Published online Nov 27, 2021. doi: 10.4331/wjbc.v12.i6.104
Peer-review started: March 26, 2021
First decision: May 6, 2021
Revised: May 21, 2021
Accepted: November 28, 2021
Article in press: November 28, 2021
Published online: November 27, 2021
Processing time: 263 Days and 2.8 Hours
Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhib
Core Tip: Disorders of mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to Alzheimer’s disease (AD). Although further studies for mTOR, glucagon-like peptide-1, and dipeptidyl-peptidase-4 signaling are needed, they seem to be a promising approach for innovative AD-treatments.
