1
|
Hao Y, Zhang B, Chen R. Application of mass spectrometry for the advancement of PROTACs. J Pharm Biomed Anal 2025; 261:116829. [PMID: 40121702 DOI: 10.1016/j.jpba.2025.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
The advent of targeted protein degradation technologies, particularly Proteolysis-Targeting Chimeras (PROTACs), enable the selective elimination of target proteins and open up new avenues for the treatment of various diseases. This review delves into the pivotal role of mass spectrometry (MS) in the advancement of PROTACs. MS-based methodologies serve as invaluable tools for identifying PROTAC targets, validating their efficacy, and elucidating ubiquitination sites and protein degradation dynamics. These insights profoundly enrich our comprehension of the mechanisms of action and facilitate the rational design of PROTACs. Furthermore, this review discusses the role of MS in the structural analysis of proteins and the formation of ternary complexes crucial for the activity of PROTACs. The synergy between MS and PROTAC technology holds the promise of groundbreaking advancements in drug discovery by deepening our understanding of the underlying mechanisms that govern PROTAC drug action, thereby promoting the development of innovative strategies for disease treatment.
Collapse
Affiliation(s)
- Yuechen Hao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Baoshuang Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Tyagi S, Higerd-Rusli GP, Akin EJ, Waxman SG, Dib-Hajj SD. Sculpting excitable membranes: voltage-gated ion channel delivery and distribution. Nat Rev Neurosci 2025; 26:313-332. [PMID: 40175736 DOI: 10.1038/s41583-025-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
The polarized and domain-specific distribution of membrane ion channels is essential for neuronal homeostasis, but delivery of these proteins to distal neuronal compartments (such as the axonal ends of peripheral sensory neurons) presents a logistical challenge. Recent developments have enabled the real-time imaging of single protein trafficking and the investigation of the life cycle of ion channels across neuronal compartments. These studies have revealed a highly regulated process involving post-translational modifications, vesicular sorting, motor protein-driven transport and targeted membrane insertion. Emerging evidence suggests that neuronal activity and disease states can dynamically modulate ion channel localization, directly influencing excitability. This Review synthesizes current knowledge on the spatiotemporal regulation of ion channel trafficking in both central and peripheral nervous system neurons. Understanding these processes not only advances our fundamental knowledge of neuronal excitability, but also reveals potential therapeutic targets for disorders involving aberrant ion channel distribution, such as chronic pain and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.
| | - Grant P Higerd-Rusli
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeth J Akin
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
3
|
Yan X, Yu PY, Srinivasan A, Abdul Rehman S, Sreenivas SK, Conway JB, Prigozhin MB. Identifying intermolecular interactions in single-molecule localization microscopy. Proc Natl Acad Sci U S A 2025; 122:e2409426122. [PMID: 40354526 DOI: 10.1073/pnas.2409426122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/29/2025] [Indexed: 05/14/2025] Open
Abstract
Intermolecular interactions underlie all cellular functions, yet visualizing these interactions at the single-molecule level remains challenging. Single-molecule localization microscopy (SMLM) offers a potential solution. Given a nanoscale map of two putative interaction partners, it should be possible to assign molecules either to the class of coupled pairs or to the class of noncoupled bystanders. Here, we developed a probabilistic algorithm that allows accurate determination of both the absolute number and the proportion of molecules that form coupled pairs. The algorithm calculates interaction probabilities for all possible pairs of localized molecules, selects the most likely interaction set, and corrects for any spurious colocalizations. Benchmarking this approach across a set of simulated molecular localization maps with varying densities (up to ∼55 molecules μm-2) and localization precisions (1 to 50 nm) showed typical errors in the identification of correct pairs of only a few percent. At molecular densities of ∼5 to 10 molecules μm-2 and localization precisions of 20 to 30 nm, which are typical parameters for SMLM imaging, the recall was ∼90%. The algorithm was effective at differentiating between noninteracting and coupled molecules both in simulations and experiments. Finally, it correctly inferred the number of coupled pairs over time in a simulated reaction-diffusion system, enabling determination of the underlying rate constants. The proposed approach promises to enable direct visualization and quantification of intermolecular interactions using SMLM.
Collapse
Affiliation(s)
- Xingchi Yan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138
| | - Polly Y Yu
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Sohaib Abdul Rehman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Surabhi Kottigegollahalli Sreenivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Jeremy B Conway
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
4
|
Kozoriz K, Lee JS. Chemical proteomics for a comprehensive understanding of functional activity and the interactome. Chem Soc Rev 2025. [PMID: 40384449 DOI: 10.1039/d5cs00381d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Traditional mass spectrometry (MS)-based proteomics aims to detect and measure protein expression on a global scale and elucidate the link between protein function and phenotypic characteristics. Although advances in MS technology have significantly broadened the scope of detectable proteomes, these methodologies primarily provide data on protein abundance and offer limited insights into their functional activities. Phenotypic traits emerge from the interplay between protein abundance and functional activity, making the accurate measurement of activity a critical but challenging task, owing to the complexity of biological systems. Furthermore, the biological function of a protein is strongly linked to its interaction with other molecules within the cellular environment. Chemical proteomics offers a complementary approach that uses a toolkit developed in chemical biology to map the molecular interactome and provide initial insights into the activities of specific target proteins. However, the value of these techniques lies not in isolation, but as part of a broader experimental workflow that includes follow-up biological investigations to validate the findings and elucidate their functional relevance. This tutorial review highlights the design principles of chemical tools and examines their applications in two key areas: (i) functional activity profiling of biomolecules and (ii) molecular proximity profiling for interactome characterization. We also discuss the importance of the experimental context in shaping data interpretation and ensuring the practical adoption of these methods by biologists. Although chemical proteomics is not a standalone solution, it represents a promising step toward next-generation omics technologies and advances our understanding of biological functions at the molecular level.
Collapse
Affiliation(s)
- Kostiantyn Kozoriz
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Whitfield TW, Bell GW, Guo R, Flamier A, Young RA, Jaenisch R. Exploring the complexity of MECP2 function in Rett syndrome. Nat Rev Neurosci 2025:10.1038/s41583-025-00926-1. [PMID: 40360671 DOI: 10.1038/s41583-025-00926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is mainly caused by mutations in the methyl-DNA-binding protein MECP2. MECP2 is an important epigenetic regulator that plays a pivotal role in neuronal gene regulation, where it has been reported to function as both a repressor and an activator. Despite extensive efforts in mechanistic studies over the past two decades, a clear consensus on how MECP2 dysfunction impacts molecular mechanisms and contributes to disease progression has not been reached. Here, we review recent insights from epigenomic, transcriptomic and proteomic studies that advance our understanding of MECP2 as an interacting hub for DNA, RNA and transcription factors, orchestrating diverse processes that are crucial for neuronal function. By discussing findings from different model systems, we identify crucial epigenetic details and cofactor interactions, enriching our understanding of the multifaceted roles of MECP2 in transcriptional regulation and chromatin structure. These mechanistic insights offer potential avenues for rational therapeutic design for RTT.
Collapse
Affiliation(s)
- Yi Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ruisi Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Anthony Flamier
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Saner N, Uzun C, Akarlar BA, Özkan SN, Geiszler DJ, Öztürk E, Tunçbağ N, Özlü N. Proximity labeling and SILAC based proteomic approach identifies proteins at the interface of homotypic and heterotypic cancer cell interactions. Mol Cell Proteomics 2025:100986. [PMID: 40334745 DOI: 10.1016/j.mcpro.2025.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 04/13/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025] Open
Abstract
Cell-cell interactions are critical for the growth of organisms and maintaining homeostasis. In the tumor microenvironment, these interactions promote cancer progression. Given their importance in healthy and diseased conditions, we have developed a method to analyze the cell-to-cell interactome. Our approach uses enzyme-catalyzed proximity labeling and SILAC-based proteomics to identify the proteins involved in cancer cell interactions. By targeting HRP to the outer leaflet of the plasma membrane in bait cells, we were able to label the neighboring prey cells and distinguish between the proteomes of bait and prey cells using SILAC labeling in a co-culture system. We mapped both the homotypic and heterotypic interactomes of epithelial and mesenchymal breast cancer cells. The enrichment of cell surface and extracellular proteins confirms the specificity of our methodology. We further verified selected hits from different cell-cell interactomes in co-cultures using microscopy. This method revealed prominent signaling pathways orchestrating homotypic and heterotypic interactions of epithelial and mesenchymal cells. It also highlights the importance of exosomes in these interactions. Our methodology can be applied to any type of cell-cell interaction in 2D co-culture or 3D tumor models.
Collapse
Affiliation(s)
- Nazan Saner
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Türkiye.
| | - Ceren Uzun
- Department of Chemical and Biological Engineering, Koç University, İstanbul, Türkiye
| | - Büşra Aytül Akarlar
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Türkiye
| | - Sena Nur Özkan
- Koç University, Research Center for Translational Medicine (KUTTAM), Koç University, İstanbul, Türkiye
| | - Daniel Jon Geiszler
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Türkiye
| | - Ece Öztürk
- Koç University, Research Center for Translational Medicine (KUTTAM), Koç University, İstanbul, Türkiye; Department of Medical Biology, School of Medicine, Koç University, İstanbul, Türkiye
| | - Nurcan Tunçbağ
- Department of Chemical and Biological Engineering, Koç University, İstanbul, Türkiye
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Türkiye; Koç University, Research Center for Translational Medicine (KUTTAM), Koç University, İstanbul, Türkiye.
| |
Collapse
|
7
|
Li H, Mazli W, Hao L. Overcoming Analytical Challenges in Proximity Labeling Proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5134. [PMID: 40195276 PMCID: PMC11976124 DOI: 10.1002/jms.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Proximity labeling (PL) proteomics has emerged as a powerful tool to capture both stable and transient protein interactions and subcellular networks. Despite the wide biological applications, PL still faces technical challenges in robustness, reproducibility, specificity, and sensitivity. Here, we discuss major analytical challenges in PL proteomics and highlight how the field is advancing to address these challenges by refining study design, tackling interferences, overcoming variation, developing novel tools, and establishing more robust platforms. We also provide our perspectives on best practices and the need for more robust, scalable, and quantitative PL technologies.
Collapse
Affiliation(s)
- Haorong Li
- Department of ChemistryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Ling Hao
- Department of ChemistryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
8
|
Cheng F, Chapman T, Venturato J, Davidson JM, Polido SA, Rosa‐Fernandes L, San Gil R, Suddull HJ, Zhang S, Macaslam CY, Szwaja P, Chung R, Walker AK, Rayner SL, Morsch M, Lee A. Proteomics Analysis of the TDP-43 Interactome in Cellular Models of ALS Pathogenesis. J Neurochem 2025; 169:e70079. [PMID: 40365763 PMCID: PMC12076276 DOI: 10.1111/jnc.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Cytoplasmic aggregation and nuclear depletion of TAR DNA-binding protein 43 (TDP-43) is a hallmark pathology of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). However, the protein interactome of TDP-43 remains incompletely defined. In this study, we aimed to identify putative TDP-43 protein partners within the nucleus and the cytoplasm and with different disease models of TDP-43 by comparing TDP-43 interaction partners in three different cell lines. We verified the levels of interaction of protein partners under stress conditions as well as after introducing TDP-43 variants containing ALS missense mutations (G294V and A315T). Overall, we identified 58 putative wild-type TDP-43 interactors, including novel binding partners responsible for RNA metabolism and splicing. Oxidative stress exposure broadly led to changes in TDP-43WT interactions with proteins involved in mRNA metabolism, suggesting a dysregulation of the transcriptional machinery early in disease. Conversely, although G294V and A315T mutations are both located in the C-terminal domain of TDP-43, both mutants presented different interactome profiles with most interaction partners involved in translational and transcriptional machinery. Overall, by correlating different cell lines and disease-simulating interventions, we provide a list of high-confidence TDP-43 interaction partners, including novel and previously reported proteins. Understanding pathological changes to TDP-43 and its specific interaction partners in different models of stress is critical to better understand TDP-43 proteinopathies and provide novel potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Juliana Venturato
- Neurodegeneration Pathobiology LaboratoryClem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of QueenslandSt. LuciaAustralia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Stella A. Polido
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Livia Rosa‐Fernandes
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Rebecca San Gil
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Hannah J. Suddull
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Chiara Y. Macaslam
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Paulina Szwaja
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Adam K. Walker
- Neurodegeneration Pathobiology LaboratoryClem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of QueenslandSt. LuciaAustralia
- Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Stephanie L. Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
9
|
Mróz D, Jagłowska J, Wevers RA, Ziętkiewicz S. CLPB Deficiency, a Mitochondrial Chaperonopathy With Neutropenia and Neurological Presentation. J Inherit Metab Dis 2025; 48:e70025. [PMID: 40194906 PMCID: PMC11975511 DOI: 10.1002/jimd.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Affiliation(s)
- D. Mróz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| | - J. Jagłowska
- Department of Pediatrics, Hematology and OncologyMedical University of GdanskGdanskPoland
| | - R. A. Wevers
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - S. Ziętkiewicz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| |
Collapse
|
10
|
Suzuki H, Li K, Ito S, Asano K, Noguchi K, Abe R, Takahashi H. Protocol for identifying components of subcellular compartments by antibody-based in situ biotinylation. STAR Protoc 2025; 6:103803. [PMID: 40315056 DOI: 10.1016/j.xpro.2025.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Recent studies revealed that membrane-less subcellular organelles play important roles in cellular functions. Here, we present a protocol for identifying subcellular compartment components by antibody-based in situ biotinylation. We describe steps for in situ biotinylation labeling using a horseradish peroxidase (HRP)-conjugated antibody, purification of the biotinylated components, and sample preparation for high-throughput analysis. This protocol has potential for application in the comprehensive analysis of dynamic subcellular organelles. For complete details on the use and execution of this protocol, please refer to Noguchi et al.1.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kexin Li
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Sayaka Ito
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Keiichiro Asano
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Noguchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
11
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Matsuoka T, Takasaki R, Akiba H, Ogata K, Hattori A, Arichi N, Kakeya H, Yamasaki S, Ishihama Y, Ohno H, Inuki S. Visible light-mediated photocatalytic coupling between tetrazoles and carboxylic acids for biomolecule labelling. Chem Commun (Camb) 2025; 61:6320-6323. [PMID: 40166963 DOI: 10.1039/d4cc04452e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Photocatalytic biomolecular labelling is gaining attention as a foundational technique for analyzing biological phenomena. However, photocatalytic reactions compatible with physiological conditions remain limited. Here, we present a photocatalytic reaction of diaryltetrazoles to generate nitrile imines, which readily couple with carboxylic acids in aqueous environments. This reaction is applied for photocatalyst-dependent labelling of proteins and cells.
Collapse
Affiliation(s)
- Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Ryosuke Takasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Hiroki Akiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Akira Hattori
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
13
|
Miao E, Yang D, Yue X, Zhang Z, Liu H, Qin H, Ye M. Revealing Stress Granule Compositional Heterogeneity through Antibody-Guided Proximity Labeling. Anal Chem 2025; 97:8313-8321. [PMID: 40198209 DOI: 10.1021/acs.analchem.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Stress granules (SGs), transient nonmembranous cytoplasmic condensates that formed in response to cellular stresses, require precise characterization to unravel their cell-type and stress-specific protein compositions. This study introduced a G3BP1 antibody-guided proximity labeling (Ab-PL) method to explore the composition and diversity of SGs, overcoming the challenges of traditional enzyme-mediated proximity labeling techniques across various cell types, especially for the immune cells. Application of Ab-PL to HeLa and RAW264.7 cells under heat shock (HS), sodium arsenate (AS), and sodium chloride stress (SS) revealed two categories of SG proteins: "SG-core" and "SG-shell," characterized by their different abilities to undergo phase separation. The core proteins form the SG scaffold with strong self-segregation, while shell proteins are dynamically recruited based on the type of stress. Cell- and stress-specific SG proteins were also identified, highlighting compositional heterogeneity. Intriguingly, unique nuclear-cytoplasmic shuttling behaviors of SG components were observed under varying conditions, uncovering over 10 novel SG proteins, including REXO4, RBM28, and OGFR. This study provides a versatile tool for SG analysis across diverse cell types and offers insights into SG heterogeneity, which has potential implications for human diseases, paving the way for future studies on RNA metabolism, ribosome assembly, and immune regulation.
Collapse
Affiliation(s)
- Enming Miao
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dian Yang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xuyang Yue
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhuo Zhang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
14
|
Shen D, Zhao Q, Zhang H, Wu C, Jin H, Guo K, Sun R, Guo H, Zhao Q, Feng H, Dong X, Gao Z, Zhang L, Liu Y. A hydrophobic photouncaging reaction to profile the lipid droplet interactome in tissues. Proc Natl Acad Sci U S A 2025; 122:e2420861122. [PMID: 40238459 PMCID: PMC12037041 DOI: 10.1073/pnas.2420861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Most bioorthogonal photouncaging reactions preferentially occur in polar environments to accommodate biological applications in the aqueous cellular milieu. However, they are not precisely designed to chemically adapt to the diverse microenvironments of the cell. Herein, we report a hydrophobic photouncaging reaction with tailored photolytic kinetics toward solvent polarity. Structural modulations of the aminobenzoquinone-based photocage reveal the impact of cyclic ring size, steric substituent, and electronic substituent on the individual uncaging kinetics (kH2O and kdioxane) and polarity preference (kdioxane/kH2O). Rational incorporation of optimized moieties leads to up to 20.2-fold nonpolar kinetic selectivity (kdioxane/kH2O). Further photochemical spectroscopic characterizations and theoretical calculations together uncover the mechanism underlying the polarity-dependent uncaging kinetics. The uncaged ortho-quinone methide product bears covalent reactivity toward diverse nucleophiles of a protein revealed by tandem mass spectrometry. Finally, we demonstrate the application of such lipophilic photouncaging chemistry toward selective labeling and profiling of proteins in proximity to lipid droplets inside human fatty liver tissues. Together, this work studies the solvent polarity effects of a photouncaging reaction and chemically adapts it toward suborganelle-targeted protein proximity labeling and profiling.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Huaiyue Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ci Wu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hao Jin
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qi Zhao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
15
|
Chen Y, Chen Y, Qin W. Mapping RNA-Protein Interactions via Proximity Labeling-Based Approaches. Chem Asian J 2025:e202500118. [PMID: 40249647 DOI: 10.1002/asia.202500118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
RNA-protein interactions are fundamental to a wide range of biological processes, and understanding these interactions in their native cellular context is both vital and challenging. Traditional methods for studying RNA-protein interactions rely on crosslinking, which can introduce artifacts. Recently, proximity labeling-based techniques have emerged as powerful alternatives, offering a crosslinking-free approach to investigate these interactions. This review highlights recent advancements in the development and application of proximity labeling methods, focusing on both RNA-centric and protein-centric strategies for profiling cellular RNA-protein interactions. By examining these innovative approaches, we aim to provide insights into their potential for enhancing our understanding of RNA-protein dynamics in various biological settings.
Collapse
Affiliation(s)
- Yongzuo Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Qian W, Jiang P, Niu M, Fu Y, Huang D, Zhang D, Liang Y, Wang Q, Han Y, Zeng X, Shi Y, Jiang L, Yu Z, Li J, Lu H, Wang H, Chen B, Qian P. Selective identification of epigenetic regulators at methylated genomic sites by SelectID. Nat Commun 2025; 16:3709. [PMID: 40251151 PMCID: PMC12008204 DOI: 10.1038/s41467-025-59002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
DNA methylation is a significant component in proximal chromatin regulation and plays crucial roles in regulating gene expression and maintaining the repressive state of retrotransposon elements. However, accurate profiling of the proteomics which simultaneously identifies specific DNA sequences and their associated epigenetic modifications remains a challenge. Here, we report a strategy termed SelectID (selective profiling of epigenetic control at genome targets identified by dCas9), which introduces methylated DNA binding domain into dCas9-mediated proximity labeling system to enable in situ protein capture at repetitive elements with 5-methylcytosine (5mC) modifications. SelectID is demonstrated as feasible as dCas9-TurboID system at specific DNA methylation regions, such as the chromosome 9 satellite. Using SelectID, we successfully identify CHD4 as potential repressors of methylated long interspersed nuclear element-1 (LINE-1) retrotransposon through direct binding at the 5' untranslated region (5'UTR) of young LINE-1 elements. Overall, our SelectID approach has opened up avenues for uncovering potential regulators of specific DNA regions with DNA methylation, which will greatly facilitate future studies on epigenetic regulation.
Collapse
Affiliation(s)
- Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Mingming Niu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yujuan Fu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Deyu Huang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Dong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Liang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xin Zeng
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yixin Shi
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hong Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Experimental Hematology, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| |
Collapse
|
17
|
Mocăniță M, Martz K, D'Costa VM. Characterizing host-microbe interactions with bacterial effector proteins using proximity-dependent biotin identification (BioID). Commun Biol 2025; 8:597. [PMID: 40210669 PMCID: PMC11985969 DOI: 10.1038/s42003-025-07950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/18/2025] [Indexed: 04/12/2025] Open
Abstract
Bacterial pathogens have evolved diverse strategies to manipulate host cells to establish infection. At a molecular level, this is often mediated by virulence factors that are secreted into host cells (herein referred to as effectors), which target host cellular pathways by initiating host-pathogen protein-protein interactions that alter cellular function in the host. By establishing this network of host-pathogen protein-protein interactions, pathogenic bacteria modulate and hijack host cell processes for the benefit of the pathogen, ultimately promoting survival, replication, and cell-to-cell spread within the host. Effector proteins also mediate diverse host-microbe interactions in nature, contributing to symbiotic relationships spanning from mutualism to commensalism to parasitism. While effector proteins play crucial roles in nature, molecular properties such as the transient nature of the underlying protein-protein interactions and their affinity for targeting host biological membranes often presents challenges to elucidating host targets and mechanism of action. Proximity-dependent biotin identification (termed BioID) has proven to be a valuable tool in the field of cell biology to identify candidate protein-protein interactions in eukaryotic cells, yet has remained relatively underexploited by bacterial pathogenesis researchers. Here, we discuss bacterial effector function at a molecular level, and challenges presented by traditional approaches to host target identification. We highlight the BioID approach and its potential strengths in the context of identifying host-pathogen protein-protein interactions, and explore BioID's implementation to study host-microbe interactions mediated by bacteria. Collectively, BioID represents a powerful tool for the study of bacterial effector proteins, providing new insight into our understanding of pathogenesis and other symbiotic relationships, and opportunities to identify new factors that contribute to host response to infection.
Collapse
Affiliation(s)
- Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
18
|
Xie L, Zhu Y, Hurtle BT, Wright M, Robinson JL, Mauna JC, Brown EE, Ngo M, Bergmann CA, Xu J, Merjane J, Gleixner AM, Grigorean G, Liu F, Rossoll W, Lee EB, Kiskinis E, Chikina M, Donnelly CJ. Context-dependent Interactors Regulate TDP-43 Dysfunction in ALS/FTLD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.646890. [PMID: 40291645 PMCID: PMC12026901 DOI: 10.1101/2025.04.07.646890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
TDP-43 mislocalization, aggregation, and loss of splicing function are neuropathological hallmarks in over 97% of Amyotrophic Lateral Sclerosis (ALS), 45% of Frontotemporal Lobar Degeneration (FTLD), and 60% of Alzheimer's Disease, which has been reclassified as LATE-NC. However, the mechanisms underlying TDP-43 dysfunction remain elusive. Here, we utilize APEX2-driven proximity labeling and mass spectrometry to characterize the context-dependent TDP-43 interactome in conditions of cytoplasmic mislocalization, impaired RNA-binding contributing to aggregation, and oxidative stress. We describe context-dependent interactors, including disrupted interactions with splicing-related proteins and altered biomolecular condensate (BMC) associations. By integrating ALS and FTLD snRNA-seq data, we uncover disease-relevant molecular alterations and validate our dataset through a functional screen that identifies key TDP- 43 regulators. We demonstrate that disrupting nuclear speckle integrity, particularly through the downregulation of the splicing factor SRRM2, promotes TDP-43 mislocalization and loss of function. Additionally, we identify NUFIP2 as an interactor associated with mislocalization that sequesters TDP-43 into cytoplasmic aggregates and co-localizes with TDP-43 pathology in patient tissue. We also highlight HNRNPC as a potent TDP-43 splicing regulator, where precise modulation of TDP-43 or HNRNPC can rescue cryptic exon splicing. These findings provide mechanistic insights and potential therapeutic targets for TDP-43 dysfunction.
Collapse
|
19
|
Dargham T, Aguilera-Correa JJ, Avellan R, Mallick I, Celik L, Santucci P, Brasseur G, Poncin I, Point V, Audebert S, Camoin L, Daher W, Cavalier JF, Kremer L, Canaan S. A proteomic and functional view of intrabacterial lipid inclusion biogenesis in mycobacteria. mBio 2025; 16:e0147524. [PMID: 39998225 PMCID: PMC11980559 DOI: 10.1128/mbio.01475-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
During infection and granuloma formation, pathogenic mycobacteria store triacylglycerol as intrabacterial lipid inclusions (ILIs). This accumulation of nutrients provides a carbon source for bacterial persistence and slows down intracellular metabolism. Mycobacterium abscessus (Mab), a rapidly growing non-tuberculous actinobacterium, produces ILI throughout its infection cycle. Here, Mab was used as a model organism to identify proteins associated with ILI accumulation on a global scale. By using the APEX2 proximity labeling method in an in vitro model for ILI accumulation, we identified 228 proteins possibly implicated in ILI biosynthesis. Fluorescence microscopy of strains overexpressing eight ILI-associated proteins (IAP) candidates fused to superfolder green fluorescent protein showed co-localization with ILI. Genetic inactivation of these potential IAP-encoding genes and subsequent lipid analysis emphasized the importance of MAB_3486 and MAB_4532c as key enzymes influencing triacylglycerol storage. This study underscores the dynamic process of ILI biogenesis and advances our understanding of lipid metabolism in pathogenic mycobacteria. Identifying major IAP in lipid accumulation offers new therapeutic perspectives to control the growth and persistence of pathogenic mycobacteria. IMPORTANCE This study sheds light into the complex process of intracellular lipid accumulation and storage in the survival and persistence of pathogenic mycobacteria, which is of clinical relevance. By identifying the proteins involved in the formation of intrabacterial lipid inclusions and revealing their impact on lipid metabolism, our data may lead to the development of new therapeutic strategies to target and control pathogenic mycobacteria, potentially improving outcomes for patients with mycobacterial infections.
Collapse
Affiliation(s)
- Tonia Dargham
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
- IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | | | - Romain Avellan
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| | - Ivy Mallick
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| | - Léa Celik
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| | - Gael Brasseur
- Aix-Marseille Univ., CNRS, LCB-UMR 7283, IMM FR3479, IM2B, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Wassim Daher
- CNRS UMR 9004, IRIM, Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | | | - Laurent Kremer
- CNRS UMR 9004, IRIM, Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM-UMR 7255, IMM FR3479, IM2B, Marseille, France
| |
Collapse
|
20
|
Wu Y, Wang C, Guo Y, Zhang Y, Zhang X, Wang P, Yue W, Zhu X, Liu Z, Zhang Y, Guo H, Han L, Li M. Small extracellular vesicle-based one-step high-throughput microfluidic platform for epithelial ovarian cancer diagnosis. J Nanobiotechnology 2025; 23:278. [PMID: 40189497 PMCID: PMC11974170 DOI: 10.1186/s12951-025-03348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is diagnosed at advanced stages, resulting in limited treatment options for patients. While early detection of OC has been investigated, the invasiveness of approaches, high sample requirements, or false-positive rates undermined its benefits. Here, we present a "one-step" high-throughput microfluidic platform for epithelial ovarian cancer (EOC) detection that integrates small extracellular vesicle (sEV) capture, in situ lysis, and protein biomarker detection. RESULTS We identified 1,818 differentially expressed proteins (DEPs) through proteomic analysis of sEVs from patients' serum, combined with cell lines. Through multi-step screening of DEPs, we identified EOC biomarkers to customize the microfluidic platform. We used the microfluidic platform to test the expression of EOC biomarkers with 2 µL of serum from 209 participants in a prospective cohort. Based on the test results, an EOC detection model (P9) was constructed, which achieved a sensitivity of 92.3% (95% CI, 75.9-97.9%) for stage I, 90.0% (95% CI, 69.9-97.2%) for stage II at a specificity of 98.8% (95% CI, 93.6-99.8%) in the training set. The specificities reached 98.8% (95% CI, 93.6-99.8%) in the training set and 100.0% (95% CI, 91.6-100.0%) in the validation set of a held-out group of 105 participants. A model combining the P9 and patient's CA125 value exhibited 100.0% (95% CI, 95.6-100%) specificity in both training and validation, without compromising sensitivity. CONCLUSIONS We developed a non-invasive high-throughput microfluidic platform for EOC sEV-derived biomarker detection. It significantly reduced false positives and sample volume. Given its convenience and low cost, this platform could advance OC early detection to benefit of women.
Collapse
Affiliation(s)
- Yu Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yuhan Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Xue Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Pan Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xin Zhu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, China.
| | - Hongyan Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, China.
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China.
| |
Collapse
|
21
|
Perr J, Langen A, Almahayni K, Nestola G, Chai P, Lebedenko CG, Volk RF, Detrés D, Caldwell RM, Spiekermann M, Hemberger H, Bisaria N, Aiba T, Sánchez-Rivera FJ, Tzelepis K, Calo E, Möckl L, Zaro BW, Flynn RA. RNA-binding proteins and glycoRNAs form domains on the cell surface for cell-penetrating peptide entry. Cell 2025; 188:1878-1895.e25. [PMID: 40020667 PMCID: PMC11972160 DOI: 10.1016/j.cell.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
The composition and organization of the cell surface determine how cells interact with their environment. Traditionally, glycosylated transmembrane proteins were thought to be the major constituents of the external surface of the plasma membrane. Here, we provide evidence that a group of RNA-binding proteins (RBPs) is present on the surface of living cells. These cell-surface RBPs (csRBPs) precisely organize into well-defined nanoclusters enriched for multiple RBPs and glycoRNAs, and their clustering can be disrupted by extracellular RNase addition. These glycoRNA-csRBP clusters further serve as sites of cell-surface interaction for the cell-penetrating peptide trans-activator of transcription (TAT). Removal of RNA from the cell surface, or loss of RNA-binding activity by TAT, causes defects in TAT cell internalization. Together, we provide evidence of an expanded view of the cell surface by positioning glycoRNA-csRBP clusters as a regulator of communication between cells and the extracellular environment.
Collapse
Affiliation(s)
- Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Andreas Langen
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Karim Almahayni
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Gianluca Nestola
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Regan F Volk
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Diego Detrés
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Reese M Caldwell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Namita Bisaria
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Toshihiko Aiba
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco J Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Konstantinos Tzelepis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; Department of Medicine 1/CITABLE, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), University Clinic Erlangen, 91054 Erlangen, Germany
| | - Balyn W Zaro
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Nesa ML, Mandal SK, Toelzer C, Humer D, Moody PCE, Berger I, Spadiut O, Raven EL. Crystal structure of ferric recombinant horseradish peroxidase. J Biol Inorg Chem 2025; 30:221-227. [PMID: 40053124 PMCID: PMC11965164 DOI: 10.1007/s00775-025-02103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/04/2025] [Indexed: 04/03/2025]
Abstract
Horseradish peroxidase (HRP), isolated from horseradish roots, is heavily glycosylated, making it difficult to crystallize. In this work, we produced recombinant HRP in E. coli and obtained an X-ray structure of the ferric enzyme at 1.63 Å resolution. The structure shows that the recombinant HRP contains four disulphide bonds and two calcium ions, which are highly conserved in class III peroxidase enzymes. The heme active site contains histidine residues at the proximal (His 170) and distal (His 42) positions, and an active site arginine (Arg 38). Surprisingly, an ethylene glycol molecule was identified in the active site, forming hydrogen bonds with His 42 and Arg 38 at the δ-heme edge. The high yields obtained from the recombinant expression system, and the successful crystallization of the enzyme pave the way for new structural studies in the future.
Collapse
Affiliation(s)
| | | | | | - Diana Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, TU Wien, Vienna, Austria
| | - Peter C E Moody
- Leicester Institute for Structural & Chemical Biology, Department Molecular & Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, TU Wien, Vienna, Austria
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Fallon BS, Rondem KE, Mumby EJ, English JG. Biased Signaling in G Protein-Coupled Receptors: Understanding the Biological Relevance and Tools for Probing Functionally Selective Ligands. Biochemistry 2025; 64:1425-1436. [PMID: 40100969 DOI: 10.1021/acs.biochem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biased signaling has transformed pharmacology by revealing that receptors, particularly G protein-coupled receptors (GPCRs), can activate specific intracellular pathways selectively rather than uniformly. This discovery enables the development of targeted therapeutics that minimize side effects by precisely modulating receptor activity. Functionally selective ligands, which preferentially activate distinct signaling branches, have become essential tools for exploring receptor mechanisms and uncovering the complexities of GPCR signaling. These ligands help clarify receptor function in various physiological and pathological contexts, offering profound implications for therapeutic innovation. GPCRs, which mediate a wide range of cellular responses through coupling to G proteins and arrestins, are key pharmacological targets, with nearly a third of FDA-approved drugs acting on them. Recent advancements in biosensor development, multiplex assay platforms, and deep mutational scanning methods are improving our ability to define GPCR signaling, allowing for a better understanding of biased signaling pathways.
Collapse
Affiliation(s)
- Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| |
Collapse
|
24
|
Wang G, Li M, Zou P. Enzyme-mediated proximity labeling reveals the co-translational targeting of DLGAP5 mRNA to the centrosome during mitosis. RSC Chem Biol 2025:d4cb00155a. [PMID: 40248433 PMCID: PMC12002336 DOI: 10.1039/d4cb00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Subcellular RNA localization is a conserved mechanism in eukaryotic cells and plays critical roles in diverse physiological processes including cell proliferation, differentiation, and embryo development. Nevertheless, the characterization of centrosome-localized mRNAs remains underexplored due to technical difficulties. In this study, we utilize APEX2-mediated proximity labeling to map the centrosome-proximal transcriptome, identifying DLGAP5 mRNA as a novel centrosome-localized transcript during mitosis. Using a combination of drug perturbation, truncation, deletion, and mutagenesis, we demonstrate that microtubule binding of nascent MBD1 polypeptides is required for centrosomal transport of DLGAP5 mRNA. Our data also reveal that mRNA targeting efficiency is tightly linked to the coding sequence (CDS) length. Thus, our study provides a transcriptomic resource for future investigation of centrosome-localized RNAs and sheds light on mechanisms underlying mRNA centrosomal localization.
Collapse
Affiliation(s)
- Gang Wang
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University Beijing 100871 China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing 100191 China
| | - Peng Zou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University Beijing 100871 China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
25
|
Xiang J, Li T, Zhang J, Wu W, Xu G, Yan J, Wang H, Chen S, Yao SQ, Wang M, Yi F, Wang J, Xie Y. Chemical Probe-Enabled Lipid Droplet Proteomics. J Am Chem Soc 2025; 147:10724-10736. [PMID: 40069114 DOI: 10.1021/jacs.5c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Emerging evidence indicates that lipid droplets (LDs) play important roles in lipid metabolism, energy homeostasis, and cell stress management. Notably, dysregulation of LDs is tightly linked to numerous diseases, including lipodystrophies, cancer, obesity, atherosclerosis, and others. The pivotal physiological roles of LDs have led to an exploration of research in recent years. The functions of LDs are inherently connected to the composition of their proteome. Current methods for profiling LD proteins mostly utilize LD fractionation, including those based on proximity-based labeling techniques. Global profiling of the LD proteome in live cells without the isolation of LDs is still challenging. Herein, we disclose two small-molecule chemical probes, termed LDF and LDPL. Both LDF/LDPL are small in size and could freely and specifically migrate within the lipid context of LDs. Consequently, they were successfully used for live-cell fluorescence imaging of LDs and from animal tissues. We further showed that LDPL was capable of large-scale profiling of the LD proteome without the need of LD isolation. By using LDPL, 1584 high-confidence proteins, most of which could be annotated to prominent LD functions, were next identified. Importantly, further validation studies by using representative "hit" proteins revealed that CHMP6 and PRDX4 could act as the lipophagy receptor and lipolysis suppressor, respectively. Our results thus confirmed for the first time that LDPL is a powerful chemical tool for in situ profiling of LD proteomes. With the ability to provide a deeper understanding of LD proteomics from the native cellular environments, our newly developed strategy may be used in future to decipher the dynamics and molecular mechanism of LDs in various diseases.
Collapse
Affiliation(s)
- Jing Xiang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Li
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junzhe Zhang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenxian Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Guangyu Xu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaqian Yan
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Suyuan Chen
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Miaomiao Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
26
|
Ye JS, Majumdar A, Park BC, Black MH, Hsieh TS, Osinski A, Servage KA, Kulkarni K, Naidoo J, Alto NM, Stratton MM, Alfandari D, Ready JM, Pawłowski K, Tomchick DR, Tagliabracci VS. Bacterial ubiquitin ligase engineered for small molecule and protein target identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644192. [PMID: 40166235 PMCID: PMC11957136 DOI: 10.1101/2025.03.20.644192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Legionella SidE effectors ubiquitinate host proteins independently of the canonical E1-E2 cascade. Here we engineer the SidE ligases to develop a modular proximity ligation approach for the identification of targets of small molecules and proteins, which we call SidBait. We validate the method with known small molecule-protein interactions and use it to identify CaMKII as an off-target interactor of the breast cancer drug ribociclib. Structural analysis and activity assays confirm that ribociclib binds the CaMKII active site and inhibits its activity. We further customize SidBait to identify protein-protein interactions, including substrates for enzymes, and discover the F-actin capping protein (CapZ) as a target of the Legionella effector RavB during infection. Structural and biochemical studies indicate that RavB allosterically binds CapZ and decaps actin, thus functionally mimicking eukaryotic CapZ interacting proteins. Collectively, our results establish SidBait as a reliable tool for identifying targets of small molecules and proteins.
Collapse
Affiliation(s)
- James S. Ye
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abir Majumdar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brenden C. Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miles H. Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting-Sung Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kartik Kulkarni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
27
|
Ngo JM, Williams JK, Temoche-Diaz MM, Murugupandiyan A, Schekman R. p62 sorts Lupus La and selected microRNAs into breast cancer-derived exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644464. [PMID: 40166149 PMCID: PMC11957149 DOI: 10.1101/2025.03.20.644464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Exosomes are multivesicular body-derived extracellular vesicles that are secreted by metazoan cells. Exosomes have utility as disease biomarkers, and exosome-mediated miRNA secretion has been proposed to facilitate tumor growth and metastasis. Previously, we demonstrated that the Lupus La protein (La) mediates the selective incorporation of miR-122 into metastatic breast cancer-derived exosomes; however, the mechanism by which La itself is sorted into exosomes remains unknown. Using unbiased proximity labeling proteomics, biochemical fractionation, superresolution microscopy and genetic tools, we establish that the selective autophagy receptor p62 sorts La and miR-122 into exosomes. We then performed small RNA sequencing and found that p62 depletion reduces the exosomal secretion of tumor suppressor miRNAs and results in their accumulation within cells. Our data indicate that p62 is a quality control factor that modulates the miRNA composition of exosomes. Cancer cells may exploit p62-dependent exosome cargo sorting to eliminate tumor suppressor miRNAs and thus to promote cell proliferation.
Collapse
Affiliation(s)
- Jordan Matthew Ngo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Abinayaa Murugupandiyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
28
|
Lou Z, Zhang Y, Liang X, Cao M, Ma Y, Chen PR, Fan X. Deep-Red and Ultrafast Photocatalytic Proximity Labeling Empowered In Situ Dissection of Tumor-Immune Interactions in Primary Tissues. J Am Chem Soc 2025; 147:9716-9726. [PMID: 40036744 DOI: 10.1021/jacs.4c17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Immunotherapy efficacy in solid tumors varies greatly, influenced by the tumor microenvironment (TME) and the dynamic tumor-immune interactions within it. Decoding these interactions in situ with minimal interference with native tissue architecture and delicate immune responses is critical for understanding tumor progression and optimizing therapeutic strategies. Here, we introduce CAT-Tissue, a novel deep-red photocatalytic proximity labeling method that enables ultrafast, high-resolution profiling of tumor-immune interactions in primary tissues. By leveraging nanobody-Chlorin e6 as the photocatalyst and biotin-aniline as the probe, CAT-Tissue enabled the rapid and comprehensive detection of various tumor-immune interactions in both coculture systems and primary tumor sections. Coupled with bulk RNA-sequencing, CAT-Tissue revealed distinct gene expression patterns between tumor-neighboring and tumor-distal lymphocytes, highlighting the recognition and immune responses of tumor-neighboring CD8+ T cells, which exhibited activated, effector, and exhausted phenotypes. By leveraging a deep-red photocatalytic proximity cell labeling strategy with excellent tissue penetration and biocompatibility, CAT-Tissue offers a nongenetically encoded platform with high sensitivity and spatiotemporal controllability for rapid profiling tumor-immune interactions within complex tissue environments in situ, which may advance our understanding of tumor immunology and guide the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Zhizheng Lou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Zhang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Liang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mengrui Cao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yicong Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Zhang Z, Wang Y, Lu W, Wang X, Guo H, Pan X, Liu Z, Wu Z, Qin W. Spatiotemporally resolved mapping of extracellular proteomes via in vivo-compatible TyroID. Nat Commun 2025; 16:2553. [PMID: 40089463 PMCID: PMC11910615 DOI: 10.1038/s41467-025-57767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Extracellular proteins play pivotal roles in both intracellular signaling and intercellular communications in health and disease. While recent advancements in proximity labeling (PL) methods, such as peroxidase- and photocatalyst-based approaches, have facilitated the resolution of extracellular proteomes, their in vivo compatibility remains limited. Here, we report TyroID, an in vivo-compatible PL method for the unbiased mapping of extracellular proteins with high spatiotemporal resolution. TyroID employs plant- and bacteria-derived tyrosinases to produce reactive o-quinone intermediates, enabling the labeling of multiple residues on endogenous proteins with bioorthogonal handles, thereby allowing for their identification via chemical proteomics. We validate TyroID's specificity by mapping extracellular proteomes and HER2-neighboring proteins using affibody-directed recombinant tyrosinases. Demonstrating its superiority over other PL methods, TyroID enables in vivo mapping of extracellular proteomes, including mapping HER2-proximal proteins in tumor xenografts, quantifying the turnover of plasma proteins and labeling hippocampal-specific proteomes in live mouse brains. TyroID emerges as a potent tool for investigating protein localization and molecular interactions within living organisms.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyang Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanzhen Pan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zeyu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Chen L, Li Y, Guo Y, Wang G, Feng N, Sun J, Zhong Y, Yao Y, Ding L, Ju H. Two-Level Spatially Localized Proximity Labeling for Cross-Biological-Hierarchy Measurement and Manipulation. Angew Chem Int Ed Engl 2025; 64:e202421448. [PMID: 39805739 DOI: 10.1002/anie.202421448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Proximity labeling (PL) has emerged as a powerful technique for the in situ elucidation of biomolecular interaction networks. However, PL methods generally rely on single-biological-hierarchy control of spatial localization at the labeling site, which limits their application in multi-tiered biological systems. Here, we introduced another enzymatic reaction upstream of an enzyme-based PL reaction and targeted the two enzymes to markers indicating different biological hierarchies, establishing a two-level spatially localized proximity labeling (P2L) platform for in situ molecular measurement and manipulation. Using the cellular- and glycan-level as the hierarchical models, we demonstrated the ability of P2L to efficiently execute a two-step logic operation and to discriminate target cells with different levels of glycosylation within mixed cell populations. By mounting clickable handles via P2L, we reprogrammed the robust covalent assembly of cells at designated sites. The combination of P2L with proteomics led to the profiling of the protein microenvironment of specific glycans on target cells, revealing changes in tumor-cell-surface interactions under immune pressure from a glycan perspective. P2L provides not only a solution for revealing the heterogeneity of biological systems, but also new insights in the fields of intelligent logic computation, enzyme engineering, tissue engineering, etc.
Collapse
Affiliation(s)
- Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuna Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihong Zhong
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunyan Yao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
31
|
Zhu H, Uno H, Matsuba K, Hamachi I. Profiling Proteins Involved in Peroxynitrite Homeostasis Using ROS/RNS Conditional Proteomics. J Am Chem Soc 2025; 147:7305-7316. [PMID: 39988859 DOI: 10.1021/jacs.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Peroxynitrite (ONOO-), the product of the diffusion-controlled reaction of superoxide (O2•-) with nitric oxide (NO•), plays a crucial role in oxidative and nitrative stress and modulates key physiological processes such as redox signaling. While biological ONOO- is conventionally analyzed using 3-nitrotyrosine antibodies and fluorescent sensors, such probes lack specificity and sensitivity, making high-throughput and comprehensive profiling of ONOO--associated proteins challenging. In this study, we used a conditional proteomics approach to investigate ONOO- homeostasis by identifying its protein neighbors in cells. We developed Peroxynitrite-responsive protein Labeling reagents (Porp-L) and, for the first time, discovered 2,6-dichlorophenol as an ideal moiety that can be selectively and rapidly activated by ONOO- for labeling of proximal proteins. The reaction of Porp-L with ONOO- generated several short-lived reactive intermediates that can modify Tyr, His, and Lys residues on the protein surface. We have demonstrated the Porp-L-based conditional proteomics in immune-stimulated macrophages, which indeed identified proteins known to be involved in the generation and modification of ONOO- and revealed the endoplasmic reticulum (ER) as a ONOO- hot spot. Moreover, we discovered a previously unknown role for Ero1a, an ER-resident protein, in the formation of ONOO-. Overall, Porp-L represent a promising research tool for advancing our understanding of the biological roles of ONOO-.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroaki Uno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoichi Matsuba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
32
|
Thompson J, Boisvert F, Salsman J, Lévesque D, Dellaire G, Ridgway ND. The proximity interactome of PML isoforms I and II under fatty acid stress. FEBS Lett 2025; 599:682-699. [PMID: 39703998 PMCID: PMC11891419 DOI: 10.1002/1873-3468.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Promyelocytic leukemia (PML) protein forms the scaffold for PML nuclear bodies (PML NB) that reorganize into Lipid-Associated PML Structures (LAPS) under fatty acid stress. We determined how the fatty acid oleate alters the interactome of PMLI or PMLII by expressing fusions with the ascorbate peroxidase APEX2 in U2OS cells. The resultant interactome included ESCRT and COPII transport protein nodes. Proximity ligation assay (PLA) revealed that COPII proteins SEC23B, SEC24A and USO1 preferentially associated with PML NBs. Nuclear localization of USO1, but not SEC23B and SEC24A, was reduced in PML knockout cells and restored by PMLII expression. Thus, proximity-labelling methods identified COPII transport protein interactions with PML NBs that are disrupted by fatty acid stress.
Collapse
Affiliation(s)
- Jordan Thompson
- Department of Biochemistry & Molecular BiologyDalhousie UniversityHalifaxCanada
| | - François‐Michel Boisvert
- Department of Immunology and Cell Biology, Sherbrooke Cancer Research InstituteUniversité de SherbrookeCanada
| | - Jayme Salsman
- Department of PathologyDalhousie UniversityHalifaxCanada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Sherbrooke Cancer Research InstituteUniversité de SherbrookeCanada
| | - Graham Dellaire
- Department of Biochemistry & Molecular BiologyDalhousie UniversityHalifaxCanada
- Department of PathologyDalhousie UniversityHalifaxCanada
| | - Neale D. Ridgway
- Department of Biochemistry & Molecular BiologyDalhousie UniversityHalifaxCanada
- Department of Pediatrics, Atlantic Research CentreDalhousie UniversityHalifaxCanada
| |
Collapse
|
33
|
Wang H, Syed AA, Krijgsveld J, Sigismondo G. Isolation of Proteins on Chromatin Reveals Signaling Pathway-Dependent Alterations in the DNA-Bound Proteome. Mol Cell Proteomics 2025; 24:100908. [PMID: 39842777 PMCID: PMC11889358 DOI: 10.1016/j.mcpro.2025.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Signaling pathways often convergence on transcription factors and other DNA-binding proteins that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DNA-binding proteins is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogs to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome. We then applied iPOC to investigate chromatome changes upon perturbation of the cancer-relevant PI3K-AKT-mTOR pathway. Our results show distinct dynamics of the DNA-bound proteome upon selective inhibition of PI3K, AKT, or mTOR, and we provide evidence how this signaling cascade regulates the DNA-bound status of SUZ12, thereby modulating H3K27me3 levels. Collectively, iPOC is a powerful approach to study the composition of the DNA-bound proteome operating downstream of signaling cascades, thereby both expanding our knowledge of the mechanism of action of the pathway and unveiling novel chromatin modulators that can potentially be targeted pharmacologically.
Collapse
Affiliation(s)
- Huiyu Wang
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Azmal Ali Syed
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
34
|
Cai Y, Kanyo J, Wilson R, Bathla S, Cardozo PL, Tong L, Qin S, Fuentes LA, Pinheiro-de-Sousa I, Huynh T, Sun L, Mansuri MS, Tian Z, Gan HR, Braker A, Trinh HK, Huttner A, Lam TT, Petsalaki E, Brennand KJ, Nairn AC, Grutzendler J. Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer's disease. NATURE AGING 2025; 5:504-527. [PMID: 40065072 PMCID: PMC11922768 DOI: 10.1038/s43587-025-00823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Rashaun Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tram Huynh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Liyuan Sun
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zichen Tian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hao-Ran Gan
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Hoang Kim Trinh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Kristen J Brennand
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Deng X, Bradshaw G, Kalocsay M, Mitchison T. Tubulin Regulates the Stability and Localization of STMN2 by Binding Preferentially to Its Soluble Form. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640326. [PMID: 40060442 PMCID: PMC11888388 DOI: 10.1101/2025.02.27.640326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Loss of the tubulin-binding protein STMN2 is implicated in amyotrophic lateral sclerosis (ALS) but how it protects neurons is not known. STMN2 is known to turn over rapidly and accumulate at axotomy sites. We confirmed fast turnover of STMN2 in U2OS cells and iPSC-derived neurons and showed that degradation occurs mainly by the ubiquitin-proteasome system. The membrane targeting N-terminal domain of STMN2 promoted fast turnover, whereas its tubulin binding stathmin-like domain (SLD) promoted stabilization. Proximity labeling and imaging showed that STMN2 localizes to trans-Golgi network membranes and that tubulin binding reduces this localization. Pull-down assays showed that tubulin prefers to bind to soluble over membrane-bound STMN2. Our data suggest that STMN2 interconverts between a soluble form that is rapidly degraded unless bound to tubulin and a membrane-bound form that does not bind tubulin. We propose that STMN2 is sequestered and stabilized by tubulin binding, while its neuroprotective function depends on an unknown molecular activity of its membrane-bound form.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
36
|
Hein MY, Peng D, Todorova V, McCarthy F, Kim K, Liu C, Savy L, Januel C, Baltazar-Nunez R, Sekhar M, Vaid S, Bax S, Vangipuram M, Burgess J, Njoya L, Wang E, Ivanov IE, Byrum JR, Pradeep S, Gonzalez CG, Aniseia Y, Creery JS, McMorrow AH, Sunshine S, Yeung-Levy S, DeFelice BC, Mehta SB, Itzhak DN, Elias JE, Leonetti MD. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. Cell 2025; 188:1137-1155.e20. [PMID: 39742809 DOI: 10.1016/j.cell.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments. A graph-based analysis assigns the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following HCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides key insights for elucidating cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Collapse
Affiliation(s)
| | - Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chad Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - James Burgess
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Leila Njoya
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Serena Yeung-Levy
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Jia H, Han J, Qi Y, Liu J, Ting Leung Y, Tung YH, Chu Y, Wang T, Fung YME, Wang Y, Li Y. Small-Molecule Benzo-Phenoselenazine Derivatives for Multi-Subcellular Biomolecule Profiling. Angew Chem Int Ed Engl 2025; 64:e202419904. [PMID: 39613726 DOI: 10.1002/anie.202419904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Elucidating the subcellular localization of RNAs and proteins is fundamental to understanding their biological functions. Genetically encoded proteins/enzymes provide an attractive approach to target many proteins of interest, but are limited to specific cell lines. Although small-molecule-based methods have been explored, a comprehensive system for profiling multiple locations in living cells, comparable to fusion-protein techniques, is yet to be established. In this study, we introduce a novel proximity labeling strategy employing a suite of small molecules derived from benzo-phenoselenazine (e.g., selenium-containing Nile Blue [SeNB]), which achieves proximity labeling through singlet oxygen generation upon near-infrared light activation in the presence of propargylamine. These SeNB compounds allow for selective labeling of RNAs and proteins within living cells, exhibiting a distinct preference for organelle membranes, which are systematically investigated via in vitro, computational, and in cellulo examinations. Our findings highlight the capabilities of SeNB derivatives as wash-free and genetics-free approaches to illuminate the subcellular localization of biological molecules with deep penetration and high spatial resolution. Moreover, SeNB derivatives are capable of elucidating inter-organelle interactions at the molecular level, as evidenced by proteomic and transcriptomic analyses, thus holding significant potential for advancing our understanding of cellular processes related to disease progression and therapeutic development.
Collapse
Affiliation(s)
- Han Jia
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yajing Qi
- Department of Physics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuen Ting Leung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yau Hei Tung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanyuan Chu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Man Eva Fung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR, China
| | - Yi Wang
- Department of Physics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited New Territories, Hong Kong SAR, China
| |
Collapse
|
38
|
Clague MJ, Urbé S. Diverse routes to mitophagy governed by ubiquitylation and mitochondrial import. Trends Cell Biol 2025:S0962-8924(25)00003-0. [PMID: 39922712 DOI: 10.1016/j.tcb.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
The selective removal of mitochondria by mitophagy proceeds via multiple mechanisms and is essential for human well-being. The PINK1/Parkin and NIX/BNIP3 pathways are strongly linked to mitochondrial dysfunction and hypoxia, respectively. Both are regulated by ubiquitylation and mitochondrial import. Recent studies have elucidated how the ubiquitin kinase PINK1 acts as a sensor of mitochondrial import stress through stable interaction with a mitochondrial import supercomplex. The stability of BNIP3 and NIX is regulated by the SCFFBXL4 ubiquitin ligase complex. Substrate recognition requires an adaptor molecule, PPTC7, whose availability is limited by mitochondrial import. Unravelling the functional implications of each mode of mitophagy remains a critical challenge. We propose that mitochondrial import stress prompts a switch between these two pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Department of Biochemistry, Cell, and Systems Biology, Institute of Systems, Molecular, and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3BX, UK.
| | - Sylvie Urbé
- Department of Biochemistry, Cell, and Systems Biology, Institute of Systems, Molecular, and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
39
|
Ward JS, Schreiber KJ, Tam J, Youn JY, Melnyk RA. Mapping C. difficile TcdB interactions with host cell-surface and intracellular factors using proximity-dependent biotinylation labeling. mBio 2025; 16:e0333624. [PMID: 39818874 PMCID: PMC11796423 DOI: 10.1128/mbio.03336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells. Proximity-dependent biotinylation (e.g., BioID) is a powerful method to identify nearby host factors in living cells, offering the potential to identify host targets of microbial toxins. Here, we used BioID to interrogate proximal interactors of the multi-domain Clostridioides difficile TcdB toxin. Expressed fusions of TurboID to different fragments of TcdB identified several high-confidence proteins in the cytosol, including members of the Rho GTPase signaling network and the actin cytoskeletal network. Additionally, we developed an extracellular proximity labeling method using recombinant TurboID-toxin chimeras, which uncovered a limited number of cell-surface targets including LRP1, which was previously identified as a cell-surface receptor of TcdB. Our work reveals surface receptors and intracellular components exploited by bacterial toxins, highlighting key vulnerabilities in host cells.IMPORTANCEBacterial toxins are the causative agents of many human diseases. Further characterizing the intoxication mechanisms of these proteins is important for the development of vaccines and treatments for toxin-mediated disease. Proximity-dependent biotinylation approaches offer an orthogonal approach to complement genetic screens. Here, we evaluate the potential of this method to identify host-toxin interactions on the cell surface and in the cytosol, where the toxin modifies essential host targets. Critically, we have highlighted several limitations of this method as applied to protein toxins, which are important for researchers to weigh when considering this technique for exotoxin studies.
Collapse
Affiliation(s)
- Jennifer S. Ward
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Karl J. Schreiber
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - John Tam
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ji-Young Youn
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roman A. Melnyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
40
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Xiao Y, Wu Y, Wang Q, Li M, Deng C, Gu X. Repression of PFKFB3 sensitizes ovarian cancer to PARP inhibitors by impairing homologous recombination repair. Cell Commun Signal 2025; 23:48. [PMID: 39863903 PMCID: PMC11762855 DOI: 10.1186/s12964-025-02056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance. METHODS We conducted in vitro and in vivo experiments to assess the role of PFKFB3 in OC and its impact on PARPi resistance. We analyzed PFKFB3 expression and activity in primary OC tissues and cell lines using western blotting and immunohistochemistry. CRISPR-Cas9 and pharmacological inhibitors were employed to inhibit PFKFB3, and the effects on PARPi resistance, homologous recombination (HR) repair efficiency, and DNA damage were evaluated. RNA sequencing and proximity labeling were employed to identify the molecular mechanisms underlying PFKFB3-mediated resistance. The in vivo efficacy of PARPi and PFK158 combination therapy was evaluated in OC xenograft models. RESULTS PFKFB3 activity was significantly elevated in OC tissues and associated with PARPi resistance. Inhibition of PFKFB3, both genetically and pharmacologically, sensitized OC cells to PARPis, impaired HR repair and increased DNA damage. Proximity labeling revealed replication protein A3 (RPA3) as a novel PFKFB3-binding protein involved in HR repair. In vivo, the combination of PFK158 and olaparib significantly inhibited tumor growth, increased DNA damage, and induced apoptosis in OC xenografts without exacerbating adverse effects. CONCLUSIONS Our findings demonstrate that PFKFB3 is crucial for PARPi resistance in OC. Inhibiting PFKFB3 sensitizes HR-proficient OC cells to PARPis by impairing HR repair, leading to increased DNA damage and apoptosis. PFKFB3 represents a promising therapeutic target for overcoming PARPi resistance and improving outcomes in OC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
| | - Qilong Wang
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100083, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China
| | - Chaolin Deng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiaoyang Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
42
|
Morgan DC, Knutson SD, Pan CR, MacMillan DWC. Temporal Microenvironment Mapping (μMap) of Intracellular Trafficking Pathways of Cell-Penetrating Peptides Across the Blood-Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633151. [PMID: 39868165 PMCID: PMC11761369 DOI: 10.1101/2025.01.15.633151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Peptides play critical roles in cellular functions such as signaling and immune regulation, and peptide-based biotherapeutics show great promise for treating various diseases. Among these, cell-penetrating peptides (CPPs) are particularly valuable for drug delivery due to their ability to cross cell membranes. However, the mechanisms underlying CPP-mediated transport, especially across the blood-brain barrier (BBB), remain poorly understood. Mapping intracellular CPP pathways is essential for advancing drug delivery systems, particularly for neurological disorders, as understanding how CPPs navigate the complex environment of the BBB could enable the development of more effective brain-targeted therapies. Here, we leverage a nanoscale proximity labeling technique, termed μMap, to precisely probe the peptide-receptor interactions and intracellular trafficking mechanisms of photocatalyst-tagged CPPs. The unique advantage of the μMap platform lies in the ability to control the timing of light exposure, which enables the collection of time-gated data, depending on when the blue light is applied to the cells. By harnessing this spatiotemporal precision, we can uncover key peptide-receptor interactions and cellular processes, setting the stage for new innovations in drug design and brain-targeted therapies.
Collapse
Affiliation(s)
- Danielle C Morgan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Chenmengxiao Roderick Pan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| |
Collapse
|
43
|
Rahmati S, Emili A. Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface. Cancers (Basel) 2025; 17:179. [PMID: 39857961 PMCID: PMC11763998 DOI: 10.3390/cancers17020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification-mass spectrometry often fail to detect key but weak or transient receptor-protein interactions. Proximity labeling, a cutting-edge proteomics technology, addresses these technical challenges by enabling precise mapping of protein neighborhoods around a receptor target on the cell surface of cancer cells. This technique has been successfully applied in vitro and in vivo for proteomic mapping across various model systems. This review explores the fundamental principles, technologies, advantages, limitations, and applications of proximity labeling in cancer biology, focusing on mapping receptor microenvironments. By advancing mechanistic insights into cancer cell receptor signaling mechanisms, proximity labeling is poised to transform cancer research, improve targeted therapies, and illuminate avenues to overcome drug resistance.
Collapse
Affiliation(s)
| | - Andrew Emili
- Department of Biomedical Engineering, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA;
| |
Collapse
|
44
|
Wang X, Qin G, Yang J, Zhao C, Ren J, Qu X. A subcellular selective APEX2-based proximity labeling used for identifying mitochondrial G-quadruplex DNA binding proteins. Nucleic Acids Res 2025; 53:gkae1259. [PMID: 39718986 PMCID: PMC11724306 DOI: 10.1093/nar/gkae1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
G-quadruplexes (G4s), as an important type of non-canonical nucleic acid structure, have received much attention because of their regulations of various biological processes in cells. Identifying G4s-protein interactions is essential for understanding G4s-related biology. However, current strategies for exploring G4 binding proteins (G4BPs) include pull-down assays in cell lysates or photoaffinity labeling, which are lack of sufficient spatial specificity at the subcellular level. Herein, we develop a subcellular selective APEX2-based proximity labeling strategy to investigate the interactome of mitochondrial DNA (mtDNA) G4s in living cells. By this method, we have identified several mtDNA G4BPs. Among them, a previously unrecognized mtDNA G4BP, DHX30 has been selected as an example to explore its important biofunctions. DHX30 localizes both in cytoplasm and mitochondria and can resolve mtDNA G4s. Further studies have demonstrated that DHX30 unfolds mtDNA G4 in living cells, which results in a decrease in glycolysis activity of tumor cells. Besides, RHPS4, a known mtDNA G4 stabilizer, will reverse this inhibition effect. Benefiting from the high spatiotemporal resolution and the ability of genetically encoded systems to perform the labeling with exquisite specificity within living cells, our approach can realize the identification of subcellular localized G4BPs. Our work provides a novel strategy to map protein interactions of specific nucleic acid features in subcellular compartments of living cells.
Collapse
Affiliation(s)
- Xu Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
45
|
Bandyadka S, Lebo DPV, Mondragon AA, Serizier SB, Kwan J, Peterson JS, Chasse AY, Jenkins VK, Calikyan A, Ortega AJ, Campbell JD, Emili A, McCall K. Multi-modal comparison of molecular programs driving nurse cell death and clearance in Drosophila melanogaster oogenesis. PLoS Genet 2025; 21:e1011220. [PMID: 39752622 PMCID: PMC11734916 DOI: 10.1371/journal.pgen.1011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally. Alternatively, stressors such as starvation can induce the death of nurse cells earlier in mid-oogenesis, manifesting apoptosis signatures, followed by their engulfment by epithelial follicle cells. To identify and contrast the molecular pathways underlying these morphologically and genetically distinct cell death paradigms, both mediated by follicle cells, we compared their genome-wide transcriptional, translational, and secretion profiles before and after differentiating to acquire a phagocytic capability, as well as during well-fed and nutrient-deprived conditions. By coupling the GAL4-UAS system to Translating Ribosome Affinity Purification (TRAP-seq) and proximity labeling (HRP-KDEL) followed by Liquid Chromatography tandem mass-spectrometry, we performed high-throughput screens to identify pathways selectively activated or repressed by follicle cells to employ nurse cell-clearance routines. We also integrated two publicly available single-cell RNAseq atlases of the Drosophila ovary to define the transcriptomic profiles of follicle cells. In this report, we describe the genes and major pathways identified in the screens and the striking consequences to Drosophila melanogaster oogenesis caused by RNAi perturbation of prioritized candidates. To our knowledge, our study is the first of its kind to comprehensively characterize two distinct apoptotic and non-apoptotic cell death paradigms in the same multi-cellular system. Beyond molecular differences in cell death, our investigation may also provide insights into how key systemic trade-offs are made between survival and reproduction when faced with physiological stress.
Collapse
Affiliation(s)
- Shruthi Bandyadka
- Graduate Program in Bioinformatics, Boston University, Boston Massachusetts, United States of America
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Diane P. V. Lebo
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Albert A. Mondragon
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Boston University, Boston Massachusetts, United States of America
| | - Sandy B. Serizier
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Boston University, Boston Massachusetts, United States of America
| | - Julian Kwan
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, United States of America
| | - Jeanne S. Peterson
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Alexandra Y. Chasse
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Boston University, Boston Massachusetts, United States of America
| | - Victoria K. Jenkins
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Anoush Calikyan
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Anthony J. Ortega
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Joshua D. Campbell
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, United States of America
| | - Andrew Emili
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, United States of America
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kimberly McCall
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| |
Collapse
|
46
|
Chartier CA, Woods VA, Xu Y, van Vlimmeren AE, Johns AC, Jovanovic M, McDermott AE, Keedy DA, Shah NH. Allosteric regulation of the tyrosine phosphatase PTP1B by a protein-protein interaction. Protein Sci 2025; 34:e70016. [PMID: 39723820 DOI: 10.1002/pro.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.
Collapse
Affiliation(s)
| | - Virgil A Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- PhD Program in Biochemistry, CUNY Graduate Center, New York, New York, USA
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Anne E van Vlimmeren
- Department of Chemistry, Columbia University, New York, New York, USA
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Andrew C Johns
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, New York, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
47
|
Takato M, Sakamoto S, Nonaka H, Tanimura Valor FY, Tamura T, Hamachi I. Photoproximity labeling of endogenous receptors in the live mouse brain in minutes. Nat Chem Biol 2025; 21:109-119. [PMID: 39090312 DOI: 10.1038/s41589-024-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Understanding how protein-protein interaction networks in the brain give rise to cognitive functions necessitates their characterization in live animals. However, tools available for this purpose require potentially disruptive genetic modifications and lack the temporal resolution necessary to track rapid changes in vivo. Here we leverage affinity-based targeting and photocatalyzed singlet oxygen generation to identify neurotransmitter receptor-proximal proteins in the live mouse brain using only small-molecule reagents and minutes of photoirradiation. Our photooxidation-driven proximity labeling for proteome identification (named PhoxID) method not only recapitulated the known interactomes of three endogenous neurotransmitter receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), inhibitory γ-aminobutyric acid type A receptor and ionotropic glutamate receptor delta-2) but also uncovered age-dependent shifts, identifying NECTIN3 and IGSF3 as developmentally regulated AMPAR-proximal proteins in the cerebellum. Overall, this work establishes a flexible and generalizable platform to study receptor microenvironments in genetically intact specimens with an unprecedented temporal resolution.
Collapse
Affiliation(s)
- Mikiko Takato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Fátima Yuri Tanimura Valor
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| |
Collapse
|
48
|
Chan ZCK, Qi C, Cai Y, Li X, Ren J. Revealing and mitigating the inhibitory effect of serotonin on HRP-mediated protein labelling. Sci Rep 2024; 14:32126. [PMID: 39738643 PMCID: PMC11686078 DOI: 10.1038/s41598-024-83928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission. Despite its recent successful application to various neuronal types, proximity labelling has yet to be employed to study the serotonin system. In this study, we uncovered an unreported inhibitory mechanism of serotonin on horseradish peroxidase (HRP)-based biotinylation. Our result showed that serotonin significantly reduces biotinylation levels across various Biotin-XX-tyramide (BxxP) concentrations in HEK293T cells and primary neurons, whereas dopamine exerts minimal interference, highlighting the specificity of this inhibition. To counteract this inhibition, we demonstrated that Dz-PEG, an aryl diazonium compound that consumes serotonin through an azo-coupling reaction, restores biotinylation efficiency. Label-free quantitative proteomics confirmed that serotonin inhibits biotinylation, and that Dz-PEG effectively reverses this inhibition. These findings highlight the importance of accounting for neurotransmitter interference in proximity-dependent biotinylation studies, especially for cell-type specific profiling in neuroscience. Additionally, we provided a potential strategy to mitigate these challenges, thereby enhancing the accuracy and reliability of such studies.
Collapse
Affiliation(s)
- Zora Chui-Kuen Chan
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Cheng Qi
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yuanhong Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xin Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Jing Ren
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
49
|
Uozumi R, Mori K, Akamine S, Ikeda M. Protocols for identifying endogenous interactors of RNA-binding proteins in mammalian cells using the peroxidase APEX2 biotin-labeling method. STAR Protoc 2024; 5:103368. [PMID: 39392747 PMCID: PMC11736044 DOI: 10.1016/j.xpro.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
Engineered ascorbate peroxidase, APEX2, is widely applied for the identification of intracellular molecule-molecule interaction analyses. Here, we present a protocol for identifying interactors of RNA-binding proteins (RBPs) in living HeLa cells using the APEX2 fusion construct. We describe steps for generation of RBP-APEX2, proximity biotin labeling, and preparation of labeled molecules for mass spectrometry analysis. This protocol may be applicable to other cell cultures and RBPs of interest. For complete details on the use and execution of this protocol, please refer to Uozumi et al.1.
Collapse
Affiliation(s)
- Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Shoshin Akamine
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Bellah SF, Yang F, Xiong F, Dou Z, Yao X, Liu X. ZW10: an emerging orchestrator of organelle dynamics during the cell division cycle. J Mol Cell Biol 2024; 16:mjae026. [PMID: 38830800 PMCID: PMC11757092 DOI: 10.1093/jmcb/mjae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 06/02/2024] [Indexed: 06/05/2024] Open
Abstract
Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membrane-bound organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membrane-bound organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| |
Collapse
|