1
|
Ja'farawy MSA, Linh VTN, Mun C, Yang JY, Kim JY, Park R, Park SG, Kim DH, Lee MY, Jung HS. Plasmonic Molecular Entrapment for Label-Free Methylated DNA Detection and Machine-Learning Assisted Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503257. [PMID: 40344512 DOI: 10.1002/advs.202503257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/18/2025] [Indexed: 05/11/2025]
Abstract
Epigenetic DNA methylations are linked to the activation of oncogenes and inactivation of tumor suppressor genes. A reliable and label-free method to quantitatively measure DNA methylation levels is essential for diagnosing and monitoring methylation-related diseases. Herein, plasmonic molecular entrapment (PME) method assisted SERS as facile strategy for trapping and label-free sensing of DNA methylation, utilizing in situ surface growth of plasmonic particle in the presence of target analytes, are developed. This highly sensitive and adaptable technique forms hotspot sites around target analytes, overcoming mismatch geometrical properties and producing a strong electromagnetic field that leads to significant SERS signal enhancement. The PME method effectively profiles and quantifies DNA methylation, demonstrating robust capabilities for DNA analysis. A logistic regression (LR)-based machine learning accurately quantifies and classifies methylation levels in clinical serum samples of colorectal cancer and normal patients with high sensitivity, specificity, and accuracy, highlighting the feasibility of this technique. The developed PME method combined with machine learning offers promising sensing techniques for disease screening and diagnosis, marking a significant advancement in disease detection and patient care.
Collapse
Affiliation(s)
- Muhammad Shalahuddin Al Ja'farawy
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Chaewon Mun
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Jun-Yeong Yang
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Jun Young Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Rowoon Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Dong-Ho Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, South Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Daejeon, 34113, South Korea
- School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| |
Collapse
|
2
|
Zhang Y, Li D, Jia Z, Mei J, Wang Y, Zhang Y, Zhou Q, Xu F. Zhizi-Chuanxiong herb pair alleviates atherosclerosis progression in ApoE -/- mice by promoting the methylation of FGFR3 to inhibit MAPK/ERK-mediated apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117188. [PMID: 37716492 DOI: 10.1016/j.jep.2023.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia Fructus (Gardenia jasminoides Ellis, Zhizi) and Chuanxiong Rhizoma (Ligusticum chuanxiong Hort., Chuanxiong) are both traditional Chinese medicines with vascular protective effects, which help detoxify and activate blood, and are clinically used to treat atherosclerosis (AS). Previously, Zhizi-Chuanxiong showed good efficacy in attenuating AS progression in rabbits. However, its potential mechanism is yet unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of the Zhizi-Chuanxiong herb pair (ZCHP) in attenuating AS progression from the perspective of DNA methylation. MATERIALS AND METHODS An AS mouse model was developed with ApoE-/- mice fed a high-fat diet (HFD). The therapeutic effects and mechanisms of ZCHP in treating HFD-induced AS were identified using an automated biochemical analyzer, enzyme-linked immunosorbent assays, histopathology, methyl-capture sequencing (MC-seq), pyrosequencing, quantitative reverse transcription-polymerase chain reaction (RT-qPCR), western blotting, and TUNEL staining. RESULTS ZCHP attenuated the development of AS by reducing lipid levels and enhancing the stability of plaques and via anti-inflammation. MC-seq and Kyoto Encyclopedia of Genes and Genomes analysis revealed that ZCHP corrected the expressions of both aberrant hypomethylated and hypermethylated genes, which are involved in the mitogen-activated protein kinase (MAPK) signaling pathway. Protein-protein network interaction analysis and molecular docking showed that fibroblast growth factor 3 (FGFR3) and serine/threonine protein kinase (AKT1) were closely related to the MAPK signaling pathway among differentially methylated genes induced by ZCHP. Furthermore, pyrosequencing showed that ZCHP could induce FGFR3 hypermethylation and AKT1 hypomethylation in the promoter region, which was consistent with the MC-seq results. Molecular docking showed that the ZCHP was more tightly docked to FGFR3. Furthermore, RT-qPCR and western blotting showed that the mRNA and protein expression levels of FGFR3 decreased after treatment with ZCHP. Finally, western blotting showed that ZCHP suppressed the expression of phosphorylated MAPK and phosphorylated extracellular signal-regulated kinase (ERK), and TUNEL staining showed that ZCHP treatment could inhibit apoptosis in AS. CONCLUSION Our findings suggest that ZCHP can effectively attenuate AS progression by inhibiting MAPK/ERK signaling-mediated apoptosis via FGFR3 hypermethylation in the promoter region.
Collapse
Affiliation(s)
- Yan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dandan Li
- China Resources Biomedical Company Limited, Beijing, 100029, China
| | - Zijun Jia
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jun Mei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ya Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Qingbing Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
3
|
Ghemrawi M, Tejero NF, Duncan G, McCord B. Pyrosequencing: Current forensic methodology and future applications-a review. Electrophoresis 2023; 44:298-312. [PMID: 36168852 DOI: 10.1002/elps.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay. Existing and potential forensic applications are highlighted using this technology. Current applications include identifying species, identifying bodily fluids, and determining smoking status. We also review progress in potential applications for the future, including research on distinguishing monozygotic twins, detecting alcohol and drug abuse, and other phenotypic characteristics such as diet and body mass index. Overall, the versatility of the pyrosequencing technologies renders it a useful tool in forensic genomics.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George Duncan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Bücker L, Lehmann U. CDH1 (E-cadherin) Gene Methylation in Human Breast Cancer: Critical Appraisal of a Long and Twisted Story. Cancers (Basel) 2022; 14:cancers14184377. [PMID: 36139537 PMCID: PMC9497067 DOI: 10.3390/cancers14184377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Genes can be inactivated by specific modifications of DNA bases, most often by adding a methyl group to the DNA base cytosine if it is followed by guanosine (CG methylation). This modification prevents gene expression and has been reported for many different genes in nearly all types of cancer. A prominent example is the gene CDH1, which encodes the cell-adhesion molecule E-cadherin. This is an important player in the spreading of tumor cells within the body (metastasis). Particularly in human breast cancer, many different research groups have studied the inactivation of the CDH1 gene via DNA methylation using various methods. Over the last 20 years, different, in part, even contradicting results have been published for the CDH1 gene in breast cancer. This review summarizes the most important publications and explains the bewildering heterogeneity of results through careful analysis of the methods which have been used. Abstract Epigenetic inactivation of a tumor suppressor gene by aberrant DNA methylation is a well-established defect in human tumor cells, complementing genetic inactivation by mutation (germline or somatic). In human breast cancer, aberrant gene methylation has diagnostic, prognostic, and predictive potential. A prominent example is the hypermethylation of the CDH1 gene, encoding the adhesion protein E-Cadherin (“epithelial cadherin”). In numerous publications, it is reported as frequently affected by gene methylation in human breast cancer. However, over more than two decades of research, contradictory results concerning CDH1 gene methylation in human breast cancer accumulated. Therefore, we review the available evidence for and against the role of DNA methylation of the CDH1 gene in human breast cancer and discuss in detail the methodological reasons for conflicting results, which are of general importance for the analysis of aberrant DNA methylation in human cancer specimens. Since the loss of E-cadherin protein expression is a hallmark of invasive lobular breast cancer (ILBC), special attention is paid to CDH1 gene methylation as a potential mechanism for loss of expression in this special subtype of human breast cancer. Proper understanding of the methodological basis is of utmost importance for the correct interpretation of results supposed to demonstrate the presence and clinical relevance of aberrant DNA methylation in cancer specimens.
Collapse
Affiliation(s)
| | - Ulrich Lehmann
- Correspondence: ; Tel.: +49-(0)511-532-4501; Fax: +49-(0)511-532-5799
| |
Collapse
|
5
|
Li W, Kong X, Huang T, Shen L, Wu P, Chen QF. Bioinformatic analysis and in vitro validation of a five-microRNA signature as a prognostic biomarker of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1422. [PMID: 33313167 PMCID: PMC7723630 DOI: 10.21037/atm-20-2509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Existing research has identified correlations between numerous microRNAs (miRNAs) and the prognosis of hepatocellular carcinoma (HCC). However, the role of a combination of miRNAs in predicting HCC survival requires further elucidation. Methods miRNA expression profiles and clinical data from HCC patients were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed (DE) miRNAs in tumor versus normal samples were identified. All HCC patients were randomly assigned to a training cohort or a validation cohort at a ratio of 1 to 1. A least absolute shrinkage and selection operator (LASSO) Cox regression model was subsequently employed to establish the miRNA signature. The constructed miRNA signature was then developed and validated. Results In total, 127 DE miRNAs were detected between HCC and paracancerous tissue using HCC RNA sequencing (RNA-Seq) data extracted from TCGA database. LASSO Cox regression generated a five-miRNA signature consisting of has-mir-105-2, has-mir-9-3, has-mir-137, has-mir-548f-1, and has-mir-561 in the training cohort. This risk model was significantly related to survival (P=5.682e-6). Log-rank tests and multivariate Cox regression analyses revealed the five-miRNA signature as an independent prognostic indicator [HR =3.285, 95% confidence interval (CI): 1.737–6.213], with the area under curve (AUC) of the miRNA signature being 0.728. The effects of the miRNA signature were further confirmed in the validation cohort and in the OncomiR Cancer Database and Gene Expression Omnibus (GEO) dataset. Functional enrichment analysis revealed the potential effects of the five-miRNA signature in tumor-related biological pathways and processes. Cell Counting Kit-8, Transwell, and wound healing assays, were used to evaluate the role of has-mir-137 in HCC cell proliferation and migration in vitro. Conclusions We established a novel five-miRNA signature which reliably predicted prognosis in HCC patients and which could be used to assist in both strategic counseling and personalized management in HCC.
Collapse
Affiliation(s)
- Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangshuo Kong
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, China
| | - Tao Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peihong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Feng Chen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
6
|
Daca-Roszak P, Jaksik R, Paczkowska J, Witt M, Ziętkiewicz E. Discrimination between human populations using a small number of differentially methylated CpG sites: a preliminary study using lymphoblastoid cell lines and peripheral blood samples of European and Chinese origin. BMC Genomics 2020; 21:706. [PMID: 33045984 PMCID: PMC7549247 DOI: 10.1186/s12864-020-07092-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background Epigenetics is one of the factors shaping natural variability observed among human populations. A small proportion of heritable inter-population differences are observed in the context of both the genome-wide methylation level and the methylation status of individual CpG sites. It has been demonstrated that a limited number of carefully selected differentially methylated sites may allow discrimination between main human populations. However, most of the few published results have been performed exclusively on B-lymphocyte cell lines. Results The goal of our study was to identify a set of CpG sites sufficient to discriminate between populations of European and Chinese ancestry based on the difference in the DNA methylation profile not only in cell lines but also in primary cell samples. The preliminary selection of CpG sites differentially methylated in these two populations (pop-CpGs) was based on the analysis of two groups of commercially available ethnically-specific B-lymphocyte cell lines, performed using Illumina Infinium Human Methylation 450 BeadChip Array. A subset of 10 pop-CpGs characterized by the best differentiating criteria (|Mdiff| > 1, q < 0.05; lack of the confounding genomic features), and 10 additional CpGs in their immediate vicinity, were further tested using pyrosequencing technology in both B-lymphocyte cell lines and in the primary samples of the peripheral blood representing two analyzed populations. To assess the population-discriminating potential of the selected set of CpGs (further referred to as “composite pop (CEU-CHB)-CpG marker”), three classification methods were applied. The predictive ability of the composite 8-site pop (CEU-CHB)-CpG marker was assessed using 10-fold cross-validation method on two independent sets of samples. Conclusions Our results showed that less than 10 pop-CpG sites may distinguish populations of European and Chinese ancestry; importantly, this small composite pop-CpG marker performs well in both lymphoblastoid cell lines and in non-homogenous blood samples regardless of a gender.
Collapse
Affiliation(s)
- Patrycja Daca-Roszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Julia Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| |
Collapse
|
7
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
8
|
Bendre M, Granholm L, Drennan R, Meyer A, Yan L, Nilsson KW, Nylander I, Comasco E. Early life stress and voluntary alcohol consumption in relation to Maoa methylation in male rats. Alcohol 2019; 79:7-16. [PMID: 30414913 DOI: 10.1016/j.alcohol.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
Early life stress (ELS) or alcohol consumption can influence DNA methylation and affect gene expression. Monoamine oxidase A (Maoa) encodes the enzyme that metabolizes monoaminergic neurotransmitters crucial for the stress response, alcohol reward, and reinforcement. Previously, we reported lower Maoa expression in the nucleus accumbens and dorsal striatum of male rats exposed to ELS during the first three postnatal weeks, and to voluntary alcohol consumption in adulthood, compared with controls. The present study continued to investigate the effect of ELS and alcohol consumption on Maoa methylation, and its relation to Maoa expression in these animals. We selected candidate CpGs after performing next-generation bisulfite sequencing of the Maoa promoter, intron 1-5, and exons 5 and 6, together composed of 107 CpGs (5'-cytosine-phosphate-guanosine-3'), in a subgroup of rats. Pyrosequencing was used to analyze the methylation of 10 candidate CpGs in the promoter and intron 1 in the entire sample. ELS and alcohol displayed an interactive effect on CpG-specific methylation in the dorsal striatum. CpG-specific methylation correlated with Maoa expression, corticosterone levels, and alcohol consumption in a brain region-specific manner. CpG-specific methylation in the Maoa promoter was a potential moderator of the interaction of ELS with alcohol consumption on Maoa expression in the NAc. However, the findings were sparse, did not survive correction for multiple testing, and the magnitude of differences in methylation levels was small. In conclusion, CpG-specific Maoa methylation in the promoter and intron 1 may associate with ELS, alcohol consumption, and Maoa expression in reward-related brain regions.
Collapse
|
9
|
Guo K, Elzinga S, Eid S, Figueroa-Romero C, Hinder LM, Pacut C, Feldman EL, Hur J. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics 2019; 14:766-779. [PMID: 31132961 PMCID: PMC6615525 DOI: 10.1080/15592294.2019.1615352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is an epigenetic mechanism important for the regulation of gene expression, which plays a vital role in the interaction between genetic and environmental factors. Aberrant epigenetic changes are implicated in the pathogenesis of diabetes and diabetic complications, but the role of DNA methylation in diabetic peripheral neuropathy (DPN) is not well understood. Therefore, our aim in this study was to explore the role of DNA methylation in the progression of DPN in type 2 diabetes. We compared genome-wide DNA methylation profiles of human sural nerve biopsies from subjects with stable or improving nerve fibre counts to biopsies from subjects with progressive loss of nerve fibres. Nerve fibre counts were determined by comparing myelinated nerve fibre densities between an initial and repeat biopsy separated by 52 weeks. Subjects with significant nerve regeneration (regenerators) and subjects with significant nerve degeneration (degenerators) represent the two extreme DPN phenotypes. Using reduced representation bisulfite sequencing, we identified 3,460 differentially methylated CpG dinucleotides between the two groups. The genes associated with differentially methylated CpGs were highly enriched in biological processes that have previously been implicated in DPN such as nervous system development, neuron development, and axon guidance, as well as glycerophospholipid metabolism and mitogen-activated protein kinase (MAPK) signalling. These findings are the first to provide a comprehensive analysis of DNA methylation profiling in human sural nerves of subjects with DPN and suggest that epigenetic regulation has an important role in the progression of this prevalent diabetic complication.
Collapse
Affiliation(s)
- Kai Guo
- a Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , ND , USA
| | - Sarah Elzinga
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Stephanie Eid
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Claudia Figueroa-Romero
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Lucy M Hinder
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Crystal Pacut
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Eva L Feldman
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Junguk Hur
- a Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , ND , USA
| |
Collapse
|
10
|
LINE-1 hypomethylation in human hepatocellular carcinomas correlates with shorter overall survival and CIMP phenotype. PLoS One 2019; 14:e0216374. [PMID: 31059558 PMCID: PMC6502450 DOI: 10.1371/journal.pone.0216374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
Reactivation of interspersed repetitive sequences due to loss of methylation is associated with genomic instability, one of the hallmarks of cancer cells. LINE-1 hypomethylation is a surrogate marker for global methylation loss and is potentially a new diagnostic and prognostic biomarker in tumors. However, the correlation of LINE-1 hypomethylation with clinicopathological parameters and the CpG island methylator phenotype (CIMP) in patients with liver tumors is not yet well defined, particularly in Caucasians who show quite low rates of HCV/HBV infection and a higher incidence of liver steatosis. Therefore, quantitative DNA methylation analysis of LINE-1, RASSF1A, and CCND2 using pyrosequencing was performed in human hepatocellular carcinomas (HCC, n = 40), hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5), and corresponding peritumoral liver tissues as well as healthy liver tissues (n = 5) from Caucasian patients. Methylation results were correlated with histopathological findings and clinical data. We found loss of LINE-1 DNA methylation only in HCC. It correlated significantly with poor survival (log rank test, p = 0.007). An inverse correlation was found for LINE-1 and RASSF1A DNA methylation levels (r2 = -0.47, p = 0.002). LINE-1 hypomethylation correlated with concurrent RASSF1/CCND2 hypermethylation (Fisher’s exact test, p = 0.02). Both LINE-1 hypomethylation and RASSF1A/CCND2 hypermethylation were not found in benign hepatocellular tumors (HCA and FNH). Our results show that LINE-1 hypomethylation and RASSF1A/CCND2 hypermethylation are epigenetic aberrations specific for the process of malignant liver transformation. In addition, LINE-1 hypomethylation might serve as a future predictive biomarker to identify HCC patients with unfavorable overall survival.
Collapse
|
11
|
Wei M, Cao Y, Jia D, Zhao H, Zhang L. CREPT promotes glioma cell proliferation and invasion by activating Wnt/β-catenin pathway and is a novel target of microRNA-596. Biochimie 2019; 162:116-124. [PMID: 30995540 DOI: 10.1016/j.biochi.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Cell cycle-related and expression elevated protein in tumor (CREPT) is emerging as a novel cancer-related gene that is dysregulated in many kinds of malignancies. However, the expression and biological role of CREPT in glioma remains unclear. In the present study, we aimed to explore the potential function and regulation mechanism of CREPT in glioma. Results showed that CRETP expression was significantly upregulated in glioma cell lines. Depletion of CREPT by siRNA-mediated gene silencing markedly decreased the proliferative and invasive capabilities of glioma cells. Bioinformatics analysis predicted CREPT as a target gene of microRNA-596 (miR-596), which was further verified by real-time quantitative polymerase chain reaction and Western blot analysis. miR-596 was significantly decreased in glioma tissues and cell lines, and inversely correlated with CREPT expression in clinical specimens. Knockdown of CREPT or overexpression of miR-596 significantly restricted the activation of Wnt/β-catenin signaling in glioma cells. Moreover, overexpression of CREPT partially reversed the miR-596-mediated inhibitory effect on proliferation, invasion and Wnt/β-catenin signaling in glioma cells. Overall, these results demonstrate that CREPT exerts an oncogenic role in glioma and its expression is regulated by miR-596. Our study highlights the important role miR-596/CREPT/Wnt/β-catenin signaling axis may play in glioma.
Collapse
Affiliation(s)
- Minghao Wei
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Yidong Cao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Dong Jia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Haikang Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Liang Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
12
|
Zhang Z, Dai DQ. MicroRNA-596 acts as a tumor suppressor in gastric cancer and is upregulated by promotor demethylation. World J Gastroenterol 2019; 25:1224-1237. [PMID: 30886505 PMCID: PMC6421237 DOI: 10.3748/wjg.v25.i10.1224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the present study, we investigated a suppressive role of microRNA-596 (miR-596) in gastric cancer (GC). Moreover, the downregulation of miR-596 in GC cell lines was associated with an increase of miR-596 promoter methylation. We also established that miR-596 controls the expression of peroxiredoxin 1 (PRDX1), which has never been reported before, suggesting that this interaction could play an important role in GC progression.
AIM To study the potential role and possible regulatory mechanism of miR-596 in GC.
METHODS The expression levels of miR-596 and PRDX1 in gastric cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Western blot and luciferase reporter assay were used to detect the effect of miR-596 on PRDX1 expression. Then, the proliferation, metastasis, and invasion of GC cell lines transfected with miR-596 mimics were analyzed, respectively, by Cell Counting Kit-8 proliferation assay, wound healing assay, and transwell invasion assay. Meanwhile, the methylation status of the promoter CpG islands of miR-596 in GC cell lines was detected by methylation-specific PCR (MSP).
RESULTS Expression of miR-596 was decreased and PRDX1 was upregulated in GC tissues and cell lines. Overexpression of miR-596 decreased the expression of PRDX1 and luciferase reporter assays detected the direct binding of miR-596 to the 3'-untranslated region (UTR) of PRDX1 transcripts. Furthermore, we found that overexpression of miR-596 remarkably suppressed cell proliferation, migration, and invasion in GC cells. We further analyzed miR-596 promoter methylation by MSP and qRT-PCR, and found the downregulation of miR-596 was associated with promoter methylation status in GC cell lines. Moreover, DNA demethylation and reactivation of miR-596 after treatment with 5-Aza-2’-deoxycytidine inhibited the proliferative ability of GC cells.
CONCLUSION MiR-596 has a tumor suppressive role in GC and is downregulated partly due to promoter hypermethylation. Furthermore, PRDX1 is one of the putative target genes of miR-596.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
13
|
Liao X, Zhu G, Huang R, Yang C, Wang X, Huang K, Yu T, Han C, Su H, Peng T. Identification of potential prognostic microRNA biomarkers for predicting survival in patients with hepatocellular carcinoma. Cancer Manag Res 2018; 10:787-803. [PMID: 29713196 PMCID: PMC5912208 DOI: 10.2147/cmar.s161334] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aim of the present study was to identify potential prognostic microRNA (miRNA) biomarkers for hepatocellular carcinoma (HCC) prognosis prediction based on a dataset from The Cancer Genome Atlas (TCGA). Materials and methods A miRNA sequencing dataset and corresponding clinical parameters of HCC were obtained from TCGA. Genome-wide univariate Cox regression analysis was used to screen prognostic differentially expressed miRNAs (DEMs), and multivariable Cox regression analysis was used for prognostic signature construction. Comprehensive survival analysis was performed to evaluate the prognostic value of the prognostic signature. Results Five miRNAs were regarded as prognostic DEMs and used for prognostic signature construction. The five-DEM prognostic signature performed well in prognosis prediction (adjusted P < 0.0001, adjusted hazard ratio = 2.249, 95% confidence interval =1.491-3.394), and time-dependent receiver-operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.765, 0.745, 0.725, and 0.687 for 1-, 2-, 3-, and 5-year HCC overall survival (OS) prediction, respectively. Comprehensive survival analysis of the prognostic signature suggests that the risk score model could serve as an independent factor of HCC and perform better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of hsa-mir-139 and hsa-mir-5003 indicates that they were significantly enriched in multiple biological processes and pathways, including cell proliferation and cell migration regulation, pathways in cancer, and the cyclic adenosine monophosphate (cAMP) signaling pathway. Conclusion Our study indicates that the novel miRNA expression signature may be a potential prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
14
|
Yanokura M, Banno K, Adachi M, Aoki D, Abe K. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer. Int J Oncol 2017; 50:1934-1946. [PMID: 28440489 PMCID: PMC5435325 DOI: 10.3892/ijo.2017.3966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/26/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed.
Collapse
Affiliation(s)
- Megumi Yanokura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Cente, Tsukuba, Ibaraki 305-0074
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kuniya Abe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Cente, Tsukuba, Ibaraki 305-0074
| |
Collapse
|
15
|
Magalhães M, Rivals I, Claustres M, Varilh J, Thomasset M, Bergougnoux A, Mely L, Leroy S, Corvol H, Guillot L, Murris M, Beyne E, Caimmi D, Vachier I, Chiron R, De Sario A. DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis. Clin Epigenetics 2017; 9:19. [PMID: 28289476 PMCID: PMC5310067 DOI: 10.1186/s13148-016-0300-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Background Lung disease progression is variable among cystic fibrosis (CF) patients and depends on DNA mutations in the CFTR gene, polymorphic variations in disease modifier genes, and environmental exposure. The contribution of genetic factors has been extensively investigated, whereas the mechanism whereby environmental factors modulate the lung disease is unknown. In this project, we hypothesized that (i) reiterative stress alters the epigenome in CF-affected tissues and (ii) DNA methylation variations at disease modifier genes modulate the lung function in CF patients. Results We profiled DNA methylation at CFTR, the disease-causing gene, and at 13 lung modifier genes in nasal epithelial cells and whole blood samples from 48 CF patients and 24 healthy controls. CF patients homozygous for the p.Phe508del mutation and ≥18-year-old were stratified according to the lung disease severity. DNA methylation was measured by bisulfite and next-generation sequencing. The DNA methylation profile allowed us to correctly classify 75% of the subjects, thus providing a CF-specific molecular signature. Moreover, in CF patients, DNA methylation at specific genes was highly correlated in the same tissue sample. We suggest that gene methylation in CF cells may be co-regulated by disease-specific trans-factors. Three genes were differentially methylated in CF patients compared with controls and/or in groups of pulmonary severity: HMOX1 and GSTM3 in nasal epithelial samples; HMOX1 and EDNRA in blood samples. The association between pulmonary severity and DNA methylation at EDNRA was confirmed in blood samples from an independent set of CF patients. Also, lower DNA methylation levels at GSTM3 were associated with the GSTM3*B allele, a polymorphic 3-bp deletion that has a protective effect in cystic fibrosis. Conclusions DNA methylation levels are altered in nasal epithelial and blood cell samples from CF patients. Analysis of CFTR and 13 lung disease modifier genes shows DNA methylation changes of small magnitude: some of them are a consequence of the disease; other changes may result in small expression variations that collectively modulate the lung disease severity. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0300-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milena Magalhães
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée-ESPCI ParisTech, PSL Research University-UMRS1158, Paris, France
| | - Mireille Claustres
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Jessica Varilh
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Mélodie Thomasset
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France
| | - Anne Bergougnoux
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Laurent Mely
- CRCM, Renée Sabran Hospital-CHU Lyon, Hyères, France
| | | | - Harriet Corvol
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U938-CRSA, Paris, France.,APHP, Trousseau Hospital, Paris, France
| | - Loïc Guillot
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U938-CRSA, Paris, France
| | | | - Emmanuelle Beyne
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Davide Caimmi
- CRCM, Arnaud de Villeneuve Hospital-CHU Montpellier, Montpellier, France
| | - Isabelle Vachier
- CRCM, Arnaud de Villeneuve Hospital-CHU Montpellier, Montpellier, France
| | - Raphaël Chiron
- CRCM, Arnaud de Villeneuve Hospital-CHU Montpellier, Montpellier, France
| | - Albertina De Sario
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France
| |
Collapse
|
16
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Loss of DNA methylation at imprinted loci is a frequent event in hepatocellular carcinoma and identifies patients with shortened survival. Clin Epigenetics 2015; 7:110. [PMID: 26473022 PMCID: PMC4606497 DOI: 10.1186/s13148-015-0145-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background Aberrant DNA methylation at imprinted loci is an important molecular mechanism contributing to several developmental and pathological disorders including cancer. However, knowledge about imprinting defects due to DNA methylation changes is relatively limited in hepatocellular carcinoma (HCC), the third leading cause of cancer death worldwide. Therefore, comprehensive quantitative DNA methylation analysis at imprinted loci showing ~50 % methylation in healthy liver tissues was performed in primary HCC specimens and the peritumoural liver tissues. Results We found frequent and extensive DNA methylation aberrations at many imprinted loci in HCC. Unsupervised cluster analysis of DNA methylation patterns at imprinted loci revealed subgroups of HCCs with moderate and severe loss of methylation. Hypomethylation at imprinted loci correlated significantly with poor overall survival (log-rank test, p = 0.02). Demethylation at imprinted loci was accompanied by loss of methylation at LINE-1, a commonly used marker for global DNA methylation levels (p < 0.001). In addition, we found that loss of methylation at imprinted loci correlated with the presence of a CTNNB1 mutation (Fisher’s exact test p = 0.03). Re-analysis of publically available genome-wide methylation data sets confirmed our findings. The analysis of benign liver tumours (hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH)), the corresponding adjacent liver tissues, and healthy liver tissues showed that aberrant DNA methylation at imprinted loci is specific for HCC. Conclusions Our analyses demonstrate frequent and widespread DNA methylation aberrations at imprinted loci in human HCC and identified a hypomethylated subgroup of patients with shorter overall survival. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0145-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ; Present address: Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Till Krech
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Britta Hasemeier
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Elisa Schipper
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nora Schweitzer
- Department of Gastroenterology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
17
|
Bergougnoux A, Claustres M, De Sario A. Nasal epithelial cells: a tool to study DNA methylation in airway diseases. Epigenomics 2015; 7:119-26. [PMID: 25687471 DOI: 10.2217/epi.14.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of chronic airway diseases are characterized by high inflammation and unbalanced activation of the immune response, which lead to tissue damage and progressive reduction of the pulmonary function. Because they are exposed to various environmental stimuli, lung cells are prone to epigenomic changes. Many genes responsible for the immune response and inflammation are tightly regulated by DNA methylation, which suggests that alteration of the epigenome in lung cells may have a considerable impact on the penetrance and/or the severity of airway diseases. A major hurdle in clinical epigenomic studies is to gather appropriate biospecimens. Herein, we show that nasal epithelial cells are suitable to analyze DNA methylation in human diseases primarily affecting the lower airway tract.
Collapse
Affiliation(s)
- Anne Bergougnoux
- Laboratory Genetics of Rare Diseases, INSERM U827, Montpellier, France
| | | | | |
Collapse
|
18
|
Rebbani K, Marchio A, Ezzikouri S, Afifi R, Kandil M, Bahri O, Triki H, El Feydi AE, Dejean A, Benjelloun S, Pineau P. TP53 R72P polymorphism modulates DNA methylation in hepatocellular carcinoma. Mol Cancer 2015; 14:74. [PMID: 25889455 PMCID: PMC4393630 DOI: 10.1186/s12943-015-0340-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/11/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by widespread epidemiological and molecular heterogeneity. Previous work showed that in the western part of North Africa, a region of low incidence of HCC, mutations are scarce for this tumor type. As epigenetic changes are considered possible surrogates to mutations in human cancers, we decided, thus, to characterize DNA methylation in HCC from North-African patients. METHODS A set of 11 loci was investigated in a series of 45 tumor specimens using methylation-specific and combined-bisulfite restriction assay PCR. Results obtained on clinical samples were subsequently validated in liver cancer cell lines. RESULTS DNA methylation at tumor suppressor loci is significantly higher in samples displaying chromosome instability. More importantly, DNA methylation was significantly higher in Arg/Arg when compared to Pro/Pro genotype carriers at codon 72 rs1042522 of TP53 (65% vs 20% methylated loci, p = 0.0006), a polymorphism already known to affect somatic mutation rate in human carcinomas. In vitro experiments in cell lines indicated that enzymes controlling DNA methylation were differentially regulated by codon 72 Arg or Pro isoforms of p53. Furthermore, the Arg72-carrying version of p53 was shown to re-methylate DNA more rapidly than the pro-harboring isoform. Finally, Pro-carrying cell lines were shown to be significantly more resistant to decitabine treatment (two-fold, p = 0.005). CONCLUSIONS Our data suggest that Arg72Pro polymorphism in a WT p53 context may act as a primary driver of epigenetic changes in HCC. It suggests, in addition, that rs1042522 genotype may predict sensitivity to epigenetic-targeted therapy. This model of liver tumorigenesis that associates low penetrance genetic predisposition to epigenetic changes emerges from a region of low HCC incidence and it may, therefore, apply essentially to population living in similar areas. Surveys on populations submitted to highly mutagenic conditions as perinatally-acquired chronic hepatitis B or aflatoxin B1 exposure remained to be conducted to validate our observations as a general model.
Collapse
Affiliation(s)
- Khadija Rebbani
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France. .,Laboratoire des Hépatites Virales, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| | - Agnès Marchio
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| | - Sayeh Ezzikouri
- Laboratoire des Hépatites Virales, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| | - Rajaa Afifi
- Service de Médecine C-Gastroentérologie, CHU Ibn-Sina, Rabat, Morocco.
| | - Mostafa Kandil
- Equipe d'Anthropogénétique et de Biotechnologies, Faculté des Sciences Chouaib Doukkali, El Jadida, Morocco.
| | - Olfa Bahri
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunis, Tunisie.
| | - Henda Triki
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunis, Tunisie.
| | | | - Anne Dejean
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| | - Soumaya Benjelloun
- Laboratoire des Hépatites Virales, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| | - Pascal Pineau
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| |
Collapse
|
19
|
del Rosario RCH, Poschmann J, Rouam SL, Png E, Khor CC, Hibberd ML, Prabhakar S. Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms. Nat Methods 2015; 12:458-64. [PMID: 25799442 DOI: 10.1038/nmeth.3326] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/06/2015] [Indexed: 12/30/2022]
Abstract
Most disease associations detected by genome-wide association studies (GWAS) lie outside coding genes, but very few have been mapped to causal regulatory variants. Here, we present a method for detecting regulatory quantitative trait loci (QTLs) that does not require genotyping or whole-genome sequencing. The method combines deep, long-read chromatin immunoprecipitation-sequencing (ChIP-seq) with a statistical test that simultaneously scores peak height correlation and allelic imbalance: the genotype-independent signal correlation and imbalance (G-SCI) test. We performed histone acetylation ChIP-seq on 57 human lymphoblastoid cell lines and used the resulting reads to call 500,066 single-nucleotide polymorphisms de novo within regulatory elements. The G-SCI test annotated 8,764 of these as histone acetylation QTLs (haQTLs)—an order of magnitude larger than the set of candidates detected by expression QTL analysis. Lymphoblastoid haQTLs were highly predictive of autoimmune disease mechanisms. Thus, our method facilitates large-scale regulatory variant detection in any moderately sized cohort for which functional profiling data can be generated, thereby simplifying identification of causal variants within GWAS loci.
Collapse
Affiliation(s)
| | - Jeremie Poschmann
- Computational and Systems Biology Group, Genome Institute of Singapore, Singapore
| | - Sigrid Laure Rouam
- Computational and Systems Biology Group, Genome Institute of Singapore, Singapore
| | - Eileen Png
- Infectious Diseases Group, Genome Institute of Singapore, Singapore
| | - Chiea Chuen Khor
- 1] Human Genetics Group, Genome Institute of Singapore, Singapore. [2] Singapore Eye Research Institute, Singapore. [3] Department of Opthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Martin Lloyd Hibberd
- 1] Infectious Diseases Group, Genome Institute of Singapore, Singapore. [2] Department of Pathogen Molecular Biology, London School of Hygiene &Tropical Medicine, London, UK
| | - Shyam Prabhakar
- Computational and Systems Biology Group, Genome Institute of Singapore, Singapore
| |
Collapse
|
20
|
Abstract
DNA methylation is an epigenetic mark playing an important role in development and disease. Aberrant DNA methylation was identified as an alternative mechanism for gene inactivation complementing deletions and mutations in cancer initiation and progression. However, to accurately compare differences in DNA methylation among various tissue types, adequate quantitative approaches are required. Pyrosequencing(®), as a sequencing-by-synthesis method, allows such quantification with single CpG resolution and the ability for threshold determination. This book chapter provides a detailed protocol for DNA methylation analysis by Pyrosequencing, including information on assay design and practical procedure. Additionally, emphasis is placed on the discussion of strengths and weaknesses of the methodology.
Collapse
|
21
|
Redshaw N, Huggett JF, Taylor MS, Foy CA, Devonshire AS. Quantification of epigenetic biomarkers: an evaluation of established and emerging methods for DNA methylation analysis. BMC Genomics 2014; 15:1174. [PMID: 25539843 PMCID: PMC4523014 DOI: 10.1186/1471-2164-15-1174] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Background DNA methylation is an important epigenetic mechanism in several human diseases, most notably cancer. The quantitative analysis of DNA methylation patterns has the potential to serve as diagnostic and prognostic biomarkers, however, there is currently a lack of consensus regarding the optimal methodologies to quantify methylation status. To address this issue we compared five analytical methods: (i) MethyLight qPCR, (ii) MethyLight digital PCR (dPCR), methylation-sensitive and -dependent restriction enzyme (MSRE/MDRE) digestion followed by (iii) qPCR or (iv) dPCR, and (v) bisulfite amplicon next generation sequencing (NGS). The techniques were evaluated for linearity, accuracy and precision. Results MethyLight qPCR displayed the best linearity across the range of tested samples. Observed methylation measured by MethyLight- and MSRE/MDRE-qPCR and -dPCR were not significantly different to expected values whilst bisulfite amplicon NGS analysis over-estimated methylation content. Bisulfite amplicon NGS showed good precision, whilst the lower precision of qPCR and dPCR analysis precluded discrimination of differences of < 25% in methylation status. A novel dPCR MethyLight assay is also described as a potential method for absolute quantification that simultaneously measures both sense and antisense DNA strands following bisulfite treatment. Conclusions Our findings comprise a comprehensive benchmark for the quantitative accuracy of key methods for methylation analysis and demonstrate their applicability to the quantification of circulating tumour DNA biomarkers by using sample concentrations that are representative of typical clinical isolates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1174) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jim F Huggett
- LGC, Queens Road, Teddington, Middlesex, TW11 0LY, UK.
| | - Martin S Taylor
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
| | - Carole A Foy
- LGC, Queens Road, Teddington, Middlesex, TW11 0LY, UK.
| | | |
Collapse
|
22
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|
23
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma. J Pathol 2014; 233:392-401. [PMID: 24838394 DOI: 10.1002/path.4376] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/30/2014] [Accepted: 05/11/2014] [Indexed: 12/19/2022]
Abstract
The tumour suppressor gene RB1 is frequently silenced in many different types of human cancer, including hepatocellular carcinoma (HCC). However, mutations of the RB1 gene are relatively rare in HCC. A systematic screen for the identification of imprinted genes deregulated in human HCC revealed that RB1 shows imprint abnormalities in a high proportion of primary patient samples. Altogether, 40% of the HCC specimens (16/40) showed hyper- or hypomethylation at the CpG island in intron 2 of the RB1 gene. Re-analysis of publicly available genome-wide DNA methylation data confirmed these findings in two independent HCC cohorts. Loss of correct DNA methylation patterns at the RB1 locus leads to the aberrant expression of an alternative RB1-E2B transcript, as measured by quantitative real-time PCR. Demethylation at the intron 2 CpG island by DNMT1 knock-down or aza-deoxycytidine (DAC) treatment stimulated expression of the RB1-E2B transcript, accompanied by diminished RB1 main transcript expression. No aberrant DNA methylation was found at the RB1 locus in hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5) and their corresponding adjacent liver tissue specimens. Deregulated RB1 expression due to hyper- or hypomethylation in intron 2 of the RB1 gene is found in tumours without loss of heterozygosity and is associated with a decrease in overall survival (p = 0.032) if caused by hypermethylation of CpG85. This unequivocally demonstrates that loss of imprinting represents an important additional mechanism for RB1 pathway inactivation in human HCC, complementing well-described molecular defects.
Collapse
|
24
|
Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosens Bioelectron 2014; 56:278-85. [DOI: 10.1016/j.bios.2014.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
|
25
|
Vislovukh A, Vargas TR, Polesskaya A, Groisman I. Role of 3’-untranslated region translational control in cancer development, diagnostics and treatment. World J Biol Chem 2014; 5:40-57. [PMID: 24600513 PMCID: PMC3942541 DOI: 10.4331/wjbc.v5.i1.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
The messenger RNA 3’-untranslated region (3’UTR) plays an important role in regulation of gene expression on the posttranscriptional level. The 3’UTR controls gene expression via orchestrated interaction between the structural components of mRNAs (cis-element) and the specific trans-acting factors (RNA binding proteins and non-coding RNAs). The crosstalk of these factors is based on the binding sequences and/or direct protein-protein interaction, or just functional interaction. Much new evidence that has accumulated supports the idea that several RNA binding factors can bind to common mRNA targets: to the non-overlapping binding sites or to common sites in a competitive fashion. Various factors capable of binding to the same RNA can cooperate or be antagonistic in their actions. The outcome of the collective function of all factors bound to the same mRNA 3’UTR depends on many circumstances, such as their expression levels, affinity to the binding sites, and localization in the cell, which can be controlled by various physiological conditions. Moreover, the functional and/or physical interactions of the factors binding to 3’UTR can change the character of their actions. These interactions vary during the cell cycle and in response to changing physiological conditions. Abnormal functioning of the factors can lead to disease. In this review we will discuss how alterations of these factors or their interaction can affect cancer development and promote or enhance the malignant phenotype of cancer cells. Understanding these alterations and their impact on 3’UTR-directed posttranscriptional gene regulation will uncover promising new targets for therapeutic intervention and diagnostics. We will also discuss emerging new tools in cancer diagnostics and therapy based on 3’UTR binding factors and approaches to improve them.
Collapse
|
26
|
Yang Y, Wang LL, Wang HX, Guo ZK, Gao XF, Cen J, Li YH, Dou LP, Yu L. The epigenetically-regulated miR-663 targets H-ras in K-562 cells. FEBS J 2013; 280:5109-17. [PMID: 23953123 DOI: 10.1111/febs.12485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023]
Abstract
miR-663 is a tumour suppressor that is potentially regulated by modification of CpG islands. Whether aberrant methylation is one of the reasons for miR-663 down-regulation in some malignant cells and whether miR-663 targets oncogenes warrants further research. In the present study, we report that the CpG islands in the upstream region of pre-miR-663 are aberrantly methylated in the k-562 cell line and in the white blood cells of some chronic myelogenous leukaemia patients, and also that H-ras is one of the genes targeted by miR-663. Over-expression of miR-663 may suppress proliferation of the k-562 cell line in part by enhancing cell apoptosis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Haematology and BMT Centre, Chinese PLA General Hospital, Beijing, China; Department of Haematology, Chinese PLA Air Force General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br J Cancer 2013; 108:2304-11. [PMID: 23695020 PMCID: PMC3681015 DOI: 10.1038/bjc.2013.243] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Eukaryotic translation elongation factor 1A2 (eEF1A2) is a known proto-oncogene. We proposed that stimulation of the eEF1A2 expression in cancer tissues is caused by the loss of miRNA-mediated control. Methods: Impact of miRNAs on eEF1A2 at the mRNA and protein levels was examined by qPCR and western blot, respectively. Dual-luciferase assay was applied to examine the influence of miRNAs on 3′-UTR of EEF1A2. To detect miRNA-binding sites, mutations into the 3′-UTR of EEF1A2 mRNA were introduced by the overlap extension PCR. Results: miR-663 and miR-744 inhibited the expression of luciferase gene attached to the 3′-UTR of EEF1A2 up to 20% and 50%, respectively. In MCF7 cells, overexpression of miR-663 and miR-744 reduced the EEF1A2 mRNA level by 30% and 50%. Analogous effects were also observed at the eEF1A2 protein level. In resveratrol-treated MCF7 cells the upregulation of mir-663 and mir-744 was accompanied by downregulation of EEF1A2 mRNA. Both miRNAs were able to inhibit the proliferation of MCF7 cells. Conclusion: miR-663 and miR-744 mediate inhibition of the proto-oncogene eEF1A2 expression that results in retardation of the MCF7 cancer cells proliferation. Antitumour effect of resveratrol may include stimulation of the miR-663 and miR-744 expression.
Collapse
|
28
|
Anwar SL, Albat C, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Concordant hypermethylation of intergenic microRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker. Int J Cancer 2013; 133:660-70. [PMID: 23364900 DOI: 10.1002/ijc.28068] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
Abstract
Epigenetic inactivation by aberrant DNA methylation has been reported for many microRNA genes in various human malignancies. However, relatively little is known about microRNA gene methylation in hepatocellular carcinoma (HCC). Therefore, a systematic screen for identification of aberrantly hypermethylated microRNA genes in HCC was initiated. The methylation status of 39 intergenic CpG island associated microRNA genes was analyzed in HCC cell lines (n = 7), immortalized hepatocytes (n = 2) and normal liver samples (n = 5). Subsequently, 13 differentially methylated microRNA genes were analyzed in primary human HCC samples (n = 40), benign liver tumors (n = 15) and the adjacent liver tissues employing pyrosequencing. Expression of microRNA genes was measured using quantitative real-time polymerase chain reaction (RT-PCR). In addition, DNA methylation and expression of microRNA genes were measured after DNMT1 knockdown or DNMT inhibition. Aberrant hypermethylation and concomitant reduction in expression of intergenic microRNA genes is a frequent event in human HCC: hsa-mir-9-2 (23%), hsa-mir-9-3 (50 %), hsa-mir-124-1 (20%), hsa-mir-124-2 (13%), hsa-mir-124-3 (43%), hsa-mir-129-2 (58%), hsa-mir-596 (28%) and hsa-mir-1247 (38%). Altogether, it affects 90% of the HCC specimens under study. MicroRNA gene methylation is not found in hepatocellular adenoma (n = 10) and focal nodular hyperplasia (n = 5). DNMT1 knockdown or DNMT inhibition reduced microRNA gene methylation and stimulated expression. In primary human HCC specimens hypermethylation and expression of microRNA genes showed an inverse correlation. Concordant hypermethylation of three or more microRNA genes is a highly specific marker for the detection of HCC and for poor prognosis.
Collapse
|
29
|
Kwok CK, Ding Y, Sherlock ME, Assmann SM, Bevilacqua PC. A hybridization-based approach for quantitative and low-bias single-stranded DNA ligation. Anal Biochem 2013; 435:181-6. [PMID: 23399535 DOI: 10.1016/j.ab.2013.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/09/2013] [Accepted: 01/12/2013] [Indexed: 01/11/2023]
Abstract
Single-stranded DNA (ssDNA) ligation is a crucial step in many biochemical assays. Efficient ways of carrying out this reaction, however, are lacking. We show here that existing ssDNA ligation methods suffer from slow kinetics, poor yield, and severe nucleotide preference. To resolve these issues, we introduce a hybridization-based strategy that provides efficient and low-bias ligation of ssDNA. Our method uses a hairpin DNA to hybridize to any incoming acceptor ssDNA with low bias, with ligation of these strands mediated by T4 DNA ligase. This technique potentially can be applied in protocols that require ligation of ssDNA, including ligation-mediated polymerase chain reaction (LMPCR) and complementary DNA (cDNA) library construction.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
30
|
Frequency and characterization of DNA methylation defects in children born SGA. Eur J Hum Genet 2012; 21:838-43. [PMID: 23232699 DOI: 10.1038/ejhg.2012.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/16/2012] [Accepted: 11/01/2012] [Indexed: 11/08/2022] Open
Abstract
Various genes located at imprinted loci and regulated by epigenetic mechanisms are involved in the control of growth and differentiation. The broad phenotypic variability of imprinting disorders suggests that individuals with inborn errors of imprinting might remain undetected among patients born small for gestational age (SGA). We evaluated quantitative DNA methylation analysis at differentially methylated regions (DMRs) of 10 imprinted loci (PLAGL1, IGF2R DMR2, GRB10, H19 DMR, IGF2, MEG3, NDN, SNRPN, NESP, NESPAS) by bisulphite pyrosequencing in 98 patients born SGA and 50 controls. For IGF2R DMR2, methylation patterns of additional 47 parent pairs and one mother (95 individuals) of patients included in the SGA cohort were analyzed. In six out of 98 patients born SGA, we detected DNA methylation changes at single loci. In one child, the diagnosis of upd(14)mat syndrome owing to an epimutation of the MEG3 locus in 14q32 could be established. The remaining five patients showed hypomethylation at GRB10 (n=2), hypomethylation at the H19 3CTCF-binding site (n=1), hypermethylation at NDN (n=1) and hypermethylation at IGF2 (n=1). IGF2R DMR2 hypermethylation was detected in five patients, six parents of patients in the SGA cohort and two controls. We conclude that aberrant methylation at imprinted loci in children born SGA exists but seems to be rare if known imprinting syndromes are excluded. Further investigations on the physiological variations and the functional consequences of the detected aberrant methylation are necessary before final conclusions on the clinical impact can be drawn.
Collapse
|
31
|
Endo H, Muramatsu T, Furuta M, Uzawa N, Pimkhaokham A, Amagasa T, Inazawa J, Kozaki KI. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer. Carcinogenesis 2012; 34:560-9. [PMID: 23233740 DOI: 10.1093/carcin/bgs376] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The incidence and mortality statistics for oral squamous cell carcinoma (OSCC) were 10th and 12th, respectively, in human cancers diagnosed worldwide in 2008. In this study, to identify novel tumor-suppressive microRNAs (TS-miRNAs) and their direct targets in OSCC, we performed methylation-based screening for 43 miRNAs encoded by 46 miRNA genes located within 500 bp downstream of 40 CpG islands and genome-wide gene expression profiling in combination with a prediction database analysis, respectively, in 18 cell lines, resulting in the identification of a novel TS-miRNA miR-596 directly targeting LGALS3BP/Mac-2 BP/90K. DNA hypermethylation of CpG island located 5'-upstream of miR-596 gene was frequently observed in OSCC cell lines (100% of 18 cell lines) and primary OSCC cases (46.2 and 76.3% of 26 Japanese and 38 Thais primary cases, respectively) in a tumor-specific manner. The ectopic transfection of double-stranded RNA (dsRNA) mimicking miR-596 or specific small interfering RNA for LGALS3BP significantly induced growth inhibition and apoptosis in cell lines lacking miR-596 expression or overexpressing LGALS3BP, respectively, in a manner associated with a suppression of ERK1/2 phosphorylation. Moreover, we also mention the effect of dsRNA mimicking miR-596 on the growth of an OSCC cell line in vivo. Our findings define a central role for miR-596 in OSCC and suggest the potential of miR-596 as an anticancer agent for miRNA replacement therapy in OSCC.
Collapse
Affiliation(s)
- Hironori Endo
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
DNA methylation is an epigenetic mark that has suspected regulatory roles in a broad range of biological processes and diseases. The technology is now available for studying DNA methylation genome-wide, at a high resolution and in a large number of samples. This Review discusses relevant concepts, computational methods and software tools for analysing and interpreting DNA methylation data. It focuses not only on the bioinformatic challenges of large epigenome-mapping projects and epigenome-wide association studies but also highlights software tools that make genome-wide DNA methylation mapping more accessible for laboratories with limited bioinformatics experience.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
33
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS One 2012; 7:e49462. [PMID: 23145177 PMCID: PMC3493531 DOI: 10.1371/journal.pone.0049462] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023] Open
Abstract
Deregulation of imprinted genes is an important molecular mechanism contributing to the development of cancer in humans. However, knowledge about imprinting defects in human hepatocellular carcinoma (HCC), the third leading cause of cancer mortality worldwide, is still limited. Therefore, a systematic meta-analysis of the expression of 223 imprinted loci in human HCC was initiated. This screen revealed that the DLK1-MEG3 locus is frequently deregulated in HCC. Deregulation of DLK1 and MEG3 expression accompanied by extensive aberrations in DNA methylation could be confirmed experimentally in an independent series of human HCC (n = 40) in more than 80% of cases. Loss of methylation at the DLK1-MEG3 locus correlates linearly with global loss of DNA methylation in HCC (r(2) = 0.63, p<0.0001). Inhibition of DNMT1 in HCC cells using siRNA led to a reduction in MEG3-DMR methylation and concomitant increase in MEG3 RNA expression. Allele-specific expression analysis identified loss of imprinting in 10 out of 31 informative samples (32%), rendering it one of the most frequent molecular defects in human HCC. In 2 cases unequivocal gain of bi-allelic expression accompanied by substantial loss of methylation at the IG-DMR could be demonstrated. In 8 cases the tumour cells displayed allelic switching by mono-allelic expression of the normally imprinted allele. Allelic switching was accompanied by gains or losses of DNA methylation primarily at IG-DMR1. Analysis of 10 hepatocellular adenomas (HCA) and 5 cases of focal nodular hyperplasia (FNH) confirmed that this epigenetic instability is specifically associated with the process of malignant transformation and not linked to increased proliferation per se. This widespread imprint instability in human HCC has to be considered in order to minimize unwanted side-effects of therapeutic approaches targeting the DNA methylation machinery. It might also serve in the future as predictive biomarker and for monitoring response to epigenetic therapy.
Collapse
Affiliation(s)
| | - Till Krech
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Britta Hasemeier
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elisa Schipper
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nora Schweitzer
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
34
|
Abstract
MicroRNAs are approximately 22 nucleotides short, non-protein-coding RNA molecules, which bind semi-complementary to mRNA and have an inhibitory effect on protein expression. Aberrant microRNA expression is part of the molecular pathological damage in several degenerative, inflammatory and neoplastic diseases and deregulation can also be virus-associated. Apart from intracellular regulatory functions, microRNA in platelets and exosomes or bound to extracellular protein complexes can also circulate in the blood. Artificial microRNA analogues (small interference RNA/siRNA) and anti-microRNA (antagomir) are used in molecular pathological research of microRNA/mRNA interaction and it is thought that they will also be used as therapeutic agents in the future.
Collapse
Affiliation(s)
- K Hussein
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
35
|
Roessler J, Ammerpohl O, Gutwein J, Hasemeier B, Anwar SL, Kreipe H, Lehmann U. Quantitative cross-validation and content analysis of the 450k DNA methylation array from Illumina, Inc. BMC Res Notes 2012; 5:210. [PMID: 22546179 PMCID: PMC3420245 DOI: 10.1186/1756-0500-5-210] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/30/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The newly released 450k DNA methylation array from Illumina, Inc. offers the possibility to analyze more than 480,000 individual CpG sites in a user friendly standardized format. In this study the relationship between the β-values provided by the Illumina, Inc. array for each individual CpG dinucleotide and the quantitative methylation levels obtained by pyrosequencing were analyzed. In addition, the representation of microRNA genes and imprinted loci on the Illumina, Inc. array was assessed in detail. Genomic DNA from 4 human breast cancer cell lines (IPH-926, HCC1937, MDA-MB-134, PMC42) and 18 human breast cancer specimens as well as 4 normal mammary epithelial fractions was analyzed on 450k DNA methylation arrays. The β-values for 692 individual CpG sites from 62 different genes were cross-validated using conventional quantitative pyrosequencing. FINDINGS The newly released 450k methylation array from Illumina, Inc. shows a high concordance with quantitative pyrosequencing if identical CpG sites are analyzed in cell lines (Spearman r = 0.88, p ≪ 0.0001), which is somewhat reduced in primary tumor specimens (Spearman r = 0.86, p ≪ 0.0001). 80.7% of the CpG sites show an absolute difference in methylation level of less than 15 percentage points. If different CpG sites in the same CpG islands are targeted the concordance is lower (r = 0.83 in cell lines and r = 0.7 in primary tumors). The number of CpG sites representing microRNA genes and imprinted loci is very heterogeneous (range: 1 - 70 CpG sites for microRNAs and 1 - 288 for imprinted loci). CONCLUSIONS The newly released 450k methylation array from Illumina, Inc. provides a genome-wide quantitative representation of DNA methylation aberrations in a convenient format. Overall, the congruence with pyrosequencing data is very good. However, for individual loci one should be careful to translate the β-values directly into percent methylation levels.
Collapse
Affiliation(s)
- Jessica Roessler
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str, 1, D-30625, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Zlobec I, Bihl MP, Foerster A, Rufle A, Terracciano L, Lugli A. Stratification and Prognostic Relevance of Jass's Molecular Classification of Colorectal Cancer. Front Oncol 2012; 2:7. [PMID: 22655257 PMCID: PMC3356027 DOI: 10.3389/fonc.2012.00007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/16/2012] [Indexed: 12/22/2022] Open
Abstract
Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7–43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.
Collapse
Affiliation(s)
- Inti Zlobec
- Institute of Pathology, University of Bern Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
DNA methylation is an epigenetic form of gene regulation that is universally important throughout the life course, especially during in utero and postnatal development. DNA methylation aids in cell cycle regulation and cellular differentiation processes. Previous studies have demonstrated that DNA methylation profiles may be altered by diet and the environment, and that these profiles are especially vulnerable during development. Thus, it is important to understand the role of DNA methylation in developmental governance and subsequent disease progression. A variety of molecular methods exist to assay for global, gene-specific, and epigenome-wide methylation. Here we describe these methods and discuss their relative strengths and limitations.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
38
|
Tse MY, Ashbury JE, Zwingerman N, King WD, Taylor SA, Pang SC. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes 2011; 4:565. [PMID: 22204640 PMCID: PMC3284418 DOI: 10.1186/1756-0500-4-565] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The methylation of DNA is recognized as a key mechanism in the regulation of genomic stability and evidence for its role in the development of cancer is accumulating. LINE-1 methylation status represents a surrogate measure of genome-wide methylation. Findings Using high resolution melt (HRM) curve analysis technology, we have established an in-tube assay that is linear (r > 0.9986) with a high amplification efficiency (90-105%), capable of discriminating between partcipant samples with small differences in methylation, and suitable for quantifying a wide range of LINE-1 methylation levels (0-100%)--including the biologically relevant range of 50-90% expected in human DNA. We have optimized this procedure to perform using 2 μg of starting DNA and 2 ng of bisulfite-converted DNA for each PCR reaction. Intra- and inter-assay coefficients of variation were 1.44% and 0.49%, respectively, supporting the high reproducibility and precision of this approach. Conclusions In summary, this is a completely linear, quantitative HRM PCR method developed for the measurement of LINE-1 methylation. This cost-efficient, refined and reproducible assay can be performed using minimal amounts of starting DNA. These features make our assay suitable for high throughput analysis of multiple samples from large population-based studies.
Collapse
Affiliation(s)
- M Yat Tse
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Léger A, Le Guiner C, Nickerson ML, McGee Im K, Ferry N, Moullier P, Snyder RO, Penaud-Budloo M. Adeno-associated viral vector-mediated transgene expression is independent of DNA methylation in primate liver and skeletal muscle. PLoS One 2011; 6:e20881. [PMID: 21687632 PMCID: PMC3110818 DOI: 10.1371/journal.pone.0020881] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors can support long-term transgene expression in quiescent tissues. Intramuscular (i.m.) administration of a single-stranded AAV vector (ssAAV) in the nonhuman primate (NHP) results in a peak protein level at 2-3 months, followed by a decrease over several months before reaching a steady-state. To investigate transgene expression and vector genome persistence, we previously demonstrated that rAAV vector genomes associate with histones and form a chromatin structure in NHP skeletal muscle more than one year after injection. In the mammalian nucleus, chromatin remodeling via epigenetic modifications plays key role in transcriptional regulation. Among those, CpG hyper-methylation of promoters is a known hallmark of gene silencing. To assess the involvement of DNA methylation on the transgene expression, we injected NHP via the i.m. or the intravenous (i.v.) route with a recombinant ssAAV2/1 vector. The expression cassette contains the transgene under the transcriptional control of the constitutive Rous Sarcoma Virus promoter (RSVp). Total DNA isolated from NHP muscle and liver biopsies from 1 to 37 months post-injection was treated with sodium bisulfite and subsequently analyzed by pyrosequencing. No significant CpG methylation of the RSVp was found in rAAV virions or in vector DNA isolated from NHP transduced tissues. Direct de novo DNA methylation appears not to be involved in repressing transgene expression in NHP after gene transfer mediated by ssAAV vectors. The study presented here examines host/vector interactions and the impact on transgene expression in a clinically relevant model.
Collapse
Affiliation(s)
| | | | - Michael L. Nickerson
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Kate McGee Im
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | | | - Philippe Moullier
- INSERM UMR649, Nantes, France
- Généthon, Evry, France
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Richard O. Snyder
- INSERM UMR649, Nantes, France
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Center of Excellence for Regenerative Health Biotechnology, University of Florida, Alachua, Florida, United States of America
| | | |
Collapse
|