1
|
Cai M, Tejpal S, Tashkova M, Ryden P, Perez-Moral N, Saha S, Garcia-Perez I, Serrano Contreras JI, Wist J, Holmes E, Bernal A, Dou B, Becker GF, Frost G, Edwards C. Upper-gastrointestinal tract metabolite profile regulates glycaemic and satiety responses to meals with contrasting structure: a pilot study. Nat Metab 2025:10.1038/s42255-025-01309-7. [PMID: 40542296 DOI: 10.1038/s42255-025-01309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 04/29/2025] [Indexed: 06/22/2025]
Abstract
Dietary interventions to combat non-communicable diseases focus on optimizing food intake but overlook the influence of food structure. Here, we investigate how food structure influences digestion. In a randomized crossover study, ten healthy participants were fitted with nasoenteric tubes that allow simultaneous gastric and duodenal sampling, before consuming iso-nutrient chickpea meals with contrasting cellular structures. The primary outcome is gut hormone response. Secondary outcomes are intestinal content analysis, blood glucose and insulin response, subjective appetite changes and ad libitum energy intake. We show that the 'Broken' and 'Intact' cell structures of meals result in different digestive and metabolomic profiles, leading to distinct postprandial gut hormones, glycaemia and satiety responses. 'Broken' meal structure elicits higher glucose-dependent insulinotropic peptide, glucagon-like peptide-1 and blood glycaemia, driven by high starch digestibility and a sharp rise in gastric maltose within 30 min. 'Intact' meal structure produces a prolonged release of glucagon-like peptide-1 and peptide-YY, elevated duodenal amino acids and undigested starch at 120 min. This work highlights how food structure alters upper gastrointestinal nutrient-sensing hormones, providing insights into the adverse effects of modern diets on obesity and type 2 diabetes. ISRCTN registration: ISRCTN18097249.
Collapse
Affiliation(s)
- Mingzhu Cai
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Shilpa Tejpal
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Martina Tashkova
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Peter Ryden
- Food Innovation and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Shikha Saha
- Food Innovation and Health, Quadram Institute Bioscience, Norwich, UK
| | - Isabel Garcia-Perez
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
| | | | - Julien Wist
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia, Australia
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Chemistry Department, Universidad del Valle, Cali, Colombia
| | - Elaine Holmes
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia, Australia
| | - Andres Bernal
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia, Australia
| | - Bowen Dou
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Georgia Franco Becker
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Gary Frost
- Nutrition Research Section, Faculty of Medicine, Imperial College Hammersmith Campus, London, UK.
| | - Cathrina Edwards
- Food Innovation and Health, Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
2
|
Armillotta M, Angeli F, Paolisso P, Belmonte M, Raschi E, Di Dalmazi G, Amicone S, Canton L, Fedele D, Suma N, Foà A, Bergamaschi L, Pizzi C. Cardiovascular therapeutic targets of sodium-glucose co-transporter 2 (SGLT2) inhibitors beyond heart failure. Pharmacol Ther 2025; 270:108861. [PMID: 40245989 DOI: 10.1016/j.pharmthera.2025.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are oral antidiabetic agents that have shown significant improvements in cardiovascular and renal outcomes among patients with heart failure (HF), regardless of diabetic status, establishing them as a cornerstone therapy. In addition to glycemic control and the osmotic diuretic effect, the inhibition of SGLT2 improves endothelial function and vasodilation, optimizing myocardial energy metabolism and preserving cardiac contractility. Moreover, SGLT2 inhibitors may exhibit anti-inflammatory properties and attenuate acute myocardial ischemia/reperfusion injury, thereby reducing cardiac infarct size, enhancing left ventricular function, and mitigating arrhythmias. These pleiotropic effects have demonstrated efficacy across various cardiovascular conditions, ranging from acute to chronic coronary syndromes and extending to arrhythmias, valvular heart disease, cardiomyopathies, cardio-oncology, and cerebrovascular disease. This review provides an overview of the current literature on the potential mechanisms underlying the effectiveness of SGLT2 inhibitors across a wide range of cardiovascular diseases beyond HF.
Collapse
Affiliation(s)
- Matteo Armillotta
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Francesco Angeli
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | | | - Marta Belmonte
- Cardiology Unit, Sant'Andrea University Hospital, Rome, Italy; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Guido Di Dalmazi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Division of Endocrinology and Diabetes Prevention and Care Unit, IRCCS, University Hospital of Bologna, Bologna, Italy
| | - Sara Amicone
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Lisa Canton
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Damiano Fedele
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Nicole Suma
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
| | - Alberto Foà
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
| | - Luca Bergamaschi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Carmine Pizzi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Erdogan BR, Arioglu-Inan E. SGLT2 inhibitors: how do they affect the cardiac cells. Mol Cell Biochem 2025; 480:1359-1379. [PMID: 39160356 DOI: 10.1007/s11010-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.
Collapse
Affiliation(s)
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Emniyet District, Dogol Street, No:4, 06560, Yenimahalle, Ankara, Turkey.
| |
Collapse
|
4
|
Piccirillo F, Lanciotti M, Nusca A, Frau L, Spanò A, Liporace P, Ussia GP, Grigioni F. Sodium-Glucose Transporter-2 Inhibitors (SGLT2i) and Myocardial Ischemia: Another Compelling Reason to Consider These Agents Regardless of Diabetes. Int J Mol Sci 2025; 26:2103. [PMID: 40076724 PMCID: PMC11899902 DOI: 10.3390/ijms26052103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, the introduction of sodium-glucose transporter-2 inhibitors (SGLT2is) marked a significant advancement in the treatment of cardiovascular disease (CVD). Beyond their known effects on glycemic control and lipid profile, SGLT2is demonstrate notable benefits for cardiovascular morbidity and mortality, regardless of diabetic status. These agents are currently recommended as first-line therapies in patients with heart failure, both with reduced and preserved ejection fraction, as they improve symptoms and reduce the risk of hospitalization. While several studies have demonstrated that SGLT2is can reduce the incidence of major adverse cardiovascular events (MACEs), the true impact of these agents on atherosclerosis progression and myocardial ischemia remains to be fully understood. A global beneficial effect related to improved glycemic and lipid control could be hypothesized, even though substantial evidence shows a direct impact on molecular pathways that enhance endothelial function, exhibit anti-inflammatory properties, and provide myocardial protection. In this context, this narrative review summarizes the current knowledge regarding these novel anti-diabetic drugs in preventing and treating myocardial ischemia, aiming to define an additional area of application beyond glycemic control and heart failure.
Collapse
Affiliation(s)
- Francesco Piccirillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Matteo Lanciotti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Frau
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Agostino Spanò
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Paola Liporace
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
5
|
Chen L, Wang C, Qin L, Zhang H. Parkinson's disease and glucose metabolism impairment. Transl Neurodegener 2025; 14:10. [PMID: 39962629 PMCID: PMC11831814 DOI: 10.1186/s40035-025-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD patients exhibit varying degrees of abnormal glucose metabolism throughout disease stages. Abnormal glucose metabolism is closely linked to the PD pathogenesis and progression. Key glucose metabolism processes involved in PD include glucose transport, glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, the pentose phosphate pathway, and gluconeogenesis. Recent studies suggest that glucose metabolism is a potential therapeutic target for PD. In this review, we explore the connection between PD and abnormal glucose metabolism, focusing on the underlying pathophysiological mechanisms. We also summarize potential therapeutic drugs related to glucose metabolism based on results from current cellular and animal model studies.
Collapse
Affiliation(s)
- Liangjing Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
6
|
Li X, Huang B, Liu Y, Wang M, Cui JQ. Uric acid in diabetic microvascular complications: Mechanisms and therapy. J Diabetes Complications 2025; 39:108929. [PMID: 39689504 DOI: 10.1016/j.jdiacomp.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Uric acid (UA) is mainly synthesized in the liver, intestine, and vascular endothelium and excreted by the kidney (70 %) and intestine (30 %). Hyperuricemia (HUA) occurs when UA production exceeds excretion. Many studies have found that elevated UA is associated with diabetic microvascular complications (DMC), including diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic peripheral neuropathy (DPN). In addition, too high or too low UA levels will promote the occurrence and development of chronic diseases, but the relationship between UA and diabetic microvascular complications (DMC) is not clear. Therefore, the rational treatment of UA in patients with diabetes is essential. In this review, we summarize and discuss the mechanism and treatment of UA and DMC and may provide potential advice for rational drug selection.
Collapse
Affiliation(s)
- Xin Li
- Tianjin Medical University General Hospital, People's Republic of China
| | - Bo Huang
- Tianjin Medical University General Hospital, People's Republic of China
| | - Yue Liu
- Tianjin Medical University General Hospital, People's Republic of China
| | - Meng Wang
- Tianjin Medical University General Hospital, People's Republic of China
| | - Jing-Qiu Cui
- Tianjin Medical University General Hospital, People's Republic of China.
| |
Collapse
|
7
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
8
|
Chlebek C, McAndrews C, Costa SN, DeMambro VE, Yakar S, Rosen CJ. In nondiabetic C57BL/6J mice, canagliflozin affects the skeleton in a sex- and age-dependent manner. JBMR Plus 2024; 8:ziae128. [PMID: 39502898 PMCID: PMC11532631 DOI: 10.1093/jbmrpl/ziae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Canagliflozin (CANA) is a sodium glucose cotransporter-2 inhibitor that reduces blood glucose levels. Sodium glucose cotransporter-2 is primarily expressed in the kidney, but not in any bone cells, therefore effects on the skeleton are likely to be non-cell autonomous. Originally developed to treat type II diabetes, CANA use has expanded to treat cardiovascular and renovascular disease. Clinical trials examining CANA in diabetic patients have produced contradictory reports on fracture risk, but there are limited data of CANA in nondiabetic conditions. In nondiabetic preclinical models, short-term treatment with CANA negatively affected trabecular bone whereas long-term treatment reduced cortical bone mineralization in male but not female mice. To investigate the skeletal effects of an intermediate period of CANA treatment, we treated male and female C57BL/6 J mice with CANA (180 ppm) for 6 months. Age at treatment initiation was also evaluated, with cohorts starting CANA prior to skeletal maturity (3-months-old) or in adulthood (6-months-old). Longitudinal assessments of bone mineral density revealed early benefits of CANA treatment in female mice. At euthanasia, both trabecular and cortical bone morphology were improved by CANA treatment in males and females. Bone formation was reduced at the endosteal surface. CANA decreased osteoblast number in male mice and bone marrow adiposity in females. Overall, more skeletal benefits were recorded in CANA-treated females than males. Urinary calcium output increased with CANA treatment, but parathyroid hormone was not changed. Despite reduced fasting blood glucose, body composition and whole-body metabolism were minimally changed by CANA treatment. For all outcome measures, limited differences were recorded based on age at treatment initiation. This study demonstrated that in nondiabetic C57BL/6 J mice, an intermediate period of CANA treatment improved bone morphology, but reduced osteoblast and bone marrow adipocyte number as well as serum procollagen type 1 N-terminal pro-peptide in a sex-specific manner.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, United States
| | - Casey McAndrews
- University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States
| | - Samantha N Costa
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Victoria E DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Shoshana Yakar
- New York University College of Dentistry, New York, NY 10010, United States
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
- Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, United States
| |
Collapse
|
9
|
Siddiqui R, Obi Y, Dossabhoy NR, Shafi T. Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney Disease? Curr Hypertens Rep 2024; 26:463-474. [PMID: 38913113 PMCID: PMC11455675 DOI: 10.1007/s11906-024-01314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW Chronic kidney disease and end-stage kidney disease (ESKD) are well-established risk factors for cardiovascular disease (CVD), the leading cause of mortality in the dialysis population. Conventional therapies, such as statins, blood pressure control, and renin-angiotensin-aldosterone system blockade, have inadequately addressed this cardiovascular risk, highlighting the unmet need for effective treatment strategies. Sodium-glucose transporter 2 (SGLT2) inhibitors have demonstrated significant renal and cardiovascular benefits among patients with type 2 diabetes, heart failure, or CKD at risk of progression. Unfortunately, efficacy data in dialysis patients is lacking as ESKD was an exclusion criterion for all major clinical trials of SGLT2 inhibitors. This review explores the potential of SGLT2 inhibitors in improving cardiovascular outcomes among patients with ESKD, focusing on their direct cardiac effects. RECENT FINDINGS Recent clinical and preclinical studies have shown promising data for the application of SGLT2 inhibitors to the dialysis population. SGLT2 inhibitors may provide cardiovascular benefits to dialysis patients, not only indirectly by preserving the remaining kidney function and improving anemia but also directly by lowering intracellular sodium and calcium levels, reducing inflammation, regulating autophagy, and alleviating oxidative stress and endoplasmic reticulum stress within cardiomyocytes and endothelial cells. This review examines the current clinical evidence and experimental data supporting the use of SGLT2 inhibitors, discusses its potential safety concerns, and outlines ongoing clinical trials in the dialysis population. Further research is needed to evaluate the safety and effectiveness of SGLT2 inhibitor use among patients with ESKD.
Collapse
Affiliation(s)
- Rehma Siddiqui
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Yoshitsugu Obi
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA.
| | - Neville R Dossabhoy
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Tariq Shafi
- Division of Kidney Diseases, Hypertension, & Transplantation, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Nagy AC, Tóth Á, Bak N, Ulambayar B, Ghanem AS, Sztanek F. Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis. J Clin Med 2024; 13:7093. [PMID: 39685552 DOI: 10.3390/jcm13237093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Sodium-glucose co-transporter 2 (SGLT-2) inhibitors, initially designed for type 2 diabetes, promote glucose excretion and lower blood glucose. Newer analogs like empagliflozin and dapagliflozin improve cardiovascular outcomes through mechanisms other than glycemic control, including blood pressure reduction and anti-inflammatory effects. Given the high cardiovascular risk present in diabetes, our study aims to emphasize the cardioprotective benefits of SGLT-2 inhibitors as a preventive therapy for heart failure (HF) in high-risk T2DM patients. Methods: Using data from 2542 patients identified by the ICD-10 E11 code from 2016 to 2020, this longitudinal study excluded those with E10 codes or those undergoing insulin treatment to focus on non-insulin-dependent T2DM. a multiple logistic regression model assessed HF incidence while adjusting for demographics and HbA1c. Results: SGLT-2 inhibitor use significantly lowered the odds of heart failure events (OR = 0.55, 95% CI: 0.31-0.99, p = 0.046), with a significant difference by gender (OR = 0.45, 95% CI: 0.28-0.71, p = 0.001) and eGFR (OR = 0.98, 95% CI: 0.97-0.99, p = 0.004). Conclusions: The real-world data highlight SGLT-2 inhibitors as promising for HF prevention and broader cardiometabolic health in T2DM, with potential value in managing complex comorbid profiles.
Collapse
Affiliation(s)
- Attila Csaba Nagy
- Department of Health Informatics, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Tóth
- Department of Integrative Health Sciences, Faculty of Health Sciences, University of Debrecen, 4028 Debrecen, Hungary
| | - Natália Bak
- Department of Health Informatics, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Battamir Ulambayar
- Department of Health Informatics, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Amr Sayed Ghanem
- Department of Health Informatics, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
11
|
Pham LT, Mangmool S, Parichatikanond W. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases. ACS Pharmacol Transl Sci 2024; 7:3279-3298. [PMID: 39539254 PMCID: PMC11555527 DOI: 10.1021/acsptsci.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an innovative class of antidiabetic drugs that provide cardiovascular benefits to both diabetic and nondiabetic patients, surpassing those of other antidiabetic drugs. Although the roles of mitochondria and endoplasmic reticulum (ER) in cardiovascular research are increasingly recognized as promising therapeutic targets, the exact molecular mechanisms by which SGLT2 inhibitors influence mitochondrial and ER homeostasis in the heart remain incompletely elucidated. This review comprehensively summarizes and discusses the impacts of SGLT2 inhibitors on mitochondrial dysfunction and ER stress in heart diseases including heart failure, ischemic heart disease/myocardial infarction, and arrhythmia from preclinical and clinical studies. Based on the existing evidence, the effects of SGLT2 inhibitors may potentially involve the restoration of mitochondrial biogenesis and alleviation of ER stress. Such consequences are achieved by enhancing adenosine triphosphate (ATP) production, preserving mitochondrial membrane potential, improving the activity of electron transport chain complexes, maintaining mitochondrial dynamics, mitigating oxidative stress and apoptosis, influencing cellular calcium and sodium handling, and targeting the unfolded protein response (UPR) through three signaling pathways including inositol requiring enzyme 1α (IRE1α), protein kinase R like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Therefore, SGLT2 inhibitors have emerged as a promising target for treating heart diseases due to their potential to improve mitochondrial functions and ER stress.
Collapse
Affiliation(s)
- Linh Thi
Truc Pham
- Biopharmaceutical
Sciences Program, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
| | - Supachoke Mangmool
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai, 50200 Thailand
| | | |
Collapse
|
12
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
13
|
dos Santos Borges R, Conegundes AF, Haikal de Paula L, Lara Santos R, Alves SN, Machado RA, Bussolaro Viana I, Simões e Silva AC. Efficacy and Safety of SGLT2 Inhibitors in Pediatric Patients and Young Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pediatr Diabetes 2024; 2024:6295345. [PMID: 40302966 PMCID: PMC12017006 DOI: 10.1155/2024/6295345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 05/02/2025] Open
Abstract
Introduction: In recent decades, an increase in the incidence of type 2 diabetes mellitus (T2DM) in children and adolescents has been observed. Pediatric-onset T2DM differs from the adult-onset form, particularly regarding the durability of glycemic control and earlier appearance of complications. However, the scarcity of approved treatments and comprehensive studies on T2DM management in youth persists. Ongoing clinical trials seek to ascertain the efficacy and safety of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients aged between 10 and 24 years with T2DM. Therefore, we aimed to perform a meta-analysis exploring the efficacy and safety of SGLT2i in pediatric patients and young adults with T2DM. Methods: We searched PubMed, Embase, Cochrane, and Web of Science for randomized controlled clinical trials on the efficacy and safety of SGLT2i in children, adolescents, and young adults with T2DM compared with placebo. Statistical analysis was performed using RevMan 5.4 and R statistical software 4.2.1. Heterogeneity was assessed with I2 statistics. Results: We included three studies totaling 334 patients followed for 37.79 weeks. Reduction in HbA1C (MD = -0.93; 95% CI = -1.36 to -0.49; p < 0.0001; I2 = 0%) was significantly higher in SGLT2i group compared with placebo. The proportion of patients requiring rescue or discontinuation of study medication due to lack of efficacy was statistically lower in SGLT2i group compared with placebo (RR = 0.64; 95% CI = 0.43-0.94; p= 0.02; I2 = 0%). SGLT2i and placebo were similar in terms of any adverse event (RR = 1.10; 95% CI = 0.96-1.27; p= 0.17; I2 = 0%), serious side effects (RR = 1.06; 95% CI = 0.44-2.57; p=0.90; I2 = 0%), and individual adverse effects. Conclusion: In children, adolescents, and young adults with T2DM, SGLT2i appears to be effective and safe for glycemic control.
Collapse
Affiliation(s)
- Rafael dos Santos Borges
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ana Flávia Conegundes
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luiza Haikal de Paula
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Rodrigo Lara Santos
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Samuel Norberto Alves
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Raquel Amaral Machado
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Isadora Bussolaro Viana
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ana Cristina Simões e Silva
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Universiade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| |
Collapse
|
14
|
Almalki A, Arjun S, Harding I, Jasem H, Kolatsi-Joannou M, Jafree DJ, Pomeranz G, Long DA, Yellon DM, Bell RM. SGLT1 contributes to glucose-mediated exacerbation of ischemia-reperfusion injury in ex vivo rat heart. Basic Res Cardiol 2024; 119:733-749. [PMID: 39088085 PMCID: PMC11461679 DOI: 10.1007/s00395-024-01071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Hyperglycaemia is common during acute coronary syndromes (ACS) irrespective of diabetic status and portends excess infarct size and mortality, but the mechanisms underlying this effect are poorly understood. We hypothesized that sodium/glucose linked transporter-1 (SGLT1) might contribute to the effect of high-glucose during ACS and examined this using an ex-vivo rodent heart model of ischaemia-reperfusion injury. Langendorff-perfused rat hearts were subjected to 35 min ischemia and 2 h reperfusion, with variable glucose and reciprocal mannitol given during reperfusion in the presence of pharmacological inhibitors of SGLT1. Myocardial SGLT1 expression was determined in rat by rtPCR, RNAscope and immunohistochemistry, as well as in human by single-cell transcriptomic analysis. High glucose in non-diabetic rat heart exacerbated reperfusion injury, significantly increasing infarct size from 45 ± 3 to 65 ± 4% at 11-22 mmol/L glucose, respectively (p < 0.01), an association absent in diabetic heart (32 ± 1-37 ± 5%, p = NS). Rat heart expressed SGLT1 RNA and protein in vascular endothelium and cardiomyocytes, with similar expression found in human myocardium by single-nucleus RNA-sequencing. Rat SGLT1 expression was significantly reduced in diabetic versus non-diabetic heart (0.608 ± 0.08 compared with 1.116 ± 0.13 probe/nuclei, p < 0.01). Pharmacological inhibitors phlorizin, canagliflozin or mizagliflozoin in non-diabetic heart revealed that blockade of SGLT1 but not SGLT2, abrogated glucose-mediated excess reperfusion injury. Elevated glucose is injurious to the rat heart during reperfusion, exacerbating myocardial infarction in non-diabetic heart, whereas the diabetic heart is resistant to raised glucose, a finding which may be explained by lower myocardial SGLT1 expression. SGLT1 is expressed in vascular endothelium and cardiomyocytes and inhibiting SGLT1 abrogates excess glucose-mediated infarction. These data highlight SGLT1 as a potential clinical translational target to improve morbidity/mortality outcomes in hyperglycemic ACS patients.
Collapse
Affiliation(s)
- Alhanoof Almalki
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sapna Arjun
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Idris Harding
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Hussain Jasem
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Derek M Yellon
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Robert M Bell
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
15
|
Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, Xu J, Zhang D, Yin X, Liu X, Shen Y, Liu J, Xu M, Xia P, Ling J, Wu Y, Liang J, Zhang J, Yu P. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl Neurodegener 2024; 13:41. [PMID: 39123214 PMCID: PMC11312905 DOI: 10.1186/s40035-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.
Collapse
Affiliation(s)
- Jiaqi Mei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Yi Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyue Tang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiao Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
16
|
Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res 2024; 47:2094-2103. [PMID: 38783146 PMCID: PMC11298408 DOI: 10.1038/s41440-024-01723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that is located within the proximal tubule of the kidney's nephrons. While it is typically associated with the kidney, it was later identified in various areas of the central nervous system, including areas modulating cardiorespiratory regulation like blood pressure. In the kidney, SGLT2 functions by reabsorbing glucose from the nephron's tubule into the bloodstream. SGLT2 inhibitors are medications that hinder the function of SGLT2, thus preventing the absorption of glucose and allowing for its excretion through the urine. While SGLT2 inhibitors are not the first-line choice, they are given in conjunction with other pharmaceutical interventions to manage hyperglycemia in individuals with diabetes mellitus. SGLT2 inhibitors also have a surprising secondary effect of decreasing blood pressure independent of blood glucose levels. The implication of SGLT2 inhibitors in lowering blood pressure and its presence in the central nervous system brings to question the role of SGLT2 in the brain. Here, we evaluate and review the function of SGLT2, SGLT2 inhibitors, their role in blood pressure control, the future of SGLT2 inhibitors as antihypertensive agents, and the possible mechanisms of SGLT2 blood pressure control in the central nervous system.
Collapse
Affiliation(s)
- Priscilla Ahwin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA
| | - Diana Martinez
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
17
|
Daida T, Shin BC, Cepeda C, Devaskar SU. Neurodevelopment Is Dependent on Maternal Diet: Placenta and Brain Glucose Transporters GLUT1 and GLUT3. Nutrients 2024; 16:2363. [PMID: 39064806 PMCID: PMC11279700 DOI: 10.3390/nu16142363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose is the primary energy source for most mammalian cells and its transport is affected by a family of facilitative glucose transporters (GLUTs) encoded by the SLC2 gene. GLUT1 and GLUT3, highly expressed isoforms in the blood-brain barrier and neuronal membranes, respectively, are associated with multiple neurodevelopmental disorders including epilepsy, dyslexia, ADHD, and autism spectrum disorder (ASD). Dietary therapies, such as the ketogenic diet, are widely accepted treatments for patients with the GLUT1 deficiency syndrome, while ameliorating certain symptoms associated with GLUT3 deficiency in animal models. A ketogenic diet, high-fat diet, and calorie/energy restriction during prenatal and postnatal stages can also alter the placental and brain GLUTs expression with long-term consequences on neurobehavior. This review focuses primarily on the role of diet/energy perturbations upon GLUT isoform-mediated emergence of neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomoko Daida
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| |
Collapse
|
18
|
Ionică LN, Lința AV, Bătrîn AD, Hâncu IM, Lolescu BM, Dănilă MD, Petrescu L, Mozoș IM, Sturza A, Muntean DM. The Off-Target Cardioprotective Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: An Overview. Int J Mol Sci 2024; 25:7711. [PMID: 39062954 PMCID: PMC11277154 DOI: 10.3390/ijms25147711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of glucose-lowering drugs, have revolutionized the management of heart failure with reduced and preserved ejection fraction, regardless of the presence of diabetes, and are currently incorporated in the heart failure guidelines. While these drugs have consistently demonstrated their ability to decrease heart failure hospitalizations in several landmark clinical trials, their cardioprotective effects are far from having been completely elucidated. In the past decade, a growing body of experimental research has sought to address the molecular and cellular mechanisms of SGLT2i in order to provide a better understanding of the off-target acute and chronic cardiac benefits, beyond the on-target renal effect responsible for blood glucose reduction. The present narrative review addresses the direct cardioprotective effects of SGLT2i, delving into the off-target mechanisms of the drugs currently approved for heart failure therapy, and provides insights into future perspectives.
Collapse
Affiliation(s)
- Loredana N. Ionică
- Department of Internal Medicine-Medical Semiotics, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Adina V. Lința
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina D. Bătrîn
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Maria D. Dănilă
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Ioana M. Mozoș
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
19
|
Mylonas N, Nikolaou PE, Karakasis P, Stachteas P, Fragakis N, Andreadou I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7274. [PMID: 39000380 PMCID: PMC11242615 DOI: 10.3390/ijms25137274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Endothelial dysfunction often precedes the development of cardiovascular diseases, including heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as well as the systematic observations in preclinical models. Four putative mechanisms are explored: oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is significantly suppress inflammation by preventing endothelial expression of adhesion receptors and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection. However, in vitro studies have not consistently shown regulation of adhesion molecule expression by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their impact on angiogenesis remains uncertain. Further experimental studies are required to accurately determine the interplay among these mechanisms in various cardiovascular complications, including heart failure and acute myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
| | - Panagiotis Stachteas
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| |
Collapse
|
20
|
Matthews JR, Herat LY, Schlaich MP, Matthews VB. Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle. Biomedicines 2024; 12:1456. [PMID: 39062029 PMCID: PMC11275186 DOI: 10.3390/biomedicines12071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The hyperactivation of the sympathetic nervous system (SNS) is linked to obesity, hypertension, and type 2 diabetes, which are characterized by elevated norepinephrine (NE) levels. Previous research has shown increased sodium-dependent glucose cotransporter 1 (SGLT1) protein levels in kidneys of hypertensive rodents, prompting investigation into the expression of SGLT1 in various tissues, such as skeletal muscle. This study aimed to assess (i) whether skeletal muscle cells and tissue express SGLT1 and SGLT2 proteins; (ii) if NE increases SGLT1 levels in skeletal muscle cells, and (iii) whether the skeletal muscle of neurogenically hypertensive mice exhibits increased SGLT1 expression. We found that (i) skeletal muscle cells and tissue are a novel source of the SGLT2 protein and that (ii) NE significantly elevated SGLT1 levels in skeletal muscle cells. As SGLT2 inhibition (SGLT2i) with Empagliflozin increased SGLT1 levels, in vivo studies with the dual inhibitor SGLT1/2i, Sotagliflozin were warranted. The treatment of neurogenically hypertensive mice using Sotagliflozin significantly reduced blood pressure. Our findings suggest that SNS activity upregulates the therapeutic target, SGLT1, in skeletal muscle, potentially worsening cardiometabolic control. As clinical trial data suggest cardiorenal benefits from SGLT2i, future studies should aim to utilize SGLT1i by itself, which may offer a therapeutic strategy for conditions with heightened SNS activity, such as hypertension, diabetes, and obesity.
Collapse
Affiliation(s)
- Jennifer R. Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, and Royal Perth Hospital Research Foundation, Crawley, WA 6000, Australia; (J.R.M.); (L.Y.H.)
| | - Lakshini Y. Herat
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, and Royal Perth Hospital Research Foundation, Crawley, WA 6000, Australia; (J.R.M.); (L.Y.H.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6000, Australia;
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, and Royal Perth Hospital Research Foundation, Crawley, WA 6000, Australia; (J.R.M.); (L.Y.H.)
| |
Collapse
|
21
|
Mani S, Balasubramanian A, Veluswami K, Rao S, Aggarwal S. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors and Cardiovascular Outcomes: A Review of Literature. Cureus 2024; 16:e63796. [PMID: 39099905 PMCID: PMC11297731 DOI: 10.7759/cureus.63796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Coronary arterial diseases are a major contributor to disease and death worldwide and are most often compounded by several other underlying medical conditions. A key concern is type 2 diabetes mellitus (T2DM). Despite progress in medical advancements, these life-threatening illnesses are still underdiagnosed and undermanaged. A relatively newer class of anti-diabetic drugs, the sodium-glucose cotransporter-2 inhibitors (SGL2-Is), also termed gliflozins, have shown promising results in reducing cardiovascular risk, regardless of diabetic status. These drugs have on-target (promoting renal glycosuria and diuresis by acting on the SGLT-2 channels in the proximal convoluted tubule) and off-target effects contributing to the reported cardiovascular benefit. Some emerging theories about its impact on myocardial energetics, calcium balance, and renal physiology exist. In this review article, we explored three major cardiovascular outcome trials: the Dapagliflozin Effect on Cardiovascular Events-Thrombolysis in Myocardial Infarction 58 (DECLARE-TIMI 58) trial, the CANagliflozin cardioVascular Assessment Study (CANVAS) program, and the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients-Removing Excess Glucose (EMPA-REG OUTCOME) trial to evaluate the cardiovascular effects of SGLT2-Is.
Collapse
Affiliation(s)
- Sweatha Mani
- Internal Medicine, K.A.P. Viswanatham Government Medical College, Tiruchirappalli, IND
| | | | | | - Sudipta Rao
- Internal Medicine, JSS Medical College, Mysore, IND
| | | |
Collapse
|
22
|
Kosinski C, Papadakis GE, Salamin O, Kuuranne T, Nicoli R, Pitteloud N, Zanchi A. Effects of empagliflozin on reproductive system in men without diabetes. Sci Rep 2024; 14:13802. [PMID: 38877312 PMCID: PMC11178909 DOI: 10.1038/s41598-024-64684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Sodium-glucose cotransporter (SGLT) 2 inhibition is a well-known target for the treatment of type 2 diabetes, renal disease and chronic heart failure. The protein SGLT2 is encoded by SLC5A2 (Solute Carrier Family 5 Member 2), which is highly expressed in renal cortex, but also in the testes where glucose uptake may be essential for spermatogenesis and androgen synthesis. We postulated that in healthy males, SGLT2 inhibitor therapy may affect gonadal function. We examined the impact on gonadal and steroid hormones in a post-hoc analysis of a double-blind, randomized, placebo-controlled research including 26 healthy males who were given either placebo or empagliflozin 10 mg once daily for four weeks. After one month of empagliflozin, there were no discernible changes in androgen, pituitary gonadotropin hormones, or inhibin B. Regardless of BMI category, the administration of empagliflozin, a highly selective SGLT2 inhibitor, did not alter serum androgen levels in men without diabetes. While SGLT2 is present in the testes, its inhibition does not seem to affect testosterone production in Leydig cells nor inhibin B secretion by the Sertoli cells.
Collapse
Affiliation(s)
- Christophe Kosinski
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland.
| | - Georgios E Papadakis
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Salamin
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anne Zanchi
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Geist BK, Ramirez JC, Binder P, Einspieler H, Ibeschitz H, Langsteger W, Nics L, Rausch I, Diemling M, Sohlberg A, Hacker M, Rasul S. In vivo assessment of safety, biodistribution, and radiation dosimetry of the [ 18F]Me4FDG PET-radiotracer in adults. EJNMMI Res 2024; 14:46. [PMID: 38750398 PMCID: PMC11096136 DOI: 10.1186/s13550-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Approaches targeting the sodium-glucose cotransporter (SGLT) could represent a promising future therapeutic strategy for numerous oncological and metabolic diseases. In this study, we evaluated the safety, biodistribution and radiation dosimetry of the glucose analogue positron emission tomography (PET) agent [18F] labeled alpha-methyl-4-deoxy-4-[18F]fluoro-D-glucopyranoside ([18F]Me4FDG) with high sodium-glucose cotransporter and low glucose transporter (GLUT) affinity. For this purpose, five healthy volunteers (1 man, 4 women) underwent multiple whole-body PET/computed tomography (CT) examinations starting with injection and up to 4 h after injection of averaged (2.4 ± 0.1) MBq/kg (range: 2.3-2.5 MBq/kg) administered activity. The PET/CT scans were conducted in 5 separate sessions, blood pressure and temperature were measured, and blood and urine samples were collected before the scans and one hour after injection to assess toxicity. Measurements of [18F]Me4FDG radioactivity in organs of interest were determined from the PET/CT scans at 5 time points. Internal dosimetry was performed on voxel level using a fast Monte Carlo approach. RESULTS All studied volunteers could well tolerate the [18F]Me4FDG and no adverse event was reported. The calculated effective dose was (0.013 ± 0.003) mSv/MBq. The organs with the highest absorbed dose were the kidneys with 0.05 mSv/MBq per kidney. The brain showed almost no uptake. After 60 min, (12 ± 15) % of the administered dose was excreted into the bladder. CONCLUSION Featuring an effective dose of only 0.013 ± 0.003 mSv/MBq and no occurrence of side effects, the glucose analogue [18F]Me4FDG seems to be a safe radio-tracer with a favorable biodistribution for PET imaging and also within several consecutive scans. TRIAL REGISTRATION NUMBER NCT03557138, Registered 22 February 2017, https://ichgcp.net/clinical-trials-registry/NCT03557138 .
Collapse
Affiliation(s)
| | | | - Patrick Binder
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Holger Einspieler
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Ibeschitz
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Werner Langsteger
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Antti Sohlberg
- Hermes Medical Solutions, Vienna, Austria
- Department of Nuclear Medicine, Päijät-Häme Central Hospital, Lahti, Finland
| | - Marcus Hacker
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Floor 5L, Vienna, 1090, Austria.
| | - Sazan Rasul
- Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Egashira T, Ichinomiya T, Yokoyama A, Matsumoto S, Higashijima U, Sekino M, Murata H, Yoshitomi O, Sato S, Hara T. Cardioprotective Effects of Sodium-Glucose Cotransporter Subtype Inhibition on Ischemic and Pharmacological Preconditioning. Cureus 2024; 16:e59757. [PMID: 38841006 PMCID: PMC11152766 DOI: 10.7759/cureus.59757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter (SGLT) 2 inhibitors partially inhibit SGLT1 expression; however, whether a clinical dose of SGLT2 inhibitor abrogates ischemic preconditioning (IPC) is unknown, and the pharmacological cardioprotective effect under SGLT1 inhibition has not been examined. In this study, we investigated whether a clinical dose of tofogliflozin abrogates IPC and whether pharmacological preconditioning with olprinone has cardioprotective effects under SGLT1 inhibition. METHODS Male Wistar rats were divided into seven groups (seven rats per group) and subjected to the following treatments before inducing ischemia/reperfusion (I/R; 30 minutes of coronary artery occlusion followed by 120 minutes of reperfusion): saline infusion control treatment (Con); ischemic preconditioning (IPC); IPC after phlorizin infusion (IPC+Phl); IPC after low-dose tofogliflozin infusion (IPC+L-Tof); IPC after high-dose tofogliflozin infusion (IPC+H-Tof); olprinone infusion (Olp); and Olp infusion after phlorizin infusion (Olp+Phl). RESULTS The infarct size was significantly decreased in the IPC group, but not in the IPC+Phl group. In contrast, the infarct size decreased in the IPC+L-Tof and IPC+H-Tof groups. Additionally, Olp reduced the infarct size, and the effect was preserved in Olp+Phl groups. Phosphorylated AMP-activated protein kinase (AMPK) expression was lower in the IPC+Phl group compared to that in the IPC group. CONCLUSION The cardioprotective effect of IPC was attenuated by strong SGLT1 inhibition, but the effect was preserved under a clinical dose of highly selective SGLT2 inhibitor. Olprinone exerts a cardioprotective effect even under strong SGLT1 inhibition.
Collapse
Affiliation(s)
- Takashi Egashira
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Akihiro Yokoyama
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Sojiro Matsumoto
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Ushio Higashijima
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Hiroaki Murata
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Osamu Yoshitomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, JPN
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| |
Collapse
|
25
|
Dos Santos Borges R, de Oliveira Almeida G, Alves VFC, Nienkotter TF, Bertoli ED, Simões E Silva AC. Safety and efficacy of sotagliflozin in patients with type II diabetes mellitus and chronic kidney disease: a meta-analysis of randomized controlled trials. J Nephrol 2024; 37:881-896. [PMID: 38141092 DOI: 10.1007/s40620-023-01818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Sotagliflozin is a dual sodium-glucose co-transporter 1 and 2 inhibitor that increases glucosuria and natriuresis in patients with type 2 diabetes mellitus (T2DM). However, the safety and efficacy in patients with concomitant chronic kidney disease (CKD) remains unclear. Therefore, we aimed to conduct a meta-analysis to evaluate the current evidence in this regard. METHODS We searched PubMed, Embase, Cochrane, and Web of Science for randomized controlled clinical trials on the safety and efficacy of Sotagliflozin in patients with T2DM and CKD compared with placebo. Statistical analysis was performed using RevMan 5.4. Heterogeneity was assessed with I2 statistics. The study was recorded in PROSPERO registry (CRD42023449631). RESULTS : We included three studies totaling 11,648 patients followed for 15.7 ± 5.9 months. Reduction in HbA1C (mean difference - 0.33%; 95% CI [- 0.54, - 0.11]; p = 0.003; I2 = 100%) and weight (mean difference - 1.01 kg; 95% CI [- 1.17, - 0.86]; p < 0.00001; I2 = 96%) were significantly higher in the Sotagliflozin group compared with placebo. All-cause mortality (RR 0.98; 95% CI [0.81, 1.20]; p = 0.87; I2 = 0%) and major adverse cardiovascular events (RR 0.70; 95% CI [0.40, 1.21]; p = 0.20; I2 = 39%) were not significantly different between groups. However, estimated glomerular filtration rate reduction (mean difference - 0.95; 95% CI [- 1.32, - 0.58]; p < 0.00001; I2 = 98%), genital mycotic infections (RR 2.73; 95% CI [1.96, 3.79]; p < 0.00001; I2 = 0%), diarrhea (RR 1.42; 95% CI [1.24. 1.63]; p < 0.00001; I2 = 0%) and volume depletion (RR 1.31; 95% CI [1.11, 1.56]; p = 0.002; I2 = 0%) were more common with Sotagliflozin. CONCLUSIONS In patients with T2DM and CKD, Sotagliflozin appears to be effective for glycemic control and weight loss. Although the medication seemed safe concerning mortality and cardiovascular events, it induced estimated glomerular filtration rate reduction, and was associated with a higher risk of genital mycotic infections, diarrhea, and volume depletion.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Cristina Simões E Silva
- Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Malik A, Bagchi AK, Jassal DS, Singal PK. Doxorubicin‑induced cardiomyopathy is mitigated by empagliflozin via the modulation of endoplasmic reticulum stress pathways. Mol Med Rep 2024; 29:74. [PMID: 38488036 PMCID: PMC10958136 DOI: 10.3892/mmr.2024.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
Doxorubicin (Dox) exhibits a high efficacy in the treatment of numerous types of cancer. However, the beneficial cytotoxic effects of Dox are often accompanied by an increase in the risk of cardiotoxicity. Oxidative stress (OS) plays a key role in Dox‑induced cardiomyopathy (DIC). OS in cardiomyocytes disrupts endoplasmic reticulum (ER) function, leading to the accumulation of misfolded/unfolded proteins known as ER stress. ER stress acts as an adaptive mechanism; however, prolonged ER stress together with OS may lead to the initiation of cardiomyocyte apoptosis. The present study aimed to explore the potential of an anti‑diabetic drug, empagliflozin (EMPA), in mitigating Dox‑induced ER stress and cardiomyocyte apoptosis. In the present study, the effects of 1 h pretreatment of EMPA on Dox‑treated cardiomyocytes isolated from Sprague‑Dawley rats were investigated. After 24 h, EMPA pre‑treatment promoted cell survival in the EMPA + Dox group compared with the Dox group. Results of the present study also demonstrated that EMPA mitigated overall ER stress, as the increased expression of ER stress markers was reduced in the EMPA + Dox group. Additionally, OS, inflammation and expression of ER stress apoptotic proteins were also significantly reduced following EMPA pre‑treatment in the EMPA + Dox group. Thus, EMPA may exert beneficial effects on Dox‑induced ER stress and may exhibit potential changes that can be utilised to further evaluate the role of EMPA in mitigating DIC.
Collapse
Affiliation(s)
- Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H 2A6, Canada
| | - Ashim K. Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H 2A6, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, St. Boniface Hospital, Winnipeg, Manitoba R2H 2A6, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H 2A6, Canada
| |
Collapse
|
27
|
Prakasam G, Mishra A, Christie A, Miyata J, Carrillo D, Tcheuyap VT, Ye H, Do QN, Wang Y, Reig Torras O, Butti R, Zhong H, Gagan J, Jones KB, Carroll TJ, Modrusan Z, Durinck S, Requena-Komuro MC, Williams NS, Pedrosa I, Wang T, Rakheja D, Kapur P, Brugarolas J. Comparative genomics incorporating translocation renal cell carcinoma mouse model reveals molecular mechanisms of tumorigenesis. J Clin Invest 2024; 134:e170559. [PMID: 38386415 PMCID: PMC10977987 DOI: 10.1172/jci170559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.
Collapse
Affiliation(s)
- Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hui Ye
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hua Zhong
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey Gagan
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin B. Jones
- Department of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas J. Carroll
- Department of Molecular Biology and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing and
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Mai-Carmen Requena-Komuro
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Radiology, and
- Advanced Imaging Research Center, and
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dinesh Rakheja
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| |
Collapse
|
28
|
Pitaraki E, Jagirdar RM, Rouka E, Bartosova M, Sinis SI, Gourgoulianis KI, Eleftheriadis T, Stefanidis I, Liakopoulos V, Hatzoglou C, Schmitt CP, Zarogiannis SG. 2-Deoxy-glucose ameliorates the peritoneal mesothelial and endothelial barrier function perturbation occurring due to Peritoneal Dialysis fluids exposure. Biochem Biophys Res Commun 2024; 693:149376. [PMID: 38104523 DOI: 10.1016/j.bbrc.2023.149376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Peritoneal dialysis (PD) and prolonged exposure to PD fluids (PDF) induce peritoneal membrane (PM) fibrosis and hypervascularity, leading to functional PM degeneration. 2-deoxy-glucose (2-DG) has shown potential as PM antifibrotic by inhibiting hyper-glycolysis induced mesothelial-to-mesenchymal transition (MMT). We investigated whether administration of 2-DG with several PDF affects the permeability of mesothelial and endothelial barrier of the PM. The antifibrotic effect of 2-DG was confirmed by the gel contraction assay with embedded mesothelial (MeT-5A) or endothelial (EA.hy926) cells cultured in Dianeal® 2.5 % (CPDF), BicaVera® 2.3 % (BPDF), Balance® 2.3 % (LPDF) with/without 2-DG addition (0.2 mM), and qPCR for αSMA, CDH2 genes. Moreover, 2-DG effect was tested on the permeability of monolayers of mesothelial and endothelial cells by monitoring the transmembrane resistance (RTM), FITC-dextran (10, 70 kDa) diffusion and mRNA expression levels of CLDN-1 to -5, ZO1, SGLT1, and SGLT2 genes. Contractility of MeT-5A cells in CPDF/2-DG was decreased, accompanied by αSMA (0.17 ± 0.03) and CDH2 (2.92 ± 0.29) gene expression fold changes. Changes in αSMA, CDH2 were found in EA.hy926 cells, though αSMA also decreased under LPDF/2-DG incubation (0.42 ± 0.02). Overall, 2-DG mitigated the PDF-induced alterations in mesothelial and endothelial barrier function as shown by RTM, dextran transport and expression levels of the CLDN-1 to -5, ZO1, and SGLT2. Thus, supplementation of PDF with 2-DG not only reduces MMT but also improves functional permeability characteristics of the PM mesothelial and endothelial barrier.
Collapse
Affiliation(s)
- Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Erasmia Rouka
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500, Larissa, Greece
| | - Maria Bartosova
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece; Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Vassilios Liakopoulos
- 2(nd) Department of Nephrology, AHEPA Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| |
Collapse
|
29
|
Zhang Q, Deng Z, Li T, Chen K, Zeng Z. SGLT2 inhibitor improves the prognosis of patients with coronary heart disease and prevents in-stent restenosis. Front Cardiovasc Med 2024; 10:1280547. [PMID: 38274313 PMCID: PMC10808651 DOI: 10.3389/fcvm.2023.1280547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Coronary heart disease is a narrowing or obstruction of the vascular cavity caused by atherosclerosis of the coronary arteries, which leads to myocardial ischemia and hypoxia. At present, percutaneous coronary intervention (PCI) is an effective treatment for coronary atherosclerotic heart disease. Restenosis is the main limiting factor of the long-term success of PCI, and it is also a difficult problem in the field of intervention. Sodium-glucose cotransporter 2 (SGLT2) inhibitor is a new oral glucose-lowering agent used in the treatment of diabetes in recent years. Recent studies have shown that SGLT2 inhibitors can effectively improve the prognosis of patients after PCI and reduce the occurrence of restenosis. This review provides an overview of the clinical studies and mechanisms of SGLT2 inhibitors in the prevention of restenosis, providing a new option for improving the clinical prognosis of patients after PCI.
Collapse
Affiliation(s)
| | | | | | | | - Zhihuan Zeng
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Huang L, Cao B, Geng Y, Zhou X, Yang Y, Ma T, Lin H, Huang Z, Zhuo L, Li J. A randomized double-blind phase Ib clinical trial of SY-009 in patients with type 2 diabetes mellitus. Eur J Pharm Sci 2024; 192:106644. [PMID: 37981049 DOI: 10.1016/j.ejps.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 10/18/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION SY-009 produces a hypoglycemic effect via inhibiting sodium/glucose cotransporter 1 (SGLT1) in type 2 diabetes mellitus (T2DM) patients. This randomized, double-blind, placebo-controlled, and multiple-dose escalation clinical trial aimed to evaluate the pharmacokinetic and pharmacodynamical characteristics as well as the safety and tolerability of SY-009 in T2DM patients. METHOD Fifty T2DM patients were randomized into experimental and placebo groups, and hospitalized for 9 days managed with a unified diet and rest management. Subjects were given SY-009 or placebo from day 1 to day 7 at different frequencies and dosages. Single dose cohort was defined as the first dose on day 1 and multiple dose cohort included all the dose from day 1 to 7. Blood samples were collected for pharmacokinetic analysis. Mixed meal tolerance tests were performed. Blood samples were collected to determine glucose, C-peptide, insulin, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP). RESULTS PK parameters were not obtained because blood SY-009 concentrations were below the limit of quantitation in all subjects. SY-009 decreased the postprandial glucose. Blood glucose was controlled within 4 hours after taking the drug. Short-term administration of SY-009 (7 days) had no significant effects on fasting glucose but reduced the secretion of C-peptide, insulin, and GIP and increased GLP-1 secretion. The most common adverse event was gastrointestinal disorder manifesting abdominal pain, diarrhea, and bloating. CONCLUSION Plasma exposure of SY-009 and its metabolites was fairly low in T2DM patients at doses of 1.0-4.0 mg. SY-009 reduced postprandial glucose, C-peptide, and insulin levels, showing relative safety and tolerability in the dose range of 1.0-4.0 mg. TRIALS REGISTRATION ClinicalTrials.gov Identifier: NCT04345107.
Collapse
Affiliation(s)
- Lei Huang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yan Geng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaoli Zhou
- Suzhou Yabao Pharmaceutical R&D Co., Ltd., Suzhou 215000, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tingting Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hui Lin
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhijiang Huang
- Suzhou Yabao Pharmaceutical R&D Co., Ltd., Suzhou 215000, China
| | - Lang Zhuo
- Suzhou Yabao Pharmaceutical R&D Co., Ltd., Suzhou 215000, China.
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
31
|
Kumar KMP, Unnikrishnan AG, Jariwala P, Mehta A, Chaturvedi R, Panchal S, Lakhani P, Acharya R, Dixit J. SGLT2 Inhibitors: Paradigm Shift from Diabetes Care to Metabolic Care-An Indian Perspective. Indian J Endocrinol Metab 2024; 28:11-18. [PMID: 38533279 PMCID: PMC10962769 DOI: 10.4103/ijem.ijem_377_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 03/28/2024] Open
Abstract
The prevalence and burden of diabetes are on the rise in India, making it 'the diabetes capital of the world'. Comorbidities such as obesity, cardiovascular (CV) complications, chronic kidney disease (CKD), non-alcoholic fatty liver disease (NAFLD), and neurodegenerative diseases are common in patients with diabetes. Recent breakthroughs in diabetes medications and continuous glucose monitoring have resulted in a paradigm shift in diabetes care. Hence, a review in the Indian context is warranted. This review focuses on the existing evidence (gathered by a systematic literature search utilising online databases such as PubMed) on the metabolic, cardio-renoprotective, and hepatoprotective effects of sodium-glucose co-transporter 2 (SGLT2) inhibition, particularly in the Indian setting. The study revealed that the SGLT2 inhibitors (SGLT2i), with their numerous pleiotropic benefits, have received considerable attention recently as a novel class of antihyperglycaemic agents (AHAs) for the management of diabetes. SGLT2i play a crucial role in the transition from glycaemic control to metabolic care, particularly in the context of obesity, CV disease and renal disease. In addition to improving glycaemic control, SGLT2i have been shown to promote weight loss, reduce blood pressure and improve lipid profiles, which are key components of metabolic health. Moreover, SGLT2i have demonstrated renal protective effects, including a reduction in albuminuria and a slower decline in the estimated glomerular filtration rate (eGFR), suggesting a potential role in the management of renal dysfunction.
Collapse
Affiliation(s)
- K M Prasanna Kumar
- Centre for Diabetes and Endocrine Care and Diabetes Care, Bengaluru, Karnataka, India
| | | | | | | | | | - Sagar Panchal
- Medical Affairs, Johnson & Johnson Private Limited, Mumbai, Maharashtra, India
| | - Preet Lakhani
- Medical Affairs, Johnson & Johnson Private Limited, Mumbai, Maharashtra, India
| | - Rachana Acharya
- Medical Affairs, Johnson & Johnson Private Limited, Mumbai, Maharashtra, India
| | - Jitendra Dixit
- Evidence Generation Centre and Strategic Alliances, Janssen Inc., Ontario, Canada
| |
Collapse
|
32
|
Zuo W, Wang L, Tian R, Wang L, Liu Y, Qian H, Yang X, Liu Z. Dapagliflozin Alleviates Myocardial Ischaemia Reperfusion Injury by Activating Mitophagy via the AMPK-PINK1/Parkin Signalling Pathway. Curr Vasc Pharmacol 2024; 22:203-217. [PMID: 38141195 DOI: 10.2174/0115701611269801231211104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models. METHOD We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established. RESULTS 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91 ± 1.76 vs. 40.47 ± 3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8 ± 2.7 vs. 28.5 ± 5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6 ± 9.5 vs. 93.5 ± 13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0 ± 8.3 vs. 67.9 ± 13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5'monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI. CONCLUSION Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.
Collapse
MESH Headings
- Animals
- Glucosides/pharmacology
- Mitophagy/drug effects
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Signal Transduction/drug effects
- Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Ubiquitin-Protein Ligases/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- AMP-Activated Protein Kinases/metabolism
- Disease Models, Animal
- Male
- Ventricular Function, Left/drug effects
- Cell Line
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Myocardial Infarction/drug therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/metabolism
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Mice
- Rats
- Reactive Oxygen Species/metabolism
- Apoptosis/drug effects
- Stroke Volume/drug effects
Collapse
Affiliation(s)
- Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Beijing, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Lun Wang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Yifan Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
33
|
Tsunokake S, Iwabuchi E, Miki Y, Kanai A, Onodera Y, Sasano H, Ishida T, Suzuki T. SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res Treat 2023; 201:499-513. [PMID: 37439959 DOI: 10.1007/s10549-023-07024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Sodium/glucose cotransporter (SGLT) 1 and 2 expression in carcinoma cells was recently examined, but their association with the clinicopathological factors of the patients and their biological effects on breast carcinoma cells have remained remain virtually unknown. Therefore, in this study, we explored the expression status of SGLT1 and SGLT2 in breast cancer patients and examined the effects of SGLT1 inhibitors on breast carcinoma cells in vitro. METHODS SGLT1 and SGLT2 were immunolocalized and we first correlated the findings with clinicopathological factors of the patients. We then administered mizagliflozin and KGA-2727, SGLT1 specific inhibitors to MCF-7 and MDA-MB-468 breast carcinoma cell lines, and their growth-inhibitory effects were examined. Protein arrays were then used to further explore their effects on the growth factors. RESULTS The SGLT1 high group had significantly worse clinical outcome including both overall survival and disease-free survival than low group. SGLT2 status was not significantly correlated with clinical outcome of the patients. Both mizagliflozin and KGA-2727 inhibited the growth of breast cancer cell lines. Of particular interest, mizagliflozin inhibited the proliferation of MCF-7 cells, even under very low glucose conditions. Mizagliflozin downregulated vascular endothelial growth factor receptor 2 phosphorylation. CONCLUSION High SGLT1 expression turned out as an adverse clinical prognostic factor in breast cancer patient. This is the first study demonstrating that SGLT1 inhibitors suppressed breast carcinoma cell proliferation. These results indicated that SGLT1 inhibitors could be used as therapeutic agents for breast cancer patients with aggressive biological behaviors.
Collapse
Affiliation(s)
- Satoko Tsunokake
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Hachinohe, Aomori, Japan
| | - Yoshiaki Onodera
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
34
|
Büttner J, Blüthner E, Greif S, Kühl A, Elezkurtaj S, Ulrich J, Maasberg S, Jochum C, Tacke F, Pape UF. Predictive Potential of Biomarkers of Intestinal Barrier Function for Therapeutic Management with Teduglutide in Patients with Short Bowel Syndrome. Nutrients 2023; 15:4220. [PMID: 37836505 PMCID: PMC10574292 DOI: 10.3390/nu15194220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION The human intestinal tract reacts to extensive resection with spontaneous intestinal adaptation. We analyzed whether gene expression analyses or intestinal permeability (IP) testing could provide biomarkers to describe regulation mechanisms in the intestinal barrier in short bowel syndrome (SBS) patients during adaptive response or treatment with the glucagon-like peptide-2 analog teduglutide. METHODS Relevant regions of the GLP-2 receptor gene were sequenced. Gene expression analyses and immunohistochemistry were performed from mucosal biopsies. IP was assessed using a carbohydrate oral ingestion test. RESULTS The study includes 59 SBS patients and 19 controls. Increases in gene expression with teduglutide were received for sucrase-isomaltase, sodium/glucose cotransporter 1, and calcium/calmodulin serine protein kinase. Mannitol recovery was decreased in SBS but elevated with teduglutide (Δ 40%), showed a positive correlation with remnant small bowel and an inverse correlation with parenteral support. CONCLUSIONS Biomarkers predicting clinical and functional features in human SBS are very limited. Altered specific gene expression was shown for genes involved in nutrient transport but not for genes controlling tight junctions. However, mannitol recovery proved useful in describing the absorptive capacity of the gut during adaptation and treatment with teduglutide.
Collapse
Affiliation(s)
- Janine Büttner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Elisabeth Blüthner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Sophie Greif
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Anja Kühl
- iPATH.Berlin, Core Unit der Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt, Campus Benjamin Franklin, 12203 Berlin, Germany;
| | - Sefer Elezkurtaj
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Pathology, Campus Mitte, 10117 Berlin, Germany;
| | - Jan Ulrich
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany; (J.U.); (S.M.)
| | - Sebastian Maasberg
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany; (J.U.); (S.M.)
| | - Christoph Jochum
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Frank Tacke
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Ulrich-Frank Pape
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany; (J.U.); (S.M.)
| |
Collapse
|
35
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
36
|
Nakata M, Yamaguchi Y, Monnkawa H, Takahashi M, Zhang B, Santoso P, Yada T, Maruyama I. 1,5-Anhydro-D-Fructose Exhibits Satiety Effects via the Activation of Oxytocin Neurons in the Paraventricular Nucleus. Int J Mol Sci 2023; 24:ijms24098248. [PMID: 37175953 PMCID: PMC10179633 DOI: 10.3390/ijms24098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
1,5-Anhydro-D-fructose (1,5-AF) is a bioactive monosaccharide that is produced by the glycogenolysis in mammalians and is metabolized to 1,5-anhydro-D-glucitol (1,5-AG). 1,5-AG is used as a marker of glycemic control in diabetes patients. 1,5-AF has a variety of physiological activities, but its effects on energy metabolism, including feeding behavior, are unclarified. The present study examined whether 1,5-AF possesses the effect of satiety. Peroral administration of 1,5-AF, and not of 1,5-AG, suppressed daily food intake. Intracerebroventricular (ICV) administration of 1,5-AF also suppressed feeding. To investigate the neurons targeted by 1,5-AF, we investigated c-Fos expression in the hypothalamus and brain stem. ICV injection of 1,5-AF significantly increased c-Fos positive oxytocin neurons and mRNA expression of oxytocin in the paraventricular nucleus (PVN). Moreover, 1,5-AF increased cytosolic Ca2+ concentration of oxytocin neurons in the PVN. Furthermore, the satiety effect of 1,5-AF was abolished in oxytocin knockout mice. These findings reveal that 1,5-AF activates PVN oxytocin neurons to suppress feeding, indicating its potential as the energy storage monitoring messenger to the hypothalamus for integrative regulation of energy metabolism.
Collapse
Affiliation(s)
- Masanori Nakata
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Yuto Yamaguchi
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Hikaru Monnkawa
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Midori Takahashi
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Boyang Zhang
- Department of Physiology, School of Medicine, Wakayama Medical University, Kimiidare 811-1, Wakayama 641-8509, Japan
| | - Putra Santoso
- Department of Physiology, Division of Integrative Physiology, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Toshihiko Yada
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
37
|
The Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Empagliflozin Reverses Hyperglycemia-Induced Monocyte and Endothelial Dysfunction Primarily through Glucose Transport-Independent but Redox-Dependent Mechanisms. J Clin Med 2023; 12:jcm12041356. [PMID: 36835891 PMCID: PMC9962711 DOI: 10.3390/jcm12041356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Hyperglycaemia-induced oxidative stress and inflammation contribute to vascular cell dysfunction and subsequent cardiovascular events in T2DM. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin significantly improves cardiovascular mortality in T2DM patients (EMPA-REG trial). Since SGLT-2 is known to be expressed on cells other than the kidney cells, we investigated the potential ability of empagliflozin to regulate glucose transport and alleviate hyperglycaemia-induced dysfunction of these cells. METHODS Primary human monocytes were isolated from the peripheral blood of T2DM patients and healthy individuals. Primary human umbilical vein endothelial cells (HUVECs) and primary human coronary artery endothelial cells (HCAECs), and fetoplacental endothelial cells (HPECs) were used as the EC model cells. Cells were exposed to hyperglycaemic conditions in vitro in 40 ng/mL or 100 ng/mL empagliflozin. The expression levels of the relevant molecules were analysed by RT-qPCR and confirmed by FACS. Glucose uptake assays were carried out with a fluorescent derivative of glucose, 2-NBDG. Reactive oxygen species (ROS) accumulation was measured using the H2DFFDA method. Monocyte and endothelial cell chemotaxis were measured using modified Boyden chamber assays. RESULTS Both primary human monocytes and endothelial cells express SGLT-2. Hyperglycaemic conditions did not significantly alter the SGLT-2 levels in monocytes and ECs in vitro or in T2DM conditions. Glucose uptake assays carried out in the presence of GLUT inhibitors revealed that SGLT-2 inhibition very mildly, but not significantly, suppressed glucose uptake by monocytes and endothelial cells. However, we detected the significant suppression of hyperglycaemia-induced ROS accumulation in monocytes and ECs when empagliflozin was used to inhibit SGLT-2 function. Hyperglycaemic monocytes and endothelial cells readily exhibited impaired chemotaxis behaviour. The co-treatment with empagliflozin reversed the PlGF-1 resistance phenotype of hyperglycaemic monocytes. Similarly, the blunted VEGF-A responses of hyperglycaemic ECs were also restored by empagliflozin, which could be attributed to the restoration of the VEGFR-2 receptor levels on the EC surface. The induction of oxidative stress completely recapitulated most of the aberrant phenotypes exhibited by hyperglycaemic monocytes and endothelial cells, and a general antioxidant N-acetyl-L-cysteine (NAC) was able to mimic the effects of empagliflozin. CONCLUSIONS This study provides data indicating the beneficial role of empagliflozin in reversing hyperglycaemia-induced vascular cell dysfunction. Even though both monocytes and endothelial cells express functional SGLT-2, SGLT-2 is not the primary glucose transporter in these cells. Therefore, it seems likely that empagliflozin does not directly prevent hyperglycaemia-mediated enhanced glucotoxicity in these cells by inhibiting glucose uptake. We identified the reduction of oxidative stress by empagliflozin as a primary reason for the improved function of monocytes and endothelial cells in hyperglycaemic conditions. In conclusion, empagliflozin reverses vascular cell dysfunction independent of glucose transport but could partially contribute to its beneficial cardiovascular effects.
Collapse
|
38
|
Ding L, Chen X, Zhang W, Dai X, Guo H, Pan X, Xu Y, Feng J, Yuan M, Gao X, Wang J, Xu X, Li S, Wu H, Cao J, He Q, Yang B. Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling. J Clin Invest 2023; 133:e154754. [PMID: 36594471 PMCID: PMC9797339 DOI: 10.1172/jci154754] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Understanding the regulatory mechanisms of PD-L1 expression in tumors provides key clues for improving immune checkpoint blockade efficacy or developing novel oncoimmunotherapy. Here, we showed that the FDA-approved sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin dramatically suppressed PD-L1 expression and enhanced T cell-mediated cytotoxicity. Mechanistic study revealed that SGLT2 colocalized with PD-L1 at the plasma membrane and recycling endosomes and thereby prevented PD-L1 from proteasome-mediated degradation. Canagliflozin disturbed the physical interaction between SGLT2 and PD-L1 and subsequently allowed the recognition of PD-L1 by Cullin3SPOP E3 ligase, which triggered the ubiquitination and proteasome-mediated degradation of PD-L1. In mouse models and humanized immune-transformation models, either canagliflozin treatment or SGLT2 silencing significantly reduced PD-L1 expression and limited tumor progression - to a level equal to the PD-1 mAb - which was correlated with an increase in the activity of antitumor cytotoxic T cells. Notably, prolonged progression-free survival and overall survival curves were observed in the group of PD-1 mAb-treated patients with non-small cell lung cancer with high expression of SGLT2. Therefore, our study identifies a regulator of cell surface PD-L1, provides a ready-to-use small-molecule drug for PD-L1 degradation, and highlights a potential therapeutic target to overcome immune evasion by tumor cells.
Collapse
Affiliation(s)
- Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaoyang Dai
- Center of Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Yanjun Xu
- Department of Medical Thoracic Oncology and
| | - Jianguo Feng
- Institute of Basic Medicine and Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China
| | - Meng Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Jian Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Sicheng Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
- The Innovation Institute for Artificial Intelligence in Medicine and
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
- The Innovation Institute for Artificial Intelligence in Medicine and
| |
Collapse
|
39
|
Wiarda JE, Becker SR, Sivasankaran SK, Loving CL. Regional epithelial cell diversity in the small intestine of pigs. J Anim Sci 2023; 101:skac318. [PMID: 36183288 PMCID: PMC9831138 DOI: 10.1093/jas/skac318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
Understanding regional distribution and specialization of small intestinal epithelial cells is crucial for developing methods to control appetite, stress, and nutrient uptake in swine. To establish a better understanding of specific epithelial cells found across different regions of the small intestine in pigs, we utilized single-cell RNA sequencing (scRNA-seq) to recover and analyze epithelial cells from duodenum, jejunum, and ileum. Cells identified included crypt cells, enterocytes, BEST4 enterocytes, goblet cells, and enteroendocrine (EE) cells. EE cells were divided into two subsets based on the level of expression of the EE lineage commitment gene, NEUROD1. NEUROD1hi EE cells had minimal expression of hormone-encoding genes and were dissimilar to EE cells in humans and mice, indicating a subset of EE cells unique to pigs. Recently discovered BEST4 enterocytes were detected in both crypts and villi throughout the small intestine via in situ staining, unlike in humans, where BEST4 enterocytes are found only in small intestinal villi. Proximal-to-distal gradients of expression were noted for hormone-encoding genes in EE cells and nutrient transport genes in enterocytes via scRNA-seq, demonstrating regional specialization. Regional gene expression in EE cells and enterocytes was validated via quantitative PCR (qPCR) analysis of RNA isolated from epithelial cells of different small intestinal locations. Though many genes had similar patterns of regional expression when assessed by qPCR of total epithelial cells, some regional expression was only detected via scRNA-seq, highlighting advantages of scRNA-seq to deconvolute cell type-specific regional gene expression when compared to analysis of bulk samples. Overall, results provide new information on regional localization and transcriptional profiles of epithelial cells in the pig small intestine.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Sage R Becker
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| |
Collapse
|
40
|
Baines DL, Vasiljevs S, Kalsi KK. Getting sweeter: new evidence for glucose transporters in specific cell types of the airway? Am J Physiol Cell Physiol 2023; 324:C153-C166. [PMID: 36409177 PMCID: PMC9829484 DOI: 10.1152/ajpcell.00140.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New technologies such as single-cell RNA sequencing (scRNAseq) has enabled identification of the mRNA transcripts expressed by individual cells. This review provides insight from recent scRNAseq studies on the expression of glucose transporters in the epithelial cells of the airway epithelium from trachea to alveolus. The number of studies analyzed was limited, not all reported the full range of glucose transporters and there were differences between cells freshly isolated from the airways and those grown in vitro. Furthermore, glucose transporter mRNA transcripts were expressed at lower levels than other epithelial marker genes. Nevertheless, these studies highlighted that there were differences in cellular expression of glucose transporters. GLUT1 was the most abundant of the broadly expressed transporters that included GLUT8, 10, and 13. GLUT9 transcripts were more common in basal cells and GLUT12 in ionocytes/ciliated cells. In addition to alveolar cells, SGLT1 transcripts were present in secretory cells. GLUT3 mRNA transcripts were expressed in a cell cluster that expressed monocarboxylate (MCT2) transporters. Such distributions likely underlie cell-specific metabolic requirements to support proliferation, ion transport, mucous secretion, environment sensing, and airway glucose homeostasis. These studies have also highlighted the role of glucose transporters in the movement of dehydroascorbic acid/vitamin C/myoinositol/urate, which are factors important to the innate immune properties of the airways. Discrepancies remain between detection of mRNAs, protein, and function of glucose transporters in the lungs. However, collation of the data from further scRNAseq studies may provide a better consensus and understanding, supported by qPCR, immunohistochemistry, and functional experiments.
Collapse
Affiliation(s)
- Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Kameljit K. Kalsi
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
41
|
Lupsa BC, Kibbey RG, Inzucchi SE. Ketones: the double-edged sword of SGLT2 inhibitors? Diabetologia 2023; 66:23-32. [PMID: 36255460 DOI: 10.1007/s00125-022-05815-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of medications used by individuals with type 2 diabetes that reduce hyperglycaemia by targeting glucose transport in the kidney, preventing its reabsorption, thereby inducing glucosuria. Besides improving HbA1c and reducing body weight and blood pressure, the SGLT2 inhibitors have also been demonstrated to improve cardiovascular and kidney outcomes, an effect largely independent of their effect on blood glucose levels. Indeed, the mechanisms underlying these benefits remain elusive. Treatment with SGLT2 inhibitors has been found to modestly increase systemic ketone levels. Ketone bodies are an ancillary fuel source substituting for glucose in some tissues and may also possess intrinsic anti-oxidative and anti-inflammatory effects. Some have proposed that ketones may in fact mediate the cardio-renal benefits of this drug category. However, a rare complication of SGLT2 inhibition is ketoacidosis, sometimes with normal or near-normal blood glucose concentrations, albeit occurring more frequently in patients with type 1 diabetes who are treated (predominately off-label) with one of these agents. We herein explore the notion that an underpinning of one of the more serious adverse effects of SGLT2 inhibitors may, in fact, explain, at least in part, some of their benefits-a potential 'double-edged sword' of this novel drug category.
Collapse
Affiliation(s)
- Beatrice C Lupsa
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| | - Richard G Kibbey
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Silvio E Inzucchi
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Li Y, Yuan X, Xu D, Zhou L. The Neuronal and Non-Neuronal Pathways of Sodium-Glucose Cotransporter-2 Inhibitor on Body Weight-Loss and Insulin Resistance. Diabetes Metab Syndr Obes 2023; 16:425-435. [PMID: 36820270 PMCID: PMC9938665 DOI: 10.2147/dmso.s399367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
With the emergence of sodium-glucose cotransporter 2 inhibitors (SGLT2i), the treatment of type 2 diabetes mellitus (T2DM) has achieved a new milestone, of which the insulin-independent mechanism could produce weight loss, improve insulin resistance (IR) and exert other protective effects. Besides the well-acknowledged biochemical processes, the dysregulated balance between sympathetic and parasympathetic activity may play a significant role in IR and obesity. Weight loss caused by SGLT-2i could be achieved via activating the liver-brain-adipose neural axis in adipocytes. We previously demonstrated that SGLT-2 are widely expressed in central nervous system (CNS) tissues, and SGLT-2i could inhibit central areas associated with autonomic control through unidentified pathways, indicating that the role of the central sympathetic inhibition of SGLT-2i on blood pressure and weight loss. However, the exact pathway of SGLT2i related to these effects and to what extent it depends on the neural system are not fully understood. The evidence of how SGLT-2i interacts with the nervous system is worth exploring. Therefore, in this review, we will illustrate the potential neurological processes by which SGLT2i improves IR in skeletal muscle, liver, adipose tissue, and other insulin-target organs via the CNS and sympathetic nervous system/parasympathetic nervous system (SNS/PNS).
Collapse
Affiliation(s)
- Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liling Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China, Tel +8613611927616, Email
| |
Collapse
|
43
|
Aguiar-Neves I, Santos-Ferreira D, Fontes-Carvalho R. SGLT2 Inhibition in Heart Failure with Preserved Ejection Fraction - The New Frontier. Rev Cardiovasc Med 2023; 24:1. [PMID: 39076855 PMCID: PMC11270412 DOI: 10.31083/j.rcm2401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 07/31/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with high morbidity and increasing socio-economic burden, compounded by the lack of effective treatment options available to treat this disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have previously been shown to improve cardiovascular and renal outcomes in patients with type 2 diabetes and patients with heart failure with reduced ejection fraction (HFrEF). Recent major clinical trials with SGLT2 inhibitors, both empagliflozin and dapagliflozin, have now demonstrated improved cardiovascular outcomes in patients with HFpEF and a significant reduction in heart failure hospitalization. Current evidence shows a potential for cardiovascular benefits with SGLT2 inhibition that is consistent across the spectrum of ejection fraction, age, New York Heart Association (NYHA) functional class, natriuretic peptide levels and diabetes status. Although the cardioprotective mechanisms behind SGLT2 inhibition remain unclear, ongoing clinical studies aim to clarify the role of SGLT2 inhibitors on biomarkers of cardiac metabolism, diastolic function and exercise capacity in HFpEF. This article analyzes current clinical evidence from randomized controlled trials and meta-analyses and explores the potential cardioprotective mechanisms of SGLT2 inhibitors, while also looking towards the future of SGLT2 inhibition in HFpEF.
Collapse
Affiliation(s)
- Inês Aguiar-Neves
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
| | - Diogo Santos-Ferreira
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-450 Porto, Portugal
| | - Ricardo Fontes-Carvalho
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
44
|
Pruett JE, Romero DG, Yanes Cardozo LL. Obesity-associated cardiometabolic complications in polycystic ovary syndrome: The potential role of sodium-glucose cotransporter-2 inhibitors. Front Endocrinol (Lausanne) 2023; 14:951099. [PMID: 36875461 PMCID: PMC9974663 DOI: 10.3389/fendo.2023.951099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is characterized by androgen excess, oligo/anovulation, and polycystic appearance of the ovaries. Women with PCOS have an increased prevalence of multiple cardiovascular risk factors such as insulin resistance, hypertension, renal injury, and obesity. Unfortunately, there is a lack of effective, evidence-based pharmacotherapeutics to target these cardiometabolic complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors provide cardiovascular protection in patients with and without type 2 diabetes mellitus. Although the exact mechanisms of how SGLT2 inhibitors confer cardiovascular protection remains unclear, numerous mechanistic hypotheses for this protection include modulation of the renin-angiotensin system and/or the sympathetic nervous system and improvement in mitochondrial function. Data from recent clinical trials and basic research show a potential role for SGLT2 inhibitors in treating obesity-associated cardiometabolic complications in PCOS. This narrative review discusses the mechanisms of the beneficial effect of SGLT2 inhibitors in cardiometabolic diseases in PCOS.
Collapse
Affiliation(s)
- Jacob E. Pruett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Licy L. Yanes Cardozo,
| |
Collapse
|
45
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Xu D, Zhou L. The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:437-445. [PMID: 36820272 PMCID: PMC9938669 DOI: 10.2147/dmso.s399343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hyperuricemia is a common comorbidity in patients with type 2 diabetes mellitus (T2DM), as insulin resistance (IR) or hyperinsulinemia is associated with higher serum uric acid (SUA) levels due to decreased uric acid (UA) secretion, and SUA vice versa is an important risk factor that promotes the occurrence and progression of T2DM and its complications. Growing evidence suggests that sodium-glucose cotransporter 2 inhibitors (SGLT-2i), a novel anti-diabetic drug initially developed to treat T2DM, may exert favorable effects in reducing SUA. Currently, one of the possible mechanisms is that SGLT2i increases urinary glucose excretion, probably inhibiting glucose transport 9 (GLUT9)-mediated uric acid reabsorption in the collecting duct, resulting in increased uric acid excretion in exchange for glucose reabsorption. Regardless of this possible mechanism, the underlying comprehensive mechanisms remain poorly elucidated. Therefore, in the present review, a variety of other potential mechanisms will be covered to identify the therapeutic role of SGLT-2i in hyperuricemia.
Collapse
Affiliation(s)
- Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liling Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China, Tel +8613611927616, Email
| |
Collapse
|
46
|
Pruett JE, Lirette ST, Romero DG, Yanes Cardozo LL. Sodium-Glucose Cotransporter-2 Inhibition Benefits in Cardiorenal Risk in Men and Women. J Endocr Soc 2022; 7:bvac191. [PMID: 36601021 PMCID: PMC9795477 DOI: 10.1210/jendso/bvac191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction In addition to their antihyperglycemic action, sodium-glucose cotransporter-2 (SGLT2) inhibitors are used in patients with type 2 diabetes due to their cardioprotective effects. Meta-analyses of large clinical trials have reported mixed results when examining sex differences in their cardioprotective effects. For example, some studies reported that, compared to women, men had a greater reduction in cardiovascular risk with SGLT2 inhibition. Taking advantage of several recently completed large-scale randomized controlled clinical trials, we tested the hypothesis that women have an attenuated response in primary cardiorenal outcomes to SGLT2 inhibition compared to men. Methods We performed a systematic search using PubMed and the Cochrane Library to find completed large-scale, prospective, randomized controlled Phase III clinical trials with primary outcomes testing cardiovascular or renal benefit. Studies had to include at least 1000 participants and report data about sex differences in their primary cardiovascular or renal outcomes. Results The present meta-analysis confirmed that SGLT2 inhibition decreased adverse cardiorenal outcomes in a pooled sex analysis using 13 large-scale clinical trials. SGLT2 inhibition exhibited similar reduction in hazard ratios for both men (0.79, 95% CI, 0.73-0.85) and women (0.78, 95% CI, 0.72-0.84) for adverse cardiorenal outcomes. Conclusion In contrast to previous findings, our updated meta-analysis suggests that women and men experience similar cardiorenal benefit in response to SGLT2 inhibition. These findings strongly suggest that SGLT2 inhibition therapy should be considered in patients with high risk for cardiovascular disease irrespective of the patient sex.
Collapse
Affiliation(s)
- Jacob E Pruett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
47
|
SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel) 2022; 14:cancers14235811. [PMID: 36497303 PMCID: PMC9738342 DOI: 10.3390/cancers14235811] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A new group of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT-2 inhibitors), have recently been shown to have anticancer effects and their expression has been confirmed in many cancer cell lines. Given the metabolic reprogramming of these cells in a glucose-based model, the ability of SGLT-2 inhibitors to block the glucose uptake by cancer cells appears to be an attractive therapeutic approach. In addition to tumour cells, SGLT-2s are only found in the proximal tubules in the kidneys. Furthermore, as numerous clinical trials have shown, the use of SGLT-2 inhibitors is well-tolerated and safe in patients with diabetes and/or heart failure. In vitro cell culture studies and preclinical in vivo studies have confirmed that SGLT-2 inhibitors exhibit antiproliferative effects on certain types of cancer. However, the mechanisms of this action remain unclear. Even in those tumour cell types in which SGLT-2 is present, there is sometimes an SGLT-2-independent mechanism of anticancer action of this group of drugs. This article presents the current state of knowledge of the potential mechanisms of the anticancer action of SGLT-2 inhibitors and their possible future application in clinical oncology.
Collapse
|
48
|
op den Kamp YJ, Gemmink A, de Ligt M, Dautzenberg B, Kornips E, Jorgensen JA, Schaart G, Esterline R, Pava DA, Hoeks J, Schrauwen-Hinderling VB, Kersten S, Havekes B, Koves TR, Muoio DM, Hesselink MK, Oscarsson J, Phielix E, Schrauwen P. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. Mol Metab 2022; 66:101620. [PMID: 36280113 PMCID: PMC9636471 DOI: 10.1016/j.molmet.2022.101620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 μm2 (0.01-0.06), p < 0.05) and number (0.003 μm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855.
Collapse
Affiliation(s)
| | - Anne Gemmink
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Marlies de Ligt
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Bas Dautzenberg
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Esther Kornips
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | | | - Gert Schaart
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | | | - Diego A. Pava
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Joris Hoeks
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Vera B. Schrauwen-Hinderling
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands,Departments of Radiology and Nuclear Medicine, Maastricht, the Netherlands
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Bas Havekes
- Departments of Internal Medicine, Division of Endocrinology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Timothy R. Koves
- Duke Molecular Physiology Institute and the Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC 27704, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and the Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC 27704, USA
| | | | - Jan Oscarsson
- BioPharmaceuticals R&D, Late-Stage Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | - Esther Phielix
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands,Corresponding author. Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands.
| |
Collapse
|
49
|
Pérez-Carrillo L, Aragón-Herrera A, Giménez-Escamilla I, Delgado-Arija M, García-Manzanares M, Anido-Varela L, Lago F, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Cardiac Sodium/Hydrogen Exchanger (NHE11) as a Novel Potential Target for SGLT2i in Heart Failure: A Preliminary Study. Pharmaceutics 2022; 14:pharmaceutics14101996. [PMID: 36297433 PMCID: PMC9608584 DOI: 10.3390/pharmaceutics14101996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the reduction of cardiovascular events, including the risk of death, associated with sodium/glucose cotransporter 2 inhibitors (SGLT2i), their basic action remains unclear. Sodium/hydrogen exchanger (NHE) has been proposed as the mechanism of action, but there are controversies related to its function and expression in heart failure (HF). We hypothesized that sodium transported-related molecules could be altered in HF and modulated through SGLT2i. Transcriptome alterations in genes involved in sodium transport in HF were investigated in human heart samples by RNA-sequencing. NHE11 and NHE1 protein levels were determined by ELISA; the effect of empagliflozin on NHE11 and NHE1 mRNA levels in rats’ left ventricular tissues was studied through RT-qPCR. We highlighted the overexpression of SLC9C2 and SCL9A1 sodium transport genes and the increase of the proteins that encode them (NHE11 and NHE1). NHE11 levels were correlated with left ventricular diameters, so we studied the effect of SGLT2i on its expression, observing that NHE11 mRNA levels were reduced in treated rats. We showed alterations in several sodium transports and reinforced the importance of these channels in HF progression. We described upregulation in NHE11 and NHE1, but only NHE11 correlated with human cardiac dysfunction, and its levels were reduced after treatment with empagliflozin. These results propose NHE11 as a potential target of SGLT2i in cardiac tissue.
Collapse
Affiliation(s)
- Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - María García-Manzanares
- Department of Animal Medicine and Surgery, Veterinary Faculty, CEU Cardenal Herrera Unversity, 46115 Valencia, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-9-6124-6644 (E.T. & E.R.-L.)
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Cardiovascular Biomedical Research Center Network (CIBERCV), 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-9-6124-6644 (E.T. & E.R.-L.)
| |
Collapse
|
50
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|