1
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
2
|
Ouyang P, Qi J, Tong B, Li Y, Cao J, Wang L, Niu T, Qi X. Butyrate Ameliorates Graves' Orbitopathy Through Regulating Orbital Fibroblast Phenotypes and Gut Microbiota. Invest Ophthalmol Vis Sci 2025; 66:5. [PMID: 40035727 PMCID: PMC11892527 DOI: 10.1167/iovs.66.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose Graves' orbitopathy (GO), the common extrathyroidal complication of Graves' disease (GD), is characterized by orbital fibroblast stimulation, adipogenesis, and hyaluronan production. Recently, gut microbiota and its metabolites have garnered attention for their possible involvement in GO. Methods This study utilized an animal model of GO and examined the effects of butyrate treatment on orbital fibroblast cells and gut microbiota. Ex vivo experiments were performed using orbital fibroblasts derived from healthy patients' and patients' with GO orbital tissue to evaluate vitality, activation, and adipogenesis in response to butyrate treatment. Gut microbiota diversity was also analyzed in butyrate-treated and untreated GO mice. Results In human orbital fibroblasts, butyrate treatment dramatically decreased the vitality of GO-derived fibroblasts without harming normal fibroblasts. Butyrate prevented activation and fibrotic processes induced by transforming growth factor beta 1 (TGF-β1) in GO and normal fibroblasts. Additionally, butyrate reduced lipid droplet formation and downregulated lipogenic markers in GO and normal orbital fibroblasts, inhibiting adipogenesis. In the GO mouse model, butyrate therapy improved orbital histological abnormalities and normalized serum thyroid hormone and antibody levels. The intestinal microbiome of butyrate-treated GO mice also changed significantly, with a reduction in certain bacteria (Bifidobacterium, GCA-900066575, and Parabacteroides) and an increase in others (Bacteroides and Rikenellaceae_RC9). Conclusions Butyrate ameliorates several of the symptoms of GO, lowering GO orbital fibroblast viability, adipogenesis, and TGF-β1-induced fibrosis without damaging normal fibroblasts. Butyrate normalizes thyroid function in a GO mouse model, improves histopathological alterations, and transforms gut microbiota populations, proving its potential in treating GO through the gut-thyroid axis.
Collapse
Affiliation(s)
- Pingbo Ouyang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Qi
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiamin Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujue Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tongxin Niu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Kim MJ, Kim SW, Ha B, Kim HS, Kwon SH, Jin J, Choi YK, Park KG, Kim JG, Lee IK, Jeon JH. Persistent influence of past obesity on current adiponectin levels and mortality in patients with type 2 diabetes. Korean J Intern Med 2025; 40:299-309. [PMID: 40102712 PMCID: PMC11938665 DOI: 10.3904/kjim.2024.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND/AIMS Adiponectin, a hormone primarily produced by adipocytes, typically shows an inverse relationship with body mass index (BMI). However, some studies have reported a positive correlation between the two. Thus, this study aimed to examine the relationship between adiponectin level and BMI in diabetic patients, focusing on the impact of past obesity on current adiponectin levels. METHODS We conducted an observational study analyzing data from 323 diabetic patients at Kyungpook National University Hospital. Based on past and current BMIs, participants were categorized into never-obese (nn, n = 106), previously obese (on, n = 43), and persistently obese (oo, n = 73) groups based on a BMI threshold of 25 kg/m2. Adiponectin level and BMI were key variables. Kaplan-Meier analysis assessed their impact on all-cause mortality up to August 2023, with survival differences based on adiponectin quartiles and follow-up starting from patient enrollment (2010-2015). RESULTS The analysis revealed a significant inverse correlation between adiponectin level and past maximum BMI. The on group exhibited approximately 10% lower adiponectin levels compared to the nn group. This association remained significant after adjusting for current BMI, age, and sex, highlighting the lasting influence of previous obesity on adiponectin levels. Furthermore, survival analysis indicated that patients in the lowest adiponectin quartile had reduced survival, with a statistically significant trend (p = 0.062). CONCLUSION Findings of this study suggest that lower adiponectin levels, potentially reflecting past obesity, are associated with decreased survival in diabetic patients, underscoring a critical role of adiponectin in long-term health outcomes.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Sung-Woo Kim
- Department of Internal Medicine, Daegu Catholic University Hospital, Daegu Catholic University School of Medicine, Daegu,
Korea
| | - Bitna Ha
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Hyang Sook Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - So-Hee Kwon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jonghwa Jin
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jung Guk Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| |
Collapse
|
4
|
Kindlovits R, Sousa AC, Viana JL, Milheiro J, Oliveira BMPM, Marques F, Santos A, Teixeira VH. Evaluating the Therapeutic Potential of Exercise in Hypoxia and Low-Carbohydrate, High-Fat Diet in Managing Hypertension in Elderly Type 2 Diabetes Patients: A Novel Intervention Approach. Nutrients 2025; 17:522. [PMID: 39940380 PMCID: PMC11819692 DOI: 10.3390/nu17030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes mellitus (T2DM) is a chronic condition marked by hyperglycemia, which can affect metabolic, vascular, and hematological parameters. A low-carbohydrate, high-fat (LCHF) diet has been shown to improve glycemic control and blood pressure regulation. Exercise in hypoxia (EH) enhances insulin sensitivity, erythropoiesis, and angiogenesis. The combination of LCHF and EH may offer a promising strategy for managing T2DM and hypertension (HTN), although evidence remains limited. This study aimed to assess the effects of an eight-week normobaric EH intervention at 3000 m simulated altitude combined with an LCHF diet on hematological and lipid profiles, inflammation, and blood pressure in older patients with T2DM and HTN. METHODS Forty-two diabetic patients with HTN were randomly assigned to three groups: (1) control group (control diet + exercise in normoxia), (2) EH group (control diet + EH), and (3) intervention group (EH+LCHF) Baseline and eight-week measurements included systolic, diastolic, and mean blood pressure (SBP, DBP, MAP), hematological and lipid profiles, and inflammation biomarkers. RESULTS Blood pressure decreased after the intervention (p < 0.001), with no significant differences between groups (SBP: p = 0.151; DBP: p = 0.124; MAP: p = 0.18). No differences were observed in lipid profile or C-reactive protein levels (p > 0.05). Mean corpuscular hemoglobin (MCH) increased in the EH group (p = 0.027), while it decreased in the EH+LCHF group (p = 0.046). CONCLUSIONS Adding hypoxia or restricting carbohydrates did not provide additional benefits on blood pressure in T2DM patients with HTN. Further elucidation of the mechanisms underlying hematological adaptations is imperative. TRIAL REGISTRATION NUMBER NCT05094505.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
| | - Ana Catarina Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, 4475-690 Maia, Portugal; (A.C.S.); (J.L.V.)
| | - João Luís Viana
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, 4475-690 Maia, Portugal; (A.C.S.); (J.L.V.)
| | - Jaime Milheiro
- Exercise Medical Centre Laboratory (CMEP), 4150-044 Porto, Portugal;
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-540 Porto, Portugal
| | - Bruno M. P. M. Oliveira
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
- Laboratory of Artificial Intelligence and Decision Support, Institute for Systems and Computer Engineering, Technology and Science (LIAAD, INESC-TEC), 4200-465 Porto, Portugal
| | - Franklim Marques
- Laboratory of Biochemistry, Department of Biological Sciences, UCIBIO, REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Alejandro Santos
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
- Institute for Research and Innovation in Health (i3S), 4200-135 Porto, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports (FADEUP), University of Porto, 4200-540 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
5
|
Chen Z, Fu S, Lai S, Fu M, Du G. Association of circulating adiponectin and leptin levels with the risk of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2024; 15:1505082. [PMID: 39735639 PMCID: PMC11671245 DOI: 10.3389/fendo.2024.1505082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024] Open
Abstract
Background Adipokines have been implicated in the pathogenesis of type 2 diabetes mellitus (T2DM) and related complications due to their roles in metabolic regulation and inflammation. However, the relationship between these adipokines and diabetic peripheral neuropathy (DPN) remains unclear. Methods A case-control study was performed with 198 patients with DPN and 205 T2DM patients without DPN from the Endocrinology Department at the Second Affiliated Hospital of Hainan Medical University. Circulating adiponectin and leptin levels were quantified via enzyme-linked immunosorbent assays. Logistic regression models, adjusting for age, sex, BMI, smoking status, and diabetes duration, were applied to evaluate the associations between adiponectin and leptin levels and DPN risk. Results DPN patients exhibited lower adiponectin (P=0.001) and higher leptin (P=0.007) levels than diabetic controls. Confounders-adjusted analyses revealed that higher adiponectin levels correlated with reduced DPN risk (OR, tertile 3 vs. tertile 1: 0.52; 95% CI: 0.30-0.90), whereas elevated leptin levels were linked to increased DPN risk (OR, tertile 3 vs. tertile 1: 1.91; 95% CI: 1.10-3.32). Stratified analyses confirmed consistent findings across subgroups without statistically significant interactions. Conclusions Circulating adiponectin and leptin levels correlate with DPN risk in diabetic patients, suggesting their potential as biomarkers for high-risk DPN identification and guiding targeted prevention and management.
Collapse
Affiliation(s)
- Zongcun Chen
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Shasha Fu
- Department of Respiratory and Critical Care Medicine, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine (Haikou People’s Hospital), Haikou, China
| | - Shuchang Lai
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Maoxiong Fu
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guankui Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Phuong LDT, Tran Huy T, Huynh Quang T. The Plasma Levels of Protein Adiponectin ( AdipoQ) and Meteorin-Like (Metrnl) in Newly Diagnosed Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:2903-2909. [PMID: 39100966 PMCID: PMC11298186 DOI: 10.2147/dmso.s471954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose This study aimed to measure the concentrations of the Adiponectin and Meteorin - Like (Metrnl) in newly diagnosed type 2 diabetes patients. Patients and Methods A comparative cross-sectional study contained two groups: Group 1 (86 newly diagnosed diabetes mellitus type 2 patients) and group 2 (71 healthy persons). The plasma concentrations of Adiponectin and Metrnl were measured by Enzyme Link Immunosorbent Assay (ELISA). Results The plasma level of Adiponectin of the newly diagnosed diabetes mellitus type 2 group and the healthy group were 1219.82 ng/mL (1132.43-2772.50) and 1187.25 ng/mL (1160.66-3807.50) respectively. The plasma level of Metrnl of two groups were 757.60 pg/mL (564.15-994.00) and 697.60 pg/mL (538.50-986.10) respectively. There were no significant difference between two groups. Metrnl had no correlation with glucose, HbA1c, lipid profile, BMI. Adiponectin had correlation with Metrnl and HDL-cholesterol. Adiponectin had no correlation to glucose, HbA1c, LDL-cholesterol, total cholesterol, triglyceride, BMI. People with the lower Adiponectin concentration had the higher risk of diabetes (OR=6.52; 95% CI: 2.43 -17.55). Conclusion Adiponectin and Metrnl were not significantly different in newly diagnosed type 2 diabetes and healthy people. The lower concentration of Adiponectin might increase the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Lan Dam Thi Phuong
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
- Department of Biochemistry, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thinh Tran Huy
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
| | - Thuan Huynh Quang
- Department of Biochemistry, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
7
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
8
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
9
|
Linero PL, Castilla-Guerra L. Management of Cardiovascular Risk in the Non-alcoholic Fatty Liver Disease Setting. Eur Cardiol 2024; 19:e02. [PMID: 38807854 PMCID: PMC11131151 DOI: 10.15420/ecr.2023.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 05/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an overlooked and undetected pathology, which affects more than 32% of adults worldwide. NAFLD is becoming more common in Western industrialised countries, particularly in patients with central obesity, type 2 diabetes, dyslipidaemia and metabolic syndrome. Although NAFLD has traditionally been interpreted as a liver disease with a high risk of liver-related complications, NAFLD is an underappreciated and independent risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Treatment options to counteract both the progression and development of cardiovascular disease and NAFLD include lifestyle interventions, such as weight loss, increased physical activity and dietary modification, and optimal medical therapy of comorbid conditions; nevertheless, further studies are needed to define optimal treatment strategies for the prevention of both hepatic and cardiovascular complications of NAFLD.
Collapse
Affiliation(s)
- Paula Luque Linero
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
| | - Luis Castilla-Guerra
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
- Department of Medicine, University of SevilleSeville, Spain
| |
Collapse
|
10
|
Nucera S, Scarano F, Macrì R, Mollace R, Gliozzi M, Carresi C, Ruga S, Serra M, Tavernese A, Caminiti R, Coppoletta A, Cardamone A, Montalcini T, Pujia A, Palma E, Muscoli C, Barillà F, Musolino V, Mollace V. The Effect of an Innovative Combination of Bergamot Polyphenolic Fraction and Cynara cardunculus L. Extract on Weight Gain Reduction and Fat Browning in Obese Mice. Int J Mol Sci 2023; 25:191. [PMID: 38203362 PMCID: PMC10779365 DOI: 10.3390/ijms25010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Obesity is one of the world's most serious public health issues, with a high risk of developing a wide range of diseases. As a result, focusing on adipose tissue dysfunction may help to prevent the metabolic disturbances commonly associated with obesity. Nutraceutical supplementation may be a crucial strategy for improving WAT inflammation and obesity and accelerating the browning process. The aim of this study was to perform a preclinical "proof of concept" study on Bergacyn®, an innovative formulation originating from a combination of bergamot polyphenolic fraction (BPF) and Cynara cardunculus (CyC), for the treatment of adipose tissue dysfunction. In particular, Bergacyn® supplementation in WD/SW-fed mice at doses of 50 mg/kg given orally for 12 weeks, was able to reduce body weight and total fat mass in the WD/SW mice, in association with an improvement in plasma biochemical parameters, including glycemia, total cholesterol, and LDL levels. In addition, a significant reduction in serum ALT levels was highlighted. The decreased WAT levels corresponded to an increased weight of BAT tissue, which was associated with a downregulation of PPARγ as compared to the vehicle group. Bergacyn® was able to restore PPARγ levels and prevent NF-kB overexpression in the WAT of mice fed a WD/SW diet, suggesting an improved oxidative metabolism and inflammatory status. These results were associated with a significant potentiation of the total antioxidant status in WD/SW mice. Finally, our data show, for the first time, that Bergacyn® supplementation may be a valuable approach to counteract adipose tissue dysfunction and obesity-associated effects on cardiometabolic risk.
Collapse
Affiliation(s)
- Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Annarita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Tiziana Montalcini
- Clinical Nutrition Unit, Department of Clinical and Experimental Medicine, University Magna of Græcia of Catanzaro, 88100 Catanzaro, Italy;
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
| | - Francesco Barillà
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (M.G.); (S.R.); (M.S.); (A.T.); (R.C.); (A.C.); (A.C.); (C.M.)
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
11
|
Sabaratnam R, Hansen DR, Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 2023; 24:1121-1133. [PMID: 37558853 DOI: 10.1007/s11154-023-09827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Department of Clinical Research, University of Southern Denmark, Odense C, DK-5000, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark.
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| | - Didde Riisager Hansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| |
Collapse
|
12
|
Tural U, Sparpana A, Sullivan E, Iosifescu DV. Comparison of Adiponectin Levels in Anorexia Nervosa, Bulimia Nervosa, Binge-Eating Disorder, Obesity, Constitutional Thinness, and Healthy Controls: A Network Meta-Analysis. Life (Basel) 2023; 13:life13051181. [PMID: 37240826 DOI: 10.3390/life13051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adiponectin is a protein hormone that is produced and secreted primarily by adipose tissue. The levels of adiponectin in those with eating disorders, obesity, and healthy controls have been extensively studied. However, the general picture of the differences in adiponectin levels across the mentioned conditions is still unclear and fragmented. In this study, we pooled previous studies and performed a network meta-analysis to gain a global picture of comparisons of adiponectin levels across eating disorders, obesity, constitutional thinness, and healthy controls. Electronic databases were searched for anorexia nervosa, avoidant restrictive food intake disorder, binge-eating disorder, bulimia nervosa, healthy controls, night eating syndrome, obesity, and constitutional thinness in studies where adiponectin levels were measured. A total of 4262 participants from 50 published studies were included in the network meta-analysis. Adiponectin levels were significantly higher in participants with anorexia nervosa than in healthy controls (Hedges' g = 0.701, p < 0.001). However, adiponectin levels in constitutionally thin participants were not significantly different from those of healthy controls (Hedges' g = 0.470, p = 0.187). Obesity and binge-eating disorder were associated with significantly lower adiponectin levels compared to those of healthy controls (Hedges' g = -0.852, p < 0.001 and Hedges' g = -0.756, p = 0.024, respectively). The disorders characterized by excessive increases or decreases in BMI were associated with significant changes in adiponectin levels. These results suggest that adiponectin may be an important marker of severely disequilibrated homeostasis, especially in fat, glucose, and bone metabolisms. Nonetheless, an increase in adiponectin may not simply be associated with a decrease in BMI, as constitutional thinness is not associated with a significant increase in adiponectin.
Collapse
Affiliation(s)
- Umit Tural
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Allison Sparpana
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Psychiatry Department, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sullivan
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Psychiatry Department, New York University School of Medicine, New York, NY 10016, USA
| | - Dan V Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Psychiatry Department, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Czerwieńska B, Lelek M, Gojowy D, Surma S, Mizia-Stec K, Więcek A, Adamczak M. Effect of Renal Denervation on the Plasma Adiponectin Concentration in Patients with Resistant Hypertension. J Clin Med 2023; 12:jcm12062114. [PMID: 36983117 PMCID: PMC10052744 DOI: 10.3390/jcm12062114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Introduction: Adiponectin is synthetized by white adipose tissue and has anti-diabetic, anti-atherosclerotic, anti-thrombotic, anti-inflammatory, and cardioprotective properties. In patients with arterial hypertension, plasma concentration of adiponectin is lower than in healthy subjects. Renal denervation, i.e., percutaneous ablation of fibers from the sympathetic nervous system located in the wall of the renal arteries by radio frequency waves, is a method of resistant arterial hypertension treatment. (2) The aim of this single center, interventional, clinical study was to assess the effect of renal denervation on the plasma adiponectin concentration in patients with resistant arterial hypertension. (3) Materials and methods: 28 patients (13 women, 15 men) aged 54.4 ± 9.2 years with resistant hypertension who underwent renal denervation using Simplicity catheters (Medtronic, Inc., Northridge, CA, USA) were enrolled in the study. Plasma adiponectin concentration was determined using the Human Adiponectin ELISA Kit (Otsuka Pharmaceutical Co, Tokyo, Japan) before the renal denervation and 6 and 12 months after this procedure. (4) Results: Blood pressure (BP) values before renal denervation and 6 and 12 months after this procedure were as follows: systolic BP 190.4 ± 24.5, 160.8 ± 14.5, 155.7 ± 17.9 mmHg (p < 0.001) and diastolic BP 111.7 ± 18.9, 88.9 ± 8.3, 91.2 + 10.2 mmHg (p < 0.001), respectively. Body mass index (BMI) before renal denervation, 6 and 12 months after this procedure were 31.5 ± 4.2, 30.5 ± 4.4, 30.2 ± 4.0 kg/m2, (p = 0.057), respectively. Plasma adiponectin concentration before the renal denervation and 6 and 12 months after this procedure were 4.79 (3.95; 9.49), 7.58 (5.04; 9.51), 6.62 (4.57; 11.65) [µg/mL] (p = 0.007), respectively. (5) Conclusions: Plasma adiponectin concentration increases significantly after successful renal denervation in patients with resistant hypertension. Higher plasma adiponectin concentration may participate—beyond blood pressure reduction—in the cardiovascular benefits related to successful renal denervation; however’ clinical consequences of these results need further investigations.
Collapse
Affiliation(s)
- Beata Czerwieńska
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska Str. 20-24, 40-027 Katowice, Poland
| | - Michał Lelek
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa Str., 40-635 Katowice, Poland
| | - Damian Gojowy
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska Str. 20-24, 40-027 Katowice, Poland
| | - Stanisław Surma
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska Str. 20-24, 40-027 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa Str., 40-635 Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska Str. 20-24, 40-027 Katowice, Poland
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska Str. 20-24, 40-027 Katowice, Poland
- Correspondence:
| |
Collapse
|
14
|
Terra M, García-Arévalo M, Avelino T, Degaki K, Malospirito C, de Carvalho M, Torres F, Saito Â, Figueira A. AM-879, a PPARy non-agonist and Ser273 phosphorylation blocker, promotes insulin sensitivity without adverse effects in mice. Metabol Open 2023; 17:100221. [PMID: 36588655 PMCID: PMC9800205 DOI: 10.1016/j.metop.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the main risk factors for type 2 diabetes, and peroxisome proliferator-activated receptor γ (PPARγ) is considered a promising pathway on insulin sensitivity and adipose tissue metabolism. The search for molecules acting as insulin sensitizers have increased, especially for molecules that block PPARγ-Ser273 phosphorylation, without reaching full agonism. We evaluated the in vivo effects of AM-879, a PPARγ non-agonist, and found that AM-879 exerts different effects in mice depending on the dose. At lower doses, this ligand decreased BAT, increased leptin and Crh expression. However, at a higher dose, it promoted improvement on insulin sensitivity, ameliorates expression of metabolism-related genes, decreased the expression of genes related to liver toxicity, maintaining body weight and adipocyte size. These results present a new lead molecule to ameliorates insulin resistance and confirm AM-879 as a PPARγ non-agonist which blocks Ser273 phosphorylation as a good strategy to modulate insulin sensitivity without developing the adverse effects promoted by PPARγ full agonists.
Collapse
Affiliation(s)
- M.F. Terra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Post Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - M. García-Arévalo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - T.M. Avelino
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Post Graduate Program in Pharmacological Science, State University of Campinas (Unicamp), Campinas, Brazil
| | - K.Y. Degaki
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - C.C. Malospirito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Post Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - M. de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - F.R. Torres
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Â. Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - A.C.M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
15
|
Vasu K, Ramachandiran I, Chechi A, Khan K, Khan D, Kaufman R, Fox PL. Translational control of murine adiponectin expression by an upstream open reading frame element. RNA Biol 2023; 20:737-749. [PMID: 37702393 PMCID: PMC10501164 DOI: 10.1080/15476286.2023.2256094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/14/2023] Open
Abstract
Adiponectin, an adipocyte-specific secretory protein encoded by the ADIPOQ gene has a causal role in insulin resistance. Anti-diabetic drugs increase plasma adiponectin by a poorly understood, post-transcriptional mechanism enhancing insulin sensitivity. Deletion analysis of a reporter bearing the mouse Adipoq mRNA 5'-leader identified an inhibitory cis-regulatory sequence. The 5'-leader harbours two potential upstream open reading frames (uORFs) overlapping the principal downstream ORF. Mutation of the uORF ATGs increased reporter translation ~3-fold, indicative of a functional uORF. uORFs are common in mammalian mRNAs; however, only a select group resist translational repression by the integrated stress response (ISR). Thapsigargin (TG), which induces endoplasmic reticulum (ER) stress and the ISR, enhanced expression of a reporter bearing the Adipoq 5'-leader; polysome profiling verified translation-stimulation. TG-stimulated translation was absent in cells defective in Ser51 phosphorylation of eukaryotic initiation factor 2α (eIF2α), required for the ISR. To determine its role in expression and function of endogenous adiponectin, the upstream uORF was disrupted by CRISPR-Cas9-mediated mutagenesis of differentiated mouse 3T3-L1 adipocytes. uORF disruption in adipocytes increased adiponectin expression, triacylglycerol accumulation, and glucose uptake, and inhibited paracrine muscle and liver cell expression of gluconeogenic enzymes, establishing an important role of the uORF in adiponectin-mediated responses to stress.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aayushi Chechi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Randall Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
16
|
Mert H, İrak K, Çibuk S, Yıldırım S, Mert N. The effect of evening primrose oil ( Oenothera biennis) on the level of adiponectin and some biochemical parameters in rats with fructose induced metabolic syndrome. Arch Physiol Biochem 2022; 128:1539-1547. [PMID: 32594769 DOI: 10.1080/13813455.2020.1781900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of evening primrose oil on adiponectin level and some biochemical parameters in model of fructose-induced metabolic syndrome were investigated. The rats were divided into 4 groups: control, evening primrose oil, fructose, fructose + evening primrose oil. Body weight, daily feed and water consumptions and systolic blood pressures of animals were measured. At the end of trial, blood samples were taken, livers were excised and histopathological examination was performed. Glucose, uric acid, triglyceride, T.cholesterol, LDL, HDL, VLDL, ALT, AST, ALP, LDH, adiponectin, insulin, IL-6, TNF-α, TAC, and TOS levels were analysed. Some analysed parameters and systolic blood pressure of fructose + evening primrose oil group decreased significantly compared to fructose group and adiponectin, TAC, and HDL levels were significantly increased. As conclusion, evening primrose oil can be considered as antioxidant agent by reducing oxidative stress, increasing adiponectin levels and insulin sensitivity, anti-inflammatory properties, exhibiting anti-atherogenic effect by regulating dyslipidemia and systolic blood pressure.
Collapse
Affiliation(s)
- Handan Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Kıvanç İrak
- Faculty of Veterinary Medicine, Department of Biochemistry, Siirt University, Siirt, Turkey
| | - Salih Çibuk
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Faculty of Veterinary Medicine, Department of Pathology, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
17
|
Shedding light on non-alcoholic fatty liver disease: Pathogenesis, molecular mechanisms, models, and emerging therapeutics. Life Sci 2022; 312:121185. [PMID: 36375569 DOI: 10.1016/j.lfs.2022.121185] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder globally impacting an estimated 25% of the population associated with severe consequences such as cirrhosis, hepatocellular carcinoma (HCC), and overall mortality. Fatty liver disease is triggered through multiple pathways, but the most prominent cause is either diabetes or obesity, or a combination of both. Therefore, hepatic glucose, insulin and fatty acid signaling becomes a dire need to understand which is well elaborated in this review. This review summarizes the popular two-hit pathogenesis of NAFLD, the molecular mechanisms underlying hepatic insulin resistance. As fatty liver disease gets advanced, it requires in-vitro as well as in-vivo models closer to disease progression in humans for better understanding the pathological state and identifying a novel therapeutic target. This review summarizes in-vitro (2D cell-culture/co-culture, 3D spheroid/organoid/liver-on-a-chip) models as well as in-vivo (genetically/dietary/chemically induced fatty liver disease) research models. Fatty liver disease research has gathered lots of attention recently since there is no FDA approved therapy available so far. However, there have been numerous promising targets to treat fatty liver disease including potential therapeutic targets under clinical trials are listed in this review.
Collapse
|
18
|
Kim BY, Kwon HS, Kim SK, Noh JH, Park CY, Park HK, Song KH, Won JC, Yu JM, Lee MY, Lee JH, Lim S, Chun SW, Jeong IK, Chung CH, Han SJ, Kim HS, Min JY, Kim S. A Real-World Study of Long-Term Safety and Efficacy of Lobeglitazone in Korean Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2022; 46:855-865. [PMID: 35255547 PMCID: PMC9723193 DOI: 10.4093/dmj.2021.0264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Thiazolidinediones (TZDs) have been associated with various safety concerns including weight gain, bladder cancer, and congestive heart failure (CHF). This study evaluated the efficacy and safety of lobeglitazone, a novel TZD in patients with type 2 diabetes mellitus (T2DM) in real practice. METHODS In this non-interventional, multi-center, retrospective, and observational study conducted at 15 tertiary or secondary referral hospitals in Korea, a total of 2,228 patients with T2DM who received lobeglitazone 0.5 mg for more than 1 year were enrolled. RESULTS Overall adverse events (AEs) occurred in 381 patients (17.10%) including edema in 1.97% (n=44). Cerebrovascular and cardiovascular diseases were identified in 0.81% (n=18) and 0.81% (n=18), respectively. One case of CHF was reported as an AE. Edema occurred in 1.97% (n=44) of patients. Hypoglycemia occurred in 2.47% (n=55) of patients. Fracture occurred in 1.17% (n=26) of all patients. Lobeglitazone significantly decreased HbA1c level, resulting in a mean treatment difference of -1.05%± 1.35% (P<0.001), and decreased total cholesterol, triglyceride, and low-density lipoprotein cholesterol. However, it increased high-density lipoprotein cholesterol, regardless of statin administration. The patients who received lobeglitazone 0.5 mg showed an apparent reduction in glycosylated hemoglobin (HbA1c) from baseline during the first 6 months of treatment. The HbA1c levels remained stable between months 6 and 42. CONCLUSION Lobeglitazone has long-term safety profile, good glycemic-lowering effect and long-term durability of glycemic control in real-world clinical settings.
Collapse
Affiliation(s)
- Bo-Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon,
Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Suk Kyeong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul,
Korea
| | - Jung-Hyun Noh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Ilsan Paik Hospital, College of Medicine, Inje University, Goyang,
Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Hyeong-Kyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul,
Korea
| | - Kee-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul,
Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul,
Korea
| | - Jae Myung Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul,
Korea
| | - Mi Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Jae Hyuk Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang,
Korea
| | - Soo Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Sung Wan Chun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - In-Kyung Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Choon Hee Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon,
Korea
| | - Hee-Seok Kim
- Department of Drug Safety Research, Chong Kun Dang Pharmaceutical Corporation, Seoul,
Korea
| | - Ju-Young Min
- Department of Drug Safety Research, Chong Kun Dang Pharmaceutical Corporation, Seoul,
Korea
| | - Sungrae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
19
|
Evidence for the Neuronal Expression and Secretion of Adiponectin. Cells 2022; 11:cells11172725. [PMID: 36078135 PMCID: PMC9454681 DOI: 10.3390/cells11172725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
Peripheral adiponectin acts on the hypothalamus to inhibit energy expenditure and increase food intake through its receptors AdipoR1 and adipoR2. The hypothalamic expression of adiponectin is poorly documented. We hypothesize that whether hypothalamic adiponectin is confirmed, its expression and secretion could be regulated as peripheral adiponectin. Thus, in the present work, we aim to determine whether adiponectin is expressed in the hypothalamus and in two neuronal cell lines and investigate the potential mechanisms regulating its neuronal expression. Using immunohistochemistry, we show that adiponectin is expressed in the mediobasal hypothalamic neurons of mice. Adiponectin expression is also evidenced in two neuronal cell lines mHypo POMC (an adult mouse hypothalamic cell line) and SH-SY5Y (human neuroblastoma). The neuronal expression of adiponectin is increased in response to rosiglitazone treatment (a PPARγ agonist) and FGF21 and is decreased in insulin-resistant neurons. Furthermore, we show that adiponectin expressed by mHypo POMC neurons is secreted in a culture medium. Adiponectin also diminished the resistin-induced IL6 expression in SIMA9 cells, a microglia cell line. In conclusion, we evidenced the hypothalamic expression of adiponectin and its regulation at the neuronal level.
Collapse
|
20
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
21
|
Ndakotsu A, Vivekanandan G. The Role of Thiazolidinediones in the Amelioration of Nonalcoholic Fatty Liver Disease: A Systematic Review. Cureus 2022; 14:e25380. [PMID: 35765391 PMCID: PMC9233742 DOI: 10.7759/cureus.25380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a broad term encompassing hepatic steatosis and non-alcoholic steatohepatitis (NASH), a form of chronic hepatitis. This may, unfortunately, lead to terminal complications like cirrhosis and hepatocellular carcinoma (HCC). NAFLD is strongly associated with obesity, type 2 diabetes (T2DM), hypertension, and metabolic syndrome. The growing prevalence of NAFLD, its associated conditions, and its complications are alarming. The insulin sensitizer group "thiazolidinediones" has shown some therapeutic benefits in this condition. This systematic review is intended to focus on the clinical efficacy of this group in patients with NAFLD, employing PubMed, Google Scholar, and the Cochrane Library as databases. We discovered 10 randomized control trials (RCTs; nine involving pioglitazone and one involving rosiglitazone) involving 887 participants. All studies varied in duration from 6 to 24 months. Most of the involved trials had a small number of participants, and the intrinsic quality of the studies was mixed. Pioglitazone consistently improved histological parameters and normalized liver transaminases, although evidence supporting the benefits of other drugs in this class was minimal. Thiazolidinediones, particularly pioglitazone, have proven efficacious in patients with NAFLD/NASH. However, more extensive trials need to be carried out to investigate this drug class's benefits further. Unfortunately, this drug has attendant side effects like weight gain and fractures, limiting its widespread use; hence, careful selection for likely candidates is imperative.
Collapse
Affiliation(s)
- Andrew Ndakotsu
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Govinathan Vivekanandan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
22
|
Can B, Tutuncu Y, Can B, Keskin H, Bekpinar S, Dinccag N. Inflammatory markers are associated with the progression of gestational diabetes to metabolic syndrome. J OBSTET GYNAECOL 2022; 42:1857-1861. [PMID: 35468011 DOI: 10.1080/01443615.2022.2048363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The progression of gestational diabetes mellitus (GDM) to metabolic syndrome (MetS) is associated with systemic inflammation. The aim of this study was to compare the levels of inflammatory markers in former GDM patients with and without MetS. Medical records were screened retrospectively for patients who were diagnosed with GDM 10 (±2) years ago. Former GDM patients were invited to the hospital for an assessment of their current health status. Of 52 women with former GDM, 27 (52%) had MetS. C-reactive protein (CRP), interleukin-6 and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in the MetS group while adiponectin was significantly lower (p < .001, p = .037, p = .002 and p = .013, respectively). There was no significant difference in plasma levels of visfatin and tumour necrosis factor-α. Interleukin-6, CRP, PAI-1 and adiponectin may be used as biomarkers to detect MetS in the pre-clinical phase. With timely diagnosis, early interventions can be implemented. IMPACT STATEMENTWhat is already known on this subject? The progression of 'gestational diabetes mellitus' to 'metabolic syndrome' is associated with systemic inflammation. Up to half of cases with former gestational diabetes mellitus (GDM) eventually progress to metabolic syndrome (MetS).What do the results of this study add? Interleukin-6, C-reactive protein, plasminogen activator inhibitor-1 and adiponectin may be used as biomarkers to detect MetS in the pre-clinical phase.What are the implications of these findings from clinical practice and/or further research? The progression of GDM to MetS is associated with systemic inflammation. Potential therapies should therefore target this inflammatory state. Interleukin-6, C-reactive protein, plasminogen activator inhibitor-1 and adiponectin may be used as biomarkers to detect MetS in the pre-clinical phase. With timely diagnosis, early interventions and lifestyle changes can be implemented to prevent morbidity and mortality associated with full-blown MetS.
Collapse
Affiliation(s)
- Bulent Can
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yildiz Tutuncu
- Department of Immunology, Koc University, Istanbul, Turkey
| | - Busra Can
- Department of Internal Medicine, Division of Geriatrics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Havva Keskin
- Department of Internal Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Seldag Bekpinar
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nevin Dinccag
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
23
|
Aierken A, Li B, Liu P, Cheng X, Kou Z, Tan N, Zhang M, Yu S, Shen Q, Du X, Enkhbaatar BB, Zhang J, Zhang R, Wu X, Wang R, He X, Li N, Peng S, Jia W, Wang C, Hua J. Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway. Stem Cell Res Ther 2022; 13:164. [PMID: 35414044 PMCID: PMC9006413 DOI: 10.1186/s13287-022-02832-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSC therapy. This study investigated whether the combination of melatonin and human umbilical cord mesenchymal stem cells (hUC-MSCs) was superior to hUC-MSCs alone in ameliorating high-fat diet and streptozocin (STZ)-induced type II diabetes mellitus (T2DM) in a mouse model. METHODS Mice were divided into four groups: normal control (NC) group; T2DM group; hUC-MSCs treatment alone (UCMSC) group and pretreatment of hUC-MSCs with melatonin (UCMSC/Mel) group. RESULTS RNA sequence analysis showed that certain pathways, including the signaling pathway involved in the regulation of cell proliferation signaling pathway, were regulated by melatonin. The blood glucose levels of the mice in the UCMSC and UCMSC/Mel treatment groups were significantly reduced compared with the T2DM group without treatment (P < 0.05). Furthermore, hUC-MSCs enhance the key factor in the activation of the PI3K/Akt pathway in T2DM mouse hepatocytes. CONCLUSION The pretreatment of hUC-MSCs with melatonin partly boosted cell efficiency and thereby alleviated impaired glycemic control and insulin resistance. This study provides a practical strategy to improve the application of hUC-MSCs in diabetes mellitus and cytotherapy. Overview of the PI3K/AKT signaling pathway. (A) Underlying mechanism of UCMSC/Mel inhibition of hyperglycemia and insulin resistance T2DM mice via regulation of PI3K/AKT pathway. hUC-MSCs stimulates glucose uptake and improves insulin action thus should inhibition the clinical signs of T2DM, through activation of the p-PI3K/Akt signaling pathway and then regulates glucose transport through activating AS160. UCMSC/Mel increases p53-dependent expression of BCL2, and inhibit BAX and Capase3 protein activation. Leading to the decrease in apoptosis. (B) Melatonin modulated PI3K/AKT signaling pathway. Melatonin activated PI3K/AKT response pathway through binding to MT1and MT2 receptor. Leading to the increase in hUC-MSCs proliferation, migration and differentiation. → (Direct stimulatory modification); ┴ ( Direct Inhibitory modification); → ┤ (Multistep inhibitory modification); ↑ (Up regulate); ↓ (Down regulate); PI3K (Phosphoinositide 3-Kinase); AKT ( protein kinase B); PDK1 (Phosphoinositide-dependent protein kinase 1); IR, insulin receptor; GLUT4 ( glucose transporter type 4); ROS (reactive oxygen species); BCL-2 (B-cell lymphoma-2); PDK1 (phosphoinositide-dependent kinase 1) BAX (B-cell lymphoma-2-associated X protein); PCNA (Proliferating cell nuclear antigen); Cell cycle-associated proteins (KI67, cyclin A, cyclin E).
Collapse
Affiliation(s)
- Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Peng Liu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuedi Cheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Zheng Kou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Ning Tan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Bold Bayar Enkhbaatar
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Ruibin Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, YanglingShaanxi, 712100, China.
| |
Collapse
|
24
|
Zhang JJ, Li YQ, Shi M, Deng CC, Wang YS, Tang Y, Wang XZ. 17β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113308. [PMID: 35176672 DOI: 10.1016/j.ecoenv.2022.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Thiazolidinedione (TZD) is an oral anti-diabetic drug that exhibits some side effects on the male reproductive system by interfering with the steroidogenesis and androgenic activity and also shows anti-proliferative effect on several cell types. This study investigated the effect of TZD on immature chicken Sertoli cell (SC) proliferation and the potential mechanism by which 17β-estradiol regulated this process. Chicken SC viability was investigated under different treatment concentration and time of TZD. 17β-estradiol (0.001 μM, 24 h) was added to analyze its effects on TZD-mediated cell viability, cell metabolic activity, cell growth, cell cycle progression, reactive oxygen species (ROS) level, antioxidant enzyme activity, mitochondria activity, oxygen consumption rate, adenosine triphosphate (ATP) level, and mitochondrial respiratory chain enzyme activity, adiponectin expression and several cell proliferation-related genes mRNA and protein levels. We performed the microRNA (miRNA) array to find TZD-induced differentially expressed miRNAs and validated whether miR-1577 can target on adiponectin via the dual luciferase reporter assay, as well as verified the effect of adiponectin addition with different concentrations on the SC viability. Further, SCs were transfected with miR-1577 agomir (a double-stranded synthetic miRNA mimic) in the presence or absence of TZD and antagomir (a single-stranded synthetic miRNA inhibitor) in the presence or absence of 17β-estradiol to analyze whether miR-1577 was involved in TZD-mediated SC proliferation and whether 17β-estradiol regulated this process. Results showed that TZD significantly inhibited SC viability, cell metabolic activity, cell growth, and cell cycle progression, while increased adiponectin level and ROS generation. TZD-treated SCs presented decreases of antioxidant enzyme activity, mitochondria activity, basal and maximal respiration, ATP production and level, mitochondrial respiratory chain enzyme activity, and mRNA and protein expressions of several cell proliferation-related genes, as well as the significant alteration of miRNA expressions (a total number of 55 miRNAs were up-regulated whereas 53 miRNAs down-regulated). Whereas, 17β-estradiol played a positive role in chicken SC proliferation and rescued the damage of TZD on SC proliferation by up-regulating miR-1577 expression whose target gene was validated to be the adiponectin. In addition, exogenous adiponectin (more than 1 μg/ml) treatment exhibited a significant inhibition on the SC viability. Transfection of miR-1577 agomir promoted the SC proliferation via down-expressed adiponectin, and increased the mitochondrial function and cell proliferation-related gene expression, while TZD weakened the positive effect of miR-1577 agomir on SCs. On the other hand, transfection of miR-1577 antagomir inhibited SC proliferation by producing the opposite effects on above parameters, while 17β-estradiol attenuated the negative effect of miR-1577 antagomir on SCs. These findings suggest down-expressed miR-1577 is involved in the regulation of TZD-inhibited SC proliferation through increasing adiponectin level, and this damage of TZD on the immature chicken SC proliferation can be ameliorated by appropriate dose of exogenous 17β-estradiol treatment. This study provides an insight into the cytoprotective effect of 17β-estradiol on TZD-damaged SC proliferation and may suggest a potential strategy for reducing the risk of SC dysfunction caused by the abuse of TZD.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Ya Qi Li
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Mei Shi
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Cheng Chen Deng
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yu Sha Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yao Tang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol 2022; 12:807548. [PMID: 35126141 PMCID: PMC8807560 DOI: 10.3389/fphar.2021.807548] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Giovanna Dashi
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ivan Maslov
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Misty M. Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir Trukhan
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020334. [PMID: 35056647 PMCID: PMC8781412 DOI: 10.3390/molecules27020334] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is a cluster of metabolic indicators that increase the risk of diabetes and cardiovascular diseases. Visceral obesity and factors derived from altered adipose tissue, adipokines, play critical roles in the development of metabolic syndrome. Although the adipokines leptin and adiponectin improve insulin sensitivity, others contribute to the development of glucose intolerance, including visfatin, fetuin-A, resistin, and plasminogen activator inhibitor-1 (PAI-1). Leptin and adiponectin increase fatty acid oxidation, prevent foam cell formation, and improve lipid metabolism, while visfatin, fetuin-A, PAI-1, and resistin have pro-atherogenic properties. In this review, we briefly summarize the role of various adipokines in the development of metabolic syndrome, focusing on glucose homeostasis and lipid metabolism.
Collapse
|
27
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
28
|
Abstract
In this review, Lee and Olefsky discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| | - Jerrold Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
29
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
30
|
García-Salazar LF, Ribeiro JAM, Saade-Pacheco CR, Mattiello SM, Catai AM, Garcia-Araújo AS, Russo TL. Adiponectin Concentration and Chronic Stroke Individuals, Associations with Body Composition, Physical Activity Levels and Lipid Profile: A Cross-Sectional Explorative Study. J Stroke Cerebrovasc Dis 2021; 30:105993. [PMID: 34325270 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Higher adiponectin concentration has been associated with the presence of sarcopenia in individuals with cardiovascular diseases. Post-stroke individuals presented higher adiponectin concentrations than non-stroke ones. However, no previous study has investigated the association between the adiponectin concentration and skeletal muscle mass in post-stroke individuals. On the other hand, higher adiponectin concentration has been associated with a more favorable lipid profile and the physical activity level might regulate adiponectin concentration. These associations have not been studied in this population. Thus, the main objective of this study was to determine whether the adiponectin concentration is associated with: (1) body composition; (2) lipid profile; and (3) physical activity level in chronic post-stroke individuals. MATERIALS AND METHODS This study was a correlational, cross-sectional exploratory study. Data on body composition and lipid profile were collected using a bioelectrical impedance analyzer (InBody® 720) and an automated method analyzer (CELL-DYN Ruby), respectively. The physical activity level was measured by the StepWatch® Activity Monitor and the serum adiponectin concentration was analyzed using an enzyme-linked immunosorbent assay kit. Correlation analyses were made using Spearman's rank correlation coefficient (rs). RESULTS Twenty-one post-stroke participants took part in the study. The adiponectin concentration was associated with the following: skeletal muscle mass (rs = -0.78), skeletal muscle mass index (rs = -0.75) and high-density lipoprotein (rs = 0.43). CONCLUSIONS A greater adiponectin concentration is associated with a lower skeletal muscle mass and a higher high-density lipoprotein level in chronic post-stroke individuals, but not with physical activity levels.
Collapse
Affiliation(s)
- Luisa Fernanda García-Salazar
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil; Physical Therapy Program, Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Cássia Regina Saade-Pacheco
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil; Educational Foundation of the Municipality of Assis, Municipal Institute of Higher Education of Assis, Assis, Brazil
| | | | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | | - Thiago Luiz Russo
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
31
|
Effects of Baccharin Isolated from Brazilian Green Propolis on Adipocyte Differentiation and Hyperglycemia in ob/ob Diabetic Mice. Int J Mol Sci 2021; 22:ijms22136954. [PMID: 34203569 PMCID: PMC8267681 DOI: 10.3390/ijms22136954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Propolis is a honeybee product with various biological activities, including antidiabetic effects. We previously reported that artepillin C, a prenylated cinnamic acid derivative isolated from Brazilian green propolis, acts as a peroxisome proliferator-activated receptor γ (PPARγ) ligand and promotes adipocyte differentiation. In this study, we examined the effect of baccharin, another major component of Brazilian green propolis, on adipocyte differentiation. The treatment of mouse 3T3-L1 preadipocytes with baccharin resulted in increased lipid accumulation, cellular triglyceride levels, glycerol-3-phosphate dehydrogenase activity, and glucose uptake. The mRNA expression levels of PPARγ and its target genes were also increased by baccharin treatment. Furthermore, baccharin enhanced PPARγ-dependent luciferase activity, suggesting that baccharin promotes adipocyte differentiation via PPARγ activation. In diabetic ob/ob mice, intraperitoneal administration of 50 mg/kg baccharin significantly improved blood glucose levels. Our results suggest that baccharin has a hypoglycemic effect on glucose metabolic disorders, such as type 2 diabetes mellitus.
Collapse
|
32
|
Sowka A, Dobrzyn P. Role of Perivascular Adipose Tissue-Derived Adiponectin in Vascular Homeostasis. Cells 2021; 10:cells10061485. [PMID: 34204799 PMCID: PMC8231548 DOI: 10.3390/cells10061485] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin's structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.
Collapse
|
33
|
Menon K, Cameron JD, de Courten M, de Courten B. Use of carnosine in the prevention of cardiometabolic risk factors in overweight and obese individuals: study protocol for a randomised, double-blind placebo-controlled trial. BMJ Open 2021; 11:e043680. [PMID: 33986049 PMCID: PMC8126302 DOI: 10.1136/bmjopen-2020-043680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Carnosine, an over the counter food supplement, has been shown to improve glucose metabolism as well as cardiovascular risk factors in animal and human studies through its anti-inflammatory, antioxidative, antiglycating and chelating properties. The aim of this study is to establish if carnosine supplementation improves obesity, insulin sensitivity, insulin secretion, cardiovascular risk factors including arterial stiffness and endothelial function, and other risk factors related to diabetes and cardiovascular disease in the overweight and obese population. METHODS AND ANALYSIS Fifty participants will be recruited to be enrolled in a double-blind randomised controlled trial. Eligible participants with a body mass index (BMI) between 25 and 40 kg/m2 will be randomly assigned to the intervention or placebo group. Following a medical review and oral glucose tolerance test to check eligibility, participants will then undergo testing. At baseline, participants will have anthropometric measurements (BMI, dual X-ray absorptiometry and peripheral quantitative CT scan), measurements of glucose metabolism (oral glucose tolerance test, intravenous glucose tolerance test and euglycaemic hyperinsulinaemic clamp), cardiovascular measurements (central blood pressure, endothelial function and arterial stiffness), a muscle and fat biopsy, physical activity measurement, liver fibroscan, cognitive function and questionnaires to assess dietary habits, sleep quality, depression, and quality of life. Following baseline assessments, participants will be randomised to either 2 g carnosine or placebo for 15 weeks. In the 15th week, all assessments will be repeated. The preplanned outcome metric is the change between baseline and follow-up measures. ETHICS AND DISSEMINATION This study is approved by the Human Research Ethics Committee of Monash Health and Monash University, Australia. TRIAL REGISTRATION NUMBER NCT02686996.
Collapse
Affiliation(s)
- Kirthi Menon
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - James D Cameron
- MonashHeart and Monash Cardiovascular Research Centre, Melbourne, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Maximilian de Courten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Mitchell Institute, Victoria University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Vimaleswaran KS, Bodhini D, Jiang J, Ramya K, Mohan D, Shanthi Rani CS, Lakshmipriya N, Sudha V, Pradeepa R, Anjana RM, Mohan V, Radha V. Circulating adiponectin mediates the association between omentin gene polymorphism and cardiometabolic health in Asian Indians. PLoS One 2021; 16:e0238555. [PMID: 33979354 PMCID: PMC8115825 DOI: 10.1371/journal.pone.0238555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Plasma omentin levels have been shown to be associated with circulating adiponectin concentrations and cardiometabolic disease-related outcomes. In this study, we aim to examine the association of omentin gene polymorphism with serum adiponectin levels and cardiometabolic health status using a genetic approach, and investigate whether these associations are modified by lifestyle factors. METHODS The study included 945 normal glucose tolerant and 941 unrelated individuals with type 2 diabetes randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), in southern India. Study participants were classified into cardiometabolically healthy and unhealthy, where cardiometabolically healthy were those without hypertension, diabetes, and dyslipidemia. Fasting serum adiponectin levels were measured by radioimmunoassay. The omentin A326T (rs2274907) single nucleotide polymorphism (SNP) was screened by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. RESULTS The 'A' allele of the omentin SNP was significantly associated with lower adiponectin concentrations after adjusting for age, sex, body mass index (BMI), waist circumference (WC) and cardiometabolic health status (p = 1.90 x 10-47). There was also a significant association between circulating adiponectin concentrations and cardiometabolic health status after adjusting for age, sex, BMI, WC and Omentin SNP (p = 7.47x10-10). However, after adjusting for age, sex, BMI, WC and adiponectin levels, the association of 'A' allele with cardiometabolic health status disappeared (p = 0.79) suggesting that adiponectin serves as a mediator of the association between omentin SNP and cardiometabolic health status. There were no significant interactions between the SNP and dietary factors on adiponectin levels and cardiometabolic health status (p>0.25, for all comparisons). CONCLUSIONS Our findings show that adiponectin might function as a mechanistic link between omentin SNP and increased risk of cardiometabolic diseases independent of common and central obesity in Asian Indians. Before strategies to promote adiponectin modulation could be implemented, further studies are required to confirm the molecular mechanisms involved in this triangular relationship between omentin gene, adiponectin and cardiometabolic diseases.
Collapse
Affiliation(s)
- Karani Santhanakrishnan Vimaleswaran
- Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition, University of Reading, Reading, United Kingdom
- Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Dhanasekaran Bodhini
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Juanjie Jiang
- Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition, University of Reading, Reading, United Kingdom
| | - Kandaswamy Ramya
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Deepa Mohan
- Department of Epidemiology, Madras Diabetes Research Foundation, Chennai, India
| | | | - Nagarajan Lakshmipriya
- Department of Foods, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, India
| | - Vasudevan Sudha
- Department of Foods, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, India
| | - Rajendra Pradeepa
- Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialities Centre, IDF Centre of Excellence in Diabetes Care, & ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialities Centre, IDF Centre of Excellence in Diabetes Care, & ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialities Centre, IDF Centre of Excellence in Diabetes Care, & ICMR Centre for Advanced Research on Diabetes, Gopalapuram, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| |
Collapse
|
35
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
37
|
Li N, Zhao S, Zhang Z, Zhu Y, Gliniak CM, Vishvanath L, An YA, Wang MY, Deng Y, Zhu Q, Shan B, Sherwood A, Onodera T, Oz OK, Gordillo R, Gupta RK, Liu M, Horvath TL, Dixit VD, Scherer PE. Adiponectin preserves metabolic fitness during aging. eLife 2021; 10:65108. [PMID: 33904399 PMCID: PMC8099426 DOI: 10.7554/elife.65108] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.
Collapse
Affiliation(s)
- Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Orhan K Oz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Tamas L Horvath
- Department of Comparative Medicine and Immunobiology, Yale School of Medicine, New Haven, United States
| | - Vishwa Deep Dixit
- Department of Comparative Medicine and Immunobiology, Yale School of Medicine, New Haven, United States.,Yale Center for Research on Aging, Yale School of Medicine, New Haven, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
38
|
Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021; 13:nu13041180. [PMID: 33918360 PMCID: PMC8066826 DOI: 10.3390/nu13041180] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Adiponectin (a protein consisting of 244 amino acids and characterized by a molecular weight of 28 kDa) is a cytokine that is secreted from adipose tissues (adipokine). Available evidence suggests that adiponectin is involved in a variety of physiological functions, molecular and cellular events, including lipid metabolism, energy regulation, immune response and inflammation, and insulin sensitivity. It has a protective effect on neurons and neural stem cells. Adiponectin levels have been reported to be negatively correlated with cancer, cardiovascular disease, and diabetes, and shown to be affected (i.e., significantly increased) by proper healthy nutrition. The present review comprehensively overviews the role of adiponectin in a range of diseases, showing that it can be used as a biomarker for diagnosing these disorders as well as a target for monitoring the effectiveness of preventive and treatment interventions.
Collapse
|
39
|
Krinock MJ, Singhal NS. Diabetes, stroke, and neuroresilience: looking beyond hyperglycemia. Ann N Y Acad Sci 2021; 1495:78-98. [PMID: 33638222 DOI: 10.1111/nyas.14583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality among type 2 diabetic patients. Preclinical and translational studies have identified critical pathophysiological mediators of stroke risk, recurrence, and poor outcome in diabetic patients, including endothelial dysfunction and inflammation. Most clinical trials of diabetes and stroke have focused on treating hyperglycemia alone. Pioglitazone has shown promise in secondary stroke prevention for insulin-resistant patients; however, its use is not yet widespread. Additional research into clinical therapies directed at diabetic pathophysiological processes to prevent stroke and improve outcome for diabetic stroke survivors is necessary. Resilience is the process of active adaptation to a stressor. In patients with diabetes, stroke recovery is impaired by insulin resistance, endothelial dysfunction, and inflammation, which impair key neuroresilience pathways maintaining cerebrovascular integrity, resolving poststroke inflammation, stimulating neural plasticity, and preventing neurodegeneration. Our review summarizes the underpinnings of stroke risk in diabetes, the clinical consequences of stroke in diabetic patients, and proposes hypotheses and new avenues of research for therapeutics to stimulate neuroresilience pathways and improve stroke outcome in diabetic patients.
Collapse
Affiliation(s)
- Matthew J Krinock
- Department of Neurology, University of California - San Francisco, San Francisco, California
| | - Neel S Singhal
- Department of Neurology, University of California - San Francisco, San Francisco, California
| |
Collapse
|
40
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
41
|
Uddin MS, Rahman MM, Sufian MA, Jeandet P, Ashraf GM, Bin-Jumah MN, Mousa SA, Abdel-Daim MM, Akhtar MF, Saleem A, Amran MS. Exploring the New Horizon of AdipoQ in Obesity-Related Alzheimer's Dementia. Front Physiol 2021; 11:567678. [PMID: 33584324 PMCID: PMC7873563 DOI: 10.3389/fphys.2020.567678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes abnormalities in learning, thinking, memory, as well as behavior. Generally, symptoms of AD develop gradually and aggravate over time, and consequently severely interfere with daily activities. Furthermore, obesity is one of the common risk factors for dementia. Dysregulation of adipokine and adipocyte dysfunction are assumed to be accountable for the high risk of obesity in people that develop many related disorders such as AD. Moreover, it has been observed that the dysfunction of adipose is connected with changes in brain metabolism, brain atrophy, cognitive decline, impaired mood, neuroinflammation, impaired insulin signaling, and neuronal dysfunction in people with obesity. Conversely, the pathological mechanisms, as well as the molecular players which are involved in this association, have been unclear until now. In this article, we discuss the impact of adiponectin (AdipoQ) on obesity-related Alzheimer's dementia.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Mohammad Abu Sufian
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex, France
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
42
|
Raza S, Rajak S, Upadhyay A, Tewari A, Anthony Sinha R. Current treatment paradigms and emerging therapies for NAFLD/NASH. FRONT BIOSCI-LANDMRK 2021; 26:206-237. [PMID: 33049668 PMCID: PMC7116261 DOI: 10.2741/4892] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one the fastest emerging manifestations of the metabolic syndrome worldwide. Non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, may culminate into cirrhosis and hepatocellular cancer (HCC) and is presently a leading cause of liver transplant. Although a steady progress is seen in understanding of the disease epidemiology, pathogenesis and identifying therapeutic targets, the slowest advancement is seen in the therapeutic field. Currently, there is no FDA approved therapy for this disease and appropriate therapeutic targets are urgently warranted. In this review we discuss the role of lifestyle intervention, pharmacological agents, surgical approaches, and gut microbiome, with regard to therapy for NASH. In particular, we focus the role of insulin sensitizers, thyroid hormone mimetics, antioxidants, cholesterol lowering drugs, incretins and cytokines as therapeutic targets for NASH. We highlight these targets aiming to optimize the future for NASH therapy.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Aditya Upadhyay
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India,
| |
Collapse
|
43
|
Causal Relationship between Adiponectin and Diabetic Retinopathy: A Mendelian Randomization Study in an Asian Population. Genes (Basel) 2020; 12:genes12010017. [PMID: 33374471 PMCID: PMC7823606 DOI: 10.3390/genes12010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023] Open
Abstract
Adiponectin (APN) is suggested to be a potential biomarker for predicting diabetic retinopathy (DR) risk, but the association between APN and DR has been inconsistent in observational studies. We used a Mendelian randomization (MR) analysis to evaluate if circulating APN levels result in DR. We applied three different genetic risk scores (GRS): GRSAll combined all 47 single nucleotide polymorphisms (SNPs), which from a genome-wide association study (GWAS) database-catalog reach significance level; GRSLimited comprised 16 GRSAll-SNPs with a rigorous threshold (p < 5.0 × 10-8 for GWAS), and GRSAPN combined 5 SNPs significantly associated with APN level. The MR-inverse-variance weighted method analysis showed that for each 1-SD increase in genetically induced increase in plasma APN, the OR of having DR was β = 0.20 (95% CI: -0.46-0.85, p = 0.553) for GRSAPN, 0.61 (95% CI: 0.10-1.13, p = 0.020) for GRSAll, and 0.57 (95% CI: -0.06 to 1.20, p = 0.078) for GRSLimited. Sensitivity analysis, including MR-egger regression and the weighted-median approach, did not provide evidence of the pleiotropic effect of IVs. Limited evidence for the causal role of APN in DR risk among Taiwanese diabetic patients was shown based on MR analysis in the present study.
Collapse
|
44
|
Paccosi S, Pala L, Cresci B, Silvano A, Cecchi M, Caporale R, Maria Rotella C, Parenti A. Insulin resistance and obesity affect monocyte-derived dendritic cell phenotype and function. Diabetes Res Clin Pract 2020; 170:108528. [PMID: 33157116 DOI: 10.1016/j.diabres.2020.108528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
AIM Cardiovascular disease (CVD) is prevalent in women after menopause, which may be associated with obesity, insulin resistance and metaflammation. Despite the recognized role of immunological mechanisms in vascular remodeling, the role of dendritic cells (DCs) is still unclear. The aim was to characterize monocyte-derived DCs (Mo-DC) in post-menopausal patients with type 2 diabetes (T2DM) and obese woman, without clinical manifestations of atherosclerosis. METHODS Obese post-menopausal women with or without T2DM were enrolled and were compared to age-matched healthy women. DCs obtained from patients were phenotypically and functionally characterized by flow cytometry and mixed lymphocyte reaction. MRNA integrins expression was assessed by real time RT-PCR; circulating fetuin-A and adiponectin levels were measured by ELISA. RESULTS Phenotypic dysregulation of Mo-DC reported was related to a defective allogenic lymphocyte stimulation and to an increased mRNA of CD11c, CD18 and DC-SIGN/CD209 which regulate their adhesion to vascular wall cells. Fetuin-A and adiponectin levels were significantly altered and negatively correlated. Hyperglycaemia significantly impaired CD14+ transdifferentiation into Mo-DC. CONCLUSIONS These data show a dysfunction of Mo-DCs obtained from precursors isolated from T2DM obese post-menopausal woman without any documented clinical CV event. Association of obesity to diabetes seems to worsen DC's phenotype and function and increase vascular inflammation.
Collapse
Affiliation(s)
- Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Laura Pala
- Diabetology, Careggi University Hospital, Florence, Italy
| | - Barbara Cresci
- Diabetology, Careggi University Hospital, Florence, Italy
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Roberto Caporale
- Cytofluorimetry and Immunotherapy Diagnostic Center, Careggi University Hospital, Florence, Italy
| | - Carlo Maria Rotella
- Department of Biomedical Clinical and Experimental Sciences, Endocrine Unit, University of Florence, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| |
Collapse
|
45
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients 2020; 12:nu12113310. [PMID: 33137934 PMCID: PMC7692749 DOI: 10.3390/nu12113310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The evolution of obesity and its resulting comorbidities differs depending upon the age of the subject. The dramatic rise in childhood obesity has resulted in specific needs in defining obesity-associated entities with this disease. Indeed, even the definition of obesity differs for pediatric patients from that employed in adults. Regardless of age, one of the earliest metabolic complications observed in obesity involves perturbations in glucose metabolism that can eventually lead to type 2 diabetes. In children, the incidence of type 2 diabetes is infrequent compared to that observed in adults, even with the same degree of obesity. In contrast, insulin resistance is reported to be frequently observed in children and adolescents with obesity. As this condition can be prerequisite to further metabolic complications, identification of biological markers as predictive risk factors would be of tremendous clinical utility. Analysis of obesity-induced modifications of the adipokine profile has been one classic approach in the identification of biomarkers. Recent studies emphasize the utility of metabolomics in the analysis of metabolic characteristics in children with obesity with or without insulin resistance. These studies have been performed with targeted or untargeted approaches, employing different methodologies. This review summarizes some of the advances in this field while emphasizing the importance of the different techniques employed.
Collapse
|
47
|
Erşan S, Erşan EE. Effects of Hypnotherapy on Weight Loss and thus on Serum Leptin, Adiponectin, and Irisin Levels in Obese Patients. J Altern Complement Med 2020; 26:1047-1054. [PMID: 32716207 DOI: 10.1089/acm.2020.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: This study aimed to investigate effects of hypnotherapy on weight loss and thus on leptin, adiponectin (ADP), and irisin levels in obese patients who presented to the psychiatry outpatient clinic to participate in hypnotherapy sessions to develop a healthy and balanced diet. Methods: The study sample included 32 individuals with a body mass index (BMI) of ≥30 and who completed the 10-week hypnotherapy. First, the Personal Information Form was handed out to the participants and then each participant's weight (in the morning on an empty stomach) and height were measured and BMI was determined. Five-milliliter blood samples were drawn before the first session, and then irisin, leptin, and ADP levels were measured using the enzyme-linked immunosorbent assay method. Then, they participated in hypnotherapy sessions once a week for 10 weeks. At the end of the 10-week hypnotherapy, 5 mL of blood was taken again and the aforementioned biochemical analyses were performed. BMIs were measured again. Results: The mean BMI values of the patients were 33.43 ± 5.28 and 31.45 ± 4.98 at the beginning and end of the hypnotherapy sessions, respectively. Serum leptin, ADP, and irisin levels, which were 9.48 ± 5.48, 6.73 ± 3.27, and 1.43 ± 1.14, respectively, at the beginning of the hypnotherapy sessions, were 6.47 ± 2.69, 7.68 ± 3.34, and 1.53 ± 1.21, respectively, at the end of the hypnotherapy sessions. The results showed that BMI and serum leptin levels decreased significantly after the hypnotherapy sessions, whereas serum ADP and irisin levels increased significantly. Conclusions: This study indicates that hypnotherapy in obesity treatment leads to weight loss in obese patients and thus to considerable changes in leptin, ADP, and irisin levels. Hypnotherapy is easy to apply, cheap, and effective; has no potential for side effects; and can be applied both alone and in combination with other treatments. However, to confirm its effects, further studies should be conducted on this issue.
Collapse
Affiliation(s)
- Serpil Erşan
- Department of Medicinal Biochemistry and Medical Faculty, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Etem Erdal Erşan
- Department of Psychiatry, Medical Faculty, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
48
|
Mohammad Rahimi GR, Bijeh N, Rashidlamir A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp Physiol 2020; 105:449-459. [PMID: 31869474 DOI: 10.1113/ep088036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are the advantages of aerobic interval exercise, resistance exercise and concurrent exercise on the metabolic profile mediated in part through preptin and undercarboxylated osteocalcin (ucOCN)? What is the main finding and its importance? Glucose was significantly lowered after concurrent exercise and aerobic interval exercise, but serum preptin and insulin were significantly lowered in all three training groups. By contrast, ucOCN and high molecular weight adiponectin increased significantly in all three training groups. These findings support the possible cross-talk between bone, pancreatic β-cells and energy metabolism in humans and suggest that preptin and ucOCN may potentially serve as markers of exercise-induced improvement of metabolism. ABSTRACT Preptin is a peptide hormone that plays an important role in the development of obesity by regulation of carbohydrate metabolism. Undercarboxylated osteocalcin (ucOCN) is also linked to the regulation of body energy in that it modulates fat and glucose metabolism. This research aimed to examine the impact of aerobic interval, resistance and concurrent exercise on serum preptin, ucOCN and high molecular weight adiponectin (HMW-APN) in obese adults with metabolic syndrome (MetS). Forty-four obese men with MetS were randomized to receive aerobic interval exercise (AIEX, n = 10), resistance exercise (REX, n = 10), or concurrent aerobic interval and resistance exercise (CEX, n = 10), or to act as a non-exercise control (CON, n = 10) three times a week for 12 weeks. Preptin was reduced more after AIEX and CEX than after REX (89.1% and 87.1% versus 9.6%; P = 0.028 and 0.030, respectively). ucOCN increased significantly only in the CEX (27.5%, P = 0.009) and AIEX (25%, P = 0.025) groups, but HMW-APN increased significantly in all three training groups (AIEX 145.1%, P < 0.001; CEX 137%, P < 0.001; and REX 59.8%, P = 0.041). After the intervention, the improvement of peak oxygen uptake ( V ̇ O 2 peak ) in the AIEX group (73%) was greater than in the CEX (29.3%) and REX (3.8%) groups. On the other hand, CEX exhibited a greater reduction in glucose, insulin, insulin resistance index and HbA1c than did AIEX and REX. Our study indicates that the reduction in glucose after exercise training (especially AIEX and CEX) may be, somewhat, linked to decreased preptin and raised ucOCN and HMW-APN.
Collapse
Affiliation(s)
| | - Nahid Bijeh
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Rashidlamir
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
49
|
Selenium bioisosteric replacement of adenosine derivatives promoting adiponectin secretion increases the binding affinity to peroxisome proliferator-activated receptor δ. Bioorg Med Chem 2020; 28:115226. [PMID: 31806266 DOI: 10.1016/j.bmc.2019.115226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
Abstract
N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4'-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4'-selenoadenosine-5'-N-methyluronamide (3e) and related 4'-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4'-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4'-oxoadenosine, that of 4'-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4'-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.
Collapse
|
50
|
Maeda N, Funahashi T, Matsuzawa Y, Shimomura I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 2019; 292:1-9. [PMID: 31731079 DOI: 10.1016/j.atherosclerosis.2019.10.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Visceral fat accumulation has a marked impact on atherosclerotic cardiovascular diseases and metabolic syndrome clustering diabetes, dyslipidemia, and hypertension. Adiponectin, an adipocyte-derived circulating protein, is a representative adipocytokine and uniquely possesses two major properties: 1) its circulating concentration is approximately 3-6 orders of magnitude greater than ordinary hormones and cytokines; 2) its concentration inversely correlates with body fat mass despite its adipocyte-specific production. Low serum levels of adiponectin correlate with cardiometabolic diseases. Extensive experimental evidence has demonstrated that adiponectin possesses multiple properties, such as anti-atherosclerotic, anti-diabetic, and anti-inflammatory activities. It has been shown to play a central role against the development of metabolic syndrome and its complications. However, even approximately 25 years after its discovery, the properties of adiponectin, including how and why it exerts multiple beneficial effects on various tissues and/or organs, remain unclear. Furthermore, the mechanisms responsible for the very high circulating concentrations of adiponectin in the bloodstream have not been elucidated. Several adiponectin-binding partners, such as AdipoR1/2, have been identified, but do not fully explain the multi-functional and beneficial properties of adiponectin. Recent advances in adiponectin research may resolve these issues. Adiponectin binds to and covers cell surfaces with T-cadherin, a unique glycosylphosphatidylinositol (GPI)-anchored cadherin. The adiponectin/T-cadherin complex enhances exosomal production and release, excreting cell-toxic products from cells, particularly in the vasculature. In this review, we discuss adiponectin and the role of the adiponectin/T-cadherin system in the maintenance of whole body homeostasis and cardiovascular protection.
Collapse
Affiliation(s)
- Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan; Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tohru Funahashi
- Division of Osaka Health Support Center, Sumitomo Mitsui Banking Corporation, 6-5, Kitahama 4-chome, Chuo-ku, Osaka, Osaka, 541-0041, Japan
| | - Yuji Matsuzawa
- Department of Endocrinology and Metabolism, Sumitomo Hospital, 5-3-20, Nakanoshima, Kita-ku, Osaka, Osaka, 530-0005, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|