1
|
Seraphim A, Knott KD, Augusto JB, Menacho K, Tyebally S, Dowsing B, Bhattacharyya S, Menezes LJ, Jones DA, Uppal R, Moon JC, Manisty C. Non-invasive Ischaemia Testing in Patients With Prior Coronary Artery Bypass Graft Surgery: Technical Challenges, Limitations, and Future Directions. Front Cardiovasc Med 2022; 8:795195. [PMID: 35004905 PMCID: PMC8733203 DOI: 10.3389/fcvm.2021.795195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 01/09/2023] Open
Abstract
Coronary artery bypass graft (CABG) surgery effectively relieves symptoms and improves outcomes. However, patients undergoing CABG surgery typically have advanced coronary atherosclerotic disease and remain at high risk for symptom recurrence and adverse events. Functional non-invasive testing for ischaemia is commonly used as a gatekeeper for invasive coronary and graft angiography, and for guiding subsequent revascularisation decisions. However, performing and interpreting non-invasive ischaemia testing in patients post CABG is challenging, irrespective of the imaging modality used. Multiple factors including advanced multi-vessel native vessel disease, variability in coronary hemodynamics post-surgery, differences in graft lengths and vasomotor properties, and complex myocardial scar morphology are only some of the pathophysiological mechanisms that complicate ischaemia evaluation in this patient population. Systematic assessment of the impact of these challenges in relation to each imaging modality may help optimize diagnostic test selection by incorporating clinical information and individual patient characteristics. At the same time, recent technological advances in cardiac imaging including improvements in image quality, wider availability of quantitative techniques for measuring myocardial blood flow and the introduction of artificial intelligence-based approaches for image analysis offer the opportunity to re-evaluate the value of ischaemia testing, providing new insights into the pathophysiological processes that determine outcomes in this patient population.
Collapse
Affiliation(s)
- Andreas Seraphim
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Kristopher D Knott
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Joao B Augusto
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Katia Menacho
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sara Tyebally
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom
| | - Benjamin Dowsing
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sanjeev Bhattacharyya
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom
| | - Leon J Menezes
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rakesh Uppal
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - James C Moon
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Charlotte Manisty
- Department of Cardiac Imaging, Barts Health National Health System Trust, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
2
|
Myocardial Perfusion and Viability Imaging in Coronary Artery Disease: Clinical Value in Diagnosis, Prognosis, and Therapeutic Guidance. Am J Med 2021; 134:968-975. [PMID: 33864764 DOI: 10.1016/j.amjmed.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Coronary artery disease is a leading cause of morbidity and mortality worldwide. Noninvasive imaging tests play a significant role in diagnosing coronary artery disease, as well as risk stratification and guidance for revascularization. Myocardial perfusion imaging, including single photon emission computed tomography and positron emission tomography, has been widely employed. In this review, we will review test accuracy and clinical significance of these methods for diagnosing and managing coronary artery disease. We will further discuss the comparative usefulness of other noninvasive tests-stress echocardiography, coronary computed tomography angiography, and cardiac magnetic resonance imaging-in the evaluation of ischemia and myocardial viability.
Collapse
|
3
|
Bøgh N, Hansen ESS, Omann C, Lindhardt J, Nielsen PM, Stephenson RS, Laustsen C, Hjortdal VE, Agger P. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure. Sci Rep 2020; 10:8158. [PMID: 32424129 PMCID: PMC7235019 DOI: 10.1038/s41598-020-65098-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/24/2020] [Indexed: 01/16/2023] Open
Abstract
In heart failure, myocardial overload causes vast metabolic changes that impair cardiac energy production and contribute to deterioration of contractile function. However, metabolic therapy is not used in heart failure care. We aimed to investigate the interplay between cardiac function and myocardial carbohydrate metabolism in a large animal heart failure model. Using magnetic resonance spectroscopy with hyperpolarized pyruvate and magnetic resonance imaging at rest and during pharmacological stress, we investigated the in-vivo cardiac pyruvate metabolism and contractility in a porcine model of chronic pulmonary insufficiency causing right ventricular volume overload. To assess if increasing the carbohydrate metabolic reserve improves the contractile reserve, a group of animals were fed dichloroacetate, an activator of pyruvate oxidation. Volume overload caused heart failure with decreased pyruvate dehydrogenase flux and poor ejection fraction reserve. The animals treated with dichloroacetate had a larger contractile response to dobutamine stress than non-treated animals. Further, dichloroacetate prevented myocardial hypertrophy. The in-vivo metabolic data were validated by mitochondrial respirometry, enzyme activity assays and gene expression analyses. Our results show that pyruvate dehydrogenase kinase inhibition improves the contractile reserve and decreases hypertrophy by augmenting carbohydrate metabolism in porcine heart failure. The approach is promising for metabolic heart failure therapy.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Esben S S Hansen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Camilla Omann
- The Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Lindhardt
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per M Nielsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.,Institute of Clinical Sciences, College of Medical and Dental Science, The University of Birmingham, Birmingham, United Kingdom
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Vibeke E Hjortdal
- The Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
4
|
Motwani M, Swoboda PP, Plein S, Greenwood JP. Role of cardiovascular magnetic resonance in the management of patients with stable coronary artery disease. Heart 2017; 104:888-894. [DOI: 10.1136/heartjnl-2017-311658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/10/2017] [Indexed: 01/29/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) assesses cardiac function, ischaemia, viability and tissue characterisation, all within a single scan. Many studies regarding the role of CMR in stable coronary artery disease (CAD) have been published over the last decade providing important technical advances, large-scale clinical validation and prognostic data. As a result, CMR has emerged as a highly accurate technique for diagnosis and risk stratification in stable CAD and has been incorporated into national and international guidelines. Furthermore, clinical pathways utilising CMR have been shown to be the most cost-effective in several healthcare systems. In this review, we summarise the key roles and guideline recommendations for CMR in stable CAD supported by contemporary clinical evidence.
Collapse
|
5
|
Foley JRJ, Plein S, Greenwood JP. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques. World J Cardiol 2017; 9:92-108. [PMID: 28289524 PMCID: PMC5329750 DOI: 10.4330/wjc.v9.i2.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/15/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD.
Collapse
|
6
|
Cardona A, Zareba KM, Raman SV. The role of stress cardiac magnetic resonance in women. J Nucl Cardiol 2016; 23:1036-1040. [PMID: 27457529 DOI: 10.1007/s12350-016-0597-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of death in women. Nevertheless, extensive evidence demonstrates under-diagnosis and under-treatment of women for suspected or known ischemic heart disease (IHD). Stress cardiac magnetic resonance (CMR) is becoming readily available and offers significant advantages over other stress imaging modalities. The high spatial and temporal resolution of CMR provides the unique ability to identify subendocardial ischemia, viability, and the presence of microvascular disease. Furthermore, CMR is free from ionizing radiation, and image quality is not compromised by attenuation artifacts or patient size. Over the past two decades, evidence-based data have demonstrated the high diagnostic and prognostic performance of stress CMR in the context of IHD, often superior to other stress imaging techniques. Importantly, ad hoc studies confirmed these results in women with known or suspected IHD. Stress CMR warrants consideration as the modality of choice for women requiring an imaging test for ischemia given its strong evidence base, superior test characteristics, comprehensive nature, and unique ability to characterize both epicardial and microvascular disease.
Collapse
Affiliation(s)
- Andrea Cardona
- Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH, 43210, USA
- Division of Cardiology, University of Perugia, Perugia, Italy
| | - Karolina M Zareba
- Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH, 43210, USA
| | - Subha V Raman
- Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Cardiovascular magnetic resonance for the assessment of coronary artery disease. Int J Cardiol 2015; 193:84-92. [DOI: 10.1016/j.ijcard.2014.11.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 10/13/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022]
|
8
|
|
9
|
Bernard M, Jacquier A, Kober F. Cardiovascular magnetic resonance in ischemic heart disease. Future Cardiol 2014; 10:487-96. [PMID: 25301312 DOI: 10.2217/fca.14.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic heart disease is the major cause of death in developed countries. Recently, cardiovascular magnetic resonance (CMR) has appeared as a powerful technique for diagnosis and prognosis of ischemia, as well as for postischemic therapy follow-up. The objective of this chapter is to provide an overview of the role of CMR in assessing ischemic myocardium. It reviews the most recent studies in this field and includes CMR parameters that are already well established in the clinical setting as well as promising or emerging parameters in clinical use.
Collapse
Affiliation(s)
- Monique Bernard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Faculté de Médecine, 27 Bd Jean Moulin 13385 Marseille, Cedex 5, France
| | | | | |
Collapse
|
10
|
Cardiac MR perfusion imaging: where we are. Radiol Med 2014; 120:190-205. [PMID: 25030969 DOI: 10.1007/s11547-014-0435-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
To date, several clinical and multicentre studies have demonstrated the accuracy of perfusion cardiac magnetic resonance to detect ischaemia in comparison with quantitative coronary angiography, other noninvasive diagnostic techniques (single photon emission computed tomography; positron-emission tomography), and invasive haemodynamic measurements (fractional flow reserve). Moreover, the favourable safety profile and increasing availability contribute to make perfusion cardiac magnetic resonance one of the modalities of choice for the detection of myocardial ischaemia. Recently, the first evidence of the prognostic value of perfusion cardiac magnetic resonance results has also become available. This review summarises the technical and interpretation key points of perfusion cardiac magnetic resonance scan, the clinical indications, the most recent available literature about its diagnostic performance and prognostic value, and how perfusion cardiac magnetic resonance compares with other noninvasive techniques.
Collapse
|
11
|
Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M. MR myocardial perfusion imaging. Radiology 2013; 266:701-15. [PMID: 23431226 DOI: 10.1148/radiol.12110918] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Contrast material-enhanced myocardial perfusion imaging by using cardiac magnetic resonance (MR) imaging has, during the past decade, evolved into an accurate technique for diagnosing coronary artery disease, with excellent prognostic value. Advantages such as high spatial resolution; absence of ionizing radiation; and the ease of routine integration with an assessment of viability, wall motion, and cardiac anatomy are readily recognized. The need for training and technical expertise and the regulatory hurdles, which might prevent vendors from marketing cardiac MR perfusion imaging, may have hampered its progress. The current review considers both the technical developments and the clinical experience with cardiac MR perfusion imaging, which hopefully demonstrates that it has long passed the stage of a research technique. In fact, cardiac MR perfusion imaging is moving beyond traditional indications such as diagnosis of coronary disease to novel applications such as in congenital heart disease, where the imperatives of avoidance of ionizing radiation and achievement of high spatial resolution are of high priority. More wide use of cardiac MR perfusion imaging, and novel applications thereof, are aided by the progress in parallel imaging, high-field-strength cardiac MR imaging, and other technical advances discussed in this review.
Collapse
Affiliation(s)
- Otavio R Coelho-Filho
- Division of Cardiology and Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
12
|
Update on Dobutamine Stress Magnetic Resonance. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-012-9126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Cardiovascular imaging 2011 in the International Journal of Cardiovascular Imaging. Int J Cardiovasc Imaging 2012; 28:439-51. [PMID: 22476909 PMCID: PMC3326368 DOI: 10.1007/s10554-012-0040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Gebker R, Frick M, Jahnke C, Berger A, Schneeweis C, Manka R, Kelle S, Klein C, Schnackenburg B, Fleck E, Paetsch I. Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease. Int J Cardiovasc Imaging 2010; 28:89-97. [DOI: 10.1007/s10554-010-9764-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/02/2010] [Indexed: 12/30/2022]
|