1
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
2
|
Zhang H, Yang B. Aquaporins in Reproductive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:179-194. [PMID: 36717494 DOI: 10.1007/978-981-19-7415-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AQP0-12, a total of 13 aquaporins are expressed in the mammalian reproductive system. These aquaporins mediate the transport of water and small solutes across biofilms for maintaining reproductive tract water balance and germ cell water homeostasis. These aquaporins play important roles in the regulation of sperm and egg cell production, maturation, and fertilization processes. Impaired AQP function may lead to diminished male and female fertility. This review focuses on the distribution, function, and regulation of AQPs throughout the male and female reproductive organs and tracts. Their correlation with reproductive success, revealing recent advances in the physiological and pathophysiological roles of aquaporins in the reproductive system.
Collapse
Affiliation(s)
- Hang Zhang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Llinares J, Cantereau A, Froux L, Becq F. Quantitative phase imaging to study transmembrane water fluxes regulated by CFTR and AQP3 in living human airway epithelial CFBE cells and CHO cells. PLoS One 2020; 15:e0233439. [PMID: 32469934 PMCID: PMC7259668 DOI: 10.1371/journal.pone.0233439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR.
Collapse
Affiliation(s)
- Jodie Llinares
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Anne Cantereau
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Lionel Froux
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
4
|
Zhang DL, Sun YJ, Ma ML, Wang YJ, Lin H, Li RR, Liang ZL, Gao Y, Yang Z, He DF, Lin A, Mo H, Lu YJ, Li MJ, Kong W, Chung KY, Yi F, Li JY, Qin YY, Li J, Thomsen ARB, Kahsai AW, Chen ZJ, Xu ZG, Liu M, Li D, Yu X, Sun JP. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. eLife 2018; 7:e33432. [PMID: 29393851 PMCID: PMC5839696 DOI: 10.7554/elife.33432] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and β-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or β-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that β-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/β-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Dao-Lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yu-Jing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yi-jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Zong-Lai Liang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yuan Gao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Amy Lin
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Hui Mo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yu-Jing Lu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Meng-Jing Li
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and PathophysiologySchool of Basic Medical Sciences, Peking UniversityBeijingChina
| | | | - Fan Yi
- Department of PharmacologyShandong University School of MedicineJinanChina
| | - Jian-Yuan Li
- Key Laboratory of Male Reproductive Health, National Research Institute for Family PlanningNational Health and Family Planning CommissionBeijingChina
| | - Ying-Ying Qin
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
| | - Jingxin Li
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Alex R B Thomsen
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Alem W Kahsai
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologyShandong University School of Life SciencesJinanChina
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesInstitute of Biomedical Sciences, East China Normal UniversityShanghaiChina
- Department of Molecular and Cellular Medicine, Institute of Biosciences and TechnologyTexas A&M University Health Science CenterHoustonUnited States
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesInstitute of Biomedical Sciences, East China Normal UniversityShanghaiChina
| | - Xiao Yu
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| |
Collapse
|
5
|
Qian F, Liu L, Liu Z, Lu C. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions. Physiol Res 2016; 65:505-15. [PMID: 27070741 DOI: 10.33549/physiolres.933143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, there is no direct evidence clearly illustrating the involvement of these transmembrane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of co-mutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co-mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provided functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter.
Collapse
Affiliation(s)
- F Qian
- Laboratory of Neuronal Network and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei province, China.
| | | | | | | |
Collapse
|
6
|
Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World J Biol Chem 2014; 5:26-39. [PMID: 24600512 PMCID: PMC3942540 DOI: 10.4331/wjbc.v5.i1.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel causes cystic fibrosis, while inappropriate activity of this channel occurs in secretory diarrhea and polycystic kidney disease. Drugs that interact directly with CFTR are therefore of interest in the treatment of a number of disease states. This review focuses on one class of small molecules that interacts directly with CFTR, namely inhibitors that act by directly blocking chloride movement through the open channel pore. In theory such compounds could be of use in the treatment of diarrhea and polycystic kidney disease, however in practice all known substances acting by this mechanism to inhibit CFTR function lack either the potency or specificity for in vivo use. Nevertheless, this theoretical pharmacological usefulness set the scene for the development of more potent, specific CFTR inhibitors. Biophysically, open channel blockers have proven most useful as experimental probes of the structure and function of the CFTR chloride channel pore. Most importantly, the use of these blockers has been fundamental in developing a functional model of the pore that includes a wide inner vestibule that uses positively charged amino acid side chains to attract both permeant and blocking anions from the cell cytoplasm. CFTR channels are also subject to this kind of blocking action by endogenous anions present in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physiological control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR channel structure and function, and of how CFTR activity is controlled by its local environment.
Collapse
|
7
|
Li K, Ni Y, He Y, Chen WY, Lu JX, Cheng CY, Ge RS, Shi QX. Inhibition of sperm capacitation and fertilizing capacity by adjudin is mediated by chloride and its channels in humans. Hum Reprod 2012; 28:47-59. [PMID: 23117128 DOI: 10.1093/humrep/des384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
STUDY QUESTION Does adjudin disrupt chloride ion (Cl⁻) ion transport function in human sperm and impede sperm capacitation and fertilizing ability in vitro? SUMMARY ANSWER In this study the results indicate that adjudin is a potent blocker of Cl⁻ channels: disrupting Cl⁻ ion transport function results in a decline in sperm capacitation and fertilizing ability in humans in vitro. WHAT IS KNOWN ALREADY Although our previous studies have demonstrated that adjudin exerts its effect by disrupting sertoli-germ cell adhesion junctions, most notably apical ectoplasmic specialization by targeting testin and actin filament bundles that disrupts the actin-based cytoskeleton in sertoli cells, it remains unclear whether adjudin impedes Cl⁻ ion transport function in the human sperm. STUDY DESIGN, SIZE AND DURATION Semen samples were obtained from 45 fertile men (aged 25-32). Spermatozoa were isolated from the semen in the human tube fluid (HTF) medium by centrifugation through a discontinuous Percoll gradient, and incubated with adjudin at 10 nM-10 µM and/or other reagents under capacitating conditions for 0-5 h. PARTICIPANTS/MATERIALS, SETTING, METHODS We evaluated the effect of adjudin and different reagents on sperm functions with which they were incubated at 37 °C. Sperm motility and hyperactivation were analyzed by a computer-assisted sperm analysis (CASA) system. Sperm capacitation and the acrosome reaction were assessed by chlortetracycline fluorescence staining. Sperm fertilizing ability was evaluated by sperm penetration of zona-free hamster egg assay, and cellular cAMP levels in spermatozoa were quantified by the EIA kit. The proteins tyrosine, serine and threonine phosphorylation in the presence or absence of adjudin were analyzed by means of a immunodetection of spermatozoa, especially, compared the effect of adjudin on sperm hyperactivation and capacitation in the complete HTF medium with the Cl⁻-deficient HTF medium as well as the various Cl⁻ channel blockers. MAIN RESULTS AND THE ROLE OF CHANCE Adjudin significantly inhibited sperm hyperactivation but not sperm motility. Adjudin-induced inhibition of sperm capacitation was reversible, and it was found to block the rhuZP₃β- and progesterone-induced acrosome reaction in a dose-dependent manner. Adjudin also blocked sperm penetration of zona-free hamster eggs, and significantly inhibited both forskolin-activated transmembrane adenylyl cyclase and soluble adenylyl cyclase activities leading to a significant decline in the cellular cAMP levels in human spermatozoa. Adjudin failed to reduce sperm protein tyrosine phosphorylation but it did prevent sperm serine and threonine protein phosphorylation. Interestingly, adjudin was found to exert its inhibitory effects on sperm capacitation and capacitation-associated events only in the complete Cl⁻-HTF medium but not Cl⁻-deficient medium, illustrating the likely involvement of Cl⁻. Adjudin inhibits the fertility capacity of human sperm is mediated by disrupting chloride ion and its transport function. LIMITATIONS, REASONS FOR CAUTION This study has examined the effect of adjudin only on human sperm capacitation and fertilizing ability in vitro and thus has some limitations. Further investigations in vivo are needed to confirm adjudin is a potent male contraceptive. WIDER IMPLICATIONS OF THE FINDINGS Our studies demonstrated that adjudin inhibition of capacitation is reversible and its toxicity is low, opening the door for the examination of adjudin as a mediator of male fertility control. Adjudin may be a safe, efficient and reversible male antifertility agent and applicable to initial clinical trials of adjudin as a male antifertility agent in humans. STUDING FUNDING/COMPETING INTEREST(S): This work was supported by the National Basic Research Program of China (2006CB504002), the Nature Science Foundation of China (Nos. 81000244 and 81170554), Zhejiang Project of Science and Technology (2011C23046), the Nature Science Fund of Zhejiang province (Nos.Y2100058 and Y2090236), the key Science and Technology Innovation Team of Zhejiang Province (No.2012R10048-07) and the National Institutes of Health (NICHD U54 HD029990 project 5), USA. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kun Li
- Unit of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Functions of water channels in male and female reproductive systems. Mol Aspects Med 2012; 33:676-90. [DOI: 10.1016/j.mam.2012.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
9
|
Chen H, Ruan YC, Xu WM, Chen J, Chan HC. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 2012; 18:703-13. [PMID: 22709980 DOI: 10.1093/humupd/dms027] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) and HCO(3)(-) conducting channel, mutations of which are known to be associated with male infertility. However, the underlying mechanisms remain elusive. METHODS Literature databases were searched for papers on the topics related to CFTR and male fertility and infertility with relevant keywords. Unpublished data from authors' laboratory were also included for analysis. RESULTS Clinical evidence shows increased mutation frequency or reduced CFTR expression in men with congenital bilateral absence of vas deferens (CBAVD) or sperm abnormalities, such as azoospermia teratospermia and oligoasthenospermia. Studies on primary rodent Sertoli cells and germ cells, as well as testes from CFTR knockout mice or a cryptorchidism model, yield findings indicating the involvement of CFTR in spermatogensis through the HCO(3)(-)/sAC/cAMP/CREB(CREM) pathway and the NF-κB/COX-2/PGE(2) pathway. Evidence also reveals a critical role of CFTR in sperm capacitation by directly or indirectly mediating HCO(3)(-) entry that is essential for capacitation. CFTR is emerging as a versatile player with roles in mediating different signaling pathways pertinent to various reproductive processes, in addition to its long-recognized role in electrolyte and fluid transport that regulates the luminal microenvironment of the male reproductive tract. CONCLUSIONS CFTR is a key regulator of male fertility, a defect of which may result in different forms of male infertility other than CBAVD. It would be worthwhile to further investigate the potential of developing novel diagnostic and contraceptive methods targeting CFTR.
Collapse
Affiliation(s)
- Hui Chen
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Kale SB, Karale BK. Synthesis and characterization of some important indazolyl derivatives. J Heterocycl Chem 2007. [DOI: 10.1002/jhet.5570440203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY. Function of aquaporins in female and male reproductive systems. Hum Reprod Update 2006; 12:785-95. [PMID: 16840793 DOI: 10.1093/humupd/dml035] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flow of water and some other small molecules across cell membranes is important in many of the processes underlying reproduction. The fluid movement is strongly associated with the presence of aquaporins (AQPs) in the female and male reproductive systems. It has been suggested that AQPs mediate water movement into the antral follicle and play important roles in follicle development. AQPs are known to be involved in the early stage of spermatogenesis, in the secretion of tubule liquid and in the concentration and storage of spermatozoa. Fluid reabsorption in some regions of the male reproductive tract is under steroid hormone control and could be mediated by various AQPs. Also AQPs take part in the processes of fertilization, blastocyst formation (as the pathway for transtrophoectodermal water movement during cavitation) and implantation. Alterations in the expression and function or regulation of AQPs have already been demonstrated in disorders of the male reproductive system, such as abnormal sperm motility, the abnormal epididymis and infertility seen in cystic fibrosis, and varicocele. This article extensively reviews the distribution of AQPs in mammalian reproductive tissues and discusses their possible physiological and pathophysiological roles.
Collapse
Affiliation(s)
- He-Feng Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|