also an independent risk factor for poor prognosis in HF patients both with reduced and preserved ejection fraction irrespective of other gas exchange variables. Circulatory delay, increased chemosensitivity, pulmonary congestion and increased ergoreflex signaling have been proposed as the mechanisms underlying the generation of EOV in HF patients. There is no proven treatment of EOV but its reversal has been noted with phosphodiesterase inhibitors, exercise training and acetazolamide in relatively small studies. In this review, we discuss the mechanistic basis of PB during exercise and the clinical implications of recognizing PB patterns in patients with HF.
Collapse
|
40
|
Kasahara Y, Izawa KP, Watanabe S, Osada N, Omiya K. The Relation of Respiratory Muscle Strength to Disease Severity and Abnormal Ventilation During Exercise in Chronic Heart Failure Patients. Res Cardiovasc Med 2015; 4:e28944. [PMID: 26528451 PMCID: PMC4623381 DOI: 10.5812/cardiovascmed.28944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 06/07/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Breathlessness is a common problem in chronic heart failure (CHF) patients, and respiratory muscle strength has been proposed to play an important role in causing breathlessness in these patients. OBJECTIVES The aim of this study was to investigate the relation between respiratory muscle strength and the severity of CHF, and the influence of respiratory muscle strength on abnormal ventilation during exercise in CHF patients. PATIENTS AND METHODS In this case series study, we assessed clinically stable CHF outpatients (N = 66, age: 57.7 ± 14.6 years). The peak oxygen consumption (peak VO2), the slope relating minute ventilation to carbon dioxide production (VE/VCO2 slope), and the slope relating tidal volume to respiratory rate (TV/RR slope) were measured during cardiopulmonary exercise testing. Respiratory muscle strength was assessed by measuring the maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). RESULTS The MIP and MEP decreased significantly as the New York Heart Association functional class increased (MIP, P = 0.021; MEP, P < 0.01). The MIP correlated with the TV/RR slope (r = 0.57, P < 0.001) and the VE/VCO2 slope (r = -0.44, P < 0.001), and the MEP also correlated with the TV/RR slope (r = 0.53, P < 0.001) and the VE/VCO2 slope (r = -0.25, P < 0.040). Stepwise multiple regression analysis revealed that age and MIP were statistically significant predictors of the TV/RR and VE/VCO2 slopes (both P < 0.05). CONCLUSIONS Respiratory muscle strength is related to the severity of CHF, and associated with rapid and shallow ventilation or excessive ventilation during exercise.
Collapse
Affiliation(s)
- Yusuke Kasahara
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | | | - Satoshi Watanabe
- Department of Rehabilitation Medicine St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Naohiko Osada
- Division of Cardiology, St. Marianna University School of Medicine Toyoko Hospital, Kawasaki, Japan
| | - Kazuto Omiya
- Division of Cardiology, Department of Internal Medicine (NO, KO), St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| |
Collapse
|
41
|
Cundrle I, Somers VK, Johnson BD, Scott CG, Olson LJ. Exercise end-tidal CO2 predicts central sleep apnea in patients with heart failure. Chest 2015; 147:1566-1573. [PMID: 25742609 DOI: 10.1378/chest.14-2114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increased CO2 chemosensitivity and augmented exercise ventilation are characteristic of patients with heart failure (HF) with central sleep apnea (CSA). The aim of this study was to test the hypothesis that decreased end-tidal CO2 by cardiopulmonary exercise testing predicts CSA in patients with HF. METHODS Consecutive ambulatory patients with New York Heart Association II to III HF were prospectively evaluated by CO2 chemosensitivity by rebreathe, cardiopulmonary exercise testing, and polysomnography (PSG). Subjects were classified as having either CSA (n = 20) or no sleep apnea (n = 13) by PSG; a central apnea-hypopnea index (AHI) ≥ 5 was used to define CSA. Subgroups were compared by t test or Mann-Whitney test and data summarized as mean ± SD. P < .05 was considered significant. RESULTS At rest, subjects with CSA had higher central CO2 chemosensitivity (Δminute ventilation [V.e]/Δpartial pressure of end-tidal CO2 [Petco2], 2.3 ± 1.0 L/min/mm Hg vs 1.6 ± 0.4 L/min/mm Hg, P = .02) and V.e (15 ± 7 L/min vs 10 ± 3 L/min, P = .02) and lower Petco2 (31 ± 4 mm Hg vs 35 ± 4 mm Hg, P < .01) than control subjects. At peak exercise, the ventilatory equivalents per expired CO2 (V.e/V.co2) was higher (43 ± 9 vs 33 ± 6, P < .01) and Petco2 lower (29 ± 6 mm Hg vs 36 ± 5 mm Hg, P < .01) in subjects with CSA. In addition, CO2 chemosensitivity, peak exercise V.e/V.co2, and Petco2 were independently correlated with CSA severity as quantified by the AHI (P < .05). Peak exercise Petco2 was most strongly associated with CSA (OR, 1.29; 95% CI, 1.08-1.54; P = .01; area under the curve, 0.88). CONCLUSIONS In patients with HF and CSA, ventilatory drive is increased while awake at rest and during exercise and associated with heightened CO2 chemosensitivity and decreased arterial CO2 set point.
Collapse
Affiliation(s)
- Ivan Cundrle
- International Clinical Research Center and Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic; St. Anna's University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Bruce D Johnson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Christopher G Scott
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Lyle J Olson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN.
| |
Collapse
|
42
|
Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res 2015; 116:2005-19. [PMID: 26044253 PMCID: PMC4465108 DOI: 10.1161/circresaha.116.304679] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy, and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem, and higher centers), which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes to hours), and long term (days to years). This important neurovisceral/autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death. Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extracardiac neural remodeling has also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provide a rational mechanistic basis for the development of neuraxial therapies for preventing sudden cardiac death and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention.
Collapse
Affiliation(s)
- Keiichi Fukuda
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.).
| | - Hideaki Kanazawa
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Yoshiyasu Aizawa
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Jeffrey L Ardell
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Kalyanam Shivkumar
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.).
| |
Collapse
|
43
|
Muthiah K, Robson D, Prichard R, Walker R, Gupta S, Keogh AM, Macdonald PS, Woodard J, Kotlyar E, Dhital K, Granger E, Jansz P, Spratt P, Hayward CS. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant 2015; 34:522-9. [DOI: 10.1016/j.healun.2014.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022] Open
|
44
|
Edgell H, McMurtry MS, Haykowsky MJ, Paterson I, Ezekowitz JA, Dyck JRB, Stickland MK. Peripheral chemoreceptor control of cardiovascular function at rest and during exercise in heart failure patients. J Appl Physiol (1985) 2015; 118:839-48. [PMID: 25614600 DOI: 10.1152/japplphysiol.00898.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/20/2015] [Indexed: 01/01/2023] Open
Abstract
Peripheral chemoreceptor activity/sensitivity is enhanced in chronic heart failure (HF), and sensitivity is linked to greater mortality. This study aimed to determine the role of the peripheral chemoreceptor in cardiovascular control at rest and during exercise in HF patients and controls. Clinically stable HF patients (n = 11; ejection fraction: 39 ± 5%) and risk-matched controls (n = 10; ejection fraction: 65 ± 2%) performed randomized trials with or without dopamine infusion (2 μg·min(-1)·kg(-1)) at rest and during 40% maximal voluntary contraction handgrip (HG) exercise, and a resting trial of 2 min of inspired 100% oxygen. Both dopamine and hyperoxia were used to inhibit the peripheral chemoreceptor. At rest in HF patients, dopamine decreased ventilation (P = 0.02), decreased total peripheral resistance index (P = 0.003), and increased cardiac and stroke indexes (P ≤ 0.01), yet there was no effect of dopamine on these variables in controls (P ≥ 0.7). Hyperoxia lowered ventilation in HF (P = 0.01), but not in controls (P = 0.9), indicating suppression of the peripheral chemoreceptors in HF. However, no decrease of total peripheral resistance index was observed in HF. As expected, HG increased heart rate, ventilation, and brachial conductance of the nonexercising arm in controls and HF patients. During dopamine infusion, there were no changes in mean arterial pressure, heart rate, or ventilation responses to HG in either group (P ≥ 0.26); however, brachial conductance increased with dopamine in the control group (P = 0.004), but decreased in HF (P = 0.02). Our findings indicate that the peripheral chemoreceptor contributes to cardiovascular control at rest in HF patients and during exercise in risk-matched controls.
Collapse
Affiliation(s)
- Heather Edgell
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - M Sean McMurtry
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Mark J Haykowsky
- Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Ian Paterson
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Justin A Ezekowitz
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Michael K Stickland
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular and Stroke Research Centre (ABACUS), Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; G.F. MacDonald Centre for Lung Health (Covenant Health), Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Del Rio R, Andrade DC, Marcus NJ, Schultz HD. Selective carotid body ablation in experimental heart failure: a new therapeutic tool to improve cardiorespiratory control. Exp Physiol 2015; 100:136-42. [PMID: 25398714 DOI: 10.1113/expphysiol.2014.079566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes the physiological role played by the carotid body in the autonomic dysregulation and breathing disturbances during the progression of chronic heart failure and the therapeutic potential of carotid body ablation to control cardiorespiratory imbalance and improve survival in heart failure. What advances does it highlight? Carotid body ablation markedly improves breathing stability and normalizes autonomic function in chronic heart failure. More importantly, if carotid body ablation is performed early during the progression of the disease it significantly improves animal survival. Chronic heart failure (CHF) is a leading medical problem worldwide. Common hallmarks of CHF include autonomic imbalance and breathing disorders, both of which are closely related to the progression of the disease and strongly predict mortality in CHF patients. The role played by the carotid body (CB) chemoreceptors in the progression of CHF has received attention because enhanced carotid chemoreflex drive is thought to contribute to autonomic dysfunction, abnormal breathing patterns and increased mortality in CHF. Therefore, therapeutic tools intended to normalize CB-mediated chemoreflex drive could have the potential to improve quality of life and decrease mortality of CHF patients. In experimental CHF, an enhancement of the CB chemoreflex drive, elevated sympathetic outflow, increased resting breathing variability, increased incidence of apnoea and desensitization of the baroreflex have been shown. Notably, selective elimination of the CB reduced central presympathetic neuronal activation, normalized sympathetic outflow and baroreflex sensitivity and stabilized breathing function in CHF. More remarkably, CB ablation has been shown to be a valuable therapeutic tool that significantly reduced aberrant cardiac remodelling, improved left ventriclular ejection fraction and reduced cardiac arrhythmogenesis. Most importantly, animals with CHF that underwent CB ablation showed a marked improvement in survival rate. Interestingly, a case report from a heart failure patient in whom unilateral CB ablation was performed showed promising results, with significant improvement in autonomic balance and breathing variability. Together, the CHF data from experimental animals as well as humans unveil a major role for the CB chemoreceptors in the progression of heart failure and support the notion that CB ablation could represent a novel therapeutic strategy to reduce cardiorespiratory dysfunction and improve survival during heart failure.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
46
|
Sauer D, Perez AJ, Carletti L. Efeito do treinamento sobre a eficiência ventilatória de indivíduos saudáveis. REV BRAS MED ESPORTE 2014. [DOI: 10.1590/1517-86922014200601814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introdução: Diversos índices de eficiência ventilatória (EV) têm fornecido uma medida extra para avaliação do condicionamento cardiorrespiratório em adição ao consumo de oxigênio (VO2) no pico do exercício e no nível do limiar ventilatório (VO2LV). Em indivíduos com insuficiência cardíaca já foi demonstrado que há aumento da EV após treinamento. No entanto, a sensibilidade dessa medida para avaliar o efeito do treinamento em indivíduos saudáveis foi pouco estudada.Objetivo: Testar a hipótese de que um programa de treinamento delineado para melhorar a condição aeróbia, também exerça alterações na eficiência ventilatória em indivíduos saudáveis.Métodos: 48 homens, aparentemente saudáveis e ativos (24±5 anos), foram submetidos a um teste cardiopulmonar de exercício (TCPE), antes e após 13 semanas de treinamento aeróbio, realizado três vezes por semana, durante 30 minutos com a intensidade inicial de 60-65% da FCmáx, gradualmente aumentada até o fim do programa para 85-90% da FCmax. Os parâmetros avaliados incluíram: VO2pico, VO2 no LV e EV determinada através do cálculo do slope da relação entre a ventilação e a produção de dióxido de carbono, por meio de regressão linear.Resultados: Houve um aumento de 12,5% no VO2LV (30,4±4,5 vs. 34,2±4,9 ml.kg-1.min-1, p<0,05) e de 10,9% no VO2pico (53,2±8,3 vs. 59±9,9 ml.kg-1.min-1, p<0,05), acompanhado de uma redução de 4,1% no slopeVE-VCO2 (25,2±3,3 vs. 24,2±3,7, p<0,05).Conclusão: A EV aumenta após o treinamento em homens saudáveis sugerindo que o slope da relação VE-VCO2 pode ser utilizado de forma adicional na monitoração dos efeitos do treinamento, complementando a interpretação da integração cardiorrespiratória do TCPE.
Collapse
|
47
|
Haack KKV, Zucker IH. Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure. Auton Neurosci 2014; 188:44-50. [PMID: 25458427 DOI: 10.1016/j.autneu.2014.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/19/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022]
Abstract
The control of sympathetic outflow in the chronic heart failure (CHF) state is markedly abnormal. Patients with heart failure present with increased plasma norepinephrine and increased sympathetic nerve activity. The mechanism for this sympatho-excitation is multiple and varied. Both depression in negative feedback sensory control mechanisms and augmentation of excitatory reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the Type 1 receptor, increased in reactive oxygen stress, upregulation in glutamate signaling and NR1 (N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac events. Exercise training has been shown to reduce central Angiotensin II signaling including the Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into Angiotensin II and Angiotensin 1-7 as important regulators of sympathetic outflow. These enzymes appear to be normalized following exercise training in CHF. Understanding the precise molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets for therapy.
Collapse
Affiliation(s)
- Karla K V Haack
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, United States.
| |
Collapse
|
48
|
Taguchi T, Adachi H, Hoshizaki H, Oshima S, Kurabayashi M. Effect of physical training on ventilatory patterns during exercise in patients with heart disease. J Cardiol 2014; 65:343-8. [PMID: 25012061 DOI: 10.1016/j.jjcc.2014.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Exercise training is known to improve the shortness of breath experienced by patients with heart disease when the ventilatory pattern becomes abnormal during exercise. However, the precise relationship between breathing patterns and the effect of exercise training has not been elucidated to date. We evaluated the relationship between the effect of exercise training on exercise tolerance and the amelioration of the ventilatory response during exercise in such patients. METHODS AND RESULTS Patients with heart disease (n=170) underwent cardiopulmonary exercise testing twice (pre- and postexercise training for 3-6 months). They were divided into the exercise training group (Group E, n=123) and control group (Group C, n=47). Regression line relating tidal volume to respiratory rate (TV-RR slope) during a ramp protocol below the inflection point was regarded as an indicator of rapid ventilation. Tidal volume after the inflection point was regarded as an indicator of shallow ventilation (TV at plateau). The TV-RR slope and TV at plateau improved after exercise training from 94.8±45.9 to 129.9±69.5 (p<0.001) and from 1473.6±321.9mL to 1673.2±355.1mL (p<0.001), respectively, in Group E. In contrast, no improvement was evident in Group C. In total, %anaerobic threshold (%AT) [AT improving ratio=(post-AT-pre-AT)/pre-AT×100] was positively correlated with both %TV-RR slope [TV-RR slope improving ratio=(post-TV-RR slope-pre-TV-RR slope)/pre-TV-RR slope×100] (r=0.60) and %TV at plateau [TV at plateau improving ratio=(post-TV at plateau-pre-TV at plateau)/pre-TV at plateau×100] (r=0.51). CONCLUSION Exercise training improved the rapidness and depth of breathing during exercise. Therefore, improvement of abnormal ventilatory patterns is correlated with exercise tolerance.
Collapse
Affiliation(s)
- Tetsuya Taguchi
- Department of Medicine and Biological Science, Graduate School of Medicine, Gunma University, Gunma, Japan.
| | | | | | | | - Masahiko Kurabayashi
- Department of Medicine and Biological Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
49
|
Calvin AD, Somers VK, Johnson BD, Scott CG, Olson LJ. Left atrial size, chemosensitivity, and central sleep apnea in heart failure. Chest 2014; 146:96-103. [PMID: 24522490 PMCID: PMC4077413 DOI: 10.1378/chest.13-0309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Central sleep apnea (CSA) is common among patients with heart failure (HF) and is promoted by elevated CO2 chemosensitivity. Left atrial size is a marker of the hemodynamic severity of HF. The aim of this study was to determine if left atrial size predicts chemosensitivity to CO2 and CSA in patients with HF. METHODS Patients with HF with left ventricular ejection fraction ≤ 35% underwent polysomnography for detection of CSA, echocardiography, and measurement of CO2 chemosensitivity. CSA was defined as an apnea-hypopnea index (AHI) ≥ 15/h with ≥ 50% central apneic events. The relation of clinical and echocardiographic parameters to chemosensitivity and CSA were evaluated by linear regression, estimation of ORs, and receiver operator characteristics. RESULTS Of 46 subjects without OSA who had complete data for analysis, 25 had CSA. The only parameter that significantly correlated with chemosensitivity was left atrial volume index (LAVI) (r = 0.40, P < .01). LAVI was greater in those with CSA than those without CSA (59.2 mL/m2 vs 36.4 mL/m2, P < .001) and significantly correlated with log-transformed AHI (r = 0.46, P = .001). LAVI was the best predictor of CSA (area under the curve = 0.83). A LAVI ≤ 33 mL/m2 was associated with 22% risk for CSA, while LAVI ≥ 53 mL/m2 was associated with 92% risk for CSA. CONCLUSIONS Increased LAVI is associated with heightened CO2 chemosensitivity and greater frequency of CSA. LAVI may be useful to guide referral for polysomnography for detection of CSA in patients with HF.
Collapse
Affiliation(s)
- Andrew D Calvin
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Bruce D Johnson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Christopher G Scott
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Lyle J Olson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN.
| |
Collapse
|
50
|
Oxberry SG, Torgerson DJ, Bland JM, Clark AL, Cleland JG, Johnson MJ. Short-term opioids for breathlessness in stable chronic heart failure: a randomized controlled trial. Eur J Heart Fail 2014; 13:1006-12. [DOI: 10.1093/eurjhf/hfr068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephen G. Oxberry
- Department of Health Sciences; Hull York Medical School, York University; Heslington York YO10 5DD UK
| | - David J. Torgerson
- Department of Health Sciences; Hull York Medical School, York University; Heslington York YO10 5DD UK
| | - J. Martin Bland
- Department of Health Sciences; Hull York Medical School, York University; Heslington York YO10 5DD UK
| | - Andrew L. Clark
- Castle Hill Hospital; Academic Cardiology; 1st Floor Daisy Building, Castle Road Cottingham HU16 5JQ UK
| | - John G.F. Cleland
- Castle Hill Hospital; Academic Cardiology; 1st Floor Daisy Building, Castle Road Cottingham HU16 5JQ UK
| | - Miriam J. Johnson
- Hull York Medical School; University of Hull; Hertford Building, Cottingham Road Hull HU6 7RX UK
| |
Collapse
|