1
|
Buzan MT, Wetscherek A, Rank CM, Kreuter M, Heussel CP, Kachelrieß M, Dinkel J. Delayed contrast dynamics as marker of regional impairment in pulmonary fibrosis using 5D MRI - a pilot study. Br J Radiol 2020; 93:20190121. [PMID: 32584606 DOI: 10.1259/bjr.20190121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To analyse delayed contrast dynamics of fibrotic lesions in interstitial lung disease (ILD) using five dimensional (5D) MRI and to correlate contrast dynamics with disease severity. METHODS 20 patients (mean age: 71 years; M:F, 13:7), with chronic fibrosing ILD: n = 12 idiopathic pulmonary fibrosis (IPF) and n = 8 non-IPF, underwent thin-section multislice CT as part of the standard diagnostic workup and additionally MRI of the lung. 2 min after contrast injection, a radial gradient echo sequence with golden-angle spacing was acquired during 5 min of free-breathing, followed by 5D image reconstruction. Disease was categorized as severe or non-severe according to CT morphological regional severity. For each patient, 10 lesions were analysed. RESULTS IPF lesions showed later peak enhancement compared to non-IPF (severe: p = 0.01, non-severe: p = 0.003). Severe lesions showed later peak enhancement compared to non-severe lesions, in non-IPF (p = 0.04), but not in IPF (p = 0.35). There was a tendency towards higher accumulation and washout rates in IPF compared to non-IPF in non-severe disease. Severe lesions had lower washout rate than non-severe ones in both IPF (p = 0.003) and non-IPF (p = 0.005). Continuous contrast agent accumulation, without washout, was found only in IPF lesions. CONCLUSIONS Contrast agent dynamics are influenced by type and severity of pulmonary fibrosis, which might enable a more thorough characterisation of disease burden. The regional impairment is of particular interest in the context of antifibrotic treatments and was characterised using a non-invasive, non-irradiating, free-breathing method. ADVANCES IN KNOWLEDGE Delayed contrast enhancement patterns allow the assessment of regional lung impairment which could represent different disease stages or phenotypes in ILD.
Collapse
Affiliation(s)
- Maria Ta Buzan
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christopher M Rank
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kreuter
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Center for Rare and Interstitial Lung Diseases, Pneumology and respiratory critical care medicine, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Claus Peter Heussel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Center for Rare and Interstitial Lung Diseases, Pneumology and respiratory critical care medicine, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Dinkel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
2
|
Foley JRJ, Plein S, Greenwood JP. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques. World J Cardiol 2017; 9:92-108. [PMID: 28289524 PMCID: PMC5329750 DOI: 10.4330/wjc.v9.i2.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/15/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD.
Collapse
|
3
|
Rutz T, Piccini D, Coppo S, Chaptinel J, Ginami G, Vincenti G, Stuber M, Schwitter J. Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach. Int J Cardiovasc Imaging 2016; 32:1735-1744. [DOI: 10.1007/s10554-016-0963-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
4
|
Castets CR, Lefrançois W, Wecker D, Ribot EJ, Trotier AJ, Thiaudière E, Franconi JM, Miraux S. Fast 3D ultrashort echo-time spiral projection imaging using golden-angle: A flexible protocol for in vivo mouse imaging at high magnetic field. Magn Reson Med 2016; 77:1831-1840. [PMID: 27170060 DOI: 10.1002/mrm.26263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a fast three-dimensional (3D) k-space encoding method based on spiral projection imaging (SPI) with an interleaved golden-angle approach and to validate this novel sequence on small animal models. METHODS A disk-like trajectory, in which each disk contained spirals, was developed. The 3D encoding was performed by tilting the disks with a golden angle. The sharpness was first calculated at different T2* values. Then, the sharpness was measured on phantom using variable undersampling ratios. Finally, the sampling method was validated by whole brain time-of-flight angiography and ultrasmall superparamagnetic iron oxide (USPIO) enhanced free-breathing liver angiography on mouse. RESULTS The in vitro results demonstrated the robustness of the method for short T2* and high undersampling ratios. In vivo experiments showed the ability to properly detect small vessels in the brain with an acquisition time shorter than 1 min. Free-breathing mice liver angiography showed the insensitivity of this protocol toward motions and flow artifacts, and enabled the visualization of liver motion during breathing. CONCLUSIONS The method implemented here allowed fast 3D k-space sampling with a high undersampling ratio. Combining the advantages of center-out spirals with the flexibility of the golden angle approach could have major implications for real-time imaging. Magn Reson Med 77:1831-1840, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | | | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Ukwatta E, Arevalo H, Rajchl M, White J, Pashakhanloo F, Prakosa A, Herzka DA, McVeigh E, Lardo AC, Trayanova NA, Vadakkumpadan F. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology. Med Phys 2016; 42:4579-90. [PMID: 26233186 DOI: 10.1118/1.4926428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. METHODS The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. RESULTS The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. CONCLUSIONS The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations.
Collapse
Affiliation(s)
- Eranga Ukwatta
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Hermenegild Arevalo
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Martin Rajchl
- Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom
| | - James White
- Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9, Canada
| | - Farhad Pashakhanloo
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Adityo Prakosa
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Daniel A Herzka
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Elliot McVeigh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Albert C Lardo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224
| | - Natalia A Trayanova
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205; and Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205
| | - Fijoy Vadakkumpadan
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Menon RG, Miller GW, Jeudy J, Rajagopalan S, Shin T. Free breathing three-dimensional late gadolinium enhancement cardiovascular magnetic resonance using outer volume suppressed projection navigators. Magn Reson Med 2016; 77:1533-1543. [PMID: 27122450 DOI: 10.1002/mrm.26234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop a three-dimensional, free-breathing, late gadolinium enhancement (3D FB-LGE) cardiovascular magnetic resonance (CMR) technique, and to compare it with clinically used two-dimensional breath-hold LGE (2D BH-LGE). METHODS The proposed 3D FB-LGE method consisted of inversion preparation, inversion delay, fat saturation, outer volume suppression, one-dimensional projection navigators, and a segmented stack of spirals acquisition. The 3D FB-LGE and 2D BH-LGE scans were performed on 29 cardiac patients. Qualitative analysis and quantitative analysis (in patients with scar) were performed. RESULTS No significant differences were noted between the 3D FB-LGE and 2D BH-LGE data sets in terms of overall image quality score (2D: 4.69 ± 0.60 versus 3D: 4.55 ± 0.51, P = 0.46) and image artifact score (2D: 1.10 ± 0.31 versus 3D: 1.17 ± 0.38; P = 0.63). The average difference in fractional scar volume between the 3D and 2D methods was 1.9% (n = 5). Acquisition time was significantly shorter for the 3D FB-LGE over 2D BH-LGE by a factor of 2.83 ± 0.77 (P < 0.0001). CONCLUSIONS The 3D FB-LGE is a viable option for patients, particularly in acute settings or in patients who are unable to comply with breath-hold instructions. Magn Reson Med 77:1533-1543, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Rajiv G Menon
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| | - G Wilson Miller
- Department of Radiology & Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jean Jeudy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Taehoon Shin
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Valvano G, Martini N, Landini L, Santarelli MF. Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI. Magn Reson Med 2015. [PMID: 26222932 DOI: 10.1002/mrm.25847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. METHODS A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. RESULTS The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. CONCLUSION The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giuseppe Valvano
- Department of Information Engineering, University of Pisa, Pisa, Italy.,Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Nicola Martini
- Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Luigi Landini
- Department of Information Engineering, University of Pisa, Pisa, Italy.,Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Maria Filomena Santarelli
- Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
8
|
Ukwatta E, Rajchl M, White J, Pashakhanloo F, Herzka DA, McVeigh E, Lardo AC, Trayanova N, Vadakkumpadan F. Image-based Reconstruction of 3D Myocardial Infarct Geometry for Patient Specific Applications. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9413. [PMID: 26633913 DOI: 10.1117/12.2082113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Accurate reconstruction of the three-dimensional (3D) geometry of a myocardial infarct from two-dimensional (2D) multi-slice image sequences has important applications in the clinical evaluation and treatment of patients with ischemic cardiomyopathy. However, this reconstruction is challenging because the resolution of common clinical scans used to acquire infarct structure, such as short-axis, late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, is low, especially in the out-of-plane direction. In this study, we propose a novel technique to reconstruct the 3D infarct geometry from low resolution clinical images. Our methodology is based on a function called logarithm of odds (LogOdds), which allows the broader class of linear combinations in the LogOdds vector space as opposed to being limited to only a convex combination in the binary label space. To assess the efficacy of the method, we used high-resolution LGE-CMR images of 36 human hearts in vivo, and 3 canine hearts ex vivo. The infarct was manually segmented in each slice of the acquired images, and the manually segmented data were downsampled to clinical resolution. The developed method was then applied to the downsampled image slices, and the resulting reconstructions were compared with the manually segmented data. Several existing reconstruction techniques were also implemented, and compared with the proposed method. The results show that the LogOdds method significantly outperforms all the other tested methods in terms of region overlap.
Collapse
Affiliation(s)
- Eranga Ukwatta
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Martin Rajchl
- Department of Computing, Imperial College London, London, United Kingdom
| | - James White
- Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, AB, Canada
| | - Farhad Pashakhanloo
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Daniel A Herzka
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Elliot McVeigh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Albert C Lardo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States ; School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia Trayanova
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States ; School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Fijoy Vadakkumpadan
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|