Published online May 26, 2014. doi: 10.4331/wjbc.v5.i2.106
Revised: January 16, 2014
Accepted: March 3, 2014
Published online: May 26, 2014
Processing time: 204 Days and 9.4 Hours
Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a “mass analyzer” which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article we present the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye.
Core tip: Mass spectrometric based proteomics has been an indispensable tool for molecular and cellular biology. The ability of mass spectrometry to identify and precisely quantify thousands of proteins from complex samples has contributed greatly to biology and medicine. Through this we have studied protein-protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, and the generation of quantitative protein profiles from diverse species. The anterior segment of the eye is one of the most complicated parts of the human body with over 5000 proteins identified. Proteomic analyses of different parts of the eye, in particular the anterior eye structures, involve high throughput methods that help identify proteins and their posttranslational modifications. In this article we review the current state of advancement in the identification of anterior chamber proteins. We will present our findings in the following order: cornea, aqueous humor, trabecular meshwork, ciliary body, iris and lens.