1
|
Kravets K, Kravets M, Sashuk V, Perret F, Maskani W, Albertini D, Lazar AN, Zimnicka MM, Danylyuk O. Alexidine and Pentamidine Fold Inside the Bowl-shaped Cavity of p-Sulfonato-calix[4]arene. Chemistry 2025; 31:e202404625. [PMID: 39888166 DOI: 10.1002/chem.202404625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/01/2025]
Abstract
We report on the U-shaped folding of flexible guest molecules of medicinal interest upon their inclusion into macrocyclic cavity of p-sulfonato-calix[4]arene in aqueous media. Alexidine and pentamidine are FDA-approved drug compounds currently rediscovered as potent membrane-targeting antibiotic adjuvants helping restore antibiotic activity against multidrug resistant bacteria pathogens. We have adopted host-guest and crystal engineering approach to study these drugs with a view of potential supramolecular formulations and/or crystal forms. We focus on the host-guest conformational and structural behaviour of alexidine and pentamidine under macrocyclic confinement conditions benefitting from single crystal X-ray diffraction analysis, self-assembly studies in solution by NMR spectroscopy, dynamic light scattering and atomic force microscopy, and ion mobility mass spectrometry (IM-MS) analysis complemented by theoretical calculations. Our findings show that the simple bowl-shaped host promotes conformational fixing and crystallization of these guest molecules of high conformational freedom that are otherwise challenging to crystallize. The IM-MS structural studies of p-sulfonato-calix[4]arene complexes with pentamidine and alexidine revealed significant guest reorganization in the solution/gas phase, compared to the binding modes observed in the crystal structures. Despite these changes, the host-guest complexation remained consistent, with new interactions highlighting the increased role of electrostatic forces in the gas phase.
Collapse
Affiliation(s)
- Kateryna Kravets
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mykola Kravets
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Florent Perret
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, Univ. Lyon - CNRS - Univ. Claude Bernard Lyon 1 - CPE Lyon, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Widade Maskani
- INSA-Lyon, LaMCoS, CNRS, UMR5259, F-69621, Villeurbanne, France
| | - David Albertini
- CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Adina-N Lazar
- INSA-Lyon, LaMCoS, CNRS, UMR5259, F-69621, Villeurbanne, France
| | - Magdalena M Zimnicka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
2
|
Wang L, Zhang Y, Chen J, Jongaksorn S, Lu Z, Zhang X, Li S, Zhu C, Ma D, Mao L. Ester-Bearing Calix[ n]phenoxazines: Side Chain Enhanced Recognition and Redox-Responsive Reversible Host-Guest System. J Org Chem 2025; 90:1671-1677. [PMID: 39844468 DOI: 10.1021/acs.joc.4c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We report an enhanced recognition and redox-responsive reversible host-guest system based on ester-bearing calix[n]phenoxazines. The carbonyl groups, oriented toward the cavity, act as the extra binding sites to enhance the binding affinity, which is confirmed by NMR and FTIR experiments and single-crystal structure analysis. Due to the oxidizable nature of calix[n]phenoxazine, a redox-controlled reversible response is established. This research not only provides a strategy to enhance the binding affinity in calix-like macrocyclic arenes but also marks a major advance in the development of a macrocyclic arene-based reversibly responsive system.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yujun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Junhao Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Sanhanut Jongaksorn
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Zhihao Lu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Xin Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Shuo Li
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Chenghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Da Ma
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Lijun Mao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| |
Collapse
|
3
|
Wang L, Li Y, Qu X, Ma D, Iqbal MZ, Kong X, Mao L. Reversible encapsulation and release of fullerenes using calix[ n]phenoxazines. Org Biomol Chem 2024; 22:9053-9057. [PMID: 39435739 DOI: 10.1039/d4ob01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This investigation presents the synthesis of butyl-decorated calix[n]phenoxazines of varying sizes by kinetic control and the ring-expansion of calix[3]phenoxazine, which uniquely exhibits distinct binding affinities for fullerenes C60 and C70. Calix[3]phenoxazine demonstrates a higher binding affinity for cationic ammonium, which can be reversibly deprotonated and protonated, enabling the reversible release and reloading of fullerenes. This system holds potential for applications in fullerene extraction and separation.
Collapse
Affiliation(s)
- Lu Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Yunxiao Li
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Xin Qu
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - M Zubair Iqbal
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Xiangdong Kong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
4
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
5
|
Nazarova A, Shiabiev I, Shibaeva K, Mostovaya O, Mukhametzyanov T, Khannanov A, Evtugyn V, Zelenikhin P, Shi X, Shen M, Padnya P, Stoikov I. Thiacalixarene Carboxylic Acid Derivatives as Inhibitors of Lysozyme Fibrillation. Int J Mol Sci 2024; 25:4721. [PMID: 38731940 PMCID: PMC11083589 DOI: 10.3390/ijms25094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ksenia Shibaeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Olga Mostovaya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Timur Mukhametzyanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
6
|
Sathiyaseelan K, Antony Muthu Prabhu A, Rajendiran N. Photophysical, Antioxidant, Antibacterial and NBO, LOL, ELF Analysis of Alkyl Groups Substituted Calix[4]resorcinarenes. J Fluoresc 2024; 34:885-903. [PMID: 37418198 DOI: 10.1007/s10895-023-03280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
In our work to investigate the photophysical, antioxidant, antibacterial, DFT and topological analysis of four C-alkyl calix[4]resorcinarenes (3a-3d - C4RAs). The photophysical properties of C4RAs in selected solvents were recorded using both UV-Visible and fluorescence spectral studies. The absorption and emission maximum of four C4RAs were observed around 280 nm and 318 nm in selected solvents. The solvatochromism with selected solvents were analysed from the plot between Stoke's shift and ETN. The antioxidant activity and antibacterial activity of four C4RAs were evaluated by phosphomolybdate assay and Kirby-Bauer method. The structure of four C4RAs was optimized using DFT B3LYP 6-311G method to calculating the various theoretical parameters in the gas phase. The stability, reactivity, formation of hydrogen bond, donor-acceptor interactions were reported from the interpretation of theoretical values. The non-covalent interactions of four C4RAs were characterized by LOL and ELF topological analysis.
Collapse
Affiliation(s)
- Kasi Sathiyaseelan
- Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur - 628 216, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli , 627 012, Tamilnadu, India
| | - Albert Antony Muthu Prabhu
- Department of PG Chemistry, Aditanar College of Arts and Science, Tiruchendur, 628 216, Tamilnadu, India.
| | - Narayaswamy Rajendiran
- Department of Chemistry, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India
| |
Collapse
|
7
|
Ji Y, Dong S, Huang Y, Yue C, Zhu H, Wu D, Zhao J. Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. MEMBRANES 2024; 14:32. [PMID: 38392659 PMCID: PMC10890694 DOI: 10.3390/membranes14020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Graphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process. The hydrophilic entrance enables preferential access of water molecules to the cavity over ethanol molecules, while the high hydrophobicity of the cavity wall confers low resistance for water diffusion. After incorporating SCn molecules, the membrane shows a remarkable increase in the water/ethanol separation factor from 732 to 1260, while the permeate flux also increases by about 50%. In addition, the strong electrostatic interactions between the building blocks endow the membrane with excellent swelling resistance even under a high water content. This work provides an effective strategy of constructing high-efficiency water transport channels in membrane.
Collapse
Affiliation(s)
- Yufan Ji
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Shurui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiping Huang
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Changhai Yue
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Hao Zhu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Dan Wu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Lazar AN, Perret F, Perez-Lloret M, Michaud M, Coleman AW. Promises of anionic calix[n]arenes in life science: State of the art in 2023. Eur J Med Chem 2024; 264:115994. [PMID: 38070431 DOI: 10.1016/j.ejmech.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Because they hold together molecules by means of non-covalent interactions - relatively weak and thus, potentially reversible - the anionic calixarenes have become an interesting tool for efficiently binding a large range of ligands - from gases to large organic molecules. Being highly water soluble and conveniently biocompatible, they showed growing interest for many interdisciplinary fields, particularly in biology and medicine. Thanks to their intrinsic conical shape, they provide suitable platforms, from vesicles to bilayers. This is a valuable characteristic, as so they mimic the biologically functional architectures. The anionic calixarenes propose efficient alternatives for overcoming the limitations linked to drug delivery and bioavailability, as well as drug resistance along with limiting the undesirable side effects. Moreover, the dynamic non-covalent binding with the drugs enables predictable and on demand drug release, controlled by the stimuli present in the targeted environment. This particular feature instigated the use of these versatile, stimuli-responsive compounds for sensing biomarkers of diverse pathologies. The present review describes the recent achievements of the anionic calixarenes in the field of life science, from drug carriers to biomedical engineering, with a particular outlook on their applications for the diagnosis and treatment of different pathologies.
Collapse
Affiliation(s)
- Adina-N Lazar
- Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France.
| | - Florent Perret
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, Univ. Lyon - CNRS - Univ. Claude Bernard Lyon 1 - CPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne, 69622, Cedex, France.
| | - Marta Perez-Lloret
- School of Biological and Chemical Sciences, University of Galway, Ireland Galway, Ireland
| | - Mickael Michaud
- CIRI, Univ. Lyon1, Inserm, U1111, CNRS, UMR5308, ENS, Lyon, France
| | | |
Collapse
|
9
|
Mourer M, Regnouf-de-Vains JB, Duval RE. Functionalized Calixarenes as Promising Antibacterial Drugs to Face Antimicrobial Resistance. Molecules 2023; 28:6954. [PMID: 37836797 PMCID: PMC10574364 DOI: 10.3390/molecules28196954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. This review provides an overview of the work carried out in this aim towards the development of intrinsically active prodrogues or metallic calixarene complexes. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.
Collapse
Affiliation(s)
- Maxime Mourer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | | | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
10
|
Kasi S, Albert AMP. Photophysical, antioxidant, antibacterial and NBO, LOL, ELF analysis of alkyl groups substituted calix[4]resorcinarenes.. [DOI: 10.21203/rs.3.rs-2707368/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Abstract
In our work to investigate the photophysical, antibacterial, theoretical and topological analysis of four C-alkyl calix[4]resorcinarenes (C4RAs). The solvatochromism and photophysical properties of C4RAs in different solvents were recorded in both UV-Visible and fluorescence spectral studies. The total antioxidant capacity and antibacterial activity of four C4RAs were evaluated by phosphomolybdate assay and kirby-bauer method. Theoretical parameters such as HOMO, LUMO, energy gap and Mulliken atomic charges and NBO were optimized by DFT B3LYP 6-311G method. From the results of HOMO and LUMO energies were used to determine the theoretical parameters of four C4RAs. The nucleophilic and electrophilic substitution reactivity of four C4RAs were analyzed by molecular electrostatic potential map analysis. Natural bonding orbital analysis was used to determine the intramolecular charge transfer within the energy difference between acceptor and donor orbitals. The non-covalent interactions of four C4RAs were characterized by LOL and ELF topological analysis.
Collapse
Affiliation(s)
- Sathiyaseelan Kasi
- Research Scholar, Register Number: 19212022031004, Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur – 628 216. Affiliated to Manonmaniam Sundaranar University
| | | |
Collapse
|
11
|
Furer VL, Vandyukov AE, Ovsyannikov AS, Solovieva SE, Antipin IS. DFT study of the conformation, hydrogen bonds, IR, Raman, and NMR spectra of 1,3-disubstituted p-tert-butylthiacalix[4]arenes. J Mol Model 2023; 29:97. [PMID: 36920568 DOI: 10.1007/s00894-023-05505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
CONTEXT The molecular design of spatially preorganized molecules is one of the critical issues in organic chemistry. Molecular recognition and multipoint binding define them. They organize nanoscale assemblies and devices and stably form host-guest inclusion complexes. Not only is this kind of research important in theory but it also has applications. They are used to create the basic elements of sensory devices: elements of cellular electronics, functional nanofilms and coatings, molecular switches, etc. Thiacalix[4]arenes are a useful molecular platform for constructing a wide range of preorganized receptor structures. This research aims to examine the structure and spectra of distally substituted para-tert-butylthiacalix[4]arene aliphatic (C1) and aromatic (C2) esters. The comparison of the spectra of C1, C2, and C3 makes it possible to reveal the structures and H-bonds of these compounds. The structures and H-bonds of these compounds can be seen by analyzing the spectra of C1, C2, and C3. Calculations were made for the spectra of various C1 and C2 molecule conformations. The most stable conformation for C1 and C2 molecules is a distorted cone 2 (DC2) with the same ester group orientation. The pinched cone (PC) conformation is the most unstable. Thiacalixarene molecules' cavities shrink from 3.61 to 3.57 Å when aromatic ester groups take the place of aliphatic ester groups. Two OH groups are linked to an oxygen atom in the DC1 and DC2 conformations of the C1 and C2 molecules. H-bonds in C1 and C2 molecules affect the supramolecular characteristics of these molecules. A drop in ionization energy and increases in electron affinity, chemical potential, softness, electrophilicity index, and dipole moment occur when aliphatic esters are replaced with aromatic ones. METHODS Disubstituted aliphatic and aromatic esters' IR, Raman, and NMR spectra have been investigated. The DFT/B3LYP/6-311G(d,p) method and the GAUSSIAN 09W software were used to determine the vibrational spectra of molecules and optimize their geometry. A gauge-independent (GIAO) approach was used to determine chemical shifts in the NMR spectra with respect to tetramethylsilane.
Collapse
Affiliation(s)
- Victor L Furer
- Kazan State Architect and Civil Engineering University, 1 Zelenaya, 420043, Kazan, Russia.
| | - Alexandr E Vandyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str, 420088, Kazan, Russia
| | - Alexandr S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str, 420088, Kazan, Russia
| | | | - Igor S Antipin
- Kazan Federal University RU, Kremlyovskaya Str, 420008, Kazan, Russia
| |
Collapse
|
12
|
Galieva F, Khalifa M, Akhmetzyanova Z, Mironova D, Burilov V, Solovieva S, Antipin I. New Supramolecular Hypoxia-Sensitive Complexes Based on Azo-Thiacalixarene. Molecules 2023; 28:molecules28020466. [PMID: 36677529 PMCID: PMC9862174 DOI: 10.3390/molecules28020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hypoxia accompanies many human diseases and is an indicator of tumor aggressiveness. Therefore, measuring hypoxia in vivo is clinically important. Recently, complexes of calix[4]arene were identified as potent hypoxia markers. The subject of this paper is new hypoxia-sensitive host-guest complexes of thiacalix[4]arene. We report a new high-yield synthesis method for thiacalix[4]arene with four anionic carboxyl azo fragments on the upper rim (thiacalixarene L) and an assessment of the complexes of thiacalixarene L with the most widespread cationic rhodamine dyes (6G, B, and 123) sensitivity to hypoxia. Moreover, 1D and 2D NMR spectroscopy data support the ability of the macrocycles to form complexes with dyes. Rhodamines B and 123 formed host-guest complexes of 1:1 stoichiometry. Complexes of mixed composition were formed with rhodamine 6G. The association constant between thiacalixarene L and rhodamine 6G is higher than for other dyes. Thiacalixarene L-dye complexes with rhodamine 6G and rhodamine B are stable in the presence of various substances present in a biological environment. The UV-VIS spectrometry and fluorescence showed hypoxia responsiveness of the complexes. Our results demonstrate that thiacalixarene L has a stronger binding with dyes compared with the previously reported azo-calix[4]arene carboxylic derivative. Thus, these results suggest higher selective visualization of hypoxia for the complexes with thiacalixarene L.
Collapse
Affiliation(s)
- Farida Galieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Correspondence: (F.G.); (S.S.)
| | - Mohamed Khalifa
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Chemistry Department, Faculty of Science, Damanhour University, Damanhur 22511, Egypt
| | - Zaliya Akhmetzyanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Diana Mironova
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Vladimir Burilov
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (F.G.); (S.S.)
| | - Igor Antipin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
13
|
Kravets K, Kravets M, Kędra K, Danylyuk O. P-Sulfonatocalix[8]arene coordinates sodium cations and forms host-guest complex with berberine: insight from crystal structure. Supramol Chem 2023. [DOI: 10.1080/10610278.2022.2161901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kateryna Kravets
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Mykola Kravets
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Kędra
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Bartocci A, Pereira G, Cecchini M, Dumont E. Capturing the Recognition Dynamics of para-Sulfonato-calix[4]arenes by Cytochrome c: Toward a Quantitative Free Energy Assessment. J Chem Inf Model 2022; 62:6739-6748. [PMID: 36054284 DOI: 10.1021/acs.jcim.2c00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calix[n]arenes' selective recognition of protein surfaces covers a broad range of timely applications, from controlling protein assembly and crystallization to trapping partially disordered proteins. Here, the interaction of para-sulfonated calix-[4]-arenes with cytochrome c is investigated through all-atom, explicit water molecular dynamics simulations which allow characterization of two binding sites in quantitative agreement with experimental evidence. Free energy calculations based on the MM-PBSA and the attach-pull-release (APR) methods highlight key residues implicated in the recognition process and provide binding free energy results in quantitative agreement with isothermal titration calorimetry. Our study emphasizes the role of MD simulations to capture and describe the "walk" of sulfonated calix-[4]-arenes on the cytochrome c surface, with the arginine R13 as a pivotal interacting residue. Our MD investigation allows, through the quasi-harmonic multibasin (QHMB) method, probing an allosteric reinforcement of several per-residue interactions upon calixarene binding, which suggests a more complex mode of action of these supramolecular auxiliaries.
Collapse
Affiliation(s)
- Alessio Bartocci
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Gilberto Pereira
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France.,Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Elise Dumont
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
15
|
Exploring Inclusion Complexes of Amino Acids with -Sulfonatothiacalix[4]arene by Experimental and Computational Approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Abstract
ConspectusThis Account summarizes the progress in protein-calixarene complexation, tracing the developments from binary recognition to the glue activity of calixarenes and beyond to macrocycle-mediated frameworks. During the past 10 years, we have been tackling the question of protein-calixarene complexation in several ways, mainly by cocrystallization and X-ray structure determination as well as by solution state methods, NMR spectroscopy, isothermal titration calorimetry (ITC), and light scattering. Much of this work benefitted from collaboration, highlighted here. Our first breakthrough was the cocrystallization of cationic cytochrome c with sulfonato-calix[4]arene leading to a crystal structure defining three binding sites. Together with NMR studies, a dynamic complexation was deduced in which the calixarene explores the protein surface. Other cationic proteins were similarly amenable to cocrystallization with sulfonato-calix[4]arene, confirming calixarene-arginine/lysine encapsulation and consequent protein assembly. Calixarenes bearing anionic substituents such as sulfonate or phosphonate, but not carboxylate, have proven useful.Studies with larger calix[n]arenes (n = 6, 8) demonstrated the bigger better binder phenomenon with increased affinities and more interesting assemblies, including solution-state oligomerization and porous frameworks. While the calix[4]arene cavity accommodates a single cationic side chain, the larger macrocycles adopt different conformations, molding to the protein surface and accommodating several residues (hydrophobic, polar, and/or charged) in small cavities. In addition to accommodating protein features, the calixarene can bind exogenous components such as polyethylene glycol (PEG), metal ions, buffer, and additives. Ternary cocrystallization of cytochrome c, sulfonato-calix[8]arene, and spermine resulted in altered framework fabrication due to calixarene encapsulation of the tetraamine. Besides host-guest chemistry with exogenous components, the calixarene can also self-assemble, with numerous instances of macrocycle dimers.Calixarene complexation enables protein encapsulation, not merely side chain encapsulation. Cocrystal structures of sulfonato-calix[8]arene with cytochrome c or Ralstonia solanacearum lectin (RSL) provide evidence of encapsulation, with multiple calixarenes masking the same protein. NMR studies of cytochrome c and sulfonato-calix[8]arene are also consistent with multisite binding. In the case of RSL, a C3 symmetric trimer, up to six calixarenes bind the protein yielding a cubic framework mediated by calixarene dimers. Biomolecular calixarene complexation has evolved from molecular recognition to framework construction. This latter development contributes to the challenge in design and preparation of porous molecular materials. Cytochrome c and sulfonato-calix[8]arene form frameworks with >60% solvent in which the degree of porosity depends on the protein:calixarene ratio and the crystallization conditions. Recent developments with RSL led to three frameworks with varying porosity depending on the crystallization conditions, particularly the pH. NMR studies indicate a pH-triggered assembly in which two acidic residues appear to play key roles. The field of supramolecular protein chemistry is growing, and this Account aims to encourage new developments at the interface between biomolecular and synthetic/supramolecular chemistry.
Collapse
Affiliation(s)
- Peter B Crowley
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
17
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
18
|
Abdou A, Omran OA, Nafady A, Antipin IS. Structural, spectroscopic, FMOs, and non-linear optical properties exploration of three thiacaix(4)arenes derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Wu D, Zhang Z, Yu X, Bai B, Qi S. Hydrophilic Tetraphenylethene-Based Tetracationic Cyclophanes: NADPH Recognition and Cell Imaging With Fluorescent Switch. Front Chem 2022; 9:817720. [PMID: 35004632 PMCID: PMC8727463 DOI: 10.3389/fchem.2021.817720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
A hydrophilic TPE-based tetracationic cyclophane TPE-cyc was synthesized, which could capture intracellular Nicotinamide adenine dinucleotide phosphate and fuel the antioxidative ability of tumor cells to detoxify reactive oxygen species (ROS). Meanwhile, upon the reduction by cellular GSH, TPE-cyc could light up tumor cells, acting as a GSH-responsive fluorescent switch to image cells with high resolution.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shaolong Qi
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Inclusion complexes of water-soluble calix[n]arenes with quercetin: preparation, characterization, water solubility, and antioxidant features. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-021-02885-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Kravets K, Kravets M, Butkiewicz H, Kosiorek S, Sashuk V, Danylyuk O. Electrostatic co-assembly of pillar[n]pyridiniums and calix[4]arene in aqueous media. CrystEngComm 2022. [DOI: 10.1039/d2ce00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cationic pillar[n]pyridiniums and anionic p-sulfonatocalix[4]arene co-assemble into all-organic supersalts through encaging of the supercation units within/between the capsules emerged from superanion pairs. The encapsulation occures both in the solid...
Collapse
|
22
|
Quaglio D, Polli F, Del Plato C, Cianfoni G, Tortora C, Mazzei F, Botta B, Calcaterra A, Ghirga F. Calixarene: a versatile scaffold for the development of highly sensitive biosensors. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.2011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Polli
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Gabriele Cianfoni
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| |
Collapse
|
23
|
Furer V, Vandyukov A, Kleshnina S, Solovieva S, Antipin I, Kovalenko V. DFT study of conformation, hydrogen bonds, IR, and Raman spectra of the sodium salt of p-hexasulfonatocalix[6]arene DFT. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Study of the conformation and hydrogen bonds of the p-tetrasulfonatothiacalix[4]arene pentasodium salt by vibrational spectroscopy and DFT. J Mol Model 2021; 27:326. [PMID: 34686922 DOI: 10.1007/s00894-021-04905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The vibrational spectra of the p-tetrasulfonatothiacalix[4]arene pentasodium salt (TCAS) and tert-butylthiacalix[4]arene (BuTCA) were studied. Comparison of the TCAS and BuTCA IR spectra allows us to isolate the bands of tert-butyl and sulfonate groups. Geometry, IR and Raman spectra were calculated for conformation cone, partial cone, 1,2-, and 1,3-alternate. The most stable conformation of the TCAS is the cone. Characteristic bands were determined for each of the possible conformations. In the case of the TCAS molecule, four ions of sodium are coordinated with the oxygen atoms of sulfonate groups, and the fifth ion interacts with the oxygen and sulfur atoms of the macrocycle. Under the influence of sodium ions, the distribution of electron density in the TCAS molecule and its ability to supramolecular interactions change.
Collapse
|
25
|
Comparative study of the vibrational spectra of carboxylate azocalix[4]arenes and azothiacalix[4]arenes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Ozyilmaz E, Ascioglu S, Yilmaz M. Preparation of One‐Pot Immobilized Lipase with Fe
3
O
4
Nanoparticles Into Metal‐Organic Framework For Enantioselective Hydrolysis of (
R,S
)‐Naproxen Methyl Ester. ChemCatChem 2021. [DOI: 10.1002/cctc.202100481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elif Ozyilmaz
- Department of Biochemistry Selcuk University 42075 Konya Turkey
| | | | - Mustafa Yilmaz
- Department of Chemistry Selcuk University 42075 Konya Turkey
| |
Collapse
|
27
|
Wheate NJ. Comparative host–guest complex formation of the Alzheimer’s drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Tsiailanis AD, Tzakos AG, Mavromoustakos T. Advancing the Therapeutic Efficacy of Bioactive Molecules by Delivery Vehicle Platforms. Curr Med Chem 2021; 28:2697-2706. [PMID: 32503399 DOI: 10.2174/0929867327666200605154506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Drugs have to overcome numerous barriers to reach their desired therapeutic targets. In several cases, drugs, especially the highly lipophilic molecules, suffer from low solubility and bioavailability and therefore their desired targeting is hampered. In addition, undesired metabolic products might be produced or off-targets could be recognized. Along these lines, nanopharmacology has provided new technological platforms, to overcome these boundaries. Specifically, numerous vehicle platforms such as cyclodextrins and calixarenes have been widely utilized to host lipophilic drugs such as antagonists of the angiotensin II AT1 receptor (AT1R), as well as quercetin and silibinin. The encapsulation of these drugs in supramolecules or other systems refines their solubility and metabolic stability, increases their selectivity and therefore decreases their effective dose and improves their therapeutic index. In this mini review we report on the formulations of silibinin and AT1R antagonist candesartan in a 2-HP-β-cyclodextrin host molecule, which displayed enhanced cytotoxicity and increased silibinin's and candesartan's stability, respectively. Moreover, we describe the encapsulation of quercetin in gold nanoparticles bearing a calixarene supramolecular host. Also, the encapsulation of temozolomide in a calixarene nanocapsule has been described. Finally, we report on the activity enhancement that has been achieved upon using these formulations as well as the analytical and computational methods we used to characterize these formulations and explore the molecular interactions between the host and quest molecules.
Collapse
Affiliation(s)
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| |
Collapse
|
29
|
Mockler NM, Engilberge S, Rennie ML, Raston CL, Crowley PB. Protein-macrocycle framework engineering: supramolecular copolymerisation with two disparate calixarenes. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1935946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Niamh M. Mockler
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Martin L Rennie
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park SA Adelaide, Australia
| | - Peter B. Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
30
|
Hayashida O, Tanaka Y, Miyazaki T. Synthesis and Guest-Binding Properties of pH/Reduction Dual-Responsive Cyclophane Dimer. Molecules 2021; 26:molecules26113097. [PMID: 34067275 PMCID: PMC8196905 DOI: 10.3390/molecules26113097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
A water-soluble cyclophane dimer having two disulfide groups as a reduction-responsive cleavable bond as well as several acidic and basic functional groups as a pH-responsive ionizable group 1 was successfully synthesized. It was found that 1 showed pH-dependent guest-binding behavior. That is, 1 strongly bound an anionic guest, 6-p-toluidinonaphthalene-2-sulfonate (TNS) with binding constant (K/M−1) for 1:1 host-guest complexes of 9.6 × 104 M−1 at pH 3.8, which was larger than those at pH 7.4 and 10.7 (6.0 × 104 and 2.4 × 104 M−1, respectively), indicating a favorable electrostatic interaction between anionic guest and net cationic 1. What is more, release of the entrapped guest molecules by 1 was easily controlled by pH stimulus. Large favorable enthalpies (ΔH) for formation of host-guest complexes were obtained under the pH conditions employed, suggesting that electrostatic interaction between anionic TNS and 1 was the most important driving force for host-guest complexation. Such contributions of ΔH for formation of host-guest complexes decreased along with increased pH values from acidic to basic solutions. Upon addition of dithiothreitol (DTT) as a reducing reagent to an aqueous PBS buffer (pH 7.4) containing 1 and TNS, the fluorescence intensity originating from the bound guest molecules decreased gradually. A treatment of 1 with DTT gave 2, having less guest-binding affinity by the cleavage of disulfide bonds of 1. Consequently, almost all entrapped guest molecules by 1 were released from the host. Moreover, such reduction-responsive cleavage of 1 and release of bound guest molecules was performed more rapidly in aqueous buffer at pH 10.7.
Collapse
|
31
|
Deng D, Yang X, An J, Zhang K, Lin S, Dong X. Sulfonated calix[4]arene functionalized SiO 2@TiO 2 for recognition of lysine methylation. Talanta 2021; 224:121819. [PMID: 33379044 DOI: 10.1016/j.talanta.2020.121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/18/2022]
Abstract
Lysine methylations are common protein post-translational modifications (PTMs), that play significant roles in regulating gene activities. Studies of their functions and connections with diseases have important values. However, due to the small variations from their native structures and very low component proportions, it is very difficult to extract methylated peptides from biological mixtures. In this research, a new material that utilizes sulfonated calix[4]arene (SC4A) as the recognition unit and silica coated with TiO2 as carrier, denoted as SiO2@TiO2@SC4A, was synthesized. The equilibrium binding experiments demonstrated that SiO2@TiO2@SC4A can identify lysine and arginine methylation and peptides with these methylated residues. The maximum isotherm binding capacities are 70.0, 55.9, 31.4 and 24.8 μmol g-1 for Lys(Me3), Lys(Me)2, Lys(Me) and Lys, respectively. It demonstrated that the higher the degree of methylation, the stronger the interactions. In addition, the analyses of high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) demonstrated that peptides with methylated lysine or arginine can be selectively extracted from spiked histone trypsin digestion. The recoveries for the spiked GGAK(Me)R, GGAKR(Me)2 and GGAK(Me)3R are 83%, 78%, and 84% respectively. The experiments from the nuclear extracts of HeLa cells also illustrated that SiO2@TiO2@SC4A holds a potential in the enrichment and identification of lysine methylations.
Collapse
Affiliation(s)
- Dandan Deng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jinying An
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Shen Lin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - XiangChao Dong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Dutta Choudhury S, Pal H. Supramolecular and suprabiomolecular photochemistry: a perspective overview. Phys Chem Chem Phys 2021; 22:23433-23463. [PMID: 33112299 DOI: 10.1039/d0cp03981k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications. We have discussed with reference to relevant chemical systems where supramolecularly assisted modulations in the properties of chromophoric dyes and drugs can be used or have already been used in different areas like sensing, dye/drug stabilization, drug delivery, functional materials, and aqueous dye laser systems. In supramolecular assemblies, along with their conventional photophysical properties, the acid-base properties of prototropic dyes, as well as the excited state prototautomerization and related proton transfer behavior of proton donor/acceptor dye molecules, are also largely modulated due to supramolecular interactions, which are often reflected very explicitly through changes in their absorption and fluorescence characteristics, providing us many useful insights into these chemical systems and bringing out intriguing applications of such changes in different applied areas. Another interesting research area in supramolecular photochemistry is the excitation energy transfer from the donor to acceptor moieties in self-assembled systems which have immense importance in light harvesting applications, mimicking natural photosynthetic systems. In this review article, we have discussed varieties of these aspects, highlighting their academic and applied implications. We have tried to emphasize the progress made so far and thus to bring out future research perspectives in the subject areas concerned, which are anticipated to find many useful applications in areas like sensors, catalysis, electronic devices, pharmaceuticals, drug formulations, nanomedicine, light harvesting, and smart materials.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. and Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India and Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
33
|
Ozyilmaz E, Ascioglu S, Yilmaz M. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. Int J Biol Macromol 2021; 175:79-86. [PMID: 33548316 DOI: 10.1016/j.ijbiomac.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Metal organic frameworks (MOFs) are hybrid organic inorganic materials with unique properties such as well-defined pore structure, extremely high surface area, excellent chemical-thermal stability. MOFs-based constructs have been extensively engineered and used for applications, such as enzyme immobilization for bio-catalysis. To obtained a zeolitic imidazole framework-8 (ZIF-8) for enzyme immobilization, Candida rugosa lipase (CRL) was pretreated with calix [4]arene tetracarboxylic acid (Calix) and reacted with Zn and imidazole by co-precipitation method. The prepared biocomposite was characterized by SEM, EDX, FT-IR, and XRD. The prepared CRL@Calix-ZIF-8 with high encapsulation efficiency showed improved resistance to alkali and thermal conditions. The CRL@Calix-ZIF-8 with the biocatalytic activity was 2-folds higher than that of the CRL@ZIF-8 (without Calix). The free lipase lost its catalytic activity completely at 60 °C after 100 min, while the CRL@Calix-ZIF-8 and CRL@ZIF-8 retained about 84% and 73%. It was found that CRL@Calix-ZIF-8 and CRL@ZIF-8 still retained ~83 and 67% of catalytic activity after its 6th use, respectively. The kinetic resolution of the immobilized lipases was examined for enantioselective hydrolysis of racemic naproxen methyl ester. CRL@Calix-ZIF-8 showed enantioselectivity against the racemic naproxen methyl ester, with E = 183 and 131 compared to the CRL@ZIF-8.
Collapse
Affiliation(s)
- Elif Ozyilmaz
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey.
| | - Sebahat Ascioglu
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
| |
Collapse
|
34
|
Tu YM, Samineni L, Ren T, Schantz AB, Song W, Sharma S, Kumar M. Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Selective Recognition of Amino Acids and Peptides by Small Supramolecular Receptors. Molecules 2020; 26:molecules26010106. [PMID: 33379401 PMCID: PMC7796322 DOI: 10.3390/molecules26010106] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.
Collapse
|
37
|
Bartocci A, Gillet N, Jiang T, Szczepaniak F, Dumont E. Molecular Dynamics Approach for Capturing Calixarene-Protein Interactions: The Case of Cytochrome C. J Phys Chem B 2020; 124:11371-11378. [PMID: 33270456 DOI: 10.1021/acs.jpcb.0c08482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functionalized supramolecular cages are of growing importance in biology and biochemistry. They have recently been proposed as efficient auxiliaries to obtain high-resolution cocrystallized proteins. Here, we propose a molecular dynamics investigation of the supramolecular association of sulfonated calix-[8]-arenes to cytochrome c starting from initially distant proteins and ligands. We characterize two main binding sites for the sulfonated calixarene on the cytochrome c surface which are in perfect agreement with the previous experiments with regard to the structure (comparison with the X-ray structure PDB 6GD8) and the binding free energies [comparison between the molecular mechanics Poisson-Boltzmann surface area analysis and the isothermal titration calorimetry measurements]. The per-residue decomposition of the interaction energies reveals the detailed picture of this electrostatically driven association and notably the role of arginine R13 as a bridging residue between the two main anchoring sites. In addition, the analysis of the residue behavior by means of a supervised machine learning protocol unveils the formation of a hydrogen bond network far from the binding sites, increasing the rigidity of the protein. This study paves the way toward an automated procedure to predict the supramolecular protein-cage association, with the possibility of a computational screening of new promising derivatives for controlled protein assembly and protein surface recognition processes.
Collapse
Affiliation(s)
- Alessio Bartocci
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Natacha Gillet
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Tao Jiang
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Florence Szczepaniak
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Elise Dumont
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France.,Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| |
Collapse
|
38
|
Thorave RG, Lande DN, Shinde UV, Malkhede DD, Gejji SP. Enlightening binding behaviour of sulfonatocalix[4]arene receptor with 2-acetoxybenzoic acid through the lens of experiments and theory. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Antimicrobial Activity of Calixarenes and Related Macrocycles. Molecules 2020; 25:molecules25215145. [PMID: 33167339 PMCID: PMC7663816 DOI: 10.3390/molecules25215145] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/21/2022] Open
Abstract
Calixarenes and related macrocycles have been shown to have antimicrobial effects since the 1950s. This review highlights the antimicrobial properties of almost 200 calixarenes, resorcinarenes, and pillararenes acting as prodrugs, drug delivery agents, and inhibitors of biofilm formation. A particularly important development in recent years has been the use of macrocycles with substituents terminating in sugars as biofilm inhibitors through their interactions with lectins. Although many examples exist where calixarenes encapsulate, or incorporate, antimicrobial drugs, one of the main factors to emerge is the ability of functionalized macrocycles to engage in multivalent interactions with proteins, and thus inhibit cellular aggregation.
Collapse
|
40
|
Oguz M, Gul A, Karakurt S, Yilmaz M. Synthesis of New Picolylamine Bearing Calix[8]arene Derivatives as Antiproliferative Agents for Colorectal Carcinoma. ChemistrySelect 2020. [DOI: 10.1002/slct.202002881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehmet Oguz
- Selcuk University Department of Chemistry 42075 Konya Turkey
- Department of Advanced Material and Nanotechnology Selcuk University 42075 Konya Turkey
| | - Alev Gul
- Selcuk University Department of Chemistry 42075 Konya Turkey
| | - Serdar Karakurt
- Selcuk University Department of Biochemistry Konya 42075 Turkey
| | - Mustafa Yilmaz
- Selcuk University Department of Chemistry 42075 Konya Turkey
| |
Collapse
|
41
|
Pan Y, Hu X, Guo D. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
42
|
Pan Y, Hu X, Guo D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed Engl 2020; 60:2768-2794. [DOI: 10.1002/anie.201916380] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
43
|
Senthilkumaran M, Saravanan C, Ashwin BCMA, Shanmugavelan P, Muthu Mareeswaran P, Prakash M. Inclusion induced water solubility and binding investigation of acenaphthene-1,2-dione with p-sulfonatocalix[4]arene. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase. Bioprocess Biosyst Eng 2020; 43:2085-2093. [DOI: 10.1007/s00449-020-02397-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
|
45
|
Du D, Pu W, Hu P, Liu Z, Zhang S. p
‐Sulfocalix[4]arene functionalized hydrophobically associative polyacrylamide: Flow characteristics and potential application to enhanced oil recovery. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dai‐jun Du
- State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum University Chengdu China
| | - Wan‐fen Pu
- State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum University Chengdu China
| | - Pan Hu
- PetroChina Southwest Oil & Gasfield Company, Shunan Gas Mine Luzhou China
| | - Zhezhi Liu
- Chongqing University of Science and Technology Chongqing China
| | - Sheng Zhang
- Binggang Group, Dagang Oilfiled Company, PetroChina Tianjing China
| |
Collapse
|
46
|
Dai L, Feng WX, Zheng SP, Jiang JJ, Wang D, van der Lee A, Dumitrescu D, Barboiu M. Progressive Folding and Adaptive Multivalent Recognition of Alkyl Amines and Amino Acids in p-Sulfonatocalix[4]arene Hosts: Solid-State and Solution Studies. Chempluschem 2020; 85:1623-1631. [PMID: 32286737 DOI: 10.1002/cplu.202000232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/15/2023]
Abstract
Calix[4]arenes have the ability to encapsulate biomimetic guests, offering interesting opportunities to explore their molecular recognition, very close to biological scenarios. In this study, p-sulfonatocalix[4]arene (C4 A) anions and hydrated alkali cations have been used for the in situ recognition of cationic 1,ω-diammonium-alkanes and 1,ω-amino-acids of variable lengths. NMR spectroscopy illustrates that these systems are stable in aqueous solution and the interaction process involves several binding states or stabilized conformations within the C4 A anion, depending of the nature of the guest. DOSY experiments showed that monomeric 1 : 1 host-guest species are present, while the cation does not influence their self-assembly in solution. The folded conformations observed in the solid-state X-ray single-crystal structures shed light on the constitutional adaptivity of flexible chains to environmental factors. Futhermore, a comprehensive screening of 30 single crystal structures helped to understand the in situ conformational fixation and accurate determination of the folded structures of the confined guest molecules, with a compression up to 40 % compared with their linear conformations.
Collapse
Affiliation(s)
- Liya Dai
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wei-Xu Feng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi, 710129, P. R. China
| | - Shao-Ping Zheng
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ji-Jun Jiang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dawei Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Arie van der Lee
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Dan Dumitrescu
- XRD2 beamline, Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
47
|
Humbert N, Kovalenko L, Saladini F, Giannini A, Pires M, Botzanowski T, Cherenok S, Boudier C, Sharma KK, Real E, Zaporozhets OA, Cianférani S, Seguin-Devaux C, Poggialini F, Botta M, Zazzi M, Kalchenko VI, Mori M, Mély Y. (Thia)calixarenephosphonic Acids as Potent Inhibitors of the Nucleic Acid Chaperone Activity of the HIV-1 Nucleocapsid Protein with a New Binding Mode and Multitarget Antiviral Activity. ACS Infect Dis 2020; 6:687-702. [PMID: 32045204 DOI: 10.1021/acsinfecdis.9b00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid protein (NC) is a highly conserved protein that plays key roles in HIV-1 replication through its nucleic acid chaperone properties mediated by its two zinc fingers and basic residues. NC is a promising target for antiviral therapy, particularly to control viral strains resistant to currently available drugs. Since calixarenes with antiviral properties have been described, we explored the ability of calixarene hydroxymethylphosphonic or sulfonic acids to inhibit NC chaperone properties and exhibit antiviral activity. By using fluorescence-based assays, we selected four calixarenes inhibiting NC chaperone activity with submicromolar IC50 values. These compounds were further shown by mass spectrometry, isothermal titration calorimetry, and fluorescence anisotropy to bind NC with no zinc ejection and to compete with nucleic acids for the binding to NC. Molecular dynamic simulations further indicated that these compounds interact via their phosphonate or sulfonate groups with the basic surface of NC but not with the hydrophobic plateau at the top of the folded fingers. Cellular studies showed that the most soluble compound CIP201 inhibited the infectivity of wild-type and drug-resistant HIV-1 strains at low micromolar concentrations, primarily targeting the early steps of HIV-1 replication. Moreover, CIP201 was also found to inhibit the flipping and polymerization activity of reverse transcriptase. Calixarenes thus form a class of noncovalent NC inhibitors, endowed with a new binding mode and multitarget antiviral activity.
Collapse
Affiliation(s)
- Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Manuel Pires
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sergiy Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Kamal K. Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Olga A. Zaporozhets
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
48
|
Gorbunov A, Iskandarova A, Puchnin K, Nenajdenko V, Kovalev V, Vatsouro I. A route to virtually unlimited functionalization of water-soluble p-sulfonatocalix[4]arenes. Chem Commun (Camb) 2020; 56:4122-4125. [PMID: 32166302 DOI: 10.1039/d0cc01196g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The functionality of p-sulfonatocalix[4]arenes can be easily extended using the propargylation/CuAAC reaction sequence, which allows the introduction of up to four substituted triazole units to the narrow rims of the macrocycles while maintaining their cone shapes and water solubility and, thus, biomedical applicability.
Collapse
Affiliation(s)
- Alexander Gorbunov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Anna Iskandarova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Kirill Puchnin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Valentine Nenajdenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Vladimir Kovalev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Ivan Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| |
Collapse
|
49
|
Hayashida O, Shibata K. Stimuli-Responsive Supramolecular Coaggregation and Disaggregation of Host-Guest Conjugates Having a Disulfide Linkage. J Org Chem 2020; 85:5493-5502. [PMID: 32233372 DOI: 10.1021/acs.joc.0c00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water-soluble cationic and anionic cyclophanes (1a and 2a, respectively) having a dabsyl group with a cleavable disulfide linkage were synthesized as a host-guest conjugate covalently bound with both host and guest components. Self-inclusion phenomena but not self-aggregation behaviors were observed for each cyclophane in aqueous media. Each cyclophane includes its own dabsyl moiety (guest component) in its macrocyclic cavity (host component) through hydrophobic interaction. When 1 equiv. of cationic 1a was added to an aqueous solution of anionic 2a, however, supramolecular coaggregates formed spontaneously through host-guest complexation. As regard the supramolecular coaggregates, the existence of larger particles was confirmed by DLS measurements and TEM observation. The hydrophobic interaction between the dabsyl moiety and macrocyclic cavity and electrostatic interactions between 1a and 2a play important roles in the supramolecular coaggregate formation. Each cyclophane having a cleavable disulfide linkage was easily transformed to the corresponding thiols by reducing reagents such as DTT, which was confirmed by MALDI-TOF MS. Disaggregation of the supramolecular coaggregates composed of 1a and 2a was successfully performed upon addition of DTT, with release of the thiol derivative of dabsyl. Such disaggregation of the coaggregates was also conducted by other external stimuli such as salts and competitive guests.
Collapse
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Kana Shibata
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| |
Collapse
|
50
|
Sayin S, Ozyilmaz E, Oguz M, Yusufoglu R, Yilmaz M. Calixarenes functionalised water-soluble iron oxide magnetite nanoparticles for enzyme immobilisation. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1740704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Serkan Sayin
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun, Turkey
| | - Elif Ozyilmaz
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Mehmet Oguz
- Department of Chemistry, Selcuk University, Konya, Turkey
| | | | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|