1
|
Millar NL, McInnes IB, Kolbinger F, Raulf F, Akbar M, Li Y, Beckmann N, Accart N, Leupin O, Calonder C, Schieker M, Kneissel M, Bruns C, Siegel RM, Weber E. Targeting the IL-17A pathway for therapy in early-stage tendinopathy. RMD Open 2025; 11:e004729. [PMID: 39988349 PMCID: PMC11881027 DOI: 10.1136/rmdopen-2024-004729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVES Tendinopathy is a frequent clinical problem and represents an extraordinary health economic and socioeconomic burden with high unmet medical needs. Recent clinical evidence suggests blockade of interleukin 17A (IL-17A) for tendinopathy therapy. The present preclinical study elucidates the biological mechanisms of IL-17A pathway stimulation and blockade in tendinopathy. METHODS We explored whether IL-17A and other IL-17 family members are differentially expressed in biopsies of healthy, early-stage and late-stage tendinopathic human rotator cuff tendons using RT-qPCR. IL-17 pathway signature genes in healthy human tendon-derived cells were identified following IL-17A stimulation using AmpliSeq RNA. The molecular, structural and functional consequences of IL-17A pathway stimulation were explored in healthy human tendon-derived cells and in a rat tendon fascicle model ex vivo. The effects of IL-17A pathway blockade were investigated in a rat model of rotator cuff tendinopathy in vivo. RESULTS We provide evidence of differential expression of IL-17A mRNA (IL17A) versus other IL-17 family members in human rotator cuff early-stage tendinopathy. In human tendon-derived cells, stimulation with IL-17A induced the expression of the selected IL-17A pathway signature genes NFKBIZ, ZC3H12A, CXCL1, IL6, MMP3. Expression was inhibited by IL-17A blockade. In the rat ex vivo and in vivo models, IL-17A blockade alleviated inflammatory immune effector release, tendon structural degeneration, tendon inflammation and impaired tendon function. CONCLUSION Our data provide evidence that IL-17A is a key contributor to the pathogenesis of tendinopathy by promoting tendon inflammation and degeneration and that IL-17A blockade may represent a potential therapy in early-stage tendinopathy.
Collapse
Affiliation(s)
- Neal L Millar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | | | | | - Moeed Akbar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Yufei Li
- Novartis Pharma AG, Biomedical Research, Basel, Switzerland
| | | | | | - Olivier Leupin
- Novartis Pharma AG, Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | - Eckhard Weber
- Novartis Pharma AG, Biomedical Research, Basel, Switzerland
| |
Collapse
|
2
|
Huynh TNM, Yamazaki F, Konrad RJ, Nishikawa Y, Tanaka A, Son Y, Ozaki Y, Takehana K, Tanizaki H. Circulating CD31 and resistin levels reflect different stages of coronary atherosclerosis in patients with psoriasis. J Dermatol 2025; 52:67-78. [PMID: 39436026 DOI: 10.1111/1346-8138.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024]
Abstract
Psoriasis is a skin disease with a complicated pathophysiology that includes an extensive inflammatory cytokine network. Nevertheless, the relationship between psoriasis severity, cytokine levels, and coronary artery atherosclerosis remains poorly understood. Our aim was to find serum markers as potential candidates for cardiovascular disease (CVD) risk monitoring in patients with psoriasis. Therefore, we examined coronary artery atherosclerosis via coronary computed tomography angiography (CCTA), serum cytokine levels via multiple immunoassays, and the patients' psoriasis state. Our findings reveal for the first time that the mainstream psoriasis cytokines interleukin 17A (IL-17A), IL-19, and IL-36 in the sera of Japanese patients with psoriasis showed a linear regression association with the Psoriasis Area and Severity Index score. Furthermore, the serum level of IL-19 was remarkably correlated to Th2-related serum cytokines such as IL-4 and IL-17E. When we investigated potential markers to monitor CVD in patients with psoriasis, circulating cluster of differentiation 31 (CD31) and resistin, but not psoriasis-related cytokines, were expressed differently at each stage of coronary atherosclerosis by CCTA. CD31 and resistin levels rose dramatically in individuals with psoriasis vulgaris (PV) and noncalcified atherosclerosis. In contrast, CD31 was negatively correlated with the coronary artery calcification score (CACS) in patients with PV, whereas resistin was inversely correlated with CACS in patients with psoriatic arthritis. In conclusion, the axis of IL-17A, IL-19, and IL-36 remains associated with the severity of psoriasis during the chronic phase of the disease, regardless of the application of topical or systemic treatment. Monitoring the levels of these cytokines can accurately determine the severity of skin inflammation. Resistin and CD31 are linked to coronary artery lesions and might be good candidates for tracking the progression of coronary atherosclerosis in patients with psoriasis.
Collapse
Affiliation(s)
| | - Fumikazu Yamazaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Department of Dermatology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Yumiko Nishikawa
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K, Hyogo, Japan
| | - Akihiro Tanaka
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yonsu Son
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yoshio Ozaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Kazuya Takehana
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Cardiology, Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
- Psoriasis Center, Kansai Medical University, Osaka, Japan
| |
Collapse
|
3
|
Muñoz-Aceituno E, Butrón-Bris B, Ovejero-Benito MC, Sahuquillo-Torralba A, Baniandrés Rodríguez O, Herrera-Acosta E, Rivera-Diaz R, Ferran M, Sánchez-Carazo JL, Riera-Monroig J, Pujol-Montcusí J, Vidal D, de la Cueva P, García-Bustinduy M, Ruiz-Villaverde R, Ballescà F, Llamas-Velasco M, Navares M, Palomar-Moreno I, Sánchez-García I, García-Martínez J, Novalbos J, Zubiaur P, Abad-Santos F, Daudén-Tello E, de la Fuente H. Pharmacogenetic biomarkers for secukinumab response in psoriasis patients in real-life clinical practice. J Eur Acad Dermatol Venereol 2024; 38:1783-1790. [PMID: 38153843 DOI: 10.1111/jdv.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Prediction of the response to a biological treatment in psoriasis patients would allow efficient treatment allocation. OBJECTIVE To identify polymorphisms associated with secukinumab response in psoriasis patients in a daily practice setting. METHODS We studied 180 SNPs in patients with moderate-to-severe plaque psoriasis recruited from 15 Spanish hospitals. Treatment effectiveness was evaluated by absolute PASI ≤3 and ≤1 at 6 and 12 months. Individuals were genotyped using a custom Taqman array. Multiple logistic regression models were generated. Sensitivity, specificity and area under the curve (AUC) were analysed. RESULTS A total of 173 patients were studied at 6 months, (67% achieved absolute PASI ≤ 3 and 65% PASI ≤ 1) and 162 at 12 months (75% achieved absolute PASI ≤ 3 and 64% PASI ≤ 1). Multivariable analysis showed the association of different sets of SNPs with the response to secukinumab. The model of absolute PASI≤3 at 6 months showed best values of sensitivity and specificity. Four SNPs were associated with the capability of achieving absolute PASI ≤ 3 at 6 months. rs1801274 (FCGR2A), rs2431697 (miR-146a) and rs10484554 (HLCw6) were identified as risk factors for failure to achieve absolute PASI≤3, while rs1051738 (PDE4A) was protective. AUC including these genotypes, weight of patients and history of biological therapy was 0.88 (95% CI 0.83-0.94), with a sensitivity of 48.6% and specificity of 95.7% to discriminate between both phenotypes. CONCLUSION We have identified a series of polymorphisms associated with the response to secukinumab capable of predicting the potential response/non-response to this drug in patients with plaque psoriasis.
Collapse
Affiliation(s)
- E Muñoz-Aceituno
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - B Butrón-Bris
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - M C Ovejero-Benito
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU, CEU Universities Madrid, Madrid, Spain
| | - A Sahuquillo-Torralba
- Department of Dermatology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - O Baniandrés Rodríguez
- Department of Dermatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - E Herrera-Acosta
- Department of Dermatology, Hospital Virgen de la Victoria, Málaga, Spain
| | - R Rivera-Diaz
- Department of Dermatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Ferran
- Department of Dermatology, Hospital del Mar, Barcelona, Spain
| | - J L Sánchez-Carazo
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | - J Riera-Monroig
- Department of Dermatology, Hospital Clínic i Provincial, Barcelona, Spain
| | - J Pujol-Montcusí
- Department of Dermatology, Hospital Universitario "Joan XXIII", Tarragona, Spain
| | - D Vidal
- Department of Dermatology, Hospital de Sant Joan Despí Moisés Broggi, Barcelona, Spain
| | - P de la Cueva
- Department of Dermatology, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - M García-Bustinduy
- Department of Dermatology, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - R Ruiz-Villaverde
- Department of Dermatology, Hospital Universitario San Cecilio, Granada, Spain
| | - F Ballescà
- Department of Dermatology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
| | - M Llamas-Velasco
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - M Navares
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - I Palomar-Moreno
- Unit of Molecular Biology, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - I Sánchez-García
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - J García-Martínez
- Hospital Universitario del Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - J Novalbos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - P Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Daudén-Tello
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - H de la Fuente
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Unit of Molecular Biology, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
4
|
Li Y, Tan Z, Li W, Li Z, Zhang G. Rutaecarpine ameliorates imiquimod-induced psoriasis-like dermatitis in mice associated with alterations in the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2024; 56:345-355. [PMID: 38419497 PMCID: PMC11292129 DOI: 10.3724/abbs.2024018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/21/2023] [Indexed: 03/02/2024] Open
Abstract
Psoriasis is accepted as a chronic, inflammatory, immune-mediated skin disease triggered by complex environmental and genetic factors. For a long time, disease recurrence, drug rejection, and high treatment costs have remained enormous challenges and burdens to patients and clinicians. Natural products with effective immunomodulatory and anti-inflammatory activities from medicinal plants have the potential to combat psoriasis and complications. Herein, an imiquimod (IMQ)-induced psoriasis-like dermatitis model is established in mice. The model mice are treated with 1% rutaecarpine (RUT) (external use) or the oral administration of RUT at different concentrations. Furthermore, high-throughput 16S rRNA gene sequencing is applied to analyze the changes in the diversity and composition of the gut microbiota. Based on the observation of mouse dorsal skin changes, RUT can protect against inflammation to improve psoriasis-like skin damage in mice. Additionally, RUT could suppress the expression levels of proinflammatory cytokines (IL-23, IL-17A, IL-22, IL-6, and IFN-α) within skin tissue samples. Concerning gut microbiota, we find obvious variations within the composition of gut microflora between IMQ-induced psoriasis mice and RUT-treated psoriasis mice. RUT effectively mediates the recovery of gut microbiota in mice induced by IMQ application. Psoriasis is linked to the production of several inflammatory cytokines and gut microbiome alterations. This research shows that RUT might restore gut microbiota homeostasis, reduce inflammatory cytokine production, and ameliorate psoriasis symptoms. In conclusion, the gut microbiota might be a therapeutic target or biomarker for psoriasis that aids in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yongjian Li
- Department of Dermatologythe Second Affiliated Hospital of South China UniversityHengyang421001China
| | - Zhengping Tan
- Department of Medical OncologyHuxiang Cancer Hospital of Traditional Chinese MedicineChangsha410205China
| | - Wencan Li
- Department of Dermatologythe Second Affiliated Hospital of South China UniversityHengyang421001China
| | - Zongxuan Li
- Department of Dermatologythe Second Affiliated Hospital of South China UniversityHengyang421001China
| | - Guiying Zhang
- Department of Dermatologythe Second Xiangya HospitalCentral South UniversityChangsha410011China
| |
Collapse
|
5
|
Taylor TC, Coleman BM, Arunkumar SP, Dey I, Dillon JT, Ponde NO, Poholek AC, Schwartz DM, McGeachy MJ, Conti HR, Gaffen SL. IκBζ is an essential mediator of immunity to oropharyngeal candidiasis. Cell Host Microbe 2023; 31:1700-1713.e4. [PMID: 37725983 PMCID: PMC10591851 DOI: 10.1016/j.chom.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Fungal infections are a global threat; yet, there are no licensed vaccines to any fungal pathogens. Th17 cells mediate immunity to Candida albicans, particularly oropharyngeal candidiasis (OPC), but essential downstream mechanisms remain unclear. In the murine model of OPC, IκBζ (Nfkbiz, a non-canonical NF-κB transcription factor) was upregulated in an interleukin (IL)-17-dependent manner and was essential to prevent candidiasis. Deletion of Nfkbiz rendered mice highly susceptible to OPC. IκBζ was dispensable in hematopoietic cells and acted partially in the suprabasal oral epithelium to control OPC. One prominent IκBζ-dependent gene target was β-defensin 3 (BD3) (Defb3), an essential antimicrobial peptide. Human oral epithelial cells required IκBζ for IL-17-mediated induction of BD2 (DEFB4A, human ortholog of mouse Defb3) through binding to the DEFB4A promoter. Unexpectedly, IκBζ regulated the transcription factor Egr3, which was essential for C. albicans induction of BD2/DEFB4A. Accordingly, IκBζ and Egr3 comprise an antifungal signaling hub mediating mucosal defense against oral candidiasis.
Collapse
Affiliation(s)
- Tiffany C Taylor
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bianca M Coleman
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Samyuktha P Arunkumar
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John T Dillon
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nicole O Ponde
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh, Children's Hospital of UPMC, Pittsburgh, PA 15224, USA
| | - Daniella M Schwartz
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Li Z, Zheng W, Kong W, Zeng T. Itaconate: A Potent Macrophage Immunomodulator. Inflammation 2023:10.1007/s10753-023-01819-0. [PMID: 37142886 PMCID: PMC10159227 DOI: 10.1007/s10753-023-01819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
With advances in immunometabolic studies, more and more evidence has shown that metabolic changes profoundly affect the immune function of macrophages. The tricarboxylic acid cycle is a central metabolic pathway of cells. Itaconate, a byproduct of the tricarboxylic acid cycle, is an emerging metabolic small molecule that regulates macrophage inflammation and has received much attention for its potent anti-inflammatory effects in recent years. Itaconate regulates macrophage function through multiple mechanisms and has demonstrated promising therapeutic potential in a variety of immune and inflammatory diseases. New progress in the mechanism of itaconate continues to be made, but it also implies complexity in its action and a need for a more comprehensive understanding of its role in macrophages. In this article, we review the primary mechanisms and current research progress of itaconate in regulating macrophage immune metabolism, hoping to provide new insights and directions for future research and disease treatment.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| |
Collapse
|
7
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Luo L, Pasquali L, Srivastava A, Freisenhausen JC, Pivarcsi A, Sonkoly E. The Long Noncoding RNA LINC00958 Is Induced in Psoriasis Epidermis and Modulates Epidermal Proliferation. J Invest Dermatol 2023; 143:999-1010. [PMID: 36641130 DOI: 10.1016/j.jid.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Psoriasis is a common, immune-mediated skin disease characterized by epidermal hyperproliferation and chronic skin inflammation. Long noncoding RNAs are >200 nucleotide-long transcripts that possess important regulatory functions. To date, little is known about the contribution of long noncoding RNAs to psoriasis. In this study, we identify LINC00958 as a long noncoding RNA overexpressed in keratinocytes (KCs) from psoriasis skin lesions, in a transcriptomic screen performed on KCs sorted from psoriasis and healthy skin. Increased levels of LINC00958 in psoriasis KCs were confirmed by RT-qPCR and single-molecule in situ hybridization. Confocal microscopy and analysis of subcellular fractions showed that LINC00958 is mainly localized in the cytoplasm of KCs. IL-17A, a key psoriasis cytokine, induced LINC00958 in KCs through C/EBP-β and the p38 pathway. The inhibition of LINC00958 led to decreased proliferation as measured by Ki-67 expression, IncuCyte imaging, and 5-ethynyl-2-deoxyuridine assays. Transcriptomic analysis of LINC00958-depleted KCs revealed enrichment of proliferation- and cell cycle‒related genes among differentially expressed transcripts. Moreover, LINC00958 depletion led to decreased basal and IL-17A‒induced phosphorylation of p38. Furthermore, IL-17A‒induced KC proliferation was counteracted by the inhibition of LINC00958. In summary, our data support a role for the IL-17A‒induced long noncoding RNA, LINC00958, in the pathological circuits of psoriasis by reinforcing IL-17A‒induced epidermal hyperproliferation.
Collapse
Affiliation(s)
- Longlong Luo
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| | - Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden; Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jan C Freisenhausen
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Michael D, Feldmesser E, Gonen C, Furth N, Maman A, Heyman O, Argoetti A, Tofield A, Baichman-Kass A, Ben-Dov A, Benbenisti D, Hen N, Rotkopf R, Ganci F, Blandino G, Ulitsky I, Oren M. miR-4734 conditionally suppresses ER stress-associated proinflammatory responses. FEBS Lett 2022; 597:1233-1245. [PMID: 36445168 DOI: 10.1002/1873-3468.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022]
Abstract
Prolonged metabolic stress can lead to severe pathologies. In metabolically challenged primary fibroblasts, we assigned a novel role for the poorly characterized miR-4734 in restricting ATF4 and IRE1-mediated upregulation of a set of proinflammatory cytokines and endoplasmic reticulum stress-associated genes. Conversely, inhibition of this miRNA augmented the expression of those genes. Mechanistically, miR-4734 was found to restrict the expression of the transcriptional activator NF-kappa-B inhibitor zeta (NFKBIZ), which is required for optimal expression of the proinflammatory genes and whose mRNA is targeted directly by miR-4734. Concordantly, overexpression of NFKBIZ compromised the effects of miR-4734, underscoring the importance of this direct targeting. As the effects of miR-4734 were evident under stress but not under basal conditions, it may possess therapeutic utility towards alleviating stress-induced pathologies.
Collapse
Affiliation(s)
- Dan Michael
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Feinberg Graduate School, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Chagay Gonen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Maman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Heyman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adin Tofield
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Amichai Baichman-Kass
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Aviyah Ben-Dov
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dan Benbenisti
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Hen
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Rotkopf
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Federica Ganci
- IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Gautam P, Maenner S, Cailotto F, Reboul P, Labialle S, Jouzeau J, Bourgaud F, Moulin D. Emerging role of IκBζ in inflammation: Emphasis on psoriasis. Clin Transl Med 2022; 12:e1032. [PMID: 36245291 PMCID: PMC9574490 DOI: 10.1002/ctm2.1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Psoriasis is a chronic inflammatory disorder affecting skin and joints that results from immunological dysfunction such as enhanced IL-23 induced Th-17 differentiation. IkappaB-Zeta (IκBζ) is an atypical transcriptional factor of the IκB protein family since, contrary to the other family members, it positively regulates NF-κB pathway by being exclusively localized into the nucleus. IκBζ deficiency reduces visible manifestations of experimental psoriasis by diminishing expression of psoriasis-associated genes. It is thus tempting to consider IκBζ as a potential therapeutic target for psoriasis as well as for other IL23/IL17-mediated inflammatory diseases. In this review, we will discuss the regulation of expression of NFKBIZ and its protein IκBζ, its downstream targets, its involvement in pathogenesis of multiple disorders with emphasis on psoriasis and evidences supporting that inhibition of IκBζ may be a promising alternative to current therapeutic managements of psoriasis.
Collapse
Affiliation(s)
- Preeti Gautam
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Sylvain Maenner
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Frédéric Cailotto
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Pascal Reboul
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Stéphane Labialle
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Jean‐Yves Jouzeau
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | | | - David Moulin
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| |
Collapse
|
11
|
Bachelez H, Barker J, Burden AD, Navarini AA, Krueger JG. Generalized pustular psoriasis is a disease distinct from psoriasis vulgaris: evidence and expert opinion. Expert Rev Clin Immunol 2022; 18:1033-1047. [PMID: 36062811 DOI: 10.1080/1744666x.2022.2116003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Generalized pustular psoriasis (GPP) is a rare, severe, clinically heterogeneous disease characterized by flares of widespread, noninfectious, macroscopically visible pustules that occur with or without systemic inflammation, and are associated with significant morbidity and mortality. Historically, GPP has been classified as a variant of psoriasis vulgaris (PV, or plaque psoriasis); however, accumulating evidence indicates that these are distinct conditions, requiring different treatment approaches. AREAS COVERED In this perspective article we review evidence that supports the classification of GPP as distinct from PV. EXPERT OPINION The histopathologic and clinical appearance of GPP is distinct from that of PV and fundamental differences exist between the two conditions in terms of genetic causes and expression-related mechanisms of disease development. GPP results from dysregulation of the innate immune system, with disruption of the interleukin (IL)-36 inflammatory pathway, induction of inflammatory keratinocyte responses, and recruitment of neutrophils. PV is driven by the adaptive immune system, with a key role played by IL-17. Considering GPP as a separate disease will enable greater focus on its specific pathogenesis and the needs of patients. Many treatments for PV have insufficient efficacy in GPP and a therapeutic approach developed specifically for GPP might lead to better patient outcomes.
Collapse
Affiliation(s)
- Hervé Bachelez
- Service de Dermatologie, Assistance Publique-Hôpitaux de Paris Hôpital Saint-Louis, Paris, France, and INSERM Unité 1163, Imagine Institute of Genetic Diseases, Université Paris Cité, Paris, France
| | - Jonathan Barker
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - A David Burden
- Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | | | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
12
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
13
|
Vacharanukrauh P, Meephansan J, Ponnikorn S, Tangtanatakul P, Soonthornchai W, Wongpiyabovorn J, Ingkaninanda P, Akimichi M. Transcriptome profiling in psoriasis: NB-UVB treatment-associated transcriptional changes and modulation of autoinflammation in perilesional skin in early-phase disease. J Dermatol Sci 2022; 107:123-132. [PMID: 35995712 DOI: 10.1016/j.jdermsci.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin condition. It is widely treated with phototherapy using narrowband ultraviolet B (NB-UVB). The therapeutic mechanisms of NB-UVB, however, remain unclear, particularly in the early phases of the disease. OBJECTIVE To investigate the mechanisms underlying the effects of NB-UVB on psoriasis in a model of perilesional psoriasis. METHODS Psoriatic patients that received NB-UVB treatment and were evaluated with the psoriasis area and severity index were included in the study. Skin biopsies obtained before and after treatment were subjected to RNA sequencing (RNA-seq) and Ingenuity Pathway Analyses for genome-wide transcriptome profiling to gain further insights into the signaling pathways underlying the improvement of psoriasis with therapeutic intervention. RESULTS Our findings revealed that NB-UVB treatment may exert its effects by suppressing nuclear factor kappa B, which leads to upregulation of the sirtuin signaling pathway, as well as by decreasing the function of major upstream regulators associated with proinflammatory and inflammatory cytokines, which blocks the expression of downstream toll-like receptors. Psoriasis improvement after NB-UVB treatment was associated with decreased expression of NFKBIZ, SERPINB4, ATG13, and CTSS and increased expression of SKP1 gene. Our results also highlighted the expression of proposed genes associated with the modulation of autoinflammation. CONCLUSIONS To the best of our knowledge, this is the first study to apply advanced molecular techniques to explore the effects of phototherapy on psoriasis in the early-phase, providing new insights into the disease pathogenesis and novel genetic information for the development of new therapeutic modalities and potential treatment targets.
Collapse
Affiliation(s)
- Pinyadapat Vacharanukrauh
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.
| | - Saranyoo Ponnikorn
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pattarin Tangtanatakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Jongkonnee Wongpiyabovorn
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Patlada Ingkaninanda
- Division of Dermatology, Department of Medicine, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand
| | - Morita Akimichi
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
14
|
IκBζ regulates the development of nonalcoholic fatty liver disease through the attenuation of hepatic steatosis in mice. Sci Rep 2022; 12:11634. [PMID: 35804007 PMCID: PMC9270369 DOI: 10.1038/s41598-022-15840-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
IκBζ is a transcriptional regulator that augments inflammatory responses from the Toll-like receptor or interleukin signaling. These innate immune responses contribute to the progression of nonalcoholic fatty liver disease (NAFLD); however, the role of IκBζ in the pathogenesis of NAFLD remains elusive. We investigated whether IκBζ was involved in the progression of NAFLD in mice. We generated hepatocyte-specific IκBζ-deficient mice (Alb-Cre; Nfkbizfl/fl) by crossing Nfkbizfl/fl mice with Alb-Cre transgenic mice. NAFLD was induced by feeding the mice a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). CDAHFD-induced IκBζ expression in the liver was observed in Nfkbizfl/fl mice, but not in Alb-Cre; Nfkbizfl/fl mice. Contrary to our initial expectation, IκBζ deletion in hepatocytes accelerated the progression of NAFLD after CDAHFD treatment. Although the increased expression of inflammatory cytokines and apoptosis-related proteins by CDAHFD remained unchanged between Nfkbizfl/fl and Alb-Cre; Nfkbizfl/fl mice, early-stage steatosis of the liver was significantly augmented in Alb-Cre; Nfkbizfl/fl mice. Overexpression of IκBζ in hepatocytes via the adeno-associated virus vector attenuated liver steatosis caused by the CDAHFD in wild-type C57BL/6 mice. This preventive effect of IκBζ overexpression on steatosis was not observed without transcriptional activity. Microarray analysis revealed a correlation between IκBζ expression and the changes of factors related to triglyceride biosynthesis and lipoprotein uptake. Our data suggest that hepatic IκBζ attenuates the progression of NAFLD possibly through the regulation of the factors related to triglyceride metabolism.
Collapse
|
15
|
Regulation of NFKBIZ gene promoter activity by STAT3, C/EBPβ, and STAT1. Biochem Biophys Res Commun 2022; 613:61-66. [DOI: 10.1016/j.bbrc.2022.04.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
|
16
|
Transcriptomic Profiling of Peripheral Edge of Lesions to Elucidate the Pathogenesis of Psoriasis Vulgaris. Int J Mol Sci 2022; 23:ijms23094983. [PMID: 35563374 PMCID: PMC9101153 DOI: 10.3390/ijms23094983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Elucidating transcriptome in the peripheral edge of the lesional (PE) skin could provide a better understanding of the molecules or signalings that intensify inflammation in the PE skin. Full-thickness biopsies of PE skin and uninvolved (UN) skin were obtained from psoriasis patients for RNA-seq. Several potential differentially expressed genes (DEGs) in the PE skin compared to those in the UN skin were identified. These DEGs enhanced functions such as angiogenesis, growth of epithelial tissue, chemotaxis and homing of cells, growth of connective tissues, and degranulation of myeloid cells beneath the PE skin. Moreover, the canonical pathways of IL-17A, IL-6, and IL-22 signaling were enriched by the DEGs. Finally, we proposed that inflammation in the PE skin might be driven by the IL-36/TLR9 axis or IL-6/Th17 axis and potentiated by IL-36α, IL-36γ, IL-17C, IL-8, S100A7, S100A8, S100A9, S100A15, SERPINB4, and hBD-2. Along with IL-36α, IL-17C, and IκBζ, ROCK2 could be an equally important factor in the pathogenesis of psoriasis, which may involve self-sustaining circuits between innate and adaptive immune responses via regulation of IL-36α and IL-36γ expression. Our finding provides new insight into signaling pathways in PE skin, which could lead to the discovery of new psoriasis targets.
Collapse
|
17
|
Dai X, Murakami M, Shiraishi K, Muto J, Tohyama M, Mori H, Utsunomiya R, Sayama K. EGFR ligands synergistically increase IL-17A-induced expression of psoriasis signature genes in human keratinocytes via IκBζ and Bcl3. Eur J Immunol 2022; 52:994-1005. [PMID: 35411943 DOI: 10.1002/eji.202149706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022]
Abstract
Various epidermal growth factor receptor (EGFR) ligands are highly expressed in the epidermis of psoriasis lesions, and abnormal EGFR activation appears to be involved in the pathogenesis of psoriasis. However, how EGFR signaling contributes to the development of psoriasis is unclear. Interleukin (IL)-17A, a critical effector of the IL-23/IL-17A pathway, increases the expression of psoriasis signature genes in keratinocytes and plays an essential role in the pathogenesis of psoriasis by inducing IκBζ, a critical transcriptional regulator in psoriasis. In this study, we stimulated primary human keratinocytes with IL-17A and various EGFR ligands to investigate whether EGFR ligands regulate the expression of psoriasis signature genes. In cultured normal human keratinocytes and a living skin equivalent, EGFR ligands did not induce psoriasis-related gene expression, but significantly enhanced the IL-17A-mediated induction of various psoriasis signature genes, including antimicrobial peptides, cytokines, and chemokines. This was dependent on an EGFR activation-mediated synergistic increase in IL-17A-induced IκBζ expression and was partially mediated by the EGFR-dependent upregulation of Bcl3. Therefore, EGFR ligands can act as synergistic agents of IL-17A signaling by stimulating the epidermal production of psoriasis signature genes in psoriasis lesions. This study reveals a potential mechanism by which EGFR signaling contributes to the pathogenesis of psoriasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Muto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mikiko Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.,Department of Dermatology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
18
|
Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Front Immunol 2022; 13:836999. [PMID: 35359972 PMCID: PMC8960279 DOI: 10.3389/fimmu.2022.836999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident immune cells reside in distinct niches across organs, where they contribute to tissue homeostasis and rapidly respond to perturbations in the local microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that regulate immune and tissue homeostasis. Across anatomical locations throughout the body, ILCs adopt tissue-specific fates, differing from circulating ILC populations. Adaptations of ILCs to microenvironmental changes have been documented in several inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While our understanding of ILC functions within tissues have predominantly been based on mouse studies, development of advanced single cell platforms to study tissue-resident ILCs in humans and emerging patient-based data is providing new insights into this lymphocyte family. Within this review, we discuss current concepts of ILC fate and function, exploring tissue-specific functions of ILCs and their contribution to health and disease across organ systems.
Collapse
Affiliation(s)
- Julia M. Murphy
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
19
|
Todorović V, McDonald HM, Hoover P, Wetter JB, Marinopoulos AE, Woody CL, Miller L, Finkielsztein A, Dunstan RW, Paller AS, Honore P, Getsios S, Scott VE. Cytokine Induced 3-D Organotypic Psoriasis Skin Model Demonstrates Distinct Roles for NF-κB and JAK Pathways in Disease Pathophysiology. Exp Dermatol 2022; 31:1036-1047. [PMID: 35213752 DOI: 10.1111/exd.14551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Psoriasis vulgaris is an inflammatory skin disease that affects 2-3% of the population worldwide. One of the major challenges in discovering novel therapies is the poor translatability of animal models to human disease. Therefore, it is imperative to develop human preclinical models of psoriasis that are amenable to pharmacological intervention. Here we report a 3-D reconstituted human epidermis (RHE) culture system treated with cytokines commonly associated with psoriasis (TNFα, IL-17A and IL-22) that reproduced some key features of the human disease. The effects on epidermal morphology, gene transcription and cytokine production, which are dysregulated in psoriasis were assessed. Certain morphological features of psoriatic epidermis were evident in cytokine-stimulated RHEs, including hypogranulosis and parakeratosis. In addition, RHEs responded to a cytokine mix in a dose-dependent manner by expressing genes and proteins associated with impaired keratinocyte differentiation (keratin 10/K10, loricrin), innate immune responses (S100A7, DEFB4, elafin), and inflammation (IL-1α, IL-6, IL-8, IL-10, IL-12/23p40, IL-36γ, GM-CSF, and IFNγ) typical of psoriasis. These disease-relevant changes in morphology, gene transcription, and cytokine production were robustly attenuated by pharmacologically blocking TNFα/IL-17A-induced NF-κB activation with IKK-2 inhibitor IV. Conversely, inhibition of IL-22-induced JAK1 signaling with ABT-317 strongly attenuated morphological features of the disease but had no effect on NFκB-dependent cytokine production, suggesting distinct mechanisms of action by the cytokines driving psoriasis. These data support the use of cytokine-induced RHE models for identifying and targeting keratinocyte signaling pathways important for disease progression and may provide translational insights into novel keratinocyte mechanisms for novel psoriasis therapies.
Collapse
Affiliation(s)
| | | | - Paul Hoover
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | - Amy S Paller
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
20
|
Muromoto R, Oritani K, Matsuda T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J Biol Chem 2022; 13:1-14. [PMID: 35126866 PMCID: PMC8790287 DOI: 10.4331/wjbc.v13.i1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
21
|
Abstract
Macrophages exposed to inflammatory stimuli including LPS undergo metabolic reprogramming to facilitate macrophage effector function. This metabolic reprogramming supports phagocytic function, cytokine release, and ROS production that are critical to protective inflammatory responses. The Krebs cycle is a central metabolic pathway within all mammalian cell types. In activated macrophages, distinct breaks in the Krebs cycle regulate macrophage effector function through the accumulation of several metabolites that were recently shown to have signaling roles in immunity. One metabolite that accumulates in macrophages because of the disturbance in the Krebs cycle is itaconate, which is derived from cis-aconitate by the enzyme cis-aconitate decarboxylase (ACOD1), encoded by immunoresponsive gene 1 (Irg1). This Review focuses on itaconate’s emergence as a key immunometabolite with diverse roles in immunity and inflammation. These roles include inhibition of succinate dehydrogenase (which controls levels of succinate, a metabolite with multiple roles in inflammation), inhibition of glycolysis at multiple levels (which will limit inflammation), activation of the antiinflammatory transcription factors Nrf2 and ATF3, and inhibition of the NLRP3 inflammasome. Itaconate and its derivatives have antiinflammatory effects in preclinical models of sepsis, viral infections, psoriasis, gout, ischemia/reperfusion injury, and pulmonary fibrosis, pointing to possible itaconate-based therapeutics for a range of inflammatory diseases. This intriguing metabolite continues to yield fascinating insights into the role of metabolic reprogramming in host defense and inflammation.
Collapse
|
22
|
Chen HL, Zeng YB, Zhang ZY, Kong CY, Zhang SL, Li ZM, Huang JT, Xu YY, Mao YQ, Cai PR, Han B, Wang WQ, Wang LS. Gut and Cutaneous Microbiome Featuring Abundance of Lactobacillus reuteri Protected Against Psoriasis-Like Inflammation in Mice. J Inflamm Res 2021; 14:6175-6190. [PMID: 34853526 PMCID: PMC8627893 DOI: 10.2147/jir.s337031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Psoriasis is a chronic autoinflammatory skin disease, and its aetiology remains incompletely understood. Recently, gut microbial dysbiosis is found to be tightly associated with psoriasis. Objective We sought to reveal the causal role of gut microbiota dysbiosis in psoriasis pathogenesis and investigate the protective effect of healthy commensal bacteria against imiquimod -induced psoriasis-like skin response. Methods By using fecal microbial transplantation (FMT), 16S rRNA gene-based taxonomic profiling and Lactobacillus supplement, we have assessed the effect of FMT from healthy individuals on psoriasis-like skin inflammation and associated immune disorders in imiquimod-induced psoriasis mice. Results Here, by using psoriasis mice humanized with the stools from healthy donors and psoriasis patients, the imiquimod-induced psoriasis in mice with psoriasis patient stool was found to be significantly aggravated as compared to the mice with healthy donor stools. Further analysis showed fecal microbiota of healthy individuals protected against Treg/Th17 imbalance in psoriasis. Moreover, we found the gut and skin microbiome in mice receipted with gut microbiota of healthy individuals (HD) differed from those of mice receipted with gut microbiota of psoriasis patients (PSD). 16S rRNA sequencing revealed that Lactobacillus reuteri was greatly enriched in fecal and cutaneous microbiome of HD mice as compared to PSD mice. Intriguingly, supplement with Lactobacillus reuteri was sufficient to increase the expression of anti-inflammatory gene IL-10, reduce Th17 cells counts and confer resistance to imiquimod-induced inflammation on the mice with gut microbiota dysbiosis. Conclusion Our results suggested that the gut microbiota dysbiosis is the potential causal factor for psoriasis and the gut microbiota may serve as promising therapy target for psoriasis patients.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Yi-Bin Zeng
- Dermatological Department, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Zheng-Yan Zhang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Chao-Yue Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Shi-Long Zhang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Zhan-Ming Li
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Jia-Ting Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Ya-Yun Xu
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Yu-Qin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Pei-Ran Cai
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Bing Han
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Wu-Qing Wang
- Dermatological Department, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Li-Shun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| |
Collapse
|
23
|
Bregnhøj A, Thuesen KKH, Emmanuel T, Litman T, Grek CL, Ghatnekar GS, Johansen C, Iversen L. HSP90 inhibitor RGRN-305 for oral treatment of plaque type psoriasis: efficacy, safety and biomarker results in an open-label proof-of-concept study. Br J Dermatol 2021; 186:861-874. [PMID: 34748646 DOI: 10.1111/bjd.20880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND HSP90 is a downstream regulator of tumor necrosis factor α (TNFα) and interleukin (IL)-17A signaling and may therefore serve as a novel target in the treatment of psoriasis. OBJECTIVE This phase 1b proof-of-concept study was undertaken to evaluate the safety and efficacy of a novel HSP90 inhibitor (RGRN-305) in the treatment of plaque psoriasis. METHODS An open-label, single-arm, dose-selection, single-center proof-of-concept study. Patients with plaque psoriasis were treated with 250 mg or 500 mg RGRN-305 daily for 12 weeks. Efficacy was evaluated clinically using Psoriasis Area and Severity Index (PASI), body surface area (BSA), and Physician Global Assessment (PGA) scores and by Dermatology Life Quality Index (DLQI). Skin biopsies collected at baseline and at 4, 8, and 12 weeks after treatment start were used for immunohistochemical staining and for gene expression analysis. Safety was monitored via laboratory tests, vital signs, ECG, and physical examinations. RESULTS Six of the eleven patients completing the study responded to RGRN-305 with a PASI improvement between 71% and 94%, whereas five patients were considered nonresponders with a PASI response < 50%. No severe adverse events were reported. Four of seven patients treated with 500 mg RGRN-305 daily experienced a mild to moderate exanthematous drug induced eruption due to study treatment. Two patients chose to discontinue the study due to this exanthematous eruption. RGRN-305 treatment resulted in pronounced inhibition of the IL-23, TNFα, and IL-17A signaling pathways and normalization of both histological changes and psoriatic lesion gene expression profiles in patients responding to treatment. CONCLUSION Treatment with RGRN-305 showed an acceptable safety, especially in the low-dose group, and was associated with clinically meaningful improvement in a subset of patients with plaque psoriasis, indicating that HSP90 may serve as a novel future target in psoriasis treatment.
Collapse
Affiliation(s)
- A Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - K K H Thuesen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Litman
- Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C L Grek
- FirstString Research, Mount Pleasant, SC, 29464, USA
| | | | - C Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - L Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
25
|
Xiao F, Du W, Zhu X, Tang Y, Liu L, Huang E, Deng C, Luo C, Han M, Chen P, Ding L, Hong X, Wu L, Jiang Q, Zou H, Liu D, Lu L. IL-17 drives salivary gland dysfunction via inhibiting TRPC1-mediated calcium movement in Sjögren's syndrome. Clin Transl Immunology 2021; 10:e1277. [PMID: 33968407 PMCID: PMC8082715 DOI: 10.1002/cti2.1277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aims to determine a role of interleukin‐17A (IL‐17) in salivary gland (SG) dysfunction and therapeutic effects of targeting IL‐17 in SG for treating autoimmune sialadenitis in primary Sjögren’s syndrome (pSS). Methods Salivary IL‐17 levels and IL‐17‐secreting cells in labial glands of pSS patients were examined. Kinetic changes of IL‐17‐producing cells in SG from mice with experimental Sjögren’s syndrome (ESS) were analysed. To determine a role of IL‐17 in salivary secretion, IL‐17‐deficient mice and constructed chimeric mice with IL‐17 receptor C (IL‐17RC) deficiency in non‐hematopoietic and hematopoietic cells were examined for saliva flow rates during ESS development. Both human and murine primary SG epithelial cells were treated with IL‐17 for measuring cholinergic activation‐induced calcium movement. Moreover, SG functions were assessed in ESS mice with salivary retrograde cannulation of IL‐17 neutralisation antibodies. Results Increased salivary IL‐17 levels were negatively correlated with saliva flow rates in pSS patients. Both IL‐17‐deficient mice and chimeric mice with non‐hematopoietic cell‐restricted IL‐17RC deficiency exhibited no obvious salivary reduction while chimeric mice with hematopoietic cell‐restricted IL‐17RC deficiency showed significantly decreased saliva secretion during ESS development. In SG epithelial cells, IL‐17 inhibited acetylcholine‐induced calcium movement and downregulated the expression of transient receptor potential canonical 1 via promoting Nfkbiz mRNA stabilisation. Moreover, local IL‐17 neutralisation in SG markedly attenuated hyposalivation and ameliorated tissue inflammation in ESS mice. Conclusion These findings identify a novel function of IL‐17 in driving salivary dysfunction during pSS development and may provide a new therapeutic strategy for targeting SG dysfunction in pSS patients.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Wenhan Du
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Xiaoxia Zhu
- Department of Rheumatology Huashan Hospital and Fudan University Shanghai China
| | - Yuan Tang
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Lixiong Liu
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Enyu Huang
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Chong Deng
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Cainan Luo
- Department of Rheumatology and Immunology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Man Han
- Division of Rheumatology Guang'anmen Hospital China Academy of Chinese Medical Sciences Beijing China
| | - Ping Chen
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Liping Ding
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Lijun Wu
- Department of Rheumatology and Immunology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Quan Jiang
- Division of Rheumatology Guang'anmen Hospital China Academy of Chinese Medical Sciences Beijing China
| | - Hejian Zou
- Department of Rheumatology Huashan Hospital and Fudan University Shanghai China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Liwei Lu
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| |
Collapse
|
26
|
The Effect of Herbal Medicinal Products on Psoriasis-Like Keratinocytes. Biomolecules 2021; 11:biom11030371. [PMID: 33801280 PMCID: PMC8000521 DOI: 10.3390/biom11030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and expression of pro-inflammatory cytokines in the epidermis. New biological drugs were developed for the systemic treatment of moderate to severe psoriasis. However, products for the topical treatment of mild psoriasis are still required. Here, we examined the effect of natural compounds on psoriasis-like keratinocytes in vitro and ex vivo. Psoriasis-like keratinocytes were generated by treating human primary keratinocytes with the psoriasis-associated cytokines IL-17A, TNF-α and IL-22. Initially, 10 botanical extracts from Ayurvedic Medicine, Traditional Chinese Medicine, Northern American traditional medicine and Occidental Monastic Medicine were investigated using BrdU assays and IL-6 and IL-8 ELISAs. Curcuma amada, Humulus lupulus and Hypericum perforatum turned out to be the most effective plant extracts. In vitro, the plant extracts inhibited the expression of anti-microbial peptides (β-defensin 2), the hyperproliferation marker keratin 17, the glucose transporter 1 and downregulated the nuclear translocation of NF-κB and pSTAT3. In an ex vivo psoriasis model, Humulus lupulus displayed the most prominent anti-proliferative and anti-inflammatory effect. In conclusion, among the plant extracts investigated, Humulus lupulus showed the most promising anti-psoriatic effect. It is an interesting candidate for topical psoriasis treatment that should be further studied in clinical trials.
Collapse
|
27
|
Groen SS, Sinkeviciute D, Bay-Jensen AC, Thudium CS, Karsdal MA, Thomsen SF, Schett G, Nielsen SH. Exploring IL-17 in spondyloarthritis for development of novel treatments and biomarkers. Autoimmun Rev 2021; 20:102760. [PMID: 33485992 DOI: 10.1016/j.autrev.2021.102760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis (SpA) is an umbrella term describing a family of chronic inflammatory rheumatic diseases. These diseases are characterised by inflammation of the axial skeleton, peripheral joints, and entheseal insertion sites throughout the body which can lead to structural joint damage including formation of axial syndesmophytes and peripheral osteophytes. Genetic evidence, preclinical and clinical studies indicate a clear role of interleukin (IL)- 23 and IL-17 as mediators in SpA pathogenesis. Targeting the IL-23/-17 pathways seems an efficient strategy for treatment of SpA patients, and despite the remaining challenges the pathway holds great promise for further advances and improved therapeutic opportunities. Much research is focusing on serological markers and imaging strategies to correctly diagnose patients in the early stages of SpA. Biomarkers may facilitate personalised medicine tailored to each patient's specific disease to optimise treatment efficacy and to monitor therapeutic response. This narrative review focuses on the IL-17 pathway in SpA-related diseases with emphasis on its role in pathogenesis, current approved IL-17 inhibitors, and the need for biomarkers reflecting core disease pathways for early diagnosis and measurement of disease activity, prognosis, and response to therapy.
Collapse
Affiliation(s)
- Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dovile Sinkeviciute
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Department of Clinical Sciences Lund, University of Lund, Lund, Sweden
| | | | | | | | - Simon Francis Thomsen
- Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Choudhary S, Pradhan D, Khan NS, Singh H, Thomas G, Jain AK. Decoding Psoriasis: Integrated Bioinformatics Approach to Understand Hub Genes and Involved Pathways. Curr Pharm Des 2021; 26:3619-3630. [PMID: 32160841 DOI: 10.2174/1381612826666200311130133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Psoriasis is a chronic immune mediated skin disorder with global prevalence of 0.2- 11.4%. Despite rare mortality, the severity of the disease could be understood by the accompanying comorbidities, that has even led to psychological problems among several patients. The cause and the disease mechanism still remain elusive. OBJECTIVE To identify potential therapeutic targets and affecting pathways for better insight of the disease pathogenesis. METHOD The gene expression profile GSE13355 and GSE14905 were retrieved from NCBI, Gene Expression Omnibus database. The GEO profiles were integrated and the DEGs of lesional and non-lesional psoriasis skin were identified using the affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes pathways of the DEGs were analyzed using clusterProfiler. Cytoscape, V3.7.1 was utilized to construct protein interaction network and analyze the interactome map of candidate proteins encoded in DEGs. Functionally relevant clusters were detected through Cytohubba and MCODE. RESULTS A total of 1013 genes were differentially expressed in lesional skin of which 557 were upregulated and 456 were downregulated. Seven dysregulated genes were extracted in non-lesional skin. The disease gene network of these DEGs revealed 75 newly identified differentially expressed gene that might have a role in development and progression of the disease. GO analysis revealed keratinocyte differentiation and positive regulation of cytokine production to be the most enriched biological process and molecular function. Cytokines -cytokine receptor was the most enriched pathways. Among 1013 identified DEGs in lesional group, 36 DEGs were found to have altered genetic signature including IL1B and STAT3 which are also reported as hub genes. CCNB1, CCNA2, CDK1, IL1B, CXCL8, MKI 67, ESR1, UBE2C, STAT1 and STAT3 were top 10 hub gene. CONCLUSION The hub genes, genomic altered DEGs and other newly identified differentially dysregulated genes would improve our understanding of psoriasis pathogenesis, moreover, the hub genes could be explored as potential therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Saumya Choudhary
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), India
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre (ISRM) Division- Indian Council of Medical Research, New Delhi, India
| | - Noor S Khan
- Biomedical Informatics Centre, National Institute of Pathology - Indian Council of Medical Research, New Delhi, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre (ISRM) Division- Indian Council of Medical Research, New Delhi, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), India
| | - Arun K Jain
- Biomedical Informatics Centre, National Institute of Pathology - Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
29
|
Antimicrobial peptides: bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl) 2020; 133:2966-2975. [PMID: 33237697 PMCID: PMC7752697 DOI: 10.1097/cm9.0000000000001240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules produced by a myriad of cells and play important roles not only in protecting against infections and sustaining skin barrier homeostasis but also in contributing to immune dysregulation under pathological conditions. Recently, increasing evidence has indicated that AMPs, including cathelicidin (LL-37), human β-defensins, S100 proteins, lipocalin 2, and RNase 7, are highly expressed in psoriatic skin lesions. These peptides broadly regulate immunity by interacting with various immune cells and linking innate and adaptive immune responses during the progression of psoriasis. In this review, we summarize the recent findings regarding AMPs in the pathogenesis of psoriasis with a main focus on their immunomodulatory abilities.
Collapse
|
30
|
Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes (Basel) 2020; 11:genes11101155. [PMID: 33007857 PMCID: PMC7600703 DOI: 10.3390/genes11101155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease with a complex etiology involving environmental and genetic factors. A better insight into related genomic alteration helps design precise therapies leading to better treatment outcome. Gene expression in psoriasis can provide relevant information about the altered expression of mRNA transcripts, thus giving new insights into the disease onset. Techniques for transcriptome analyses, such as microarray and RNA sequencing (RNA-seq), are relevant tools for the discovery of new biomarkers as well as new therapeutic targets. This review summarizes the findings related to the contribution of keratinocytes in the pathogenesis of psoriasis by an in-depth review of studies that have examined psoriatic transcriptomes in the past years. It also provides valuable information on reconstructed 3D psoriatic skin models using cells isolated from psoriatic patients for transcriptomic studies.
Collapse
|
31
|
Wu X, Deng X, Wang J, Li Q. Baicalin Inhibits Cell Proliferation and Inflammatory Cytokines Induced by Tumor Necrosis Factor α (TNF-α) in Human Immortalized Keratinocytes (HaCaT) Human Keratinocytes by Inhibiting the STAT3/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e919392. [PMID: 32321906 PMCID: PMC7193247 DOI: 10.12659/msm.919392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Baicalin is a flavone isolated from the root of Scutellaria baicalensis and is used in traditional Chinese medicine. Psoriasis is a persistent and recurrent chronic inflammatory skin disease that is characterized by inflammation and increased proliferation of keratinocytes. This study aimed to investigate the effects of baicalin on HaCaT immortalized human keratinocytes in vitro and the molecular mechanisms involved. Material/Methods HaCaT keratinocytes were cultured in increasing concentrations of baicalin at 6.25 μM, 12.5 μM, and 25 μM. The in vitro model of psoriasis was established using HaCaT cells treated with tumor necrosis factor-α (TNF-α). The MTT assay was used to asses cell viability and apoptosis. Western blot was used to measure the expression of Bcl-2, Bax, pro-caspase-3, and cleaved caspase-3, and enzyme-linked immunosorbent assay (ELISA) was performed to detect inflammatory cytokines. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the levels of STAT3 and p65 mRNA. Results Baicalin reduced cell viability and induced apoptosis of HaCaT human keratinocytes in a dose-dependent manner. Increased cell viability and the expression of inflammatory cytokines by HaCaT cells induced by TNF-α were significantly inhibited by baicalin. Baicalin significantly inhibited the activation of the STAT3/NF-κB pathway in HaCaT cells stimulated by TNF-α. Conclusions Baicalin inhibited the proliferation and expression of inflammatory cytokines in HaCaT immortalized human keratinocytes in vitro through the inhibition of the STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xianwei Wu
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Xiue Deng
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Jiandi Wang
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Qin Li
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
32
|
Morita A, Tani Y, Matsumoto K, Yamaguchi M, Teshima R, Ohtsuki M. Assessment of serum biomarkers in patients with plaque psoriasis on secukinumab. J Dermatol 2020; 47:452-457. [PMID: 32173900 PMCID: PMC7318330 DOI: 10.1111/1346-8138.15278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
The molecular basis of interleukin (IL)‐17A in driving psoriasis pathogenesis is not fully elucidated yet. To investigate the underlying mechanisms and biomarkers associated with IL‐17A and the role in psoriasis pathogenesis, over 30 serum proteins were evaluated in a study assessing the effectiveness and safety of secukinumab, where treatment was directly switched from cyclosporin A to secukinumab. Serum β‐defensin 2 (BD‐2) levels rapidly and robustly reduced following secukinumab treatment. BD‐2 levels were well‐correlated with Psoriasis Area and Severity Index (PASI) score; changes in BD‐2 levels preceded change in PASI score. Serum BD‐2, an easily measurable protein, can possibly be used as a suitable surrogate biomarker to monitor responses to IL‐17A‐targeted therapies for psoriasis in clinical practice.
Collapse
Affiliation(s)
- Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
33
|
CUX1 and IκBζ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts. Proc Natl Acad Sci U S A 2020; 117:5532-5541. [PMID: 32079724 DOI: 10.1073/pnas.1912702117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of stromal fibroblasts in chronic inflammation is unfolding. In rheumatoid arthritis, leukocyte-derived cytokines TNF and IL-17A work together, activating fibroblasts to become a dominant source of the hallmark cytokine IL-6. However, IL-17A alone has minimal effect on fibroblasts. To identify key mediators of the synergistic response to TNF and IL-17A in human synovial fibroblasts, we performed time series, dose-response, and gene-silencing transcriptomics experiments. Here we show that in combination with TNF, IL-17A selectively induces a specific set of genes mediated by factors including cut-like homeobox 1 (CUX1) and IκBζ (NFKBIZ). In the promoters of CXCL1, CXCL2, and CXCL3, we found a putative CUX1-NF-κB binding motif not found elsewhere in the genome. CUX1 and NF-κB p65 mediate transcription of these genes independent of LIFR, STAT3, STAT4, and ELF3. Transcription of NFKBIZ, encoding the atypical IκB factor IκBζ, is IL-17A dose-dependent, and IκBζ only mediates the transcriptional response to TNF and IL-17A, but not to TNF alone. In fibroblasts, IL-17A response depends on CUX1 and IκBζ to engage the NF-κB complex to produce chemoattractants for neutrophil and monocyte recruitment.
Collapse
|
34
|
Interleukin-17A and Keratinocytes in Psoriasis. Int J Mol Sci 2020; 21:ijms21041275. [PMID: 32070069 PMCID: PMC7072868 DOI: 10.3390/ijms21041275] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
The excellent clinical efficacy of anti-interleukin 17A (IL-17A) biologics on psoriasis indicates a crucial pathogenic role of IL-17A in this autoinflammatory skin disease. IL-17A accelerates the proliferation of epidermal keratinocytes. Keratinocytes produce a myriad of antimicrobial peptides and chemokines, such as CXCL1, CXCL2, CXCL8, and CCL20. Antimicrobial peptides enhance skin inflammation. IL-17A is capable of upregulating the production of these chemokines and antimicrobial peptides in keratinocytes. CXCL1, CXCL2, and CXCL8 recruit neutrophils and CCL20 chemoattracts IL-17A-producing CCR6+ immune cells, which further contributes to forming an IL-17A-rich milieu. This feed-forward pathogenic process results in characteristic histopathological features, such as epidermal hyperproliferation, intraepidermal neutrophilic microabscess, and dermal CCR6+ cell infiltration. In this review, we focus on IL-17A and keratinocyte interaction regarding psoriasis pathogenesis.
Collapse
|
35
|
Review-Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2020; 21:ijms21030699. [PMID: 31973112 PMCID: PMC7037913 DOI: 10.3390/ijms21030699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decades, high-throughput assessment of gene expression in patient tissues using microarray technology or RNA-Seq took center stage in clinical research. Insights into the diversity and frequency of transcripts in healthy and diseased conditions provide valuable information on the cellular status in the respective tissues. Growing with the technique, the bioinformatic analysis toolkit reveals biologically relevant pathways which assist in understanding basic pathophysiological mechanisms. Conventional classification systems of inflammatory skin diseases rely on descriptive assessments by pathologists. In contrast to this, molecular profiling may uncover previously unknown disease classifying features. Thereby, treatments and prognostics of patients may be improved. Furthermore, disease models in basic research in comparison to the human disease can be directly validated. The aim of this article is not only to provide the reader with information on the opportunities of these techniques, but to outline potential pitfalls and technical limitations as well. Major published findings are briefly discussed to provide a broad overview on the current findings in transcriptomics in inflammatory skin diseases.
Collapse
|
36
|
Dimethyl fumarate dampens IL-17-ACT1-TBK1 axis-mediated phosphorylation of Regnase-1 and suppresses IL-17–induced IκB-ζ expression. Biochem Biophys Res Commun 2020; 521:957-963. [DOI: 10.1016/j.bbrc.2019.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023]
|
37
|
Tussilagonone Ameliorates Psoriatic Features in Keratinocytes and Imiquimod-Induced Psoriasis-Like Lesions in Mice via NRF2 Activation. J Invest Dermatol 2019; 140:1223-1232.e4. [PMID: 31877316 DOI: 10.1016/j.jid.2019.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
Psoriasis is a common inflammatory skin disorder that is characterized by keratinocyte hyperproliferation and abnormal differentiation, resulting in the thickening of the epidermis and stratum corneum. In this study, we investigated in vitro and in vivo pharmacological effects of tussilagonone (TGN), a sesquiterpenoid isolated from Tussilago farfara, on transcription factors relevant for the pathogenesis of psoriasis. TGN inhibited activation of NF-κB and STAT3, leading to the attenuated expression of psoriasis-related inflammatory genes and suppression of keratinocyte hyperproliferation. Mechanistically, we show that the inhibition of NF-κB and STAT3 by TGN is mediated through activation of the cytoprotective transcription factor NRF2. Evaluation of in vivo antipsoriatic effects of topical TGN in the imiquimod-induced psoriasis-like dermatitis mouse model demonstrated amelioration of imiquimod-induced phenotypical changes, lesion severity score, epidermal thickening, and reduction in dermal cellularity. The spleen index also diminished in TGN-treated mice, suggesting anti-inflammatory properties of TGN. Moreover, TGN significantly attenuated the imiquimod-induced mRNA levels of psoriasis-associated inflammatory cytokines and antimicrobial peptides and reduced epidermal hyperproliferation. Taken together, TGN, as a potent NRF2 activator, is a promising therapeutic candidate for the development of antipsoriatic agents derived from medicinal plants.
Collapse
|
38
|
Tu J, Yin Z, Guo J, He F, Long F, Yin Z. Acitretin inhibits IL-17A-induced IL-36 expression in keratinocytes by down-regulating IκBζ. Int Immunopharmacol 2019; 79:106045. [PMID: 31863918 DOI: 10.1016/j.intimp.2019.106045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND IL-36 plays a critical role in aggravating psoriatic inflammation, which is significantly elevated in generalized pustular psoriasis (GPP) compared to psoriasis vulgaris. It is well known that acitretin brings about a rapid and significant effect on the treatment of GPP but not psoriasis vulgaris, whereas the quick therapeutic mechanism of acitretin in GPP has not been fully clarified. OBJECTIVES We conducted this study to investigate whether acitretin interferes IL-36 expression in keratinocytes. METHOD We used 100 ng/mL IL-17A and/or various doses of acitretin (0, 0.1, 1, 10 μmol/L) to treat cultured HaCaT cells. We performed Real-time quantitative PCR and ELISA to detect gene and protein expression of IL-36 cytokines, real-time quantitative PCR and Western blot to examine IκBζ. Imiquimod (IMQ)-induced psoriasis-like mouse model was established to evaluate effect of gastrointestinal administrated acitretin. Immunohistochemistry was conducted for effect assessment. RESULTS Acitretin significantly down-regulated expression of IL-36β and IL-36γ induced by IL-17A stimulation at both gene and protein levels in HaCaT cells. Acitretin alone had no obvious effect on IL-36 expression in keratinocytes. In IMQ + acitretin group, the skin lesion severity was slightly relieved, however, immunohistochemistry showed IL-36β and IL-36γ expression in keratinocytes significantly declined in comparison with IMQ group. IL-17A stimulation induced significantly IκBζ expression in HaCaT cells, which could be inhibited by acitretin. CONCLUSION Acitretin inhibits IL-36 expression induced by IL-17A stimulation in keratinocytes by down-regulating IκBζ, and acitretin significantly inhibits keratinocytes-expressed IL-36β and IL-36γ in psoriasis-like mouse model, which reveals a new possible mechanism of the notable and quick therapeutic action of acitretin on GPP.
Collapse
Affiliation(s)
- Jie Tu
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi Yin
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Guo
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Deparment of Dermatology, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Fang He
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - FangYuan Long
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZhiQiang Yin
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Lorscheid S, Müller A, Löffler J, Resch C, Bucher P, Kurschus FC, Waisman A, Schäkel K, Hailfinger S, Schulze-Osthoff K, Kramer D. Keratinocyte-derived IκBζ drives psoriasis and associated systemic inflammation. JCI Insight 2019; 4:130835. [PMID: 31622280 PMCID: PMC6948851 DOI: 10.1172/jci.insight.130835] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
The transcriptional activator IκBζ is a key regulator of psoriasis, but which cells mediate its pathogenic effect remains unknown. Here we found that IκBζ expression in keratinocytes triggers not only skin lesions but also systemic inflammation in mouse psoriasis models. Specific depletion of IκBζ in keratinocytes was sufficient to suppress the induction of imiquimod- or IL-36–mediated psoriasis. Moreover, IκBζ ablation in keratinocytes prevented the onset of psoriatic lesions and systemic inflammation in keratinocyte-specific IL-17A–transgenic mice. Mechanistically, this psoriasis protection was mediated by IκBζ deficiency in keratinocytes abrogating the induction of specific proinflammatory target genes, including Cxcl5, Cxcl2, Csf2, and Csf3, in response to IL-17A or IL-36. These IκBζ-dependent genes trigger the generation and recruitment of neutrophils and monocytes that are needed for skin inflammation. Consequently, our data uncover a surprisingly pivotal role of keratinocytes and keratinocyte-derived IκBζ as key mediators of psoriasis and psoriasis-related systemic inflammation. Deletion of IκBζ in keratinocytes is sufficient to abrogate psoriasis induction in mouse models due to changes in transcription of keratinocyte-derived chemo- and cytokines.
Collapse
Affiliation(s)
- Sebastian Lorscheid
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Anne Müller
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jessica Löffler
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Claudia Resch
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Daniela Kramer
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Coto-Segura P, Coto E, González-Lara L, Alonso B, Gómez J, Cuesta-Llavona E, Queiro R. Gene Variant in the NF- κB Pathway Inhibitor NFKBIA Distinguishes Patients with Psoriatic Arthritis within the Spectrum of Psoriatic Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1030256. [PMID: 31815120 PMCID: PMC6877981 DOI: 10.1155/2019/1030256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/27/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS The NF-κB pathway has been implicated in the genetic aetiology of psoriatic disease. However, since most patients with arthritis have psoriasis, discerning the genetic contributions to both aspects of psoriatic disease is not easy. Our aim was to study the association of common polymorphisms in genes of the NF-κB pathway in patients with psoriatic disease in order to dissect the contribution of this pathway in the appearance of each component (skin and joint) of the disease. PATIENTS AND METHODS We investigated the association between three common variants in NFKB1 (rs230526), NFKBIA (rs7152376), and NFKBIZ (rs3217713 indel) and the risk of developing psoriatic disease. We genotyped a total of 690 psoriatic disease patients and 550 controls. Patients with cutaneous psoriasis of at least 10 years of evolution without associated arthritis were defined to have pure cutaneous psoriasis (PCP). RESULTS The rare NFKBIA rs7152376 C was significantly more frequent in the PsA group vs. controls (OR = 2.03 (1.3-3.1), p < 0.01). The difference was even higher between PsA and PCP patients (OR = 3.2 (2.1-5.1), p < 0.001). Neither NFKB1 rs230526 nor NFKBIZ rs3217713 indel was associated with the risk of developing psoriatic disease as a whole compared to controls. CONCLUSIONS Our study supports a significant effect of the NFKBIA gene on the risk of developing PsA, thus contributing to better discerning of the polymorphisms of this pathway that explain this risk within the spectrum of psoriatic disease. Additional studies with larger cohorts and from different populations are necessary to validate these results.
Collapse
Affiliation(s)
- Pablo Coto-Segura
- Dermatology Division, Hospital Alvarez Buylla-Mieres, Mieres, Spain
- Instituto Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Eliecer Coto
- Department of Medicine, University of Oviedo, Oviedo, Spain
- Molecular Genetics Unit, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Leire González-Lara
- Molecular Genetics Unit, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Belén Alonso
- Molecular Genetics Unit, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Juan Gómez
- Molecular Genetics Unit, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | - Rubén Queiro
- Instituto Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
- Rheumatology Division, Hospital Universitario Central Asturias, Oviedo, Spain
| |
Collapse
|
41
|
Fania L, Morelli M, Scarponi C, Mercurio L, Scopelliti F, Cattani C, Scaglione GL, Tonanzi T, Pilla MA, Pagnanelli G, Mazzanti C, Girolomoni G, Cavani A, Madonna S, Albanesi C. Paradoxical psoriasis induced by TNF-α blockade shows immunological features typical of the early phase of psoriasis development. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:55-68. [PMID: 31577850 PMCID: PMC6966707 DOI: 10.1002/cjp2.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Immunomodulation with anti‐TNF‐α is highly effective in the treatment of various immune‐mediated inflammatory diseases, including hidradenitis suppurativa (HS). However, this may be responsible for unexpected paradoxical psoriasiform reactions. The pathogenic mechanisms underlying the induction of these events are not clear, even though the involvement of innate immune responses driven by plasmacytoid dendritic cells (pDC) has been described. In addition, the genetic predisposition to psoriasis of patients could be determinant. In this study, we investigated the immunological and genetic profiles of three HS patients without psoriasis who developed paradoxical psoriasiform reactions following anti‐TNF‐α therapy with adalimumab. We found that paradoxical psoriasiform skin reactions show immunological features common to the early phases of psoriasis development, characterized by cellular players of innate immunity, such as pDC, neutrophils, mast cells, macrophages, and monocytes. In addition, IFN‐β and IFN‐α2a, two type I IFNs typical of early psoriasis, were highly expressed in paradoxical skin reactions. Concomitantly, other innate immunity molecules, such as the catheledicin LL37 and lymphotoxin (LT)‐α and LT‐β were overproduced. Interestingly, these innate immunity molecules were abundantly expressed by keratinocytes, in addition to the inflammatory infiltrate. In contrast to classical psoriasis, psoriasiform lesions of HS patients showed a reduced number of IFN‐γ and TNF‐α‐releasing T lymphocytes. On the contrary, IL‐22 immunoreactivity was significantly augmented together with the IL‐36γ staining in leukocytes infiltrating the dermis. Finally, we found that all HS patients with paradoxical reactions carried allelic variants in genes predisposing to psoriasis. Among them, SNPs in ERAP1, NFKBIZ, and TNFAIP genes and in the HLA‐C genomic region were found.
Collapse
Affiliation(s)
- Luca Fania
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Martina Morelli
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy.,Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Fernanda Scopelliti
- Istituto Nazionale per la promozione della salute delle popolazioni Migranti ed il contrasto delle malattie della Povertà, INMP, Rome, Italy
| | - Caterina Cattani
- Istituto Nazionale per la promozione della salute delle popolazioni Migranti ed il contrasto delle malattie della Povertà, INMP, Rome, Italy
| | - Giovanni Luca Scaglione
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy.,Laboratory of Molecular Oncology, "Giovanni Paolo II" Foundation, Catholic University of Sacred Heart, Campobasso, Italy
| | - Tiziano Tonanzi
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Maria Antonietta Pilla
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Gianluca Pagnanelli
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Cinzia Mazzanti
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Cavani
- Istituto Nazionale per la promozione della salute delle popolazioni Migranti ed il contrasto delle malattie della Povertà, INMP, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology and 1st Dermatology Division, IDI-IRCCS, Rome, Italy
| |
Collapse
|
42
|
Bertelsen T, Ljungberg C, Litman T, Huppertz C, Hennze R, Rønholt K, Iversen L, Johansen C. IκBζ is a key player in the antipsoriatic effects of secukinumab. J Allergy Clin Immunol 2019; 145:379-390. [PMID: 31622687 DOI: 10.1016/j.jaci.2019.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND IκBζ plays a key role in psoriasis by mediating IL-17A-driven effects, but the molecular mechanism by which IL-17A regulates IκBζ expression is not clarified. OBJECTIVE We sought to explore the molecular transformation in patients with psoriasis during anti-IL-17A (secukinumab) treatment with a focus on IκBζ. METHODS The study was an open-label, single-arm, single-center secukinumab treatment study that included 14 patients with plaque psoriasis. Skin biopsy specimens and blood samples were collected on days 0, 4, 14, 42, and 84 and processed for microarray gene expression analysis. Furthermore, in vitro experiments with human keratinocytes and synovial fibroblasts were conducted. RESULTS Secukinumab improved clinical scores and histologic psoriasis features. Moreover, secukinumab altered the skin transcriptome. The major transcriptional shift appeared between day 14 and day 42 after treatment initiation, although 80 genes were differentially expressed already at day 4. Expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor (IκB) ζ (NFKBIZ, the gene encoding IκBζ) was reduced already after 4 days of treatment in the skin. NFKBIZ expression correlated to Psoriasis Area and Severity Index score, and NFKBIZ mRNA levels in the skin decreased during anti-IL-17A treatment. Moreover, specific NFKBIZ signature genes were significantly altered during anti-IL-17A treatment. Finally, we identified NF-κB activator 1 (Act1), p38 mitogen-activated protein kinase (MAPK), Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) as key signaling pathways in NFKBIZ/IκBζ regulation. CONCLUSION Our results define a crucial role for IκBζ in the antipsoriatic effect of secukinumab. Because IκBζ signature genes were regulated already after 4 days of treatment, this strongly indicates that IκBζ plays a crucial role in the antipsoriatic effects mediated by anti-IL-17A treatment.
Collapse
Affiliation(s)
- Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Thomas Litman
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Christine Huppertz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Robert Hennze
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kirsten Rønholt
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
43
|
Yu Q, Tong Y, Cui L, Zhang L, Gong Y, Diao H, Gao F, Shi Y. Efficacy and safety of etanercept combined plus methotrexate and comparison of expression of pro-inflammatory factors expression for the treatment of moderate-to-severe plaque psoriasis. Int Immunopharmacol 2019; 73:442-450. [DOI: 10.1016/j.intimp.2019.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
|
44
|
Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and risk for early-onset coronary artery disease. Immunol Lett 2019; 208:39-43. [PMID: 30902734 DOI: 10.1016/j.imlet.2019.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
The nuclear-factor kappa-beta (NF-KB) is a driver of inflammation, and plays an important role in the pathogenesis of atherosclerosis and coronary artery disease (CAD). Early-onset CAD is defined as a coronary ischaemic episode at an age ≤55 years, and in our population was strongly associated with male sex and smoking. Our aim was to determine whether common variants in three NF-KB genes were associated with early-onset CAD. We studied 609 patients with early-onset CAD and 423 healthy controls, all male. Allele and genotype frequencies for the NFKB1 rs28362491 (-94 delATTG) and NFKBIA rs8904 were not significantly different between the two groups. For the NFKBIZ rs3217713, the deletion allele was significantly more frequent in the patients than in controls (0.27 vs. 0.22; p = 0.004). Deletion-carriers were more frequent in the patients (p < 0.001), with an OR = 1.48 (95%CI = 1.15-1.90). We performed a multiple logistic regression (linear generalized model) with smoking, hypercholesterolemia, type 2 diabetes, hypertension, and the rs3217713 deletion carriers remained significantly associated with early-onset CAD (p = 0.01). In our population, the NFKBIZ variant was an independent risk factor for developing early-onset CAD.
Collapse
|
45
|
Abstract
Psoriasis is a chronic, immune-mediated, inflammatory disease that is pathogenically driven by proinflammatory cytokines. This article reviews the immunologic role of interleukin (IL)-17, the major effector cytokine in the pathogenesis of psoriatic disease, along with the rationale for targeting the IL-17 cytokine family (IL-17A, IL-17F, and IL-17 receptor A) in the treatment of psoriasis and psoriatic arthritis. Emerging evidence indicates that major sources of IL-17A in patients with psoriatic disease are mast cells, γδ T cells, αβ T cells, and innate lymphoid cells in lesional skin and synovial fluid. Within the skin and joints, IL-17A acts on cellular targets, including keratinocytes, neutrophils, endothelial cells, fibroblasts, osteoclasts, chondrocytes, and osteoblasts, to stimulate production of various antimicrobial peptides, chemokines, and proinflammatory and proliferative cytokines, which, in turn, promote tissue inflammation and bone remodeling. The critical importance of the IL-23/IL-17A axis to the pathogenesis of psoriatic disease has resulted in many new biologic treatments targeting these cytokines. These biologics dramatically improve skin and joint symptoms in patients with moderate-to-severe psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Andrew Blauvelt
- Oregon Medical Research Center, 9495 SW Locust St, Suite G, Portland, OR,, 97223, USA.
| | - Andrea Chiricozzi
- Dermatology Unit, Department of Clinical and Translational Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Hernández-Ruiz E, Toll A, García-Diez I, Andrades E, Ferrandiz-Pulido C, Masferrer E, Yébenes M, Jaka A, Gimeno J, Gimeno R, García-Patos V, Pujol RM, Hernández-Muñoz I. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis 2018; 39:503-513. [PMID: 29394319 DOI: 10.1093/carcin/bgy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.
Collapse
Affiliation(s)
- Eugenia Hernández-Ruiz
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carla Ferrandiz-Pulido
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emili Masferrer
- Department of Dermatology, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Mireia Yébenes
- Department of Dermatology, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Ane Jaka
- Department of Dermatology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Ramón Gimeno
- Department of Immunology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Vicenç García-Patos
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
47
|
Amatya N, Childs EE, Cruz JA, Aggor FEY, Garg AV, Berman AJ, Gudjonsson JE, Atasoy U, Gaffen SL. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci Signal 2018; 11:eaat4617. [PMID: 30301788 PMCID: PMC6188668 DOI: 10.1126/scisignal.aat4617] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-17A (IL-17A) not only stimulates immunity to fungal pathogens but also contributes to autoimmune pathology. IL-17 is only a modest activator of transcription in experimental tissue culture settings. However, IL-17 controls posttranscriptional events that enhance the expression of target mRNAs. Here, we showed that the RNA binding protein (RBP) Arid5a (AT-rich interactive domain-containing protein 5a) integrated multiple IL-17-driven signaling pathways through posttranscriptional control of mRNA. IL-17 induced expression of Arid5a, which was recruited to the adaptor TRAF2. Arid5a stabilized IL-17-induced cytokine transcripts by binding to their 3' untranslated regions and also counteracted mRNA degradation mediated by the endoribonuclease MCPIP1 (Regnase-1). Arid5a inducibly associated with the eukaryotic translation initiation complex and facilitated the translation of the transcription factors (TFs) IκBζ (Nfkbiz ) and C/EBPβ (Cebpb). These TFs in turn transactivated IL-17-dependent promoters. Together, these data indicated that Arid5a orchestrates a feed-forward amplification loop, which promoted IL-17 signaling by controlling mRNA stability and translation.
Collapse
Affiliation(s)
- Nilesh Amatya
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - J Agustin Cruz
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Johann E Gudjonsson
- Department of Dermatology, Taubman Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
IκBζ is a key transcriptional regulator of IL-36-driven psoriasis-related gene expression in keratinocytes. Proc Natl Acad Sci U S A 2018; 115:10088-10093. [PMID: 30224457 PMCID: PMC6176600 DOI: 10.1073/pnas.1801377115] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is an autoinflammatory disease characterized by cytokine-driven keratinocyte proliferation and infiltration of immune cells. While IL-17A and TNFα are established targets in psoriasis therapy, IL-36 is emerging as an important cytokine in this disease. The mechanisms of IL-36–driven proinflammatory responses are largely unknown. Here we identified IκBζ, a transcriptional regulator of selective NF-κB target genes, as a crucial mediator of IL-36 action. In keratinocytes, IκBζ was required for the expression of several psoriasis-related cytokines and chemokines. Moreover, genetic deletion of IκBζ prevented IL-36–mediated dermatitis induction in mice. Since IκBζ is essential not only for IL-36 but also for IL-17 signaling, our results suggest that inhibition of IκBζ function could be a future strategy in psoriasis therapy. Proinflammatory cytokine signaling in keratinocytes plays a crucial role in the pathogenesis of psoriasis, a skin disease characterized by hyperproliferation and abnormal differentiation of keratinocytes and infiltration of inflammatory cells. Although IL-17A and TNFα are effective therapeutic targets in psoriasis, IL-36 has recently emerged as a proinflammatory cytokine. However, little is known about IL-36 signaling and its downstream transcriptional responses. Here, we found that exposure of keratinocytes to IL-36 induced the expression of IκBζ, an atypical IκB member and a specific transcriptional regulator of selective NF-κB target genes. Induction of IκBζ by IL-36 was mediated by NF-κB and STAT3. In agreement, IL-36–mediated induction of IκBζ was found to be required for the expression of various psoriasis-related genes involved in inflammatory signaling, neutrophil chemotaxis, and leukocyte activation. Importantly, IκBζ-knockout mice were protected against IL-36–mediated dermatitis, accompanied by reduced proinflammatory gene expression, decreased immune cell infiltration, and a lack of keratinocyte hyperproliferation. Moreover, expression of IκBζ mRNA was highly up-regulated in biopsies of psoriasis patients where it coincided with IL36G levels. Thus our results uncover an important role for IκBζ in IL-36 signaling and validate IκBζ as an attractive target for psoriasis therapy.
Collapse
|
49
|
Albanesi C, Madonna S, Gisondi P, Girolomoni G. The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Front Immunol 2018; 9:1549. [PMID: 30034395 PMCID: PMC6043636 DOI: 10.3389/fimmu.2018.01549] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease resulting from genetic, epigenetic, environmental, and lifestyle factors. To date, several immunopathogenic mechanisms of psoriasis have been elucidated, and, in the current model, the cross talk between autoreactive T cells and resident keratinocytes generates inflammatory and immune circuits responsible for the initiation, progression, and persistence of the disease. Several autoantigens derived from keratinocytes (i.e., LL37 cathelecidin/nucleic acid complexes, newly generated lipid antigens) have been identified, which may trigger initial activation of T cells, particularly IL-17-producing T cells, T helper (Th)1 and Th22 cells. Hence, lymphokines released in skin lesions are pivotal for keratinocyte activation and production of inflammatory molecules, which in turn lead to amplification of the local immune responses. Intrinsic genetic alterations of keratinocytes in the activation of signal transduction pathways dependent on T-cell-derived cytokines are also fundamental. The current review emphasizes the aberrant interplay of immune cells and skin-resident keratinocytes in establishing and sustaining inflammatory and immune responses in psoriasis.
Collapse
Affiliation(s)
- Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Rome, Italy
| | - Paolo Gisondi
- Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
50
|
An Interleukin-25-Mediated Autoregulatory Circuit in Keratinocytes Plays a Pivotal Role in Psoriatic Skin Inflammation. Immunity 2018; 48:787-798.e4. [DOI: 10.1016/j.immuni.2018.03.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/31/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
|