1
|
Mishra M, Arya A, Malik MZ, Mishra A, Hasnain SE, Bhatnagar R, Ahmad S, Chaturvedi R. Differential genome organization revealed by comparative topological analysis of Mycobacterium tuberculosis strains H37Rv and H37Ra. mSystems 2025; 10:e0056224. [PMID: 40192326 DOI: 10.1128/msystems.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/08/2025] [Indexed: 05/21/2025] Open
Abstract
Recent studies have shown that three-dimensional architecture of bacterial chromatin plays an important role in gene expression regulation. However, genome topological organization in Mycobacterium tuberculosis, the etiologic agent of tuberculosis, remains unknown. On the other hand, the exact mechanism of differential pathogenesis in the canonical strains of M. tuberculosis H37Rv and H37Ra remains poorly understood in terms of their raw sequences. In this context, a detailed contact map from a Hi-C experiment is a candidate for what bridges the gap. Here, we present the first comprehensive report on genome-wide contact maps between regions of H37Rv and H37Ra genomes. We tracked differences between the genome architectures of H37Rv and H37Ra, which could possibly explain the virulence attenuation in H37Ra. We confirm the existence of a differential organization between the two strains most significantly a higher chromosome interaction domain (CID) size in the attenuated H37Ra strain. CID boundaries are also found enriched with highly expressed genes and with higher operon density in H37Rv. Furthermore, most of the differentially expressed PE/PPE genes were present near the CID boundaries in H37Rv and not in H37Ra. We also found a systemic reorganization of CIDs in both virulent H37Rv and avirulent H37Ra strains after hypoxia induction. Collectively, our study proposes a differential genomic topological pattern between H37Rv and H37Ra, which could explain the virulence attenuation in H37Ra.IMPORTANCEGenome organization studies using chromosome conformation capture techniques have proved to be useful in establishing a three-dimensional (3D) landscape of bacterial chromatin. The sequence-based studies failed to unveil the exact mechanism for virulence attenuation in one of the Mycobacterium tuberculosis strains H37Ra. Moreover, as of today, no study investigated the 3D structure of the M. tuberculosis genome and how 3D genome organization affects transcription in M. tuberculosis. We investigated the genome topology in virulent and attenuated strains of M. tuberculosis using Hi-C. Our study demonstrated that virulent and attenuated M. tuberculosis strains exhibit distinct topological features that correlate with higher gene expression of virulence genes in the virulent H37Rv strain.
Collapse
Affiliation(s)
- Mohit Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Akanksha Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Center for System Medicine, Jawaharlal Nehru University, New Delhi, India
- Nanofluidiks Pvt. Ltd, Jawaharlal Nehru University-Foundation for Innovation, New Delhi, India
| |
Collapse
|
2
|
Zhao Z, Wu Y, Fan S, Li Z, Zou D, Guo A, Wei X. Biosynthesis of the Functional Component Spermidine from Bacillus amyloliquefaciens by Iterative Integration Expression. ACS Synth Biol 2025; 14:1745-1755. [PMID: 40338139 DOI: 10.1021/acssynbio.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Spermidine finds broad applications across both the nutraceutical and biomedical sectors. In this study, key regulatory genes affecting spermidine synthesis and efficient integration sites were identified to construct a chassis strain for green and sustainable spermidine production. First, the expression of argJ was increased, and the protein SAM2 was mutated to promote the synthesis of spermidine. Second, positional effects were examined in Bacillus amyloliquefaciens. Concurrently, bioinformatics analysis was conducted to uncover transport proteins Blt, YvdR, and Mta, as well as other key genes tcyJ, yxeM, appC, yngA, and orf03307 that affect spermidine synthesis. Ultimately, strain PM13 was constructed through the iterative integration of key genes, achieving a spermidine titer of 396.92 mg/L, 10.34 times higher than strain PM1. Furthermore, xylose fed-batch fermentation increased spermidine titer to 1.69 g/L, setting a new shake flask production record. In conclusion, this study amassed genetic resources and developed an integrated strain for efficient, stable spermidine synthesis.
Collapse
Affiliation(s)
- Ziyue Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingchao Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siying Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhou Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ailing Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang Z, Liu S, Xie M, Lang Z, Zhang X, Luo L, Zhao G, Li N, Peng Y. Deleting fis downregulates virulence and effectively protects Pasteurella multocida infection in mice. BMC Vet Res 2025; 21:323. [PMID: 40329318 PMCID: PMC12057170 DOI: 10.1186/s12917-025-04769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Pasteurella multocida (P. multocida) is an important pathogen causing various diseases in both domestic and wild animals. The factor for inversion stimulation (Fis) is a nucleoid-associated protein with diverse functions in various bacteria, which positively regulate the transcription of capsular glycosaminoglycan genes in P. multocida. However, the precise mechanistic understanding of how the fis regulate virulence of P. multocida remains largely unknown. In this study, we discovered that fis transcript levels of P. multocida CQ2, serotype A (PmCQ2) were significantly increased in vivo, and showed a positive correlation with the capsule and virulence of P. multocida. To further understand how the fis regulated P. multocida pathogenesis, a homologous recombination strategy was used to generate fis-deleted strain. Then, the growth velocity, virulence characteristics, immune/inflammatory responses, and the survival rates of challenged mice were determined. The findings revealed that the presence of fis promoted the growth, regulated synthesis of capsule and biofilm of PmCQ2, and helped to resist phagocytosis by macrophages. Notably, we firstly demonstrated that Fis determined whether P. multocida can use bound iron ion for its survival. Consequently, the loss of fis greatly restricted P. multocida pathogenicity, as evidenced by reducing tissue bacterial loads as well as inflammatory factors levels. Moreover, the fis deletion strain was endowed with strong cross immunoprotected properties against P. multocida serotype A and B. Thus, these results suggested the pathogenic role of fis in P. multocida and proposed that fis deletion strain could be used as an attenuated vaccine candidate against P. multocida of serotype A and B.
Collapse
Affiliation(s)
- Zhijie Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Siyu Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Muhan Xie
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zhengchun Lang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Guangfu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Mazzuoli MV, van Raaphorst R, Martin L, Bock F, Thierry A, Marbouty M, Waclawiková B, Stinenbosch J, Koszul R, Veening JW. HU promotes higher order chromosome organization and influences DNA replication rates in Streptococcus pneumoniae. Nucleic Acids Res 2025; 53:gkaf312. [PMID: 40263708 PMCID: PMC12014288 DOI: 10.1093/nar/gkaf312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Nucleoid-associated proteins (NAPs) are crucial for maintaining chromosomal compaction and architecture, and are actively involved in DNA replication, recombination, repair, and gene regulation. In Streptococcus pneumoniae, the role of the highly conserved NAP HU in chromosome conformation has not yet been investigated. Here, we use a multi-scale approach to explore HU's role in chromosome conformation and segregation dynamics. By combining superresolution microscopy and whole-genome-binding analysis, we describe the nucleoid as a dynamic structure where HU binds transiently across the entire nucleoid, with a preference for the origin of replication over the terminus. Reducing cellular HU levels impacts nucleoid maintenance and disrupts nucleoid scaling with cell size, similar to the distortion caused by fluoroquinolones, supporting its requirement for maintaining DNA supercoiling. Furthermore, in cells lacking HU, the replication machinery is misplaced, preventing cells from initiating and proceeding with ongoing replication. Chromosome conformation capture coupled to deep sequencing (Hi-C) revealed that HU is required to maintain cohesion between the two chromosomal arms, similar to the structural maintenance of chromosome complex. Together, we show that by promoting long-range chromosome interactions and supporting the architecture of the domain encompassing the origin, HU is essential for chromosome integrity and the intimately related processes of replication and segregation.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Renske van Raaphorst
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Louise S Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Martial Marbouty
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Barbora Waclawiková
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Jasper Stinenbosch
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
5
|
Hendricks AL, More KR, Devaraj A, Buzzo JR, Robledo-Avila FH, Partida-Sanchez S, Bakaletz LO, Goodman SD. Bacterial biofilm-derived H-NS protein acts as a defense against Neutrophil Extracellular Traps (NETs). NPJ Biofilms Microbiomes 2025; 11:58. [PMID: 40234459 PMCID: PMC12000423 DOI: 10.1038/s41522-025-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Extracellular DNA (eDNA) is crucial for the structural integrity of bacterial biofilms as they undergo transformation from B-DNA to Z-DNA as the biofilm matures. This transition to Z-DNA increases biofilm rigidity and prevents binding by canonical B-DNA-binding proteins, including nucleases. One of the primary defenses against bacterial infections are Neutrophil Extracellular Traps (NETs), wherein neutrophils release their own eDNA to trap and kill bacteria. Here we show that H-NS, a bacterial nucleoid associated protein (NAP) that is also released during biofilm development, is able to incapacitate NETs. Indeed, when exposed to human derived neutrophils, H-NS prevented the formation of NETs and lead to NET eDNA retraction in previously formed NETs. NETs that were exposed to H-NS also lost their ability to kill free-living bacteria which made H-NS an attractive therapeutic candidate for the control of NET-related human diseases. A model of H-NS release from biofilms and NET incapacitation is discussed.
Collapse
Affiliation(s)
- A L Hendricks
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - K R More
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A Devaraj
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J R Buzzo
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - F H Robledo-Avila
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - S Partida-Sanchez
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - L O Bakaletz
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - S D Goodman
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Verdonk C, Agostino M, Eto KY, Hall D, Bond C, Ramsay J. Structural basis for control of integrative and conjugative element excision and transfer by the oligomeric winged helix-turn-helix protein RdfS. Nucleic Acids Res 2025; 53:gkaf249. [PMID: 40173017 PMCID: PMC11963761 DOI: 10.1093/nar/gkaf249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Winged helix-turn-helix (wHTH) proteins are diverse DNA-binding proteins that often oligomerize on DNA and participate in DNA recombination and transcriptional regulation. wHTH recombination directionality factors (RDFs) associated with tyrosine recombinases, stimulate excision of prophage and integrative and conjugative elements (ICEs). RdfS is required for excision and conjugation of the Mesorhizobium japonicum R7A ICE, ICEMlSymR7A, which carries genes for nitrogen-fixing symbiosis. We show RdfS binds to DNA regions within the IntS attachment site (attP) and within the rdfS promoter, enabling RdfS to coordinate rdfS/intS expression and stimulate RdfS/IntS-mediated ICEMlSymR7A excision. Several RdfS DNA-binding sites were identified. However, no consensus motif was apparent and no individual nucleotide substitutions in attP prevented RdfS binding. RdfS forms extensive helical filaments in crystals, with subunits contacting via a novel α1-helix absent in other wHTH-RDFs. RdfS oligomerized in solution in the absence of DNA. Molecular dynamics simulations supported a role for the α1-helix in oligomerization and compaction of nucleoprotein complexes. Removal of RdfS-α1 did not eliminate DNA-binding in vitro but reduced oligomerization and abolished RdfS-mediated ICEMlSymR7A excision and conjugative transfer. We propose the novel RdfS-α1 mediated oligomerization enables RdfS to specifically recognize larger DNA regions with low primary sequence conservation through an indirect readout mechanism.
Collapse
Affiliation(s)
- Callum J Verdonk
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Centre for Crop and Disease Management, Curtin University, Perth, WA 6102, Australia
| | - Mark Agostino
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Karina Yui Eto
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Drew A Hall
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA 6150, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Marshall Centre for Infectious Disease Research and Training, The University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P Ramsay
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
7
|
Xia X, Zhang J, Zheng J, Liao G, Ding Y, Li Y. Important Role of Bacterial Nucleoid-Associated Proteins in Discovery of Novel Secondary Metabolites. Int J Mol Sci 2025; 26:2393. [PMID: 40141036 PMCID: PMC11942623 DOI: 10.3390/ijms26062393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Microbial secondary metabolites (SMs) serve as the main source of natural antibiotics. Bioinformatics analyses reveal that multiple secondary metabolites biosynthetic gene clusters (BGCs) exist in the genomes of fungi and bacteria but the vast majority remains silent due to the control of intricate regulatory networks. An in-depth comprehension of these regulatory processes is required for the activation of cryptic gene clusters. Among them, the regulations at the proteomic level originating from epigenetic modifications and their correlations with secondary metabolite biosynthesis have gained increasing interest recently, especially the modifications on bacterial nucleoid-associated proteins. This article highlights the recent advances and important roles of bacterial nucleoid-associated proteins (NAPs) in the biosynthesis of SMs. Developing new tools around NAPs would be significant for the discovery of novel bioactive compounds in microbial resources.
Collapse
Affiliation(s)
- Xiulei Xia
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yanqin Ding
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yue Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
9
|
Wang Y, Ge J, Xian W, Tang Z, Xue B, Yu J, Yao YF, Liu H, Qiu J, Liu X. Phosphorylation of the prokaryotic histone-like protein H-NS modulates bacterial virulence in Salmonella Typhimurium. Microbiol Res 2025; 292:128041. [PMID: 39736215 DOI: 10.1016/j.micres.2024.128041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer. Previous studies have shown that H-NS plays a critical role in silencing foreign T3SS genes. Here, we found that H-NS is phosphorylated at multiple residues in S. Typhimurium, including S45, Y61, S78, S84, T86, and T106. Notably, we demonstrated that phosphorylation of H-NS S78 promotes its dissociation from DNA via a mechanism dependent on dimer formation, thereby leading to transcriptional activation of target genes. Functionally, phosphoryl-H-NS contributes to the expression of T3SS-associated proteins and hence increases bacterial virulence during infection. Therefore, our study reveals a novel mechanism by which covalent modifications of prokaryotic histone-like proteins regulate bacterial virulence of an important human pathogen.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baoshuai Xue
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
10
|
Walker AM, Abbondanzieri EA, Meyer AS. Live to fight another day: The bacterial nucleoid under stress. Mol Microbiol 2025; 123:168-175. [PMID: 38690745 PMCID: PMC11527795 DOI: 10.1111/mmi.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The bacterial chromosome is both highly supercoiled and bound by an ensemble of proteins and RNA, causing the DNA to form a compact structure termed the nucleoid. The nucleoid serves to condense, protect, and control access to the bacterial chromosome through a variety of mechanisms that remain incompletely understood. The nucleoid is also a dynamic structure, able to change both in size and composition. The dynamic nature of the bacterial nucleoid is particularly apparent when studying the effects of various stresses on bacteria, which require cells to protect their DNA and alter patterns of transcription. Stresses can lead to large changes in the organization and composition of the nucleoid on timescales as short as a few minutes. Here, we summarize some of the recent advances in our understanding of how stress can alter the organization of bacterial chromosomes.
Collapse
Affiliation(s)
- Azra M. Walker
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
11
|
Morgan WJ, Amemiya HM, Freddolino L. DNA methylation affects gene expression but not global chromatin structure in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631547. [PMID: 39829790 PMCID: PMC11741368 DOI: 10.1101/2025.01.06.631547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the Escherichia coli K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters E. coli global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density. We thus hypothesized that a methylation-deficient version of MG1655 would show large-scale aberrations in chromatin structure. To test our hypothesis, we cloned methyltransferase deletion strains and performed global protein occupancy profiling using high resolution in vivo protein occupancy display (IPOD-HR), chromatin immunoprecipitation for RNA polymerase (RNAP-ChIP), and transcriptome abundance profiling using RNASeq. Our results indicate that loss of DNA methylation does not result in large-scale changes in genomic protein occupancy such as the formation of EPODs, indicating that the previously observed depletion of Dam sites in EPODs is correlative, rather than causal, in nature. However, loci with dense clustering of Dam methylation sites show methylation-dependent changes in local RNA polymerase and total protein occupancy, but local transcription is unaffected. Our transcriptome profiling data indicates that deletion of dam and/or dcm results in significant expression changes within some functional gene categories including SOS response, flagellar synthesis, and translation, but these expression changes appear to result from indirect regulatory consequences of methyltransferase deletion. In agreement with the downregulation of genes involved in flagellar synthesis, dam deletion is characterized by a swimming motility-deficient phenotype. We conclude that DNA methylation does not control the overall protein occupancy landscape of the E. coli genome, and that observable changes in gene regulation are generally not resulting from regulatory consequences of local methylation state.
Collapse
Affiliation(s)
- Willow Jay Morgan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haley M. Amemiya
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current Address: MOMA Therapeutics, Cambridge MA 02140
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Deyell M, Opuu V, Griffiths AD, Tans SJ, Nghe P. Global regulators enable bacterial adaptation to a phenotypic trade-off. iScience 2025; 28:111521. [PMID: 39811663 PMCID: PMC11731283 DOI: 10.1016/j.isci.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes. However, how the different levels of regulation interact during evolution is unclear. Here, we measured in Escherichia coli how CRISPR-mediated knockdowns of global and local transcription factors impact growth and motility in three environments. We found that local regulators mostly modulate motility, whereas global regulators jointly modulate growth and motility. Simulated evolutionary trajectories indicate that local regulators are typically altered first to improve motility before global regulators adjust growth and motility following their trade-off. These findings highlight the role of pleiotropic regulators in the adaptation of multiple phenotypes.
Collapse
Affiliation(s)
- Matthew Deyell
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Vaitea Opuu
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Sander J. Tans
- AMOLF, Science Park 104, XG, Amsterdam 1098, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
13
|
Kasho K, Miyoshi K, Yoshida M, Sakai R, Nakagawa S, Katayama T. Negative DNA supercoiling enhances DARS2 binding of DNA-bending protein IHF in the activation of Fis-dependent ATP-DnaA production. Nucleic Acids Res 2025; 53:gkae1291. [PMID: 39797733 PMCID: PMC11724364 DOI: 10.1093/nar/gkae1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis. The IHF binding site is about equidistant between the DnaA and Fis binding sites within DARS2. The DARS2-IHF-Fis complex promotes ADP dissociation from DnaA and furnishes ATP-DnaA at the pre-initiation stage, which dissociates Fis in a negative-feedback manner. However, regulation for IHF binding as well as mechanistic roles of Fis and specific DNA structure at DARS2 remain largely unknown. We have discovered that negative DNA supercoiling of DARS2 is required for stimulating IHF binding and ADP dissociation from DnaA in vitro. Consistent with these, novobiocin, a DNA gyrase inhibitor, inhibits DARS2 function in vivo. Fis Gln68, an RNA polymerase-interaction site, is suggested to be required for interaction with DnaA and full DARS2 activation. Based on these and other results, we propose that DNA supercoiling activates DARS2 function by stimulating stable IHF binding and DNA loop formation, thereby directing specific Fis-DnaA interaction.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenya Miyoshi
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mizuki Yoshida
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryuji Sakai
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Nakagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Qiu QT, Zhang CY, Gao ZP, Ma BG. Spatial chromosome organization and adaptation of the radiation-resistant extremophile Deinococcus radiodurans. J Biol Chem 2025; 301:108068. [PMID: 39667503 PMCID: PMC11758949 DOI: 10.1016/j.jbc.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Radiation-resistant Deinococcus radiodurans is an extremophilic microorganism capable of withstanding high levels of ionizing radiation and chemical mutagens. It possesses remarkable DNA repair capability and serves as a model organism for studying stress resistance mechanisms. However, our understanding of the spatial chromosome organization of this species remains limited. In this study, we employed chromosome conformation capture (3C) technology to determine the 3D genome structure of D. radiodurans and to further investigate the changes of chromosome conformation induced by ultraviolet (UV) irradiation. We observed that UV irradiation reduced short-range chromosome interactions, and smaller chromosomal interaction domains (CIDs) merged to form larger CIDs. Integrating transcriptomic data analysis, we found that the majority of upregulated differentially expressed genes were significantly enriched near specific CID boundaries. Specifically, we comprehensively elucidated that the nucleoid-associated protein DrEbfC as a global regulatory factor for gene expression, may modulate the efficiency of relevant metabolic pathways by altering the local chromosome structure, thereby influencing the physiological state of the bacterium. Overall, our study revealed the chromosome conformations of D. radiodurans under different conditions and offered valuable insights into the molecular response mechanism of this extremophile to survival stresses.
Collapse
Affiliation(s)
- Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Cai-Yun Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Peng Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Fuqua T, Sun Y, Wagner A. The emergence and evolution of gene expression in genome regions replete with regulatory motifs. eLife 2024; 13:RP98654. [PMID: 39704646 DOI: 10.7554/elife.98654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called -10 and -35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 'promoter islands', DNA sequences enriched with -10 and -35 boxes. We mutagenize these starting 'parent' sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new -10 and -35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all -10 and -35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new -10 and -35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that -10 and -35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.
Collapse
Affiliation(s)
- Timothy Fuqua
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Yiqiao Sun
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, United States
| |
Collapse
|
16
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
17
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
18
|
Liu YC, Lin YJ, Chang YY, Chuang CC, Ou YY. Deciphering the Language of Protein-DNA Interactions: A Deep Learning Approach Combining Contextual Embeddings and Multi-Scale Sequence Modeling. J Mol Biol 2024; 436:168769. [PMID: 39214282 DOI: 10.1016/j.jmb.2024.168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Deciphering the mechanisms governing protein-DNA interactions is crucial for understanding key cellular processes and disease pathways. In this work, we present a powerful deep learning approach that significantly advances the computational prediction of DNA-interacting residues from protein sequences. Our method leverages the rich contextual representations learned by pre-trained protein language models, such as ProtTrans, to capture intrinsic biochemical properties and sequence motifs indicative of DNA binding sites. We then integrate these contextual embeddings with a multi-window convolutional neural network architecture, which scans across the sequence at varying window sizes to effectively identify both local and global binding patterns. Comprehensive evaluation on curated benchmark datasets demonstrates the remarkable performance of our approach, achieving an area under the ROC curve (AUC) of 0.89 - a substantial improvement over previous state-of-the-art sequence-based predictors. This showcases the immense potential of pairing advanced representation learning and deep neural network designs for uncovering the complex syntax governing protein-DNA interactions directly from primary sequences. Our work not only provides a robust computational tool for characterizing DNA-binding mechanisms, but also highlights the transformative opportunities at the intersection of language modeling, deep learning, and protein sequence analysis. The publicly available code and data further facilitate broader adoption and continued development of these techniques for accelerating mechanistic insights into vital biological processes and disease pathways. In addition, the code and data for this work are available at https://github.com/B1607/DIRP.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Yi-Jing Lin
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Yan-Yun Chang
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Cheng-Che Chuang
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
19
|
Cuervo L, Malmierca MG, Olano C. An Overview of Lsr2 Repressor Effect in Streptomyces spp. Secondary Metabolism. Microorganisms 2024; 12:2317. [PMID: 39597706 PMCID: PMC11596768 DOI: 10.3390/microorganisms12112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The genus Streptomyces is one of the largest producers of secondary metabolites with bioactive properties of interest. However, many of the genes involved in synthesizing these compounds are silenced under laboratory conditions. One of the strategies used to activate these metabolic pathways is the elimination of repressor genes, which prevent the transcription of other genes. In this work, the lsr2 gene has been selected for study since it is a repressor with a preference for binding to AT-rich regions, which makes it exert its effect especially on those horizontally transferred gene sequences that have a very different GC content to the core Streptomyces spp. genome. Therefore, the effects of the deletion of this gene are observed, and, in addition, a mapping of the potential binding sites of Lsr2 in Streptomyces spp. genomes is proposed. As a result of this gene knockout, the production of various secondary metabolites is overproduced and/or activated, which suggests that the study of this regulator can be interesting in the field of natural product discovery.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006 Oviedo, Spain
| | - Mónica G. Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
20
|
Kim K, Islam MM, Bang S, Kim J, Lee CY, Lee JC, Shin M. H-NS is a Transcriptional Repressor of the CRISPR-Cas System in Acinetobacter baumannii ATCC 19606. J Microbiol 2024; 62:999-1012. [PMID: 39527185 DOI: 10.1007/s12275-024-00182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen primarily associated with hospital-acquired infections. The bacterium can gain multidrug resistance through several mechanisms, including horizontal gene transfer. A CRISPR-Cas system including several Cas genes could restrict the horizontal gene transfer. However, the molecular mechanism of CRISPR- Cas transcriptional regulation remains unclear. We identified a type I-F CRISPR-Cas system in A. baumannii ATCC 19606T standard strain based on sequence analysis. We focused on the transcriptional regulation of Cas3, a key protein of the CRISPR-Cas system. We performed a DNA affinity chromatography-pulldown assay to identify transcriptional regulators of the Cas3 promoter. We identified several putative transcriptional factors, such as H-NS, integration host factor, and HU, that can bind to the promoter region of Cas3. We characterized AbH-NS using size exclusion chromatography and cross-linking experiments and demonstrated that the Cas3 promoter can be regulated by AbH-NS in a concentration-dependent manner via an in vitro transcription assay. CRISPR-Cas expression levels in wild-type and hns mutant strains in the early stationary phase were examined by qPCR and β-galactosidase assay. We found that H-NS can act as a repressor of Cas3. Our transformation efficiency results indicated that the hns mutation decreased the transformation efficiency, while the Cas3 mutation increased it. We report the existence and characterization of the CRISPR-Cas system in A. baumannii 19606T and demonstrate that AbH-NS is a transcriptional repressor of CRISPR-Cas-related genes in A. baumannii.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Seunghyeok Bang
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeongah Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
21
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
22
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
23
|
Li B, Ni S, Liu Y, Lin J, Wang X. The histone-like nucleoid-structuring protein encoded by the plasmid pMBL6842 regulates both plasmid stability and host physiology of Pseudoalteromonas rubra SCSIO 6842. Microbiol Res 2024; 286:127817. [PMID: 38941922 DOI: 10.1016/j.micres.2024.127817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Plasmids orchestrate bacterial adaptation across diverse environments and facilitate lateral gene transfer within bacterial communities. Their presence can perturb host metabolism, creating a competitive advantage for plasmid-free cells. Plasmid stability hinges on efficient replication and partition mechanisms. While plasmids commonly encode histone-like nucleoid-structuring (H-NS) family proteins, the precise influence of plasmid-encoded H-NS proteins on stability remains elusive. In this study, we examined the conjugative plasmid pMBL6842, harboring the hns gene, and observed its positive regulation of parAB transcription, critical for plasmid segregation. Deletion of hns led to rapid plasmid loss, which was remedied by hns complementation. Further investigations unveiled adverse effects of hns overexpression on the bacterial host. Transcriptome analysis revealed hns's role in regulating numerous bacterial genes, impacting both host growth and swimming motility in the presence of the hns gene. Therefore, our study unveils the multifaceted roles of H-NS in both plasmid stability and host physiology, underscoring its biological significance and paving the way for future inquiries into the involvement of H-NS in horizontal gene transfer events.
Collapse
Affiliation(s)
- Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Tamarín S, Galaz-Davison P, Ramírez-Sarmiento CA, Babul J, Medina E. Dissecting the structural and functional consequences of the evolutionary proline-glycine deletion in the wing 1 region of the forkhead domain of human FoxP1. FEBS Lett 2024; 598:2281-2291. [PMID: 38946055 DOI: 10.1002/1873-3468.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
The human FoxP transcription factors dimerize via three-dimensional domain swapping, a unique feature among the human Fox family, as result of evolutionary sequence adaptations in the forkhead domain. This is the case for the conserved glycine and proline residues in the wing 1 region, which are absent in FoxP proteins but present in most of the Fox family. In this work, we engineered both glycine (G) and proline-glycine (PG) insertion mutants to evaluate the deletion events in FoxP proteins in their dimerization, stability, flexibility, and DNA-binding ability. We show that the PG insertion only increases protein stability, whereas the single glycine insertion decreases the association rate and protein stability and promotes affinity to the DNA ligand.
Collapse
Affiliation(s)
- Stephanie Tamarín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Li L, Li Q, Xiao Y, Ma J, Liu GQ. H-NS involved in positive regulation of glycerol dehydratase gene expression in Klebsiella pneumoniae 2e. Appl Environ Microbiol 2024; 90:e0007524. [PMID: 38995045 PMCID: PMC11337852 DOI: 10.1128/aem.00075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Glycerol dehydratase is the key and rate-limiting enzyme in the 1,3-propanediol synthesis pathway of Klebsiella pneumoniae, which determined the producing rate and yield of 1,3-propanediol. However, the expression regulation mechanism of glycerol dehydratase gene dhaB remains poorly unknown. In this study, a histone-like nucleoid-structuring (H-NS) protein was identified and characterized as the positive transcription regulator for dhaB expression in K. pneumoniae 2e, which exhibited high tolerance against crude glycerol in our previous study. Deletion of hns gene significantly decreased the transcription level of dhaB in K. pneumoniae 2e, which led to a remarkable defect on strain growth, glycerol dehydratase activity, and 3-hydroxypropanal production during glycerol fermentation. The transcription level of dhaB was significantly up-regulated in crude glycerol relative to pure glycerol, while the inactivation of H-NS resulted in more negative effect for transcription level of dhaB in the former. Though the H-NS expression level was almost comparable in both substrates, its multimer state was reduced in crude glycerol relative to pure glycerol, suggesting that the oligomerization state of H-NS might have contributed for positive regulation of dhaB expression. Furthermore, electrophoretic mobility shift and DNase I footprinting assays showed that H-NS could directly bind to the upstream promoter region of dhaB by recognizing the AT-rich region. These findings provided new insight into the transcriptional regulation mechanism of H-NS for glycerol dehydratase expression in K. pneumoniae, which might offer new target for engineering bacteria to industrially produce 1,3-propanediol.IMPORTANCEThe biological production of 1,3-propanediol from glycerol by microbial fermentation shows great promising prospect on industrial application. Glycerol dehydratase catalyzes the penultimate step in glycerol metabolism and is regarded as one of the key and rate-limiting enzymes for 1,3-propanediol production. H-NS was reported as a pleiotropic modulator with negative effects on gene expression in most studies. Here, we reported for the first time that the expression of glycerol dehydratase gene is positively regulated by the H-NS. The results provide insight into a novel molecular mechanism of H-NS for positive regulation of glycerol dehydratase gene expression in K. pneumoniae, which holds promising potential for facilitating construction of engineering highly efficient 1,3-propanediol-producing strains.
Collapse
Affiliation(s)
- Le Li
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Qiang Li
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Yuting Xiao
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Jiangshan Ma
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| |
Collapse
|
26
|
Schumacher MA, Singh RR, Salinas R. Structure of the E. coli nucleoid-associated protein YejK reveals a novel DNA binding clamp. Nucleic Acids Res 2024; 52:7354-7366. [PMID: 38832628 PMCID: PMC11229321 DOI: 10.1093/nar/gkae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Rajiv R Singh
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
27
|
Arvizu-Gómez JL, Hernández-Morales A, Campos-Guillén J, González-Reyes C, Pacheco-Aguilar JR. Phaseolotoxin: Environmental Conditions and Regulatory Mechanisms Involved in Its Synthesis. Microorganisms 2024; 12:1300. [PMID: 39065068 PMCID: PMC11278893 DOI: 10.3390/microorganisms12071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Phaseolotoxin is an antimetabolite toxin produced by diverse pathovars of Pseudomonas syringae which affects various plants, causing diseases of economic importance. Phaseolotoxin contributes to the systemic dissemination of the pathogen in the plant, therefore it is recognized as a major virulence factor. Genetic traits such as the Pht cluster, appear defining to the toxigenic strains phaseolotoxin producers. Extensive research has contributed to our knowledge concerning the regulation of phaseolotoxin revealing a complex regulatory network that involves processes at the transcriptional and posttranscriptional levels, in which specific and global regulators participate. Even more, significant advances in understanding how specific signals, including host metabolites, nutrient sources, and physical parameters such as the temperature, can affect phaseolotoxin production have been made. A general overview of the phaseolotoxin regulation, focusing on the chemical and physical cues, and regulatory pathways involved in the expression of this major virulence factor will be given in the present work.
Collapse
Affiliation(s)
- Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; (J.C.-G.); (J.R.P.-A.)
| | - Christian González-Reyes
- Unidad Académica de Ciencias Químico Biológico y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico;
| | - Juan Ramiro Pacheco-Aguilar
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; (J.C.-G.); (J.R.P.-A.)
| |
Collapse
|
28
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
29
|
Tang S, Huang CH, Ko TP, Lin KF, Chang YC, Lin PY, Sun L, Chen CY. Dual dimeric interactions in the nucleic acid-binding protein Sac10b lead to multiple bridging of double-stranded DNA. Heliyon 2024; 10:e31630. [PMID: 38867953 PMCID: PMC11167270 DOI: 10.1016/j.heliyon.2024.e31630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Nucleoid-associated proteins play a crucial role in the compaction and regulation of genetic material across organisms. The Sac10b family, also known as Alba, comprises widely distributed and highly conserved nucleoid-associated proteins found in archaea. Sac10b is identified as the first 10 kDa DNA-binding protein in the thermoacidophile Sulfolobus acidocaldarius. Here, we present the crystal structures of two homologous proteins, Sac10b1 and Sac10b2, as well as the Sac10b1 mutant F59A, determined at a resolution of 1.4-2.0 Å. Electron microscopic images reveal the DNA-bridging capabilities of both Sac10b1 and Sac10b2, albeit to varying extents. Analyses of crystal packing and electron microscopic results suggest that Sac10b1 facilitates cooperative DNA binding, forming extensive bridged filaments via the conserved R58 and F59 residues at the dimer-dimer interface. Substitutions at R58 or F59 of Sac10b1 attenuate end-to-end association, resulting in non-cooperative DNA binding, and formation of small, bridged DNA segments in a way similar to Sac10b2. Analytical ultracentrifuge and circular dichroism confirm the presence of thermostable, acid-tolerant dimers in both Sac10b1 and Sac10b2. These findings attest to the functional role of Sac10b in organizing and stabilizing chromosomal DNA through distinct bridging interactions, particularly under extreme growth conditions.
Collapse
Affiliation(s)
- Songqiang Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Hsiang Huang
- Protein Diffraction Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Fu Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yen Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Liuchang Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
30
|
Åberg A, Gideonsson P, Bhat A, Ghosh P, Arnqvist A. Molecular insights into the fine-tuning of pH-dependent ArsR-mediated regulation of the SabA adhesin in Helicobacter pylori. Nucleic Acids Res 2024; 52:5572-5595. [PMID: 38499492 PMCID: PMC11162790 DOI: 10.1093/nar/gkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.
Collapse
Affiliation(s)
- Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Gideonsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Abhayprasad Bhat
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Prachetash Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
31
|
Chen M, Wu B, Huang Y, Wang W, Zheng Y, Shabbir S, Liu P, Dai Y, Xia M, Hu G, He M. Transcription factor shapes chromosomal conformation and regulates gene expression in bacterial adaptation. Nucleic Acids Res 2024; 52:5643-5657. [PMID: 38716861 PMCID: PMC11162768 DOI: 10.1093/nar/gkae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024] Open
Abstract
Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.
Collapse
Affiliation(s)
- Mao Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yuhuan Huang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Weiting Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yudi Zheng
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Samina Shabbir
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Panting Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yonghua Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Mengli Xia
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| |
Collapse
|
32
|
Veilumuthu P, Nagarajan T, Magar S, Sundaresan S, Moses LJ, Theodore T, Christopher JG. Genomic insights into an endophytic Streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 2024; 15:1407289. [PMID: 38887720 PMCID: PMC11180775 DOI: 10.3389/fmicb.2024.1407289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Pattapulavar Veilumuthu
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - T. Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sasikumar Sundaresan
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Lenus Joy Moses
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Thomas Theodore
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - John Godwin Christopher
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
33
|
Hernández-Martínez G, Ares MA, Rosales-Reyes R, Soria-Bustos J, Yañez-Santos JA, Cedillo ML, Girón JA, Martínez-Laguna Y, Leng F, Ibarra JA, De la Cruz MA. The nucleoid protein HU positively regulates the expression of type VI secretion systems in Enterobacter cloacae. mSphere 2024; 9:e0006024. [PMID: 38647313 PMCID: PMC11324020 DOI: 10.1128/msphere.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.
Collapse
Affiliation(s)
- Gabriela Hernández-Martínez
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. Ares
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina
Experimental de la Facultad de Medicina, Universidad Autónoma de
México, Mexico
City, Mexico
| | - Jorge Soria-Bustos
- Pathogen and
Microbiome Division, Translational Genomics Research Institute (TGen)
North, Flagstaff,
Arizona, USA
- Instituto de Ciencias
de la Salud, Universidad Autónoma del Estado de
Hidalgo, Pachuca,
Hidalgo, Mexico
| | | | - María L. Cedillo
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Jorge A. Girón
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de
Investigación en Ciencias Microbiológicas,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| | - Fenfei Leng
- Biomolecular Sciences
Institute and Department of Chemistry and Biochemistry, Florida
International University,
Miami, Florida, USA
| | - J. Antonio Ibarra
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. De la Cruz
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
- Facultad de Medicina,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| |
Collapse
|
34
|
Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, Gu Y, Deep A, Naritomi J, Liang Q, Aigner S, Adler B, Cress B, Doudna J, Chaikeeratisak V, Cleveland D, Ghassemian M, Bintu B, Yeo G, Pogliano J, Corbett K. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Nucleic Acids Res 2024; 52:4440-4455. [PMID: 38554115 PMCID: PMC11077065 DOI: 10.1093/nar/gkae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.
Collapse
Affiliation(s)
- Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily G Armbruster
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sitao Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kseniya Malukhina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Bogdan Bintu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
36
|
Figueroa-Bossi N, Fernández-Fernández R, Kerboriou P, Bouloc P, Casadesús J, Sánchez-Romero MA, Bossi L. Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin. Nat Commun 2024; 15:2787. [PMID: 38555352 PMCID: PMC10981669 DOI: 10.1038/s41467-024-47114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
In all living cells, genomic DNA is compacted through interactions with dedicated proteins and/or the formation of plectonemic coils. In bacteria, DNA compaction is achieved dynamically, coordinated with dense and constantly changing transcriptional activity. H-NS, a major bacterial nucleoid structuring protein, is of special interest due to its interplay with RNA polymerase. H-NS:DNA nucleoprotein filaments inhibit transcription initiation by RNA polymerase. However, the discovery that genes silenced by H-NS can be activated by transcription originating from neighboring regions has suggested that elongating RNA polymerases can disassemble H-NS:DNA filaments. In this study, we present evidence that transcription-induced counter-silencing does not require transcription to reach the silenced gene; rather, it exerts its effect at a distance. Counter-silencing is suppressed by introducing a DNA gyrase binding site within the intervening segment, suggesting that the long-range effect results from transcription-driven positive DNA supercoils diffusing toward the silenced gene. We propose a model wherein H-NS:DNA complexes form in vivo on negatively supercoiled DNA, with H-NS bridging the two arms of the plectoneme. Rotational diffusion of positive supercoils generated by neighboring transcription will cause the H-NS-bound negatively-supercoiled plectoneme to "unroll" disrupting the H-NS bridges and releasing H-NS.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Rocío Fernández-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
37
|
Tišma M, Bock FP, Kerssemakers J, Antar H, Japaridze A, Gruber S, Dekker C. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells. Nat Commun 2024; 15:2737. [PMID: 38548820 PMCID: PMC10979009 DOI: 10.1038/s41467-024-47094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
38
|
Zhang H, Shao C, Wang J, Chu Y, Xiao J, Kang Y, Zhang Z. Combined Study of Gene Expression and Chromosome Three-Dimensional Structure in Escherichia coli During Growth Process. Curr Microbiol 2024; 81:122. [PMID: 38530471 DOI: 10.1007/s00284-024-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.
Collapse
Affiliation(s)
- Hao Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhewen Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| |
Collapse
|
39
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
40
|
Roldán-Piñero C, Luengo-Márquez J, Assenza S, Pérez R. Systematic Comparison of Atomistic Force Fields for the Mechanical Properties of Double-Stranded DNA. J Chem Theory Comput 2024; 20:2261-2272. [PMID: 38411091 PMCID: PMC10938644 DOI: 10.1021/acs.jctc.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The response of double-stranded DNA to external mechanical stress plays a central role in its interactions with the protein machinery in the cell. Modern atomistic force fields have been shown to provide highly accurate predictions for the fine structural features of the duplex. In contrast, and despite their pivotal function, less attention has been devoted to the accuracy of the prediction of the elastic parameters. Several reports have addressed the flexibility of double-stranded DNA via all-atom molecular dynamics, yet the collected information is insufficient to have a clear understanding of the relative performance of the various force fields. In this work, we fill this gap by performing a systematic study in which several systems, characterized by different sequence contexts, are simulated with the most popular force fields within the AMBER family, bcs1 and OL15, as well as with CHARMM36. Analysis of our results, together with their comparison with previous work focused on bsc0, allows us to unveil the differences in the predicted rigidity between the newest force fields and suggests a roadmap to test their performance against experiments. In the case of the stretch modulus, we reconcile these differences, showing that a single mapping between sequence-dependent conformation and elasticity via the crookedness parameter captures simultaneously the results of all force fields, supporting the key role of crookedness in the mechanical response of double-stranded DNA.
Collapse
Affiliation(s)
- Carlos Roldán-Piñero
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Juan Luengo-Márquez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
| | - Salvatore Assenza
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Rubén Pérez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
41
|
Gerges E, Rodríguez-Ordoñez MDP, Durand N, Herrmann JL, Crémazy F. Lsr2, a pleiotropic regulator at the core of the infectious strategy of Mycobacterium abscessus. Microbiol Spectr 2024; 12:e0352823. [PMID: 38353553 PMCID: PMC10913753 DOI: 10.1128/spectrum.03528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium, causing lung infections in cystic fibrosis patients. During pulmonary infection, M. abscessus switches from smooth (Mabs-S) to rough (Mabs-R) morphotypes, the latter being hyper-virulent. Previously, we isolated the lsr2 gene as differentially expressed during S-to-R transition. lsr2 encodes a pleiotropic transcription factor that falls under the superfamily of nucleoid-associated proteins. Here, we used two functional genomic methods, RNA-seq and chromatin immunoprecipitation-sequencing (ChIP-seq), to elucidate the molecular role of Lsr2 in the pathobiology of M. abscessus. Transcriptomic analysis shows that Lsr2 differentially regulates gene expression across both morphotypes, most of which are involved in several key cellular processes of M. abscessus, including host adaptation and antibiotic resistance. These results were confirmed through quantitative real-time PCR, as well as by minimum inhibitory concentration tests and infection tests on macrophages in the presence of antibiotics. ChIP-seq analysis revealed that Lsr2 extensively binds the M. abscessus genome at AT-rich sequences and appears to form long domains that participate in the repression of its target genes. Unexpectedly, the genomic distribution of Lsr2 revealed no distinctions between Mabs-S and Mabs-R, implying more intricate mechanisms at play for achieving target selectivity.IMPORTANCELsr2 is a crucial transcription factor and chromosome organizer involved in intracellular growth and virulence in the smooth and rough morphotypes of Mycobacterium abscessus. Using RNA-seq and chromatin immunoprecipitation-sequencing (ChIP-seq), we investigated the molecular role of Lsr2 in gene expression regulation along with its distribution on M. abscessus genome. Our study demonstrates the pleiotropic regulatory role of Lsr2, regulating the expression of many genes coordinating essential cellular and molecular processes in both morphotypes. In addition, we have elucidated the role of Lsr2 in antibiotic resistance both in vitro and in vivo, where lsr2 mutant strains display heightened sensitivity to antibiotics. Through ChIP-seq, we reported the widespread distribution of Lsr2 on M. abscessus genome, revealing a direct repressive effect due to its extensive binding on promoters or coding sequences of its targets. This study unveils the significant regulatory role of Lsr2, intricately intertwined with its function in shaping the organization of the M. abscessus genome.
Collapse
Affiliation(s)
- Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - María del Pilar Rodríguez-Ordoñez
- Université Paris-Saclay, Université d’Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Evry, France
| | - Nicolas Durand
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
| | - Frédéric Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| |
Collapse
|
42
|
Schütz SD, Brackmann M, Liechti N, Moser M, Wittwer M, Bruggmann R. Functional characterization of Francisella tularensis subspecies holarctica genotypes during tick cell and macrophage infections using a proteogenomic approach. Front Cell Infect Microbiol 2024; 14:1355113. [PMID: 38500499 PMCID: PMC10944910 DOI: 10.3389/fcimb.2024.1355113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells.
Collapse
Affiliation(s)
- Sara Doina Schütz
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Nicole Liechti
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Michel Moser
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| |
Collapse
|
43
|
Kasho K, Sakai R, Ito K, Nakagaki W, Satomura R, Jinnouchi T, Ozaki S, Katayama T. Read-through transcription of tRNA underlies the cell cycle-dependent dissociation of IHF from the DnaA-inactivating sequence datA. Front Microbiol 2024; 15:1360108. [PMID: 38505555 PMCID: PMC10950094 DOI: 10.3389/fmicb.2024.1360108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Timely initiation of chromosomal DNA replication in Escherichia coli is achieved by cell cycle-coordinated regulation of the replication origin, oriC, and the replication initiator, ATP-DnaA. Cellular levels of ATP-DnaA increase and peak at the time for initiation at oriC, after which hydrolysis of DnaA-bound ATP causes those to fall, yielding initiation-inactive ADP-DnaA. This hydrolysis is facilitated by the chromosomal locus datA located downstream of the tRNA-Gly (glyV-X-Y) operon, which possesses a cluster of DnaA-binding sequences and a single binding site (IBS) for the DNA bending protein IHF (integration host factor). While IHF binding activates the datA function and is regulated to occur specifically at post-initiation time, the underlying regulatory mechanisms remain obscure. Here, we demonstrate that datA-IHF binding at pre-initiation time is down-regulated depending on the read-through transcription of datA IBS initiated at the glyV-X-Y promoter. During the cell cycle, the level of read-through transcription, but not promoter activity, fluctuated in a manner inversely related to datA-IHF binding. Transcription from the glyV-X-Y promoter was predominantly interrupted at datA IBS by IHF binding. The terminator/attenuator sequence of the glyV-X-Y operon, as well as DnaA binding within datA overall, contributed to attenuation of transcription upstream of datA IBS, preserving the timely fluctuation of read-through transcription. These findings provide a mechanistic insight of tRNA transcription-dependent datA-IHF regulation, in which an unidentified factor is additionally required for the timely datA-IHF dissociation, and support the significance of datA for controlling the cell cycle progression as a connecting hub of tRNA production and replication initiation.
Collapse
|
44
|
Gerges E, Herrmann JL, Crémazy F. [Lsr2: A Nucleoid Associated Protein (NAP) and a transcription factor in mycobacteria]. Med Sci (Paris) 2024; 40:154-160. [PMID: 38411423 DOI: 10.1051/medsci/2023218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Lsr2, a small protein mainly found in actinobacteria, plays a crucial role in the virulence and adaptation of mycobacteria to environmental conditions. As a member of the nucleoid-associated protein (NAPs) superfamily, Lsr2 influences DNA organization by facilitating the formation of chromosomal loops in vitro and, therefore, may be a major player in the three-dimensional folding of the genome. Additionally, Lsr2 also acts as a transcription factor, regulating the expression of numerous genes responsible for coordinating a myriad of cellular and molecular processes essential for the actinobacteria. Similar to the H-NS protein, its ortholog in enterobacteria, its role in transcriptional repression likely relies on oligomerization, rigidifying, and bridging of DNA, thereby disrupting RNA polymerase recruitment as well as the elongation of RNA transcripts.
Collapse
Affiliation(s)
- Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | - Frédéric Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| |
Collapse
|
45
|
Jusufovic N, Krusenstjerna AC, Savage CR, Saylor TC, Brissette CA, Zückert WR, Schlax PJ, Motaleb MA, Stevenson B. Borrelia burgdorferi PlzA is a cyclic-di-GMP dependent DNA and RNA binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526351. [PMID: 36778503 PMCID: PMC9915621 DOI: 10.1101/2023.01.30.526351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length plays a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.
Collapse
Affiliation(s)
- Nerina Jusufovic
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Andrew C. Krusenstjerna
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Christina R. Savage
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Timothy C. Saylor
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203-9061, USA
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Paula J. Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240-6030, USA
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834-435, USA
| | - Brian Stevenson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| |
Collapse
|
46
|
Boudreau BA, Hustmyer CM, Kotlajich MV, Landick R. In Vitro Transcription Assay to Quantify Effects of H-NS Filaments on RNA Chain Elongation by RNA Polymerase. Methods Mol Biol 2024; 2819:381-419. [PMID: 39028516 DOI: 10.1007/978-1-0716-3930-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.
Collapse
Affiliation(s)
- Beth A Boudreau
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Christine M Hustmyer
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Matthew V Kotlajich
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Robert Landick
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA.
- Departments of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
47
|
Takemata N. How Do Thermophiles Organize Their Genomes? Microbes Environ 2024; 39:ME23087. [PMID: 38839371 PMCID: PMC11946384 DOI: 10.1264/jsme2.me23087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/19/2024] [Indexed: 06/07/2024] Open
Abstract
All cells must maintain the structural and functional integrity of the genome under a wide range of environments. High temperatures pose a formidable challenge to cells by denaturing the DNA double helix, causing chemical damage to DNA, and increasing the random thermal motion of chromosomes. Thermophiles, predominantly classified as bacteria or archaea, exhibit an exceptional capacity to mitigate these detrimental effects and prosper under extreme thermal conditions, with some species tolerating temperatures higher than 100°C. Their genomes are mainly characterized by the presence of reverse gyrase, a unique topoisomerase that introduces positive supercoils into DNA. This enzyme has been suggested to maintain the genome integrity of thermophiles by limiting DNA melting and mediating DNA repair. Previous studies provided significant insights into the mechanisms by which NAPs, histones, SMC superfamily proteins, and polyamines affect the 3D genomes of thermophiles across different scales. Here, I discuss current knowledge of the genome organization in thermophiles and pertinent research questions for future investigations.
Collapse
Affiliation(s)
- Naomichi Takemata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615–8510, Japan
| |
Collapse
|
48
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
49
|
Collette D, Dunlap D, Finzi L. Macromolecular Crowding and DNA: Bridging the Gap between In Vitro and In Vivo. Int J Mol Sci 2023; 24:17502. [PMID: 38139331 PMCID: PMC10744201 DOI: 10.3390/ijms242417502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The cellular environment is highly crowded, with up to 40% of the volume fraction of the cell occupied by various macromolecules. Most laboratory experiments take place in dilute buffer solutions; by adding various synthetic or organic macromolecules, researchers have begun to bridge the gap between in vitro and in vivo measurements. This is a review of the reported effects of macromolecular crowding on the compaction and extension of DNA, the effect of macromolecular crowding on DNA kinetics, and protein-DNA interactions. Theoretical models related to macromolecular crowding and DNA are briefly reviewed. Gaps in the literature, including the use of biologically relevant crowders, simultaneous use of multi-sized crowders, empirical connections between macromolecular crowding and liquid-liquid phase separation of nucleic materials are discussed.
Collapse
Affiliation(s)
| | | | - Laura Finzi
- Department of Physics, College of Arts & Sciences, Emory University, Atlanta, GA 30322, USA; (D.C.); (D.D.)
| |
Collapse
|
50
|
Noda S, Akanuma G, Keyamura K, Hishida T. RecN spatially and temporally controls RecA-mediated repair of DNA double-strand breaks. J Biol Chem 2023; 299:105466. [PMID: 37979912 PMCID: PMC10714372 DOI: 10.1016/j.jbc.2023.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
RecN, a bacterial structural maintenance of chromosomes-like protein, plays an important role in maintaining genomic integrity by facilitating the repair of DNA double-strand breaks (DSBs). However, how RecN-dependent chromosome dynamics are integrated with DSB repair remains unclear. Here, we investigated the dynamics of RecN in response to DNA damage by inducing RecN from the PBAD promoter at different time points. We found that mitomycin C (MMC)-treated ΔrecN cells exhibited nucleoid fragmentation and reduced cell survival; however, when RecN was induced with arabinose in MMC-exposed ΔrecN cells, it increased a level of cell viability to similar extent as WT cells. Furthermore, in MMC-treated ΔrecN cells, arabinose-induced RecN colocalized with RecA in nucleoid gaps between fragmented nucleoids and restored normal nucleoid structures. These results suggest that the aberrant nucleoid structures observed in MMC-treated ΔrecN cells do not represent catastrophic chromosome disruption but rather an interruption of the RecA-mediated process. Thus, RecN can resume DSB repair by stimulating RecA-mediated homologous recombination, even when chromosome integrity is compromised. Our data demonstrate that RecA-mediated presynapsis and synapsis are spatiotemporally separable, wherein RecN is involved in facilitating both processes presumably by orchestrating the dynamics of both RecA and chromosomes, highlighting the essential role of RecN in the repair of DSBs.
Collapse
Affiliation(s)
- Shunsuke Noda
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Genki Akanuma
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan.
| |
Collapse
|