1
|
Chan FHM, Yeap HW, Liu Z, Rosli SN, Low KE, Bonne I, Wu Y, Chong SZ, Chen KW. Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection. Cell Rep 2025; 44:115216. [PMID: 39823227 DOI: 10.1016/j.celrep.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD). However, whether and how macrophages respond to Yersinia infection in the absence of YopJ or caspase-8 activity remains unclear. Here, we demonstrate that loss of YopJ or its catalytic activity triggers non-canonical inflammasome activation in macrophages and that caspase-11 is required to restrict the bacterial burden in vivo. Under conditions of low caspase-8 activity, wild-type Y. pseudotuberculosis invades macrophages and accesses the cytosol, leading to non-canonical inflammasome activation. Thus, our study highlights the plasticity of death pathways to ensure GSDMD activation during Yersinia infection.
Collapse
Affiliation(s)
- Felicia Hui Min Chan
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zonghan Liu
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Isabelle Bonne
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Shu Zhen Chong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
2
|
Nataraj NM, Sillas RG, Herrmann BI, Shin S, Brodsky IE. Blockade of IKK signaling induces RIPK1-independent apoptosis in human macrophages. PLoS Pathog 2024; 20:e1012469. [PMID: 39186805 PMCID: PMC11407650 DOI: 10.1371/journal.ppat.1012469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival. Unexpectedly, we find that human macrophages undergo apoptosis independently of RIPK1 in response to Yersinia or chemical blockade of IKKβ. Instead, IKK blockade led to decreased cFLIP expression, and overexpression of cFLIP contributed to protection from IKK blockade-induced apoptosis in human macrophages. We found that IKK blockade also induces RIPK1 kinase activity-independent apoptosis in human T cells and human pancreatic cells. Altogether, our data indicate that, in contrast to murine cells, blockade of IKK activity in human cells triggers a distinct apoptosis pathway that is independent of RIPK1 kinase activity. These findings have implications for the contribution of RIPK1 to cell death in human cells and the efficacy of RIPK1 inhibition in human diseases.
Collapse
Affiliation(s)
- Neha M Nataraj
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beatrice I Herrmann
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunny Shin
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Igor E Brodsky
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Fromm K, Ortelli M, Boegli A, Dehio C. Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of Bartonella. Proc Natl Acad Sci U S A 2024; 121:e2310348121. [PMID: 38709922 PMCID: PMC11098119 DOI: 10.1073/pnas.2310348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel4056, Switzerland
| | | | | | | |
Collapse
|
4
|
Rodríguez-González J, Gutiérrez-Kobeh L. Apoptosis and its pathways as targets for intracellular pathogens to persist in cells. Parasitol Res 2023; 123:60. [PMID: 38112844 PMCID: PMC10730641 DOI: 10.1007/s00436-023-08031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
Apoptosis is a finely programmed process of cell death in which cells silently dismantle and actively participate in several operations such as immune response, differentiation, and cell growth. It can be initiated by three main pathways: the extrinsic, the perforin granzyme, and the intrinsic that culminate in the activation of several proteins in charge of tearing down the cell. On the other hand, apoptosis represents an ordeal for pathogens that live inside cells and maintain a strong dependency with them; thus, they have evolved multiple strategies to manipulate host cell apoptosis on their behalf. It has been widely documented that diverse intracellular bacteria, fungi, and parasites can interfere with most steps of the host cell apoptotic machinery to inhibit or induce apoptosis. Indeed, the inhibition of apoptosis is considered a virulence property shared by many intracellular pathogens to ensure productive replication. Some pathogens intervene at an early stage by interfering with the sensing of extracellular signals or transduction pathways. Others sense cellular stress or target the apoptosis regulator proteins of the Bcl-2 family or caspases. In many cases, the exact molecular mechanisms leading to the interference with the host cell apoptotic cascade are still unknown. However, intense research has been conducted to elucidate the strategies employed by intracellular pathogens to modulate host cell death. In this review, we summarize the main routes of activation of apoptosis and present several processes used by different bacteria, fungi, and parasites to modulate the apoptosis of their host cells.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez,", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P. 14080, Ciudad de México, México
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez,", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P. 14080, Ciudad de México, México.
| |
Collapse
|
5
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
7
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
8
|
Park E, Jeon H, Lee N, Yu J, Park H, Satoh T, Akira S, Furuyama T, Lee C, Choi J, Rho J. TDAG51 promotes transcription factor FoxO1 activity during LPS-induced inflammatory responses. EMBO J 2023; 42:e111867. [PMID: 37203866 PMCID: PMC10308371 DOI: 10.15252/embj.2022111867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Eui‐Soon Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Nari Lee
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Jiyeon Yu
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hye‐Won Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Tatsuo Furuyama
- Department of Clinical ExaminationKagawa Prefectural University of Health SciencesKagawaJapan
| | - Chul‐Ho Lee
- Laboratory Animal CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jong‐Soon Choi
- Division of Life ScienceKorea Basic Science Institute (KBSI)DaejeonKorea
| | - Jaerang Rho
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| |
Collapse
|
9
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Protection Induced by Oral Vaccination with a Recombinant Yersinia pseudotuberculosis Delivering Yersinia pestis LcrV and F1 Antigens in Mice and Rats against Pneumonic Plague. Infect Immun 2022; 90:e0016522. [PMID: 35900096 PMCID: PMC9387218 DOI: 10.1128/iai.00165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A newly attenuated Yersinia pseudotuberculosis strain (designated Yptb1) with triple mutation Δasd ΔyopK ΔyopJ and chromosomal insertion of the Y. pestis caf1R-caf1M-caf1A-caf1 operon was constructed as a live vaccine platform. Yptb1 tailored with an Asd+ plasmid (pYA5199) (designated Yptb1[pYA5199]) simultaneously delivers Y. pestis LcrV and F1. The attenuated Yptb1(pYA5199) localized in the Peyer's patches, lung, spleen, and liver for a few weeks after oral immunization without causing any disease symptoms in immunized rodents. An oral prime-boost Yptb1(pYA5199) immunization stimulated potent antibody responses to LcrV, F1, and Y. pestis whole-cell lysate (YPL) in Swiss Webster mice and Brown Norway rats. The prime-boost Yptb1(pYA5199) immunization induced higher antigen-specific humoral and cellular immune responses in mice than a single immunization did, and it provided complete short-term and long-term protection against a high dose of intranasal Y. pestis challenge in mice. Moreover, the prime-boost immunization afforded substantial protection for Brown Norway rats against an aerosolized Y. pestis challenge. Our study highlights that Yptb1(pYA5199) has high potential as an oral vaccine candidate against pneumonic plague.
Collapse
|
11
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bekere I, Huang J, Schnapp M, Rudolph M, Berneking L, Ruckdeschel K, Grundhoff A, Günther T, Fischer N, Aepfelbacher M. Yersinia remodels epigenetic histone modifications in human macrophages. PLoS Pathog 2021; 17:e1010074. [PMID: 34793580 PMCID: PMC8639070 DOI: 10.1371/journal.ppat.1010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Various pathogens systematically reprogram gene expression in macrophages, but the underlying mechanisms are largely unknown. We investigated whether the enteropathogen Yersinia enterocolitica alters chromatin states to reprogram gene expression in primary human macrophages. Genome-wide chromatin immunoprecipitation (ChIP) seq analyses showed that pathogen-associated molecular patterns (PAMPs) induced up- or down-regulation of histone modifications (HMod) at approximately 14500 loci in promoters and enhancers. Effectors of Y. enterocolitica reorganized about half of these dynamic HMod, with the effector YopP being responsible for about half of these modulatory activities. The reorganized HMod were associated with genes involved in immune response and metabolism. Remarkably, the altered HMod also associated with 61% of all 534 known Rho GTPase pathway genes, revealing a new level in Rho GTPase regulation and a new aspect of bacterial pathogenicity. Changes in HMod were associated to varying degrees with corresponding gene expression, e. g. depending on chromatin localization and cooperation of the HMod. In summary, infection with Y. enterocolitica remodels HMod in human macrophages to modulate key gene expression programs of the innate immune response. Human pathogenic bacteria can affect epigenetic histone modifications to modulate gene expression in host cells. However, a systems biology analysis of this bacterial virulence mechanism in immune cells has not been performed. Here we analyzed genome-wide epigenetic histone modifications and associated gene expression changes in primary human macrophages infected with enteropathogenic Yersinia enterocolitica. We demonstrate that Yersinia virulence factors extensively modulate histone modifications and associated gene expression triggered by the pathogen-associated molecular patterns (PAMPs) of the bacteria. The epigenetically modulated genes are involved in several key pathways of the macrophage immune response, including the Rho GTPase pathway, revealing a novel level of Rho GTPase regulation by a bacterial pathogen. Overall, our findings provide an in-depth view of epigenetic and gene expression changes during host-pathogen interaction and might have further implications for understanding of the innate immune memory in macrophages.
Collapse
Affiliation(s)
- Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maren Rudolph
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Thomas Günther
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| |
Collapse
|
13
|
Abstract
Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.
Collapse
|
14
|
Bjanes E, Sillas RG, Matsuda R, Demarco B, Fettrelet T, DeLaney AA, Kornfeld OS, Lee BL, Rodríguez López EM, Grubaugh D, Wynosky-Dolfi MA, Philip NH, Krespan E, Tovar D, Joannas L, Beiting DP, Henao-Mejia J, Schaefer BC, Chen KW, Broz P, Brodsky IE. Genetic targeting of Card19 is linked to disrupted NINJ1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection. PLoS Pathog 2021; 17:e1009967. [PMID: 34648590 PMCID: PMC8547626 DOI: 10.1371/journal.ppat.1009967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/26/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rina Matsuda
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Timothée Fettrelet
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Alexandra A. DeLaney
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Opher S. Kornfeld
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Bettina L. Lee
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Eric M. Rodríguez López
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Naomi H. Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Dorothy Tovar
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonel Joannas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- CRISPR/Cas9 Mouse Targeting Core, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Kaiwen W. Chen
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Igor E. Brodsky
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Dolmatova LS, Ulanova OA, Timchenko NF. Effect of a Heat-Stable Toxin of Yersinia pseudotuberculosis on the Functional and Phenotypic Traits of Two Types of Phagocytes in the Holothurian Eupentacta fraudatrix. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol 2020; 74:221-245. [PMID: 32660389 DOI: 10.1146/annurev-micro-020518-120221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.
Collapse
Affiliation(s)
- Katherine Andrea Schubert
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
17
|
Chen WK, Feng LJ, Liu QD, Ke QF, Cai PY, Zhang PR, Cai LQ, Huang NL, Lin WP. Inhibition of leucine-rich repeats and calponin homology domain containing 1 accelerates microglia-mediated neuroinflammation in a rat traumatic spinal cord injury model. J Neuroinflammation 2020; 17:202. [PMID: 32631435 PMCID: PMC7339506 DOI: 10.1186/s12974-020-01884-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) triggers the primary mechanical injury and secondary inflammation-mediated injury. Neuroinflammation-mediated insult causes secondary and extensive neurological damage after SCI. Microglia play a pivotal role in the initiation and progression of post-SCI neuroinflammation. METHODS To elucidate the significance of LRCH1 to microglial functions, we applied lentivirus-induced LRCH1 knockdown in primary microglia culture and tested the role of LRCH1 in microglia-mediated inflammatory reaction both in vitro and in a rat SCI model. RESULTS We found that LRCH1 was downregulated in microglia after traumatic SCI. LRCH1 knockdown increased the production of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6 after in vitro priming with lipopolysaccharide and adenosine triphosphate. Furthermore, LRCH1 knockdown promoted the priming-induced microglial polarization towards the pro-inflammatory inducible nitric oxide synthase (iNOS)-expressing microglia. LRCH1 knockdown also enhanced microglia-mediated N27 neuron death after priming. Further analysis revealed that LRCH1 knockdown increased priming-induced activation of p38 mitogen-activated protein kinase (MAPK) and Erk1/2 signaling, which are crucial to the inflammatory response of microglia. When LRCH1-knockdown microglia were adoptively injected into rat spinal cords, they enhanced post-SCI production of pro-inflammatory cytokines, increased SCI-induced recruitment of leukocytes, aggravated SCI-induced tissue damage and neuronal death, and worsened the locomotor function. CONCLUSION Our study reveals for the first time that LRCH1 serves as a negative regulator of microglia-mediated neuroinflammation after SCI and provides clues for developing novel therapeutic approaches against SCI.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
| | - Lin-Juan Feng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001 China
| | - Qiao-Dan Liu
- Department of Head and Neck Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519001 China
| | - Qing-Feng Ke
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
| | - Pei-Ya Cai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
| | - Pei-Ru Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
| | - Li-Quan Cai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
| | - Nian-Lai Huang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
| | - Wen-Ping Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000 China
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Shenzhen, 518001 China
| |
Collapse
|
18
|
To catch a thief: regulated RIPK1 post-translational modifications as a fail-safe system to detect and overcome pathogen subversion of immune signaling. Curr Opin Microbiol 2020; 54:111-118. [PMID: 32092691 DOI: 10.1016/j.mib.2020.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Any pathogen worth its salt has mechanisms to evade, subvert, or antagonize host innate immune responses induced by pattern recognition receptors. Resistance against such pathogens therefore requires alternative means to activate protective immune responses. Intriguingly, the receptors that regulate antimicrobial gene expression are coupled to cell death pathways that are activated by blockade of NF-κB and MAPK signaling. In this review, we discuss the regulation of apoptosis in response to pathogen disruption of immune signaling and the role of this cell death response in protection against such pathogens. Stanley often observed that bacterial pathogens are excellent cell biologists and immunologists, and he noted that studying pathogen-host interactions could pave the way to new insights about host biology. Indeed, how Yersinia and other pathogens disrupt innate immune signaling has provided new insight into these pathways and revealed new ways to think about immunogenic properties of apoptosis during bacterial infection.
Collapse
|
19
|
Difference in Strain Pathogenicity of Septicemic Yersinia pestis Infection in a TLR2 -/- Mouse Model. Infect Immun 2020; 88:IAI.00792-19. [PMID: 31907194 DOI: 10.1128/iai.00792-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is the causative agent of bubonic, pneumonic, and septicemic plague. We demonstrate that Toll-like receptor 2-deficient (TLR2-/-) mice are resistant to septicemic infection by the KIM5 strain of Y. pestis but not to infection by the CO92 Δpgm strain. This resistance is dependent on TLR2, the route of infection, and the isoform of YopJ. Elevated bacterial burdens were found in the spleens of CO92 Δpgm-infected animals by 24 h postinfection and in the livers by 4 days. The YopJ isoform present contributed directly to cytotoxicity and inflammatory cytokine production of bone marrow-derived macrophages from TLR2-/- mice. Immune cell trafficking is altered in CO92 Δpgm infections, with an increased neutrophil infiltration to the spleen 5 days postinfection. Immune cell infiltration to the liver was greater and earlier in KIM5-infected TLR2-/- mice. The functionality of the immune cells was assessed by the ability to develop reactive oxygen and nitrogen species. Our data suggest an inhibition of granulocytes in forming these species in CO92 Δpgm-infected TLR2-/- mice. These findings suggest that resistance to KIM5 in TLR2-/- mice is dependent on early immune cell trafficking and functionality.
Collapse
|
20
|
Li C, Yin W, Yu N, Zhang D, Zhao H, Liu J, Liu J, Pan Y, Lin L. miR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome. Oral Dis 2019; 25:2030-2039. [PMID: 31529565 DOI: 10.1111/odi.13198] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study is to detect pyroptosis in macrophages stimulated with Porphyromonas gingivalis and elucidate the mechanism by which P. gingivalis induces pyroptosis in macrophages. METHODS The immortalized human monocyte cell line U937 was stimulated with P. gingivalis W83. Flow cytometry was carried out to detect pyroptosis in macrophages. The expression of miR-155 was detected by real-time PCR and inhibited using RNAi. Suppressor of cytokine signaling (SOCS) 1, cleaved GSDMD, caspase (CAS)-1, caspase-11, apoptosis-associated speck-like protein (ASC), and NOD-like receptor protein 3 (NLRP3) were detected by Western blotting, and IL-1β and IL-18 were detected by ELISA. RESULTS The rate of pyroptosis in macrophages and the expression of miR-155 increased upon stimulation with P. gingivalis and pyroptosis rate decreased when miR-155 was silenced. GSDMD-NT, CAS-11, CAS-1, ASC, NLRP3, IL-1β, and IL-18 levels increased, but SOCS1 decreased in U937 cells after stimulated with P. gingivalis. These changes were weakened in P. gingivalis-stimulated U937 macrophages transfected with lentiviruses carrying miR-155 shRNA compared to those transfected with non-targeting control sequence. However, there was no significant difference in ASC expression between P. gingivalis-stimulated shCont and shMiR-155 cells. CONCLUSIONS Porphyromonas gingivalis promotes pyroptosis in macrophages during early infection. miR-155 is involved in this process through regulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chen Li
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Wanting Yin
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,MALO CLINIC, Shenyang, China
| | - Ning Yu
- Department of Periodontics and Oral Medicine, University of Michigan at Ann Arbor, MI, USA
| | - Dongmei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Key Laboratory of Oral Diseases, Shenyang, China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jingbo Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Translational Medicine Research Center of Oral Diseases, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat Commun 2019; 10:1729. [PMID: 30988283 PMCID: PMC6465317 DOI: 10.1038/s41467-019-09690-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.
Collapse
|
22
|
Kumar S, Lata KS, Sharma P, Bhairappanavar SB, Soni S, Das J. Inferring pathogen-host interactions between Leptospira interrogans and Homo sapiens using network theory. Sci Rep 2019; 9:1434. [PMID: 30723266 PMCID: PMC6363727 DOI: 10.1038/s41598-018-38329-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
Leptospirosis is the most emerging zoonotic disease of epidemic potential caused by pathogenic species of Leptospira. The bacterium invades the host system and causes the disease by interacting with the host proteins. Analyzing these pathogen-host protein interactions (PHPIs) may provide deeper insight into the disease pathogenesis. For this analysis, inter-species as well as intra-species protein interactions networks of Leptospira interrogans and human were constructed and investigated. The topological analyses of these networks showed lesser connectivity in inter-species network than intra-species, indicating the perturbed nature of the inter-species network. Hence, it can be one of the reasons behind the disease development. A total of 35 out of 586 PHPIs were identified as key interactions based on their sub-cellular localization. Two outer membrane proteins (GpsA and MetXA) and two periplasmic proteins (Flab and GlyA) participating in PHPIs were found conserved in all pathogenic, intermediate and saprophytic spp. of Leptospira. Furthermore, the bacterial membrane proteins involved in PHPIs were found playing major roles in disruption of the immune systems and metabolic processes within host and thereby causing infectious disease. Thus, the present results signify that the membrane proteins participating in such interactions hold potential to serve as effective immunotherapeutic candidates for vaccine development.
Collapse
Affiliation(s)
- Swapnil Kumar
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Kumari Snehkant Lata
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Priyanka Sharma
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Shivarudrappa B Bhairappanavar
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Subhash Soni
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Jayashankar Das
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.
| |
Collapse
|
23
|
Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection. Infect Immun 2017; 85:IAI.00570-17. [PMID: 28847850 PMCID: PMC5649010 DOI: 10.1128/iai.00570-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Yersinia pestis causes bubonic, pneumonic, and septicemic plague, diseases that are rapidly lethal to most mammals, including humans. Plague develops as a consequence of bacterial neutralization of the host's innate immune response, which permits uncontrolled growth and causes the systemic hyperactivation of the inflammatory response. We previously found that host type I interferon (IFN) signaling is induced during Y. pestis infection and contributes to neutrophil depletion and disease. In this work, we show that type I IFN expression is derived from the recognition of intracellular Y. pestis by host Toll-like receptor 7 (TLR7). Type I IFN expression proceeded independent of myeloid differentiation factor 88 (MyD88), which is the only known signaling adaptor for TLR7, suggesting that a noncanonical mechanism occurs in Y. pestis-infected macrophages. In the murine plague model, TLR7 was a significant contributor to the expression of serum IFN-β, whereas MyD88 was not. Furthermore, like the type I IFN response, TLR7 contributed to the lethality of septicemic plague and was associated with the suppression of neutrophilic inflammation. In contrast, TLR7 was important for defense against disease in the lungs. Together, these data demonstrate that an atypical TLR7 signaling pathway contributes to type I IFN expression during Y. pestis infection and suggest that the TLR7-driven type I IFN response plays an important role in determining the outcome of plague.
Collapse
|
24
|
Abstract
As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.
Collapse
Affiliation(s)
- Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
25
|
Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K, Gray F, Choa R, Bjanes E, Buza EL, Hu B, Dillon CP, Green DR, Berger SB, Gough PJ, Bertin J, Brodsky IE. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J Exp Med 2017; 214:3171-3182. [PMID: 28855241 PMCID: PMC5679171 DOI: 10.1084/jem.20170347] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
RIPK1 regulates cytokine signaling and cell death during infection and inflammation. Peterson et al. show that RIPK1 kinase activity triggers apoptosis in response to bacterial pathogen blockade of innate immune signaling and that this pathway of effector-triggered immunity is critical for a successful antibacterial response. Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed “effector-triggered immunity.” The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase–induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexandra DeLaney
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Meghan A Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kendra Asklof
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Falon Gray
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Ruth Choa
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elisabet Bjanes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elisabeth L Buza
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Baofeng Hu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | | | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Scott B Berger
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Collegeville, PA
| | - Peter J Gough
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Collegeville, PA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA .,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Enhanced Macrophage M1 Polarization and Resistance to Apoptosis Enable Resistance to Plague. J Infect Dis 2017; 216:761-770. [DOI: 10.1093/infdis/jix348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Philip NH, Zwack EE, Brodsky IE. Activation and Evasion of Inflammasomes by Yersinia. Curr Top Microbiol Immunol 2017; 397:69-90. [PMID: 27460805 DOI: 10.1007/978-3-319-41171-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed 'the inflammasome.' Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.
Collapse
Affiliation(s)
- Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Immunology Graduate Group, Philadelphia, PA, 19104, USA
| | - Erin E Zwack
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Cell and Molecular Biology Graduate Group, Philadelphia, PA, 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA. .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
29
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|
30
|
Peterson LW, Philip NH, Dillon CP, Bertin J, Gough PJ, Green DR, Brodsky IE. Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote Yersinia-Induced Apoptosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4110-4117. [PMID: 27733552 DOI: 10.4049/jimmunol.1601294] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023]
Abstract
Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
31
|
Temporal Progression of Pneumonic Plague in Blood of Nonhuman Primate: A Transcriptomic Analysis. PLoS One 2016; 11:e0151788. [PMID: 27003632 PMCID: PMC4803270 DOI: 10.1371/journal.pone.0151788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023] Open
Abstract
Early identification of impending illness during widespread exposure to a pathogenic agent offers a potential means to initiate treatment during a timeframe when it would be most likely to be effective and has the potential to identify novel therapeutic strategies. The latter could be critical, especially as antibiotic resistance is becoming widespread. In order to examine pre-symptomatic illness, African green monkeys were challenged intranasally with aerosolized Yersinia pestis strain CO92 and blood samples were collected in short intervals from 45 m till 42 h post-exposure. Presenting one of the first genomic investigations of a NHP model challenged by pneumonic plague, whole genome analysis was annotated in silico and validated by qPCR assay. Transcriptomic profiles of blood showed early perturbation with the number of differentially expressed genes increasing until 24 h. By then, Y. pestis had paralyzed the host defense, as suggested by the functional analyses. Early activation of the apoptotic networks possibly facilitated the pathogen to overwhelm the defense mechanisms, despite the activation of the pro-inflammatory mechanism, toll-like receptors and microtubules at the port-of-entry. The overexpressed transcripts encoding an early pro-inflammatory response particularly manifested in active lymphocytes and ubiquitin networks were a potential deviation from the rodent models, which needs further verification. In summary, the present study recognized a pattern of Y. pestis pathogenesis potentially more applicable to the human system. Independent validation using the complementary omics approach with comprehensive evaluation of the organs, such as lungs which showed early bacterial infection, is essential.
Collapse
|
32
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
33
|
Rosadini CV, Zanoni I, Odendall C, Green ER, Paczosa MK, Philip NH, Brodsky IE, Mecsas J, Kagan JC. A Single Bacterial Immune Evasion Strategy Dismantles Both MyD88 and TRIF Signaling Pathways Downstream of TLR4. Cell Host Microbe 2015; 18:682-93. [PMID: 26651944 PMCID: PMC4685476 DOI: 10.1016/j.chom.2015.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/09/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
Abstract
During bacterial infections, Toll-like receptor 4 (TLR4) signals through the MyD88- and TRIF-dependent pathways to promote pro-inflammatory and interferon (IFN) responses, respectively. Bacteria can inhibit the MyD88 pathway, but if the TRIF pathway is also targeted is unclear. We demonstrate that, in addition to MyD88, Yersinia pseudotuberculosis inhibits TRIF signaling through the type III secretion system effector YopJ. Suppression of TRIF signaling occurs during dendritic cell (DC) and macrophage infection and prevents expression of type I IFN and pro-inflammatory cytokines. YopJ-mediated inhibition of TRIF prevents DCs from inducing natural killer (NK) cell production of antibacterial IFNγ. During infection of DCs, YopJ potently inhibits MAPK pathways but does not prevent activation of IKK- or TBK1-dependent pathways. This singular YopJ activity efficiently inhibits TLR4 transcription-inducing activities, thus illustrating a simple means by which pathogens impede innate immunity.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy; Unit of Cell Signalling and Innate Immunity, Humanitas Clinical and Research Center, Rozzano 20089, Italy
| | - Charlotte Odendall
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Erin R Green
- Graduate Program in Molecular Microbiology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michelle K Paczosa
- Graduate Program in Immunology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Naomi H Philip
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joan Mecsas
- Graduate Program in Molecular Microbiology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Immunology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Lai XH, Xu Y, Chen XM, Ren Y. Macrophage cell death upon intracellular bacterial infection. ACTA ACUST UNITED AC 2015; 2:e779. [PMID: 26690967 DOI: 10.14800/macrophage.779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Dermato-venerology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA)
| |
Collapse
|
35
|
Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci U S A 2014; 111:7385-90. [PMID: 24799700 DOI: 10.1073/pnas.1403252111] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor signaling and subsequent activation of NF-κB- and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.
Collapse
|
36
|
|
37
|
Hinojosa CA, Akula Suresh Babu R, Rahman MM, Fernandes G, Boyd AR, Orihuela CJ. Elevated A20 contributes to age-dependent macrophage dysfunction in the lungs. Exp Gerontol 2014; 54:58-66. [PMID: 24440463 DOI: 10.1016/j.exger.2014.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
Advanced age is associated with chronic low-grade inflammation (i.e. inflamm-aging) and poor macrophage function that includes a weak pro-inflammatory cytokine response to bacteria and diminished phagocytosis (i.e. age-dependent macrophage dysfunction [ADMD]). One reason for this is that ADMD is associated with poor NFκB and MAPK activation following Toll-like receptor stimulation. Herein, we tested the hypothesis that inflamm-aging induces production of A20, a cytosolic and homeostatic suppressor of the NFκB and MAPK signaling cascades that deubiquitinates (i.e. inactivates) the common upstream signaling molecule TRAF6, and this is responsible for ADMD. Western blots and immunohistochemistry comparing tissues from young, mature, and aged C57BL/6 mice indicated that A20 was strongly elevated in the lungs of aged mice but not in other tissues. Elevated A20 was also detected in alveolar macrophages (AM) from aged mice. In contrast CYLD, a second deubiquitinase that also negatively regulates the NFκB pathway was decreased with aging. Following co-incubation of AM with the bacteria Streptococcus pneumoniae, TRAF6 polyubiquitination was diminished in AM isolated from aged versus young mice. A20 production was inducible in the J774A.1 macrophage cell line and C57BL/6AM by overnight incubation with TNFα but not IL-6. Retrovirus-induced expression of A20 in J774A.1 cells resulted in their diminished production of IL-6 following exposure to S. pneumoniae but had no effect on levels of phagocytosis. Overnight incubation of AM from young mice with TNFα also resulted in a dampened IL-6 response to S. pneumoniae. Finally, dietary supplementation of aged mice with anti-inflammatory n-3 polyunsaturated fatty acids in the form of fish oil lowered lung A20 levels and enhanced resistance, including a 100-fold reduction in bacterial titers in the lungs, to experimental challenge with S. pneumoniae. We conclude that elevated A20 due to TNFα partially explains the ADMD phenotype and that ADMD is potentially reversible.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Center for Airway Inflammation, Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ramya Akula Suresh Babu
- Center for Airway Inflammation, Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Md M Rahman
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gabriel Fernandes
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angela R Boyd
- Center for Airway Inflammation, Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Carlos J Orihuela
- Center for Airway Inflammation, Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
38
|
Pharmacologic IKK/NF-κB inhibition causes antigen presenting cells to undergo TNFα dependent ROS-mediated programmed cell death. Sci Rep 2014; 4:3631. [PMID: 24406986 PMCID: PMC3887388 DOI: 10.1038/srep03631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/13/2013] [Indexed: 01/14/2023] Open
Abstract
Monocyte-derived antigen presenting cells (APC) are central mediators of the innate and adaptive immune response in inflammatory diseases. As such, APC are appropriate targets for therapeutic intervention to ameliorate certain diseases. APC differentiation, activation and functions are regulated by the NF-κB family of transcription factors. Herein, we examined the effect of NF-κB inhibition, via suppression of the IκB Kinase (IKK) complex, on APC function. Murine bone marrow-derived macrophages and dendritic cells (DC), as well as macrophage and DC lines, underwent rapid programmed cell death (PCD) after treatment with several IKK/NF-κB inhibitors through a TNFα-dependent mechanism. PCD was induced proximally by reactive oxygen species (ROS) formation, which causes a loss of mitochondrial membrane potential and activation of a caspase signaling cascade. NF-κB-inhibition-induced PCD of APC may be a key mechanism through which therapeutic targeting of NF-κB reduces inflammatory pathologies.
Collapse
|
39
|
Novikova L, Czymmeck N, Deuretzbacher A, Buck F, Richter K, Weber ANR, Aepfelbacher M, Ruckdeschel K. Cell death triggered by Yersinia enterocolitica identifies processing of the proinflammatory signal adapter MyD88 as a general event in the execution of apoptosis. THE JOURNAL OF IMMUNOLOGY 2013; 192:1209-19. [PMID: 24363429 DOI: 10.4049/jimmunol.1203464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many pathogenic microorganisms have evolved tactics to modulate host cell death or survival pathways for establishing infection. The enteropathogenic bacterium Yersinia enterocolitica deactivates TLR-induced signaling pathways, which triggers apoptosis in macrophages. In this article, we show that Yersinia-induced apoptosis of human macrophages involves caspase-dependent cleavage of the TLR adapter protein MyD88. MyD88 was also cleaved when apoptosis was mediated by overexpression of the Toll-IL-1R domain-containing adapter inducing IFN-β in epithelial cells. The caspase-processing site was mapped to aspartate-135 in the central region of MyD88. MyD88 is consequently split by caspases in two fragments, one harboring the death domain and the other the Toll-IL-1R domain. Caspase-3 was identified as the protease that conferred the cleavage of MyD88 in in vitro caspase assays. In line with a broad role of caspase-3 in the execution of apoptosis, the processing of MyD88 was not restricted to Yersinia infection and to proapoptotic Toll-IL-1R domain-containing adapter inducing IFN-β signaling, but was also triggered by staurosporine treatment. The cleavage of MyD88 therefore seems to be a common event in the advanced stages of apoptosis, when caspase-3 is active. We propose that the processing of MyD88 disrupts its scaffolding function and uncouples the activation of TLR and IL-1Rs from the initiation of proinflammatory signaling events. The disruption of MyD88 may consequently render dying cells less sensitive to proinflammatory stimuli in the execution phase of apoptosis. The cleavage of MyD88 could therefore be a means of conferring immunogenic tolerance to apoptotic cells to ensure silent, noninflammatory cell demise.
Collapse
Affiliation(s)
- Lena Novikova
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zauberman A, Flashner Y, Levy Y, Vagima Y, Tidhar A, Cohen O, Bar-Haim E, Gur D, Aftalion M, Halperin G, Shafferman A, Mamroud E. YopP-expressing variant of Y. pestis activates a potent innate immune response affording cross-protection against yersiniosis and tularemia [corrected]. PLoS One 2013; 8:e83560. [PMID: 24358292 PMCID: PMC3865221 DOI: 10.1371/journal.pone.0083560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 01/12/2023] Open
Abstract
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.
Collapse
Affiliation(s)
- Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Gideon Halperin
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
41
|
Alveolar macrophage innate response to Mycobacterium immunogenum, the etiological agent of hypersensitivity pneumonitis: role of JNK and p38 MAPK pathways. PLoS One 2013; 8:e83172. [PMID: 24349452 PMCID: PMC3859638 DOI: 10.1371/journal.pone.0083172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium immunogenum is an emerging pathogen of the immune-mediated lung disease hypersensitivity pneumonitis (HP) reported in machinists occupationally exposed to contaminated metal working fluid (MWF). However, the mechanism of its interaction with the host lung is unclear. Considering that alveolar macrophages play a central role in host defense in the exposed lung, understanding their interaction with the pathogen could provide initial insights into the underlying immunopathogenesis events and mechanisms. In the current study, M. immunogenum 700506, a predominant genotype isolated from HP-linked fluids, was shown to multiply intracellularly, induce proinflammatory mediators (TNF-α, IL-1α, IL-1β, IL-6, GM-CSF, NO) and cause cytotoxicity/cell death in the cultured murine alveolar macrophage cell line MH-S in a dose- and time-dependent manner. The responses were detected as early as 3h post-infection. Comparison of this and four additional genotypes of M. immunogenum (MJY-3, MJY-4, MJY-12, MJY-14) using an effective dose-time combination (100 MOI for 24h) showed these macrophage responses in the following order (albeit with some variations for individual response indicators). Inflammatory: MJY-3 ≥ 700506 > MJY-4 ≥ MJY-14 ≥ MJY-12; Cytotoxic: 700506 ≥ MJY-3 > MJY-4 ≥ MJY-12 ≥ MJY-14. In general, 700506 and MJY-3 showed a more aggressive response than other genotypes. Chemical blocking of either p38 or JNK inhibited the induction of proinflammatory mediators (cytokines, NO) by 700506. However, the cellular responses showed a somewhat opposite effect. This is the first report on M. immunogenum interactions with alveolar macrophages and on the identification of JNK- and p38- mediated signaling and its role in mediating the proinflammatory responses during these interactions.
Collapse
|
42
|
Aguiló N, Marinova D, Martín C, Pardo J. ESX-1-induced apoptosis during mycobacterial infection: to be or not to be, that is the question. Front Cell Infect Microbiol 2013; 3:88. [PMID: 24364000 PMCID: PMC3850411 DOI: 10.3389/fcimb.2013.00088] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
The major Mycobacterium tuberculosis virulence factor ESAT-6 exported by the ESX-1 secretion system has been described as a pro-apoptotic factor by several independent groups in recent years, sustaining a role for apoptosis in M. tuberculosis pathogenesis. This role has been supported by independent studies in which apoptosis has been shown as a hallmark feature in human and mouse lungs infected with virulent strains. Nevertheless, the role of apoptosis during mycobacterial infection is subject to an intense debate. Several works maintain that apoptosis is more evident with attenuated strains, whereas virulent mycobacteria tend to inhibit this process, suggesting that apoptosis induction may be a host mechanism to control infection. In this review, we summarize the evidences that support the involvement of ESX-1-induced apoptosis in virulence, intending to provide a rational treatise for the role of programmed cell death during M. tuberculosis infection.
Collapse
Affiliation(s)
- Nacho Aguiló
- Grupo de Genética de Micobacterias, Department of Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza Zaragoza, Spain ; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Department of Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza Zaragoza, Spain ; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Department of Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza Zaragoza, Spain ; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III Madrid, Spain
| | - Julián Pardo
- Cell Immunity in Cancer, Inflammation and Infection group, Biomedical Research Centre of Aragon, Nanoscience Institute of Aragon, Aragon I+D Foundation, IIS Aragon/University of Zaragoza Zaragoza, Spain
| |
Collapse
|
43
|
Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol 2013; 21:430-41. [DOI: 10.1016/j.tim.2013.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
|
44
|
Peters KN, Dhariwala MO, Hughes Hanks JM, Brown CR, Anderson DM. Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague. PLoS Pathog 2013; 9:e1003324. [PMID: 23633954 PMCID: PMC3636031 DOI: 10.1371/journal.ppat.1003324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/08/2013] [Indexed: 12/24/2022] Open
Abstract
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells. In this work, we studied the mechanism whereby bacteria manipulate innate immune responses by controlling host cell death. Yersinia pestis, the causative agent of plague, requires effector Yops of the Type III Secretion System (T3SS) to evade the innate immune system during infection. We show that Yersinia induces apoptosis of macrophages through two distinct mechanisms, each through the activity of the well-characterized T3SS effector YopJ, yet regulated in an opposing manner through the activity of a second effector protein YopK. In a murine pneumonic plague model, we found evidence that YopK regulates apoptosis of macrophages during the early stage of infection, leading to uncontrolled inflammation and disease. In contrast, the absence of YopK-regulated apoptosis allowed recruitment of lymphocytes and CCR2+ immune cells which led to bacterial clearance and resolution of inflammation. Together the data suggest that Yersinia YopK modulates apoptosis of immune cells to control the inflammatory response during plague.
Collapse
Affiliation(s)
- Kristen N. Peters
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Miqdad O. Dhariwala
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer M. Hughes Hanks
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Charles R. Brown
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
45
|
Silva DS, Pereira LMG, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJB, Macedo-Ribeiro S, do Vale A, dos Santos NMS. The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 2013; 9:e1003128. [PMID: 23468618 PMCID: PMC3585134 DOI: 10.1371/journal.ppat.1003128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol. The apoptosis inducing protein of 56 kDa (AIP56) is a key virulence factor secreted by Photobacterium damselae piscicida (Phdp), a Gram-negative bacterium that causes septicaemic infections in economically important marine fish species. It is known that AIP56 induces massive destruction of the phagocytic cells of the infected host, allowing the extracellular multiplication of the bacteria and contributing to the genesis of the pathology. Here we show that AIP56 acts by cleaving NF-κB p65. The NF-κB family of transcription factors is evolutionarily conserved and plays a central role in the host responses to microbial pathogen invasion, regulating the expression of inflammatory and anti-apoptotic genes. Pathogenic bacteria have evolved complex strategies to interfere with NF-κB signalling, usually by injecting protein effectors directly into the cell's cytosol through bacterial secretion machineries that require contact with host cells. In contrast, AIP56 acts at distance and has an intrinsic ability to reach the cytosol due to the presence of a C-terminal domain that functions as “delivery module.”
Collapse
Affiliation(s)
- Daniela S. Silva
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana M. G. Pereira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana R. Moreira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Protein Production and Purification, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Irene Zornetta
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Pedro Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E. Azevedo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro J. B. Pereira
- Biomolecular Structure, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Protein Crystallography, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
46
|
Kota KP, Eaton B, Lane D, Ulrich M, Ulrich R, Peyser BD, Robinson CG, Jaissle JG, Pegoraro G, Bavari S, Panchal RG. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection. PLoS One 2013; 8:e55167. [PMID: 23383093 PMCID: PMC3559335 DOI: 10.1371/journal.pone.0055167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/19/2012] [Indexed: 01/14/2023] Open
Abstract
The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor), wortmannin (a PI3K inhibitor), and parthenolide (an IκB kinase inhibitor), inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist), E. coli LPS (a TLR4 agonist) or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.
Collapse
Affiliation(s)
- Krishna P. Kota
- Perkin Elmer, Waltham, Massachusetts, United States of America
| | - Brett Eaton
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Douglas Lane
- Target Structure Based Drug Discovery Group, SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America
| | - Melanie Ulrich
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Ricky Ulrich
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Brian D. Peyser
- Target Structure Based Drug Discovery Group, SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America
| | - Camenzind G. Robinson
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - James G. Jaissle
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Sina Bavari
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Rekha G. Panchal
- Department of Target Discovery and Cellular Microbiology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Durmuş Tekir SD, Ülgen KÖ. Systems biology of pathogen-host interaction: networks of protein-protein interaction within pathogens and pathogen-human interactions in the post-genomic era. Biotechnol J 2013; 8:85-96. [PMID: 23193100 PMCID: PMC7161785 DOI: 10.1002/biot.201200110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/17/2012] [Accepted: 10/11/2012] [Indexed: 12/13/2022]
Abstract
Infectious diseases comprise some of the leading causes of death and disability worldwide. Interactions between pathogen and host proteins underlie the process of infection. Improved understanding of pathogen-host molecular interactions will increase our knowledge of the mechanisms involved in infection, and allow novel therapeutic solutions to be devised. Complete genome sequences for a number of pathogenic microorganisms, as well as the human host, has led to the revelation of their protein-protein interaction (PPI) networks. In this post-genomic era, pathogen-host interactions (PHIs) operating during infection can also be mapped. Detailed systematic analyses of PPI and PHI data together are required for a complete understanding of pathogenesis of infections. Here we review the striking results recently obtained during the construction and investigation of these networks. Emphasis is placed on studies producing large-scale interaction data by high-throughput experimental techniques.
Collapse
Affiliation(s)
| | - Kutlu Ö. Ülgen
- Department of Chemical Engineering, Boǧaziçi University, Istanbul, Turkey
| |
Collapse
|
48
|
Philip NH, Brodsky IE. Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol 2012; 2:149. [PMID: 23226685 PMCID: PMC3510641 DOI: 10.3389/fcimb.2012.00149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/13/2012] [Indexed: 01/31/2023] Open
Abstract
Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogen's replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection.
Collapse
Affiliation(s)
- Naomi H Philip
- Immunology Graduate Group, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA ; Department of Pathobiology, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
49
|
Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Proc Natl Acad Sci U S A 2012; 109:20395-400. [PMID: 23175788 DOI: 10.1073/pnas.1210831109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting eukaryotic proteins for deamidation modification is increasingly appreciated as a general bacterial virulence mechanism. Here, we present an atomic view of how a bacterial deamidase effector, cycle-inhibiting factor homolog in Burkholderia pseudomallei (CHBP), recognizes its host targets, ubiquitin (Ub) and Ub-like neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), and catalyzes site-specific deamidation. Crystal structures of CHBP-Ub/NEDD8 complexes show that Ub and NEDD8 are similarly cradled by a large cleft in CHBP with four contacting surfaces. The pattern of Ub/NEDD8 recognition by CHBP resembles that by the E1 activation enzyme, which critically involves the Lys-11 surface in Ub/NEDD8. Close examination of the papain-like catalytic center reveals structural determinants of CHBP being an obligate glutamine deamidase. Molecular-dynamics simulation identifies Gln-31/Glu-31 of Ub/NEDD8 as one key determinant of CHBP substrate preference for NEDD8. Inspired by the idea of using the unique bacterial activity as a tool, we further discover that CHBP-catalyzed NEDD8 deamidation triggers macrophage-specific apoptosis, which predicts a previously unknown macrophage-specific proapoptotic signal that is negatively regulated by neddylation-mediated protein ubiquitination/degradation.
Collapse
|
50
|
Tomar N, De RK. Modeling host-pathogen interactions: H. sapiens as a host and C. difficile as a pathogen. J Mol Recognit 2012; 25:474-85. [DOI: 10.1002/jmr.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit; Indian Statistical Institute; 203 B.T. Road; Kolkata; 700108; India
| | - Rajat K. De
- Machine Intelligence Unit; Indian Statistical Institute; 203 B.T. Road; Kolkata; 700108; India
| |
Collapse
|