1
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
2
|
Zhang Y, Shang H, Zhang J, Jiang Y, Li J, Xiong H, Chao T. Drug Treatment Direction Based on the Molecular Mechanism of Breast Cancer Brain Metastasis. Pharmaceuticals (Basel) 2025; 18:262. [PMID: 40006075 PMCID: PMC11859690 DOI: 10.3390/ph18020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Today, breast cancer (BC) is the most frequently diagnosed malignancy and a leading cause of cancer-related deaths among women worldwide. Brain metastases (BMs) are a common complication among individuals with advanced breast cancer, significantly impacting both survival rates and the overall condition of life of patients. This review systematically analyzes the innovative approaches to drug treatment for breast cancer brain metastases (BCBMs), with particular emphasis placed on treatments targeting molecular mechanisms and signaling pathways and drug delivery strategies targeting the blood brain barrier (BBB). The article discusses various drugs that have demonstrated effectiveness against BCBM, featuring a mix of monoclonal antibodies, nimble small-molecule tyrosine kinase inhibitors (TKIs), and innovative antibody-drug conjugates (ADCs). This study of various drugs and techniques designed to boost the permeability of the BBB sheds light on how these innovations can improve the treatment of brain metastases. This review highlights the need to develop new therapies for BCBM and to optimize existing treatment strategies. With a deeper comprehension of the intricate molecular mechanisms and advances in drug delivery technology, it is expected that more effective personalized treatment options will become available in the future for patients with BCBM.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Haotian Shang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yizhi Jiang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Jiahao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| |
Collapse
|
3
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
4
|
Nikolic S, Alastra G, Pultar F, Lüthy L, Stadlinger B, Carreira EM, Bugueno IM, Mitsiadis TA. Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells. Int J Mol Sci 2025; 26:1144. [PMID: 39940912 PMCID: PMC11817755 DOI: 10.3390/ijms26031144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Bacterium-triggered carious lesions implicate dental hard tissue destruction and the simultaneous initiation of regenerative events comprising dental stem cell activation. Streptococcus mutans (S. mutans) is a prominent pathogen of the oral cavity and the principal cause of caries. S. mutans generates complex products involved in interbacterial interactions, including Mutanobactin-D (Mub-D), which belongs to a group of non-ribosomal cyclic lipopeptides. In the present study, we aimed to analyse the potential role of the synthetic Mub-D peptide in cell populations involved in tissue regenerative processes. To this end, we assessed the in vitro effects of Mub-D in human dental pulp stem cells (hDPSCs) and human bone marrow stem cells (hBMSCs). Our data demonstrated a concentration-dependent effect of Mub-D on their viability and a significant increase in their proliferation and osteogenic/odontogenic differentiation. These events were associated with specific changes in gene expression, where CCDN-1, RUNX-2, OSX, OCN, DMP-1, DSPP, and BMP-2 genes were upregulated. The ability of Mub-D to modulate the osteogenic/odontogenic differentiation of both hDPSCs and hBMSCs and considerably enhance mineralisation in a controlled and concentration-dependent manner opens new perspectives for stem cell-based regenerative approaches in the clinics.
Collapse
Affiliation(s)
- Sandra Nikolic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Felix Pultar
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Lukas Lüthy
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, 8032 Zurich, Switzerland;
| | - Erick M. Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
- Foundation for Research and Technology—Hellas (FORTH), University of Crete, 700 13 Heraklion, Greece
| |
Collapse
|
5
|
Talukdar PD, Roy H, Chatterji U. Targeting breast cancer stem cells in ER-positive breast cancer by repurposing the benzoporphyrin derivative verteporfin as a YAP/TAZ small molecule inhibitor. Mol Biol Rep 2025; 52:154. [PMID: 39853518 DOI: 10.1007/s11033-025-10264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness. METHODS The study employs survival analysis from TCGA database, protein expression analyses alongside aldefluor assays, sphere formation efficiency tests to evaluate cellular stemness, and DCFDA analysis combined with antioxidant enzyme assays to investigate redox imbalance in brCSCs. These analyses were conducted following the genetic deletion of YAP/TAZ and pharmacological treatment with verteporfin. RESULTS The study demonstrated that transcriptional co-activators YAP/TAZ are significantly upregulated in chemotreated ER+ patient breast tumors and MCF-7 mammospheres, where it was found to interact with the transcription factor SOX2 within the nuclear compartment. Genetic ablation and pharmacological inhibition of YAP/TAZ markedly impaired stemness properties and disrupted redox homeostasis in the mammospheres. Additionally, treatment with verteporfin led to a substantial reduction in the frequency and viability of brCSCs, suggesting their effective eradication. CONCLUSION This study highlights the potential of repurposing verteporfin, an FDA-approved drug originally formulated for age-related macular degeneration, as a therapeutic agent for targeting YAP/TAZ-mediated stemness and redox balance in brCSCs, thereby reducing their viability in ER-positive breast cancers.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Himansu Roy
- Department of Surgery, Medical College, Kolkata, 700073, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
6
|
Ingthorsson S, Traustadottir GA, Gudjonsson T. Breast Morphogenesis: From Normal Development to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:29-44. [PMID: 39821019 DOI: 10.1007/978-3-031-70875-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population. The epithelial compartment undergoes dynamic branching morphogenesis and remodelling, which expands the surface area for milk production. The epithelial remodelling that starts at the onset of menarche is largely under hormonal control, first and foremost by estrogen and progesterone from ovaries, the production of which is stimulated by pituitary-derived hormones. Menopause leads to a significant decline in estrogen and progesterone levels, resulting in involution and senescence of the breast epithelium. The branching morphogenesis involves developmental events such as epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). EMT and MET confer plasticity to the epithelial compartment enabling the migration of epithelial cells through the stroma and restoration of the epithelial phenotype. In the normal breast, the stroma, including the basement membrane (BM), collagen-rich extracellular matrix, and various stromal cells, supports the correct histoarchitecture of the glandular tree. However, in cancer, the stroma can acquire tumour-promoting properties and is referred to as the tumour microenvironment. This chapter will explore the developmental processes including branching morphogenesis in the normal breast gland and discuss the lineage relationship between LEPS and MEPs and their interactions with the surrounding stroma in the normal and neoplastic breast gland. Finally, we will review various in vitro and in vivo models employed in mammary gland research.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Faculty of Nursing and Midwifery, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland.
| |
Collapse
|
7
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
8
|
Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA. Cracking the code of Annexin A1-mediated chemoresistance. Biochem Biophys Res Commun 2024; 725:150202. [PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
Collapse
Affiliation(s)
- Thanusha Ganesan
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia; School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
9
|
Liu R, Yu Y, Wang Q, Zhao Q, Yao Y, Sun M, Zhuang J, Sun C, Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal 2024; 22:432. [PMID: 39252010 PMCID: PMC11382420 DOI: 10.1186/s12964-024-01812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer ranks as one of the most common malignancies among women, with its prognosis and therapeutic efficacy heavily influenced by factors associated with the tumor cell biology, particularly the tumor microenvironment (TME). The diverse elements of the TME are engaged in dynamic bidirectional signaling interactions with various pathways, which together dictate the growth, invasiveness, and metastatic potential of breast cancer. The Hedgehog (Hh) signaling pathway, first identified in Drosophila, has been established as playing a critical role in human development and disease. Notably, the dysregulation of the Hh pathway is recognized as a major driver in the initiation, progression, and metastasis of breast cancer. Consequently, elucidating the mechanisms by which the Hh pathway interacts with the distinct components of the breast cancer TME is essential for comprehensively evaluating the link between Hh pathway activation and breast cancer risk. This understanding is also imperative for devising novel targeted therapeutic strategies and preventive measures against breast cancer. In this review, we delineate the current understanding of the impact of Hh pathway perturbations on the breast cancer TME, including the intricate and complex network of intersecting signaling cascades. Additionally, we focus on the therapeutic promise and clinical challenges of Hh pathway inhibitors that target the TME, providing insights into their potential clinical utility and the obstacles that must be overcome to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qianxiang Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
10
|
Kumar R, Awasthi S, Pradhan D, Kumar R, Goel H, Singh J, Haider I, Deo SVS, Kumar C, Srivastava A, Bhatnagar A, Kumar R, Lakshmi S, Augustine P, Ranjan A, Chopra A, Gogia A, Batra A, Mathur S, Rath GK, Kaur T, Dhaliwal RS, Mathew A, Agrawal U, Hussain S, Tanwar P. Somatic mutational landscape across Indian breast cancer cases by whole exome sequencing. Sci Rep 2024; 14:18679. [PMID: 39134585 PMCID: PMC11319672 DOI: 10.1038/s41598-024-65148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Breast cancer (BC) has emerged as the most common malignancy among females. The genomic profile of BC is diverse in nature and complex due to heterogeneity among various geographically different ethnic groups. The primary objective of this study was to carry out a comprehensive mutational analysis of Indian BC cases by performing whole exome sequencing. The cohort included patients with a median age of 48 years. TTN, TP53, MUC16, SYNE1, and OBSCN were the frequently altered genes found in our cohort. The PIK3CA and KLC3 genes are driver genes implicated in various cellular functions and cargo transportation through microtubules, respectively. Except for CCDC168 and PIK3CA, several gene pairings were found to be significantly linked with co-occurrence. Irrespective of their hormonal receptor status, RTK/RAS was observed with frequently altered signaling pathways. Further analysis of the mutational signature revealed that SBS13, SBS6, and SBS29 were mainly observed in our cohort. This study supplements the discovery of diagnostic biomarkers and provides new therapeutic options for the improved management of BC.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Supriya Awasthi
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rakesh Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Imran Haider
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - S V S Deo
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chitresh Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Srivastava
- Department of General Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Amar Bhatnagar
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Rakesh Kumar
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - S Lakshmi
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Paul Augustine
- Division of Surgical Services, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Amar Ranjan
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Gogia
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Batra
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Goura Kishor Rath
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Tanvir Kaur
- Division of Non-Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - R S Dhaliwal
- Division of Non-Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Aleyamma Mathew
- Division of Cancer Epidemiology and Biostatistics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Usha Agrawal
- ICMR-National Institute of Pathology, New Delhi, India
| | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Pranay Tanwar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
12
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
13
|
Sekiguchi R, Martin D, Doyle A, Wang S, Yamada K. Salivary Gland Tissue Recombination Can Modify Cell Fate. J Dent Res 2024; 103:755-764. [PMID: 38715201 PMCID: PMC11191754 DOI: 10.1177/00220345241247484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.
Collapse
Affiliation(s)
- R. Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - D. Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A.D. Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S. Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - K.M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Xiang H, Pan Y, Sze MA, Wlodarska M, Li L, van de Mark KA, Qamar H, Moure CJ, Linn DE, Hai J, Huo Y, Clarke J, Tan TG, Ho S, Teng KW, Ramli MN, Nebozhyn M, Zhang C, Barlow J, Gustafson CE, Gornisiewicz S, Albertson TP, Korle SL, Bueno R, Moy LY, Vollmann EH, Chiang DY, Brandish PE, Loboda A. Single-Cell Analysis Identifies NOTCH3-Mediated Interactions between Stromal Cells That Promote Microenvironment Remodeling and Invasion in Lung Adenocarcinoma. Cancer Res 2024; 84:1410-1425. [PMID: 38335304 PMCID: PMC11063690 DOI: 10.1158/0008-5472.can-23-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients. Among the mesenchymal cell subsets, FAP+PDPN+ cancer-associated fibroblasts (CAF) and ACTA2+MCAM+ pericytes were enriched in tumors and differentiated from lung-resident fibroblasts. Imaging mass cytometry revealed that both subsets were topographically adjacent to the perivascular niche and had close spatial interactions with endothelial cells (EC). Modeling of ligand and receptor interactomes between mesenchymal and ECs identified that NOTCH signaling drives these cell-to-cell interactions in tumors, with pericytes and CAFs as the signal receivers and arterial and PLVAPhigh immature neovascular ECs as the signal senders. Either pharmacologically blocking NOTCH signaling or genetically depleting NOTCH3 levels in mesenchymal cells significantly reduced collagen production and suppressed cell invasion. Bulk RNA sequencing data demonstrated that NOTCH3 expression correlated with poor survival in stroma-rich patients and that a T cell-inflamed gene signature only predicted survival in patients with low NOTCH3. Collectively, this study provides valuable insights into the role of NOTCH3 in regulating tumor stroma biology, warranting further studies to elucidate the clinical implications of targeting NOTCH3 signaling. SIGNIFICANCE NOTCH3 signaling activates tumor-associated mesenchymal cells, increases collagen production, and augments cell invasion in lung adenocarcinoma, suggesting its critical role in remodeling tumor stroma.
Collapse
Affiliation(s)
- Handan Xiang
- Discovery Immunology, Merck & Co., Inc., Cambridge, Massachusetts
| | - Yidan Pan
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Marc A. Sze
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Marta Wlodarska
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts
| | - Ling Li
- Quantitative Bioscience, MSD, Singapore
| | | | - Haleema Qamar
- Discovery Immunology, Merck & Co., Inc., Cambridge, Massachusetts
| | - Casey J. Moure
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts
| | - Douglas E. Linn
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | - Josephine Hai
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | - Ying Huo
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | - James Clarke
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Tze Guan Tan
- Discovery Cardiometabolic Diseases, MSD, Singapore
| | - Samantha Ho
- Discovery Cardiometabolic Diseases, MSD, Singapore
| | | | | | - Michael Nebozhyn
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Chunsheng Zhang
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Julianne Barlow
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Corinne E. Gustafson
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Savanna Gornisiewicz
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas P. Albertson
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephanie L. Korle
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Bueno
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lily Y. Moy
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | | | - Derek Y. Chiang
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | | | - Andrey Loboda
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| |
Collapse
|
15
|
Siddique R, Gupta G, Mgm J, Kumar A, Kaur H, Ariffin IA, Pramanik A, Almalki WH, Ali H, Shahwan M, Patel N, Murari K, Mishra R, Thapa R, Bhat AA. Targeting notch-related lncRNAs in cancer: Insights into molecular regulation and therapeutic potential. Pathol Res Pract 2024; 257:155282. [PMID: 38608371 DOI: 10.1016/j.prp.2024.155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Johar Mgm
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - I A Ariffin
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Krishna Murari
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
16
|
Mustafa M, Abbas K, Alam M, Ahmad W, Moinuddin, Usmani N, Siddiqui SA, Habib S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol Cell Biochem 2024; 479:895-913. [PMID: 37247161 DOI: 10.1007/s11010-023-04772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Kashif Abbas
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Nazura Usmani
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
17
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Cruz SM, Iranpur KR, Judge SJ, Ames E, Sturgill IR, Farley LE, Darrow MA, Crowley JS, Monjazeb AM, Murphy WJ, Canter RJ. Low-Dose Sorafenib Promotes Cancer Stem Cell Expansion and Accelerated Tumor Progression in Soft Tissue Sarcomas. Int J Mol Sci 2024; 25:3351. [PMID: 38542325 PMCID: PMC10969893 DOI: 10.3390/ijms25063351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.
Collapse
Affiliation(s)
- Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Sean J. Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ian R. Sturgill
- Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren E. Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jiwon Sarah Crowley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis, Sacramento, CA 95817, USA;
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
He T, Wang Y, Lv W, Wang Y, Li X, Zhang Q, Shen HM, Hu J. FBP1 inhibits NSCLC stemness by promoting ubiquitination of Notch1 intracellular domain and accelerating degradation. Cell Mol Life Sci 2024; 81:87. [PMID: 38349431 PMCID: PMC10864425 DOI: 10.1007/s00018-024-05138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
The existence of cancer stem cells is widely acknowledged as the underlying cause for the challenging curability and high relapse rates observed in various tumor types, including non-small cell lung cancer (NSCLC). Despite extensive research on numerous therapeutic targets for NSCLC treatment, the strategies to effectively combat NSCLC stemness and achieve a definitive cure are still not well defined. The primary objective of this study was to examine the underlying mechanism through which Fructose-1,6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme, functions as a tumor suppressor to regulate the stemness of NSCLC. Herein, we showed that overexpression of FBP1 led to a decrease in the proportion of CD133-positive cells, weakened tumorigenicity, and decreased expression of stemness factors. FBP1 inhibited the activation of Notch signaling, while it had no impact on the transcription level of Notch 1 intracellular domain (NICD1). Instead, FBP1 interacted with NICD1 and the E3 ubiquitin ligase FBXW7 to facilitate the degradation of NICD1 through the ubiquitin-proteasome pathway, which is independent of the metabolic enzymatic activity of FBP1. The aforementioned studies suggest that targeting the FBP1-FBXW7-NICD1 axis holds promise as a therapeutic approach for addressing the challenges of NSCLC recurrence and drug resistance.
Collapse
Affiliation(s)
- Tianyu He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanye Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinye Li
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Faculty of Health Sciences, University of Macau, Macau, China.
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
20
|
Han W, Shen Z, Zou J, Ye Q, Ge C, Zhao Y, Wang T, Chen Y. Therapeutic Approaches of Dual-targeted Nanomedicines for Tumor Multidrug Resistance. Curr Drug Deliv 2024; 21:155-167. [PMID: 37143266 DOI: 10.2174/1567201820666230504145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Currently, the main cause of cancer chemotherapy failure is multi-drug resistance (MDR), which involves a variety of complex mechanisms. Compared with traditional small-molecule chemotherapy, targeted nanomedicines offer promising alternative strategies as an emerging form of therapy, especially active targeted nanomedicines. However, although single-targeted nanomedicines have made some progress in tumor therapy, the complexity of tumor microenvironment and tumor heterogeneity limits their efficacy. Dual-targeted nanomedicines can simultaneously target two tumor-specific factors that cause tumor MDR, which have the potential in overcoming tumor MDR superior to single-targeted nanomedicines by further enhancing cell uptake and cytotoxicity in new forms, as well as the effectiveness of tumor-targeted delivery. This review discusses tumor MDR mechanisms and the latest achievements applied to dual-targeted nanomedicines in tumor MDR.
Collapse
Affiliation(s)
- Weili Han
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Zhenglin Shen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Jie Zou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Qiufang Ye
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Cheng Ge
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yuqin Zhao
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yafang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| |
Collapse
|
21
|
Wicker MN, Wagner KU. Cellular Plasticity in Mammary Gland Development and Breast Cancer. Cancers (Basel) 2023; 15:5605. [PMID: 38067308 PMCID: PMC10705338 DOI: 10.3390/cancers15235605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Cellular plasticity is a phenomenon where cells adopt different identities during development and tissue homeostasis as a response to physiological and pathological conditions. This review provides a general introduction to processes by which cells change their identity as well as the current definition of cellular plasticity in the field of mammary gland biology. Following a synopsis of the evolving model of the hierarchical development of mammary epithelial cell lineages, we discuss changes in cell identity during normal mammary gland development with particular emphasis on the effect of the gestation cycle on the emergence of new cellular states. Next, we summarize known mechanisms that promote the plasticity of epithelial lineages in the normal mammary gland and highlight the importance of the microenvironment and extracellular matrix. A discourse of cellular reprogramming during the early stages of mammary tumorigenesis that follows focuses on the origin of basal-like breast cancers from luminal progenitors and oncogenic signaling networks that orchestrate diverse developmental trajectories of transforming epithelial cells. In addition to the epithelial-to-mesenchymal transition, we highlight events of cellular reprogramming during breast cancer progression in the context of intrinsic molecular subtype switching and the genesis of the claudin-low breast cancer subtype, which represents the far end of the spectrum of epithelial cell plasticity. In the final section, we will discuss recent advances in the design of genetically engineered models to gain insight into the dynamic processes that promote cellular plasticity during mammary gland development and tumorigenesis in vivo.
Collapse
Affiliation(s)
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
23
|
Sun L, Yao HJ, Li JC, Zhao BQ, Wang YA, Zhang YG. Activated Carbon nanoparticles Loaded with Metformin for Effective Against Hepatocellular Cancer Stem Cells. Int J Nanomedicine 2023; 18:2891-2910. [PMID: 37283712 PMCID: PMC10239765 DOI: 10.2147/ijn.s382519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/16/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Hepatocellular cancer stem cells (CSCs) play crucial roles in hepatocellular cancer initiation, development, relapse, and metastasis. Therefore, eradication of this cell population is a primary objective in hepatocellular cancer therapy. We prepared a nanodrug delivery system with activated carbon nanoparticles (ACNP) as carriers and metformin (MET) as drug (ACNP-MET), which was able to selectively eliminate hepatocellular CSCs and thereby increase the effects of MET on hepatocellular cancers. Methods ACNP were prepared by ball milling and deposition in distilled water. Suspension of ACNP and MET was mixed and the best ratio of ACNP and MET was determined based on the isothermal adsorption formula. Hepatocellular CSCs were identified as CD133+ cells and cultured in serum-free medium. We investigated the effects of ACNP-MET on hepatocellular CSCs, including the inhibitory effects, the targeting efficiency, self-renewal capacity, and the sphere-forming capacity of hepatocellular CSCs. Next, we evaluated the therapeutic efficacy of ACNP-MET by using in vivo relapsed tumor models of hepatocellular CSCs. Results The ACNP have a similar size, a regular spherical shape and a smooth surface. The optimal ratio for adsorption was MET: ACNP=1:4. ACNP-MET could target and inhibit the proliferation of CD133+ population and decrease mammosphere formation and renewal of CD133+ population in vitro and in vivo. Conclusion These results not only suggest that nanodrug delivery system increased the effects of MET, but also shed light on the mechanisms of the therapeutic effects of MET and ACNP-MET on hepatocellular cancers. ACNP, as a good nano-carrier, could strengthen the effect of MET by carrying drugs to the micro-environment of hepatocellular CSCs.
Collapse
Affiliation(s)
- Lan Sun
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Hong-Juan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, People’s Republic of China
| | - Jing-Cao Li
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Bao-Quan Zhao
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yong-An Wang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Ying-Ge Zhang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Hernandez JC, Chen CL, Machida T, Uthaya Kumar DB, Tahara SM, Montana J, Sher L, Liang J, Jung JU, Tsukamoto H, Machida K. LIN28 and histone H3K4 methylase induce TLR4 to generate tumor-initiating stem-like cells. iScience 2023; 26:106254. [PMID: 36949755 PMCID: PMC10025994 DOI: 10.1016/j.isci.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/09/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Chemoresistance and plasticity of tumor-initiating stem-like cells (TICs) promote tumor recurrence and metastasis. The gut-originating endotoxin-TLR4-NANOG oncogenic axis is responsible for the genesis of TICs. This study investigated mechanisms as to how TICs arise through transcriptional, epigenetic, and post-transcriptional activation of oncogenic TLR4 pathways. Here, we expressed constitutively active TLR4 (caTLR4) in mice carrying pLAP-tTA or pAlb-tTA, under a tetracycline withdrawal-inducible system. Liver progenitor cell induction accelerated liver tumor development in caTLR4-expressing mice. Lentiviral shRNA library screening identified histone H3K4 methylase SETD7 as central to activation of TLR4. SETD7 combined with hypoxia induced TLR4 through HIF2 and NOTCH. LIN28 post-transcriptionally stabilized TLR4 mRNA via de-repression of let-7 microRNA. These results supported a LIN28-TLR4 pathway for the development of HCCs in a hypoxic microenvironment. These findings not only advance our understanding of molecular mechanisms responsible for TIC generation in HCC, but also represent new therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- MS Biotechnology Program, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Chia-Lin Chen
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 110, Taiwan
| | - Tatsuya Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jared Montana
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Sher
- Department of Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Jae U. Jung
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| |
Collapse
|
25
|
1'-O-methyl-averantin isolated from the endolichenic fungus Jackrogersella sp. EL001672 suppresses colorectal cancer stemness via sonic Hedgehog and Notch signaling. Sci Rep 2023; 13:2811. [PMID: 36797277 PMCID: PMC9935543 DOI: 10.1038/s41598-023-28773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Endolichenic fungi are host organisms that live on lichens and produce a wide variety of secondary metabolites. Colorectal cancer stem cells are capable of self-renewal and differentiation into cancer cells, which makes cancers difficult to eradicate. New alternative therapeutics are needed to inhibit the growth of tumor stem cells. This study examined the ability of an extract of Jackrogersella sp. EL001672 (derived from the lichen Cetraria sp.) and the isolated compound 1'-O-methyl-averantin to inhibit development of cancer stemness. The endolichenic fungus Jackrogersella sp. EL001672 (KACC 83021BP), derived from Cetraria sp., was grown in culture medium. The culture broth was extracted with acetone to obtain a crude extract. Column chromatography and reverse-phase HPLC were used to isolate an active compound. The anticancer activity of the extract and the isolated compound was evaluated by qRT-PCR and western blotting, and in cell viability, spheroid formation, and reporter assays. The acetone extract of EL001672 did not affect cell viability. However, 1'-O-methyl-averantin showed cytotoxic effects against cancer cell lines at 50 μg/mL and 25 μg/mL. Both the crude extract and 1'-O-methyl-averantin suppressed spheroid formation in CRC cell lines, and downregulated expression of stemness markers ALDH1, CD44, CD133, Lgr-5, Msi-1, and EphB1. To further characterize the mechanism underlying anti-stemness activity, we examined sonic Hedgehog and Notch signaling. The results showed that the crude extract and the 1'-O-methyl-averantin inhibited Gli1, Gli2, SMO, Bmi-1, Notch-1, Hes-1, and the CSL complex. Consequently, an acetone extract and 1'-O-methyl-averantin isolated from EL001672 suppresses colorectal cancer stemness by regulating the sonic Hedgehog and Notch signaling pathways.
Collapse
|
26
|
Shah H, Mistry M, Patel N, Vora H. Clinical significance of Notch receptors in triple negative breast cancer. Breast Dis 2023; 42:85-100. [PMID: 36970890 DOI: 10.3233/bd-220041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND The Notch signaling pathway is an evolutionary conserved cell signaling pathway that plays an indispensable role in essential developmental processes. Aberrant activation of Notch pathway is known to initiate wide array of diseases and cancers. OBJECTIVE To evaluate the clinical significance of Notch receptors in Triple Negative Breast Cancer. METHODS We evaluated the association between Notch receptors and clinicopathological parameters including disease-free survival and overall survival of one hundred TNBC patients by immunohistochemistry. RESULTS Positive expression of nuclear Notch1 receptor (18%) was found be significantly correlated with positive lymph node (p = 0.009), high BR score (p = 0.02) and necrosis (p = 0.004) while cytoplasmic expression of Notch2 receptor (26%) was significantly correlated with metastasis (p = 0.05), worse DFS (p = 0.05) and poor OS (p = 0.02) in TNBC patients. Membrane (18%) and cytonuclear (3%) Notch3 expression were significantly associated with poorly differentiated tumors (p = 0.007), high BR score (p = 0.002) and necrosis (p = 0.03) respectively. However, cytoplasmic Notch3 and Notch4 expression were negatively correlated with poor prognostic factors. CONCLUSIONS Our data indicated that Notch receptors play a key role in promoting TNBC and mainly, Notch2 may contribute to poor prognosis of the disease. Hence, it is implicated that Notch2 may serve as a potential biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Heer Shah
- Immunohematology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Mittal Mistry
- Immunohematology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Nupur Patel
- Immunohematology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Hemangini Vora
- Immunohematology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
27
|
Osum M, Kalkan R. Cancer Stem Cells and Their Therapeutic Usage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:69-85. [PMID: 36689167 DOI: 10.1007/5584_2022_758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cancer stem cells (CSC) have unique characteristics which include self-renewal, multi-directional differentiation capacity, quiescence/dormancy, and tumor-forming capability. These characteristics are referred to as the "stemness" properties. Tumor microenvironment contributes to CSC survival, function, and remaining them in an undifferentiated state. CSCs can form malignant tumors with heterogeneous phenotypes mediated by the tumor microenvironment. Therefore, the crosstalk between CSCs and tumor microenvironment can modulate tumor heterogeneity. CSCs play a crucial role in several biological processes, epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. In this chapter, we focused characteristics of cancer stem cells, reprogramming strategies cells into CSCs, and then we highlighted the contribution of CSCs to therapy resistance and cancer relapse and their potential of therapeutic targeting of CSCs.
Collapse
Affiliation(s)
- Meryem Osum
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Cyprus Health and Social Sciences University, Guzelyurt, Cyprus.
| |
Collapse
|
28
|
Shi L, Li H, Huang X, Shu Z, Li J, Wang L, Yan H, Wang L. Integrated analysis of transcriptome and metabolome revealed biological basis of sows from estrus to lactation. iScience 2022; 26:105825. [PMID: 36636351 PMCID: PMC9830223 DOI: 10.1016/j.isci.2022.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Characterization of molecular mechanisms underlying pregnancy development of sows is important for the genetic improvement of pig breeding traits, and also provides resources for biomedical research on human pregnancy diseases. However, the transcriptome and metabolome across multiple developmental stages of sow pregnancy were still lacking. In this study, we obtained 84 distinct RNA sequencing and 42 metabolome datasets of pig blood across six development stages from estrus to lactation. We confirmed the initial sequence and exonic structural features, stage-specific molecules, expression or accumulation pattern of molecules, the regulatory mechanism of transcriptome and metabolome, and important pregnancy-related metabolites both in pigs and humans. In conclusion, we proposed the key differences among the stages of sows from estrus to lactation in RNAs and metabolites and put forward key markers. These data results were expected to provide essential resources for pig breeding and biomedical research on human pregnancy disease.
Collapse
Affiliation(s)
- Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China,Corresponding author
| | - Huihui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaoyu Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ze Shu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China,Corresponding author
| |
Collapse
|
29
|
Ambrose JM, Veeraraghavan VP, Vennila R, Rupert S, Sathyanesan J, Meenakshisundaram R, Selvaraj S, Malayaperumal S, Kullappan M, Dorairaj S, Gujarathi JR, Gandhamaneni SH, Surapaneni KM. Comparison of mammosphere formation from stem-like cells of normal breast, malignant primary breast tumors, and MCF-7 cell line. J Egypt Natl Canc Inst 2022; 34:51. [PMID: 36504339 DOI: 10.1186/s43046-022-00152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mammosphere formation assay has become a versatile tool to quantify the activity of putative breast cancer stem cells in non-adherent in vitro cultures. However, optimizing the suspension culture system is crucial to establish mammosphere cultures from primary breast tumors. METHODS This study aimed at determining the self-renewal and sphere-forming potential of breast cancer stem-like cells derived from human primary invasive ductal carcinoma and normal breast tissue samples, and MCF-7 breast cancer cell line using an optimal suspension culture system. Mammosphere-forming efficiency of the mammospheres generated from the tissue samples and cell line were compared. We evaluated the expression of CD44+/CD24-/low and CD49f+/EpCAM-/low phenotypes in the stem-like cells by flow cytometry. CK-18, CK-19, α-SMA, and EpCAM marker expression was assessed using immunohistochemical staining. RESULTS Breast epithelial cells isolated from the three samples formed two-dimensional spheroids in suspension cultures. Interestingly, mammospheres formed from patient-derived primary breast tumors were enriched in breast cancer stem-like cells with the phenotype CD44+/CD24-/low and exhibited a relatively more number of large spheres when compared to the normal breast stem cells. MCF-7-derived SCs were more aggressive and resulted in the formation of a significantly higher number of spheroids. The expression of CK-18/CK-19 and α-SMA/EpCAM proteins was confirmed in breast cancer tissues. CONCLUSIONS Thus, the use of primary tumor specimens and breast cancer cell lines as suitable models for elucidating the breast cancer stem cell activity was validated using mammosphere culture system.
Collapse
Affiliation(s)
- Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai, Tamil Nadu, 600 077, India
| | - Rosy Vennila
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Secunda Rupert
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Jeswanth Sathyanesan
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | | | - Sakthivel Selvaraj
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Sarubala Malayaperumal
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India
| | - Sudarsanam Dorairaj
- PG Research Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - Jayesh R Gujarathi
- Department of Chemistry, School of Chemical Sciences, KES's Pratap College, Amalner, Maharashtra, 425 401, India
| | - Sri Harshini Gandhamaneni
- Department of General Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India.
| |
Collapse
|
30
|
Yousefi H, Bahramy A, Zafari N, Delavar MR, Nguyen K, Haghi A, Kandelouei T, Vittori C, Jazireian P, Maleki S, Imani D, Moshksar A, Bitaraf A, Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022; 22:1282. [PMID: 36476410 PMCID: PMC9730604 DOI: 10.1186/s12885-022-10383-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.
Collapse
Affiliation(s)
- Hassan Yousefi
- Biochemistry & Molecular Biology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, USA
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center (LSUHSC), and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Sajad Maleki
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amin Moshksar
- Interventional Radiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran.
| |
Collapse
|
31
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
32
|
Reynolds SD, Hill CL, Alsudayri A, Lallier SW, Wijeratne S, Tan ZH, Chiang T, Cormet-Boyaka E. Assemblies of JAG1 and JAG2 determine tracheobronchial cell fate in mucosecretory lung disease. JCI Insight 2022; 7:e157380. [PMID: 35819850 PMCID: PMC9462471 DOI: 10.1172/jci.insight.157380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mucosecretory lung disease compromises airway epithelial function and is characterized by goblet cell hyperplasia and ciliated cell hypoplasia. Goblet and ciliated cell types are derived from tracheobronchial stem/progenitor cells via a Notch-dependent mechanism. Although specific arrays of Notch receptors regulate cell fate determination, the function of the ligands Jagged1 (JAG1) and JAG2 is unclear. This study examined JAG1 and JAG2 function using human air-liquid-interface cultures that were treated with γ-secretase complex (GSC) inhibitors, neutralizing peptides/antibodies, or WNT/β-catenin pathway antagonists/agonists. These experiments revealed that JAG1 and JAG2 regulated cell fate determination in the tracheobronchial epithelium; however, their roles did not adhere to simple necessity and sufficiency rules. Biochemical studies indicated that JAG1 and JAG2 underwent posttranslational modifications that resulted in generation of a JAG1 C-terminal peptide and regulated the abundance of full-length JAG2 on the cell surface. GSC and glycogen synthase kinase 3 were implicated in these posttranslational events, but WNT agonist/antagonist studies and RNA-Seq indicated a WNT-independent mechanism. Collectively, these data suggest that posttranslational modifications create distinct assemblies of JAG1 and JAG2, which regulate Notch signal strength and determine the fate of tracheobronchial stem/progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Hong Tan
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | |
Collapse
|
33
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
34
|
The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. J Pers Med 2022; 12:jpm12071050. [PMID: 35887547 PMCID: PMC9315742 DOI: 10.3390/jpm12071050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the central nervous system are the most common solid malignancies diagnosed in children. While common, they are also found to have some of the lowest survival rates of all malignancies. Treatment of childhood brain tumors often consists of operative gross total resection with adjuvant chemotherapy or radiotherapy. The current body of literature is largely inconclusive regarding the overall benefit of adjuvant chemo- or radiotherapy. However, it is known that both are associated with conditions that lower the quality of life in children who undergo those treatments. Chemotherapy is often associated with nausea, emesis, significant fatigue, immunosuppression, and alopecia. While radiotherapy can be effective for achieving local control, it is associated with late effects such as endocrine dysfunction, secondary malignancy, and neurocognitive decline. Advancements in radiotherapy grant both an increase in lifetime survival and an increased lifetime for survivors to contend with these late effects. In this review, the authors examined all the published literature, analyzing the results of clinical trials, case series, and technical notes on patients undergoing radiotherapy for the treatment of tumors of the central nervous system with a focus on neurocognitive decline and survival outcomes.
Collapse
|
35
|
Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment. Cancer Metastasis Rev 2022; 41:737-747. [PMID: 35624227 DOI: 10.1007/s10555-022-10041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.
Collapse
|
36
|
Mohammadi A, Alijani S, Rafat S, Abdollahi-Arpanahi R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
38
|
Haddad G, Kebir A, Raissi N, Bouhali A, Miled SB. Optimal control model of tumor treatment in the context of cancer stem cell. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4627-4642. [PMID: 35430831 DOI: 10.3934/mbe.2022214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We consider cancer cytotoxic drugs as an optimal control problem to stabilize a heterogeneous tumor by attacking not the most abundant cancer cells, but those that are crucial in the tumor ecosystem. We propose a mathematical cancer stem cell model that translates the hierarchy and heterogeneity of cancer cell types by including highly structured tumorigenic cancer stem cells that yield low differentiated cancer cells. With respect to the optimal control problem, under a certain admissibility hypothesis, the optimal controls of our problem are bang-bang controls. These control treatments can retain the entire tumor in the neighborhood of an equilibrium. We simulate the bang-bang control numerically and demonstrate that the optimal drug scheduling should be administered continuously over long periods with short rest periods. Moreover, our simulations indicate that combining multidrug therapies and monotherapies is more efficient for heterogeneous tumors than using each one separately.
Collapse
Affiliation(s)
- Ghassen Haddad
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
- Sorbonne Université, Laboratoire Jacques-Louis Lions, Paris, France
| | - Amira Kebir
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
- IPEIT, Tunis University, Tunisia
| | - Nadia Raissi
- Mohammed V University of Rabat - um5a Department of Mathematics, Morocco
| | - Amira Bouhali
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
| | - Slimane Ben Miled
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
| |
Collapse
|
39
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
40
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
41
|
Ashry R, Elhussiny M, Abdellatif H, Elkashty O, Abdel-Ghaffar HA, Gaballa ET, Mousa SA. Genetic Interpretation of the Impacts of Honokiol and EGCG on Apoptotic and Self-Renewal Pathways in HEp-2 Human Laryngeal CD44 high Cancer Stem Cells. Nutr Cancer 2021; 74:2152-2173. [PMID: 34590505 DOI: 10.1080/01635581.2021.1981404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most current larynx cancer therapies are generally aimed at the global mass of tumor, targeting the non-tumorigenic cells, and unfortunately sparing the tumorigenic cancer stem cells (CSCs) that are responsible for sustained growth, metastasis, and chemo- and radioresistance. Phytochemicals and herbs have recently been introduced as therapeutic sources for eliminating CSCs. Therefore, we assessed the anti-tumor effects of two herbal ingredients, the green tea extract "Epigallocatechin-3-gallate (EGCG)" and Honokiol (HNK), on parental cells or CD44high CSCs of the human laryngeal squamous cell carcinoma cell line HEp-2. Results revealed that EGCG had a preeminent apoptotic potential on HEp-2 laryngeal CSCs. HNK conferred higher cytotoxic impacts on parental cells mostly by necrosis induction, especially with higher doses, but apoptosis induction with lower doses was also observed. The Notch signaling pathway genes were more potently suppressed by EGCG than HNK. However, HNK surpassed EGCG in downregulating the β-catenin and the Sonic Hedgehog signaling pathways genes. On a genetic basis, both agents engaged the BCL-2 family-regulated and caspase-dependent intrinsic apoptotic pathway, but EGCG and HNK triggered apoptosis via p53-independent and p53-dependent pathways, respectively. Taken together, EGCG and HNK eradicated HEp-2 human larynx cancer cells through targeting multiple self-renewal pathways and activating diverse cell death modalities.
Collapse
Affiliation(s)
- Ramy Ashry
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mahmoud Elhussiny
- Institute of Global Health and Human Ecology, American University in Cairo (AUC), Cairo, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.,Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama Elkashty
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Craniofacial Tissue and Stem Cell Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Hassan A Abdel-Ghaffar
- Hematology Laboratory, Oncology Center, Mansoura University, Mansoura, Egypt.,Hematology section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Essam T Gaballa
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Oral Pathology Department, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
42
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
43
|
Niu Q, Shen S, He J, Wang L. CKIP-1 contributes to osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Regen Med 2021; 16:847-859. [PMID: 34498492 DOI: 10.2217/rme-2020-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Osteogenesis greatly depends on the differentiation of bone marrow mesenchymal stem cells (BMSCs). CKIP-1 is considered to be a negative regulator of BMSCs. Methods: We established a CKIP-1 knockout mouse model, then isolated and cultured BMSCs from wild-type and knockout groups. Results: Our data demonstrated that CKIP-1 knockout significantly increased bone structure in the experimental mouse model and enhanced BMSC proliferation. CKIP-1 knockout contributed to osteoblastic and adipogenic differentiation. Furthermore, CKIP-1 regulated osteogenesis in BMSCs via the MAPK signaling pathway, and BMSCs from the CKIP-1 knockout mice were effective in repairing the skull defect null mice. Conclusion: Our results concluded that silencing of CKIP-1 promoted osteogenesis in experimental mice and increased BMSCs differentiation via upregulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiannan Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710000, Shaanxi, China
| | - Shuning Shen
- Department of Stomatology, No.984 Hospital of PLA, Beijing, 100094, China
| | - Jiaojiao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710000, Shaanxi, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710000, Shaanxi, China
| |
Collapse
|
44
|
Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary Development and Breast Cancer: a Notch Perspective. J Mammary Gland Biol Neoplasia 2021; 26:309-320. [PMID: 34374886 PMCID: PMC8566423 DOI: 10.1007/s10911-021-09496-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liyan Zhang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shiqi Hu
- DU-ANU Joint Science College, Shandong University, Weihai, 264200, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
45
|
Bryan S, Witzel I, Borgmann K, Oliveira-Ferrer L. Molecular Mechanisms Associated with Brain Metastases in HER2-Positive and Triple Negative Breast Cancers. Cancers (Basel) 2021; 13:4137. [PMID: 34439289 PMCID: PMC8392331 DOI: 10.3390/cancers13164137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most frequent cause of cancer-associated death for women worldwide, with deaths commonly resulting from metastatic spread to distant organs. Approximately 30% of metastatic BC patients develop brain metastases (BM), a currently incurable diagnosis. The influence of BC molecular subtype and gene expression on breast cancer brain metastasis (BCBM) development and patient prognosis is undeniable and is, therefore, an important focus point in the attempt to combat the disease. The HER2-positive and triple-negative molecular subtypes are associated with an increased risk of developing BCBM. Several genetic and molecular mechanisms linked to HER2-positive and triple-negative BC breast cancers appear to influence BCBM formation on several levels, including increased development of circulating tumor cells (CTCs), enhanced epithelial-mesenchymal transition (EMT), and migration of primary BC cells to the brain and/or through superior local invasiveness aided by cancer stem-like cells (CSCs). These specific BC characteristics, together with the ensuing developments at a clinical level, are presented in this review article, drawing a connection between research findings and related therapeutic strategies aimed at preventing BCBM formation and/or progression. Furthermore, we briefly address the critical limitations in our current understanding of this complex topic, highlighting potential focal points for future research.
Collapse
Affiliation(s)
- Sarah Bryan
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (S.B.); (I.W.)
| | - Isabell Witzel
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (S.B.); (I.W.)
| | - Kerstin Borgmann
- Center of Oncology, Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Leticia Oliveira-Ferrer
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (S.B.); (I.W.)
| |
Collapse
|
46
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
47
|
Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD. Metastatic Breast Cancer, Organotropism and Therapeutics: A Review. Curr Cancer Drug Targets 2021; 21:813-828. [PMID: 34365922 DOI: 10.2174/1568009621666210806094410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it's still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Yasmeena Hassan
- Division of Nursing, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, J & K. India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Kingdom of Saudi Arabia, Tabuk. Saudi Arabia
| | - Mohd Younis Rather
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Naseer Ue Din Shah
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| |
Collapse
|
48
|
Qayoom H, Wani NA, Alshehri B, Mir MA. An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 2021; 17:4185-4206. [PMID: 34342489 DOI: 10.2217/fon-2021-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex, aggressive and fatal subtype of breast cancer. Owing to the lack of targeted therapy and heterogenic nature of TNBC, chemotherapy remains the sole treatment option for TNBC, with taxanes and anthracyclines representing the general chemotherapeutic regimen in TNBC therapy. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. Breast cancer stem cells (BCSCs) are one of the major causes for the development of chemoresistance in TNBC patients. After surviving the chemotherapy damage, the presence of BCSCs results in relapse and recurrence of TNBC. Several pathways are known to regulate BCSCs' survival, such as the Wnt/β-catenin, Hedgehog, JAK/STAT and HIPPO pathways. Therefore it is imperative to target these pathways in the context of eliminating chemoresistance. In this review we will discuss the novel strategies and various preclinical and clinical studies to give an insight into overcoming TNBC chemoresistance. We present a detailed account of recent studies carried out that open an exciting perspective in relation to the mechanisms of chemoresistance.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir Nunar Ganderbal 191201, J&K, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, KSA
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| |
Collapse
|
49
|
LINC01355 Contributes to Malignant Phenotype of Oral Squamous Cell Carcinoma and Cytotoxic T Cell Infiltration via Activating Notch Signaling Pathway. J Immunol Res 2021; 2021:1830790. [PMID: 34355042 PMCID: PMC8331309 DOI: 10.1155/2021/1830790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
LINC01355 has been demonstrated to be dysregulated in several cancers. However, the exact molecular function of LINC01355 in the pathogenesis of OSCC remains unstudied. Here, we reported the effect of LINC01355 in OSCC and investigated the mechanisms. Firstly, we found that the results indicated LINC01355 was increased in OSCC cells. Knockdown of LINC01355 repressed OSCC cell proliferation, migration, and invasion. Recently, immunotherapy is a significant method for the treatment of cancers, in which CD8+ T cells exhibit a significant role. The influence of LINC01355 on the antitumor activity of CD8+ T cells was also focused in this study. As shown, the silence of LINC01355 could repress OSCC tumor growth via inducing CD8+ T cell immune responses. In addition, we found that downregulation of LINC01355 significantly restrained CD8+ T cell apoptosis, induced CD8+ T cell percentage, and enhanced the cytolysis activity when cocultured with OSCC cells. It has been reported that the Notch pathway represses CD8+ T cell activity in cancer patients. In our present study, we displayed that lack of LINC01355 suppressed OSCC malignant behaviors and enhanced the antitumor activity of CD8+ T cells via inactivating Notch signaling. We showed that decreased LINC01355 significantly restrained the Notch signal via a decrease of Notch-1, JAG-1, and HES-1. Repression of Notch1 reversed the effect of LINC01355 in OSCC cells. In conclusion, it was implied that LINC01355 might induce the development of OSCC via modulating the Notch signal pathway, which could provide a candidate therapeutic target for OSCC.
Collapse
|
50
|
Hafez HG, Mohareb RM, Salem SM, Matloub AA, Eskander EF, Ahmed HH. Molecular Mechanisms Underlying the Anti-Breast Cancer Stem Cell Activity of Pterocladia capillacea and Corallina officinalis Polysaccharides. Anticancer Agents Med Chem 2021; 22:1213-1225. [PMID: 34315394 DOI: 10.2174/1871520621666210727122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against breast cancer stem cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. METHODS Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24- and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/β-catenin and Notch signaling pathways was evaluated. RESULTS P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. β-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. CONCLUSION Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.
Collapse
Affiliation(s)
- Hebatallah G Hafez
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Giza, Egypt
| | - Azza A Matloub
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Emad F Eskander
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|