1
|
Ye K, Zhao X, Liu L, Ge F, Zheng F, Liu Z, Tian M, Han X, Gao X, Xia Q, Wang D. Comparative Analysis of Human Brain RNA-seq Reveals the Combined Effects of Ferroptosis and Autophagy on Alzheimer's Disease in Multiple Brain Regions. Mol Neurobiol 2025; 62:6128-6149. [PMID: 39710824 DOI: 10.1007/s12035-024-04642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Ferroptosis and autophagy are closely associated with Alzheimer's disease (AD). Elevated ferric ion levels can induce oxidative stress and chronic inflammatory responses, resulting in brain tissue damage and further neurological cell damage. Autophagy in Alzheimer's has a dual role. On one hand, it protects neurons by removing β-amyloid and cellular damage products caused by oxidative stress and inflammation. On the other hand, abnormal autophagy is linked to neuronal apoptosis and neurodegeneration. However, the intricate interplay between ferroptosis and autophagy in AD remains insufficiently explored. This study focuses on the roles of ferroptosis and autophagy in AD and their interconnection through bioinformatics analysis, shedding light on the disease. Ferroptosis and autophagy significantly correlate with the development and course of AD. Using PPI network analysis and unsupervised consistency clustering analysis, we uncovered a complex network of interactions between ferroptosis and autophagy during disease progression, demonstrating a significant congruence in their modification patterns. Functional analyses further demonstrated that ferroptosis and autophagy together affect the immunological status and synaptic regulation in hippocampal regions in patients with AD, which significantly impacts the start and progression of the disease.
Collapse
Affiliation(s)
- Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Mengjie Tian
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xinyu Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, Heilongjiang, China.
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
2
|
Nàger M, Larsen KB, Bhujabal Z, Kalstad TB, Rössinger J, Myrmel T, Weinberger F, Birgisdottir AB. Mitophagy is induced in human engineered heart tissue after simulated ischemia and reperfusion. J Cell Sci 2025; 138:jcs263408. [PMID: 39912384 PMCID: PMC11959618 DOI: 10.1242/jcs.263408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
The paradoxical exacerbation of cellular injury and death during reperfusion remains a problem in the treatment of myocardial infarction. Mitochondrial dysfunction plays a key role in the pathogenesis of myocardial ischemia and reperfusion injury. Dysfunctional mitochondria can be removed by mitophagy, culminating in their degradation within acidic lysosomes. Mitophagy is pivotal in maintaining cardiac homeostasis and emerges as a potential therapeutic target. Here, we employed beating human engineered heart tissue (EHT) to assess mitochondrial dysfunction and mitophagy during ischemia and reperfusion simulation. Our data indicate adverse ultrastructural changes in mitochondrial morphology and impairment of mitochondrial respiration. Furthermore, our pH-sensitive mitophagy reporter EHTs, generated by a CRISPR/Cas9 endogenous knock-in strategy, revealed induced mitophagy flux in EHTs after ischemia and reperfusion simulation. The induced flux required the activity of the protein kinase ULK1, a member of the core autophagy machinery. Our results demonstrate the applicability of the reporter EHTs for mitophagy assessment in a clinically relevant setting. Deciphering mitophagy in the human heart will facilitate development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mireia Nàger
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Kenneth B. Larsen
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
- Department of Medical Biology, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Zambarlal Bhujabal
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Trine B. Kalstad
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Truls Myrmel
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Asa B. Birgisdottir
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
3
|
Benarroch E. What Is the Role of Inner Membrane Metalloproteases in Mitochondrial Quality Control and Disease? Neurology 2025; 104:e213532. [PMID: 40184575 DOI: 10.1212/wnl.0000000000213532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 04/06/2025] Open
|
4
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
5
|
Zhao M, Wang J, Zhu S, Zhang S, Han C, Tan C, Huang Y, Sun Z, Wang L, Liu J. Human neural stem cell-derived exosomes activate PINK1/Parkin pathway to protect against oxidative stress-induced neuronal injury in ischemic stroke. J Transl Med 2025; 23:402. [PMID: 40188077 PMCID: PMC11971779 DOI: 10.1186/s12967-025-06283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Mitochondria play a critical role in oxidative stress (OS)-induced neuronal injury during ischemic stroke (IS), making them promising therapeutic targets. Mounting evidence underscores the extraordinary therapeutic promise of exosomes derived from human neural stem cells (hNSCs) in the management of central nervous system (CNS) diseases. Nonetheless, the precise mechanisms by which these exosomes target mitochondria to ameliorate the effects of IS remain only partially elucidated. This study investigates the protective effects of hNSC derived exosomes (hNSC-Exos) on neuronal damage. METHODS Using a rat model of middle cerebral artery occlusion (MCAO) in vivo and OS-induced HT22 cells in vitro. Firstly, our research group independently isolated human neural stem cells (hNSCs) and subsequently prepared hNSC-Exos. In vivo, MCAO rats were restored to blood flow perfusion to simulate ischemia-reperfusion injury, and hNSC-Exos were injected through stereotaxic injection into the brain. Subsequently, the protective effects of hNSC-Exos on MCAO rats were evaluated, including histological studies, behavioral assessments. In vivo, H2O2 was used in HT22 cells to simulate the OS environment in MCAO, and then its protective effects on HT22 were evaluated by co-culturing with hNSC-Exos, including immunofluorescence staining, western blotting (WB), quantitative real time PCR (qRT-PCR). In the process of exploring specific mechanisms, we utilized RNA sequencing (RNA-seq) to detect the potential induction of mitophagy in OS-induced HT22 cells. Afterwards, we employed a series of mitochondrial function assessments and autophagy related detection techniques, including measuring mitochondrial membrane potential, reactive oxygen species (ROS) levels, transmission electron microscopy (TEM) imaging, monodansylcadaverine (MDC) staining, and mCherry-GFP-LC3B staining. In addition, we further investigated the regulatory pathway of hNSC-Exos by using autophagy inhibitor mdivi-1 and knocking out PTEN induced kinase 1 (PINK1) in HT22 cells. RESULTS Administration of hNSC-Exos significantly ameliorated brain tissue damage and enhanced behavioral outcomes in MCAO rats. This treatment led to a reduction in brain tissue apoptosis and facilitated the normalization of impaired neurogenesis and neuroplasticity. Notably, the application of hNSC-Exos in vitro resulted in an upregulation of mitophagy in HT22 cells, thereby remedying mitochondrial dysfunction. We demonstrate that hNSC-Exos activate mitophagy via the PINK1/Parkin pathway, improving mitochondrial function and reducing neuronal apoptosis. CONCLUSIONS These findings suggest that hNSC-Exos alleviate OS-induced neuronal damage by regulating the PINK1/Parkin pathway. These reveals a novel role of stem cell-derived mitochondrial therapy in promoting neuroprotection and suggest their potential as a therapeutic approach for OS-associated CNS diseases, including IS.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Shensen Zhang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Chengcheng Tan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Yubing Huang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Zhaokai Sun
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, People's Republic of China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian, 116023, People's Republic of China.
| |
Collapse
|
6
|
Luo R, Kang Y, Ma H, Zhang Z, Hölscher C, Hao L, Zhang Z. A novel dual CCK/ GLP-1 receptor agonist ameliorates cognitive impairment in 5 × FAD mice by modulating mitophagy via the PINK1/Parkin pathway. Int Immunopharmacol 2025; 154:114612. [PMID: 40184808 DOI: 10.1016/j.intimp.2025.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
To date, no therapeutic drugs available on the market can effectively reverse the progression of Alzheimer's disease (AD). Although Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and Cholecystokinin (CCK) RAs have shown some promise in AD research, little is known about the neuroprotective effects of a novel dual CCK/GLP-1 RA in AD. This study sought to examine the effects of the novel dual CCK/GLP-1 RA on cognitive performance in an AD mouse model and to explore the associated mechanisms. Our findings indicate that dual CCK/GLP-1 RA improved cognitive deficits, reduced amyloid-beta (Aβ) accumulation, and alleviated mitochondrial damage in 5 × FAD mice by inducing mitophagy. In an in vitro model of AD cells induced by Aβ, CCK/GLP-1 RA could exert neuroprotective effects by regulating PINK1/Parkin-mediated mitophagy. These data reveal for the first time that the new CCK/GLP-1 RA modulates mitophagy via PINK1/Parkin pathway and enhances cognitive function in the 5 × FAD animal model. Moreover, the performance of the CCK/GLP-1 RA in certain indicators was superior to that of GLP-1 analogue liraglutide, suggesting that it may represent a more promising therapeutic option for AD.
Collapse
Affiliation(s)
- Rihong Luo
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yuhan Kang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - He Ma
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, China
| | - Christian Hölscher
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China.
| | - Li Hao
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, China.
| | - Zijuan Zhang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, China.
| |
Collapse
|
7
|
Wang H, Xu X, Ni WP, Sun R, Zhang Y, Ge JF. Near-infrared pH-sensitive probes based on aza-Nile Blue for detecting interactions between mitochondria and lysosomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126169. [PMID: 40203579 DOI: 10.1016/j.saa.2025.126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
The pKa values of mitochondrial fluorescent probes based on pH response differ significantly from the pH of the mitochondrial matrix, making the development of mitochondria-targeted pH probes with appropriate pKa values essential for accurately monitoring mitochondrial pH fluctuations. In this paper, three mitochondria-targeted near-infrared fluorescent probes 5a-5c were successfully developed by introducing nitrogen atom at the 4-position of Nile Blue and modulating the pKa through the formation of intramolecular hydrogen bonding. Probes 5a-5c exhibited ultra-high molar extinction coefficients up to 105 M-1 cm-1, along with excellent photostability and sensitive pH response properties. The fluorescence intensities of 5a-5c enhanced 12-14-fold, while the fluorescence quantum yields increased from 1.2 %-2.5 % to 13 %-16 % with the pH decreasing from 10 to 4.0 (including only 0.5 % cosolvent). In addition, linear relationships between pH and maximum fluorescence intensity were established with high correlation coefficient (R2 = 0.99) from pH 5.2 to 9.2. Based on the low toxicity and mitochondrial targeting ability, probes 5a-5c migrated from mitochondria to lysosomes during starvation and rapamycin-induced autophagy, allowing real-time tracking of mitochondrial pH variations using fluorescence intensity and colocalization coefficient as parameters. Notably, dynamic changes between mitochondria and lysosomes were observed in real time in the mitochondrial damage model constructed by hydrogen peroxide. In conclusion, probes 5a-5c have excellent optical properties and biocompatibility, underscoring their significance in monitoring mitochondrial physiological and pathological processes.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China
| | - Xu Xu
- The Fourth Affiliated Hospital of Soochow University, No. 9 Chong'Wen Road, Suzhou 215123, China
| | - Wen-Pei Ni
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China
| | - Yi Zhang
- The Fourth Affiliated Hospital of Soochow University, No. 9 Chong'Wen Road, Suzhou 215123, China.
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
8
|
Zhang P, Cheng RJ, Yang QL, Gong Y, Xu Y, Chen LM, Zhou L, Jiang CL. Mitophagy impairment drives microglia activation and results in cognitive deficits in neonatal mice following sevoflurane exposure. Toxicol Lett 2025; 406:20-30. [PMID: 39955081 DOI: 10.1016/j.toxlet.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Sevoflurane exposure induces cognitive deficits in neonatal mice. Mitophagy was closely correlated to sevoflurane inhalation induced neurotoxicity in developing brains. However, the underlying mechanisms have not been fully elucidated. In this study, we attempted to clarify the role of mitophagy in neonatal mice undergoing sevoflurane exposure. BV2 microglial cells were cultured, and mcherry-EGFP-LC3B adenovirus were transfected. The results showed that the fluorescence intensity of GFP was markedly increased after sevoflurane exposure, and rapamycin administration could mitigate this effect. The mitophagy flux test showed that sevoflurane exposure reduced the degree of colocalization between Mito-Traker and Lyso-Traker fluorescent, while which was elevated by rapamycin treatment. The immunofluorescence assay suggested that sevoflurane inhalation resulted in the significant decrease of autolysosome formation, which was sharply enhanced in SEV group after rapamycin treatment. Meanwhile, sevoflurane inhalation shifted microglial M1/M2 phenotypic polarization, and rapamycin administration reversed this status. Moreover, the degree of colocalization among Iba-1, Synaptophysin (Syn) and lysosomal-associated membrane protein 1 (Lamp1) was increased after sevoflurane exposure, and that was reduced following rapamycin treatment. The behavioral performance was worse after sevoflurane inhalation in neonatal mice, and rapamycin treatment effectively improved the cognitive outcome. Collectively, these findings demonstrated that mitophagy impairment induced by sevoflurane exposure promoted microglia M1 phenotypic polarization and enlarged phagocytosis, and resulted in cognitive deficits, while rapamycin administration effectively reversed this tendency.
Collapse
Affiliation(s)
- Piao Zhang
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiao-Ling Yang
- Reproductive Medicine Center, SiChuan Provincial Maternity and Child Health Care Hospital,the Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan 610045, China
| | - Yan Gong
- Reproductive Medicine Center, SiChuan Provincial Maternity and Child Health Care Hospital,the Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan 610045, China
| | - Yan Xu
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling-Min Chen
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhou
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chun-Ling Jiang
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Musthafa T, Nizami SK, Mishra A, Hasan G, Gopurappilly R. Altered Mitochondrial Bioenergetics and Calcium Kinetics in Young-Onset PLA2G6 Parkinson's Disease iPSCs. J Neurochem 2025; 169:e70059. [PMID: 40189860 PMCID: PMC11973445 DOI: 10.1111/jnc.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Parkinson's disease (PD) has emerged as a multisystem disorder affecting multiple cellular and organellar systems in addition to the dopaminergic neurons. Disease-specific induced pluripotent stem cells (iPSCs) model early developmental changes and cellular perturbations that are otherwise inaccessible from clinical settings. Here, we report the early changes in patient-derived iPSCs carrying a homozygous recessive mutation, R741Q, in the PLA2G6 gene. A gene-edited R747W iPSC line mirrored these phenotypes, thus validating our initial findings. Bioenergetic dysfunction and hyperpolarization of mitochondrial membrane potentials were hallmarks of the PD iPSCs. Further, a concomitant increase in glycolytic activity indicated a possible compensation for mitochondrial respiration. Elevated basal reactive oxygen species (ROS) and decreased catalase expression were also observed in the disease iPSCs. No change in autophagy was detected. These inceptive changes could be potential targets for early intervention of prodromal PD in the absence of disease-modifying therapies. However, additional investigations are crucial to delineate the cause-effect relationships of these observations.
Collapse
Affiliation(s)
- Thasneem Musthafa
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Syed Kavish Nizami
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Ankita Mishra
- NKure Therapeutics Pvt LtdCentre for Cellular and Molecular PlatformsBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
- Centre for High Impact Neuroscience and Translational ApplicationsKolkataIndia
| | - Renjitha Gopurappilly
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
- NKure Therapeutics Pvt LtdCentre for Cellular and Molecular PlatformsBangaloreIndia
| |
Collapse
|
10
|
Jia H, Wang C, Fu Y, Wang Y, Zhang X, Tang Y, Ding J, He K, Wang J, Shen Y. Visualization of mitochondrial molecular dynamics during mitophagy process by label-free surface-enhanced Raman scattering spectroscopy. Anal Chim Acta 2025; 1345:343748. [PMID: 40015786 DOI: 10.1016/j.aca.2025.343748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Mitophagy is a selective way to eliminate dysfunctional mitochondria and recycle their constituents, which plays an important role in regulating and maintaining intracellular homeostasis. Real-time monitoring mitophagy process is of great importance for cellular physiological and pathological processes related to mitochondria. Howbeit, most of the current methods only focus on single-parameter detection of mitochondrial microenvironmental changes such as pH, viscosity and polarity. The mitochondrial molecular responses under mitophagy are not clear. Therefore, developing a new and simple method for molecular profiling is of great importance for accurately and comprehensively visualizing mitophagy. RESULTS In this work, Au NPs-based mitochondria-targeting nanoprobe was developed and the nanoprobe-based label-free surface enhanced Raman spectroscopy (SERS) method was proposed to track starvation induced mitophagy process at molecular level. The nanoprobe displayed good SERS performance and low cytotoxicity. Based on the developed strategy, the molecular response within mitochondria under mitophagy was validated. Meanwhile, the protein denaturation, conformational change, lipid degradation and DNA fragmentation within mitochondria under mitophagy were revealed for the first time, which provides molecular evidence for mitophagy. The changes in reactive oxygen species level and mitochondrial membrane potential further confirmed the damage of mitochondria. Moreover, the developed label-free SERS strategy was used to detect mitophagy in drug (cisplatin)-induced liver injury (DILI) cell model, and obvious mitophagy in DILI cells was observed. SIGNIFICANCE The molecular biochemical signature dynamic changes within mitochondria during mitophagy process were revealed by SERS for the first time. Moreover, compared with the current research, our study can provide new insights into mitophagy and mitophagy-involved diseases at molecular level. This study will provide new insights into the molecular mechanism of mitophagy and offer a simple and effective method for mitochondrial molecular event monitoring in mitophagy-involved cellular processes.
Collapse
Affiliation(s)
- Hailan Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Chi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalin Wang
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoyu Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuezhou Tang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jiahao Ding
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun He
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
11
|
Tian F, He X, Wang S, Liang Y, Wang Z, Hu M, Gao Y. Integrating single-cell sequencing and machine learning to uncover the role of mitophagy in subtyping and prognosis of esophageal cancer. Apoptosis 2025; 30:1021-1041. [PMID: 39948301 DOI: 10.1007/s10495-024-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 03/27/2025]
Abstract
Globally, esophageal cancer stands as a prominent contributor to cancer-related fatalities, distinguished by its poor prognosis. Mitophagy has a significant impact on the process of cancer progression. This study investigated the prognostic significance of mitophagy-related genes (MRGs) in esophageal carcinoma (ESCA) to elucidate molecular subtypes. By analyzing RNA-seq data from The Cancer Genome Atlas (TCGA), 6451 differentially expressed genes (DEGs) were identified. Cox regression analysis narrowed this list to 14 MRGs with potential prognostic implications. ESCA patients were classified into two distinct subtypes (C1 and C2) based on these genes. Furthermore, leveraging the differentially expressed genes between Cluster 1 and Cluster 2, ESCA patients were classified into two novel subtypes (CA and CB). Importantly, patients in C2 and CA subtypes exhibited inferior prognosis compared to those in C1 and CB (p < 0.05). Functional enrichments and immune microenvironments varied significantly among these subtypes, with C1 and CB demonstrating higher immune checkpoint expression levels. Employing machine learning algorithms like LASSO regression, Random Forest and XGBoost, alongside multivariate COX regression analysis, two core genes: HSPD1 and MAP1LC3B were identified. A prognostic model based on these genes was developed and validated in two external cohorts. Additionally, single-cell sequencing analysis provided novel insights into esophageal cancer microenvironment heterogeneity. Through Coremine database screening, Icaritin emerged as a potential therapeutic candidate to potentially improve esophageal cancer prognosis. Molecular docking results indicated favorable binding efficacies of Icaritin with HSPD1 and MAP1LC3B, contributing to the understanding of the underlying molecular mechanisms of esophageal cancer and offering therapeutic avenues.
Collapse
Affiliation(s)
- Feng Tian
- Clinical College of Chengde Medical University, Chengde, 067000, China
| | - Xinyang He
- Nursing College of Chengde Medical University, Chengde, 067000, China
| | - Saiwei Wang
- Nursing College of Chengde Medical University, Chengde, 067000, China
| | - Yiwei Liang
- Nursing College of Chengde Medical University, Chengde, 067000, China
| | - Zijie Wang
- Nursing College of Chengde Medical University, Chengde, 067000, China
| | - Minxuan Hu
- Clinical College of Chengde Medical University, Chengde, 067000, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei, China.
| |
Collapse
|
12
|
Soung AL, Kyauk RV, Pandey S, Shen YA, Reichelt M, Lin H, Jiang Z, Kirshnamoorthy P, Foreman O, Lauffer BE, Yuen TJ. Modulation of OPC Mitochondrial Function by Inhibiting USP30 Promotes Their Differentiation. Glia 2025; 73:773-787. [PMID: 39601128 PMCID: PMC11845845 DOI: 10.1002/glia.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/03/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Multiple lines of evidence indicate that mitochondrial dysfunction occurs in demyelinating diseases, such as multiple sclerosis (MS). Failure of remyelination is thought to be caused in part by a block of oligodendrocyte progenitor cell (OPC) differentiation into oligodendrocytes, which generate myelin sheaths around axons. The process of OPC differentiation requires a substantial amount of energy and high demand for ATP which is supplied through the mitochondria. In this study, we highlight mitochondrial gene expression changes during OPC differentiation in two murine models of remyelination and in human postmortem MS brains. Given these transcriptional alterations, we then investigate whether genetic alteration of USP30, a mitochondrial deubiquitinase, enhances OPC differentiation and myelination. By genetic knockout of USP30, we observe increased OPC differentiation and myelination without affecting OPC proliferation and survival in in vitro and ex vivo assays. We also find that OPC differentiation is accelerated in vivo following focal demyelination in USP30 knockout mice. The promotion of OPC differentiation and myelination observed is associated with increased oxygen consumption rates in USP30 knockout OPCs. Together, these data indicate a role for mitochondrial function and USP30 in OPC differentiation and myelination.
Collapse
Affiliation(s)
- Allison L. Soung
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Roxanne V. Kyauk
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Shristi Pandey
- Department of Bioinformatics and Computational BiologyGenentech IncSouth San FranciscoCaliforniaUSA
| | - Yun‐An A. Shen
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Mike Reichelt
- Department of PathologyGenentech IncSouth San FranciscoCaliforniaUSA
| | - Han Lin
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Zhiyu Jiang
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | | | - Oded Foreman
- Department of PathologyGenentech IncSouth San FranciscoCaliforniaUSA
| | | | - Tracy J. Yuen
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Marino Y, Inferrera F, Genovese T, Cuzzocrea S, Fusco R, Di Paola R. Mitochondrial dynamics: Molecular mechanism and implications in endometriosis. Biochimie 2025; 231:163-175. [PMID: 39884375 DOI: 10.1016/j.biochi.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Endometriosis affects about 10 % of women of reproductive age, leading to a disabling gynecologic condition. Chronic pain, inflammation, and oxidative stress have been identified as the molecular pathways involved in the progression of this disease, although its precise etiology remains uncertain. Although mitochondria are considered crucial organelles for cellular activity, their dysfunction has been linked to the development of this disease. The purpose of this review is to examine the functioning of the mitochondrion in endometriosis: in particular, we focused on the mitochondrial dynamics of biogenesis, fusion, and fission. Since excessive mitochondrial activity is reported to affect cell proliferation, we also considered mitophagy as a mechanism involved in limiting disease development. To better understand mitochondrial activity, we also considered alterations in circadian rhythms, the gut microbiome, and estrogen receptors: indeed, these mechanisms are also involved in the development of endometriosis. In addition, we focused on recent research about the impact of numerous substances on mitochondrial activity; some of them may offer a future breakthrough in endometriosis treatment by acting on mitochondria and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy; Link Campus University, Via del Casale di San Pio V, 44, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, 98168, University of Messina, Messina, Italy.
| |
Collapse
|
14
|
Kumari B. Cellular Stress Responses and Associated Diseases: A Focus on Heat Shock Proteins. Cell Biochem Biophys 2025:10.1007/s12013-025-01724-3. [PMID: 40126823 DOI: 10.1007/s12013-025-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
Cellular stress response is the response of the cell at molecular level in order to combat various environmental stressors / viral infections. These stressors can be either intra or extracellular. In the beginning of the insult cell tries to recoup from these adverse events by various mechanism like heat shock protein response, unfolded protein response, mitochondrial stress signaling, DNA damage response etc. However, if these stressors exceed the cellular capacity to coup with it, it leads to programmed cell death and senescence. Also, chronic stress and cortisol released in response to cellular stress decreases telomerase activity which is needed to replenish telomeres which are protective casing at the end of a strand of DNA. Too low telomeres lead to cell death or cell become pro-inflammatory leading to aging process and other health associated risks like cardiovascular diseases neurodegenerative diseases, autoimmune diseases, cancers etc.
Collapse
Affiliation(s)
- Bandana Kumari
- Associate Professor, Department of Biochemistry, All India Institute of Medical Sciences, Patna, Bihar, India.
| |
Collapse
|
15
|
Zhou X, Tian L, Xiong W, Li Y, Liu Q. Ferroptosis and hyperoxic lung injury: insights into pathophysiology and treatment approaches. Front Pharmacol 2025; 16:1568246. [PMID: 40170719 PMCID: PMC11958998 DOI: 10.3389/fphar.2025.1568246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Hyperoxia therapy is a critical clinical intervention for both acute and chronic illnesses. However, prolonged exposure to high-concentration oxygen can cause lung injury. The mechanisms of hyperoxic lung injury (HLI) remain incompletely understood, and current treatment options are limited. Improving the safety of hyperoxia therapy has thus become an urgent priority. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and excessive lipid peroxidation, has been implicated in the pathogenesis of HLI, including diffuse alveolar damage, vascular endothelial injury, and bronchopulmonary dysplasia. In this review, we analyze the latest findings on ferroptosis and therapeutic strategies for HLI. Our aim is to provide new insights for the treatment of HLI and to facilitate the translation of these findings from bench to bedside.
Collapse
Affiliation(s)
- Xiaoqiong Zhou
- Department of Anesthesiology, Zigong First People’s Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenyan Xiong
- Department of Anesthesiology, Yibin Maternity and Children Hospital, Yibin, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People’s Hospital, Zigong Academy of Medical Sciences, Zigong, China
| |
Collapse
|
16
|
Chen J, He Z, Dai X, Lin S, Liu J, Ye X. New insights into pyroptosis in pemphigus: from cellular structure to therapeutic targeting. An Bras Dermatol 2025:S0365-0596(25)00027-3. [PMID: 40102153 DOI: 10.1016/j.abd.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Pemphigus is an autoimmune blistering disease where autoantibodies target desmoglein (Dsg) antigens on keratinocytes, triggering the p38 MAPK pathway, Dsg internalization, desmosomal dissolution, and keratinocyte apoptosis, are essential for blister formation. Recent research indicates keratinocyte pyroptosis may exacerbate acantholysis and delay wound healing. Current treatments, including corticosteroids and immunosuppressants, are effective but have significant side effects, such as prolonged wound healing and increased infection risk. Understanding these inflammatory processes is crucial for developing effective treatments for pemphigus. METHODS The authors conducted a comprehensive review of the literature, analyzing recent findings regarding the upregulation of pyroptosis-related proteins in pemphigus. RESULTS The present findings highlight a significant upregulation of pyroptosis-related proteins, which play a crucial role in the inflammatory response and blister formation characteristic of pemphigus. Key proteins such as cytokines IL-1β, IL-18, High Mobility Group Box-1 (HMGB1), and Parkin, along with NOD-like receptors and P2×7 receptors, were identified as pivotal in facilitating pyroptosis. The study also discusses potential therapeutic approaches targeting these proteins to modulate the disease pathway effectively. STUDY LIMITATIONS This study aimed to investigate the role of pyroptosis in the pathogenesis of pemphigus, focusing on its potential as a novel therapeutic target. CONCLUSIONS Pyroptosis significantly contributes to the pathogenesis of pemphigus and presents a promising target for therapy. Targeting specific molecules involved in the pyroptosis pathway offers the potential for developing more precise and less toxic treatments, allowing the shift from traditional therapies towards targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jiazhen Chen
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zezhi He
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangnong Dai
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sifan Lin
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahui Liu
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingdong Ye
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
18
|
Cao C, Lu J, Lu P, Li L, Zhang F, Li X, Chen G, Bai L, Li H. Disruption of the Pum2 axis Aggravates neuronal damage following cerebral Ischemia-Reperfusion in mice. Brain Res 2025; 1851:149455. [PMID: 39832611 DOI: 10.1016/j.brainres.2025.149455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation. Pumilio2 (Pum2), an RNA-binding protein, was shown to inhibit Mff translation, while Norad, a long non-coding RNA, sequestered Pum2, alleviating this inhibition. We observed decreased Pum2 levels and binding capacity to Mff mRNA, alongside increased Norad levels and binding to Pum2 in neurons after OGD/R. Overexpression of Pum2 in neurons reduced Mff levels, mitigated mitochondrial fragmentation, and alleviated neuronal injury. In a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R), Pum2 overexpression further improved mitochondrial morphology, reduced infarct volume, and enhanced neurobehavioral recovery. These findings suggest that targeting the Norad-Pum2-Mff axis could provide a promising therapeutic strategy for ischemic stroke by restoring mitochondrial function and reducing neuronal damage.
Collapse
Affiliation(s)
- Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Peng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lianxin Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | | | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
19
|
Chiquetto L, Schuetz M, Dong Q, Warmka M, Valin L, Jones A, Hunt P, Petermeier C, Wang J, Roundy N, Greenberg ZJ, Yang W, Zhang CR, Challen GA, Luke CJ, Signer RAJ, Beatty WL, Sykes S, Li W, Kast DJ, Schuettpelz LG. Stathmin 1 regulates mitophagy and cellular function in hematopoietic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642434. [PMID: 40161782 PMCID: PMC11952385 DOI: 10.1101/2025.03.10.642434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stathmin 1 is a cytoplasmic phosphoprotein that regulates microtubule dynamics via promotion of microtubule catastrophe and sequestration of free tubulin heterodimers. Stathmin 1 is highly expressed in hematopoietic stem cells (HSCs), and overexpressed in leukemic cells, however its role in HSCs is not known. Herein, we found that loss of Stathmin 1 is associated with altered microtubule architecture in HSCs, and markedly impaired HSC function. Transcriptomic studies suggested alterations in oxidative phosphorylation in Stmn1 -/- HSCs, and further mechanistic studies revealed defective mitochondrial structure and function in the absence of Stathmin 1 with increased ROS production. Microtubules associate with mitochondria and lysosomes to facilitate autophagosome formation and mitophagy, and indeed we found that this critical mitochondrial quality control process is impaired in Stathmin 1-deficient HSCs. Finally, stimulation of autophagy improved the colony forming ability of Stmn1 -/- hematopoietic stem and progenitor cells. Together, our data identify Stathmin 1 as a novel regulator of mitophagy and mitochondrial health in HSCs. Key Points The microtubule regulating protein Stathmin 1 is highly expressed in HSPCs and promotes normal microtubule architecture.Loss of Stathmin 1 in HSPCs leads to impaired autophagy with abnormal mitochondrial morphology, decreased respiratory capacity, and impaired cellular function.
Collapse
|
20
|
Tang M, Rong D, Gao X, Lu G, Tang H, Wang P, Shao NY, Xia D, Feng XH, He WF, Chen W, Lu JH, Liu W, Shen HM. A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy. Cell Discov 2025; 11:22. [PMID: 40064862 PMCID: PMC11894195 DOI: 10.1038/s41421-025-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
PTEN-induced kinase-1 (PINK1) is a crucial player in selective clearance of damaged mitochondria via the autophagy-lysosome pathway, a process termed mitophagy. Previous studies on PINK1 mainly focused on its post-translational modifications, while the transcriptional regulation of PINK1 is much less understood. Herein, we reported a novel mechanism in control of PINK1 transcription by SMAD Family Member 3 (SMAD3), an essential component of the transforming growth factor beta (TGFβ)-SMAD signaling pathway. First, we observed that mitochondrial depolarization promotes PINK1 transcription, and SMAD3 is likely to be the nuclear transcription factor mediating PINK1 transcription. Intriguingly, SMAD3 positively transactivates PINK1 transcription independent of the canonical TGFβ signaling components, such as TGFβ-R1, SMAD2 or SMAD4. Second, we found that mitochondrial depolarization activates SMAD3 via PINK1-mediated phosphorylation of SMAD3 at serine 423/425. Therefore, PINK1 and SMAD3 constitute a positive feedforward loop in control of mitophagy. Finally, activation of PINK1 transcription by SMAD3 provides an important pro-survival signal, as depletion of SMAD3 sensitizes cells to cell death caused by mitochondrial stress. In summary, our findings identify a non-canonical function of SMAD3 as a nuclear transcriptional factor in regulation of PINK1 transcription and mitophagy and a positive feedback loop via PINK1-mediated SMAD3 phosphorylation and activation. Understanding this novel regulatory mechanism provides a deeper insight into the pathological function of PINK1 in the pathogenesis of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Mingzhu Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dade Rong
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiangzheng Gao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haimei Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Peng Wang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Ning-Yi Shao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Feng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
21
|
Hough ZJ, Nasehi F, Corum DG, Norris RA, Foley AC, Muise-Helmericks RC. Akt3 links mitochondrial function to the regulation of Aurora B and mitotic fidelity. PLoS One 2025; 20:e0315751. [PMID: 40048438 PMCID: PMC11884723 DOI: 10.1371/journal.pone.0315751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/29/2024] [Indexed: 03/09/2025] Open
Abstract
Akt3 is a key regulator of mitochondrial homeostasis in the endothelium. Akt3 depletion results in mitochondrial dysfunction, decreased mitochondrial biogenesis, and decreased angiogenesis. Here we link mitochondrial homeostasis with mitotic fidelity-depletion of Akt3 results in the missegregation of chromosomes as visualized by multinucleation and micronuclei formation. We have connected Akt3 to Aurora B, a significant player in chromosome segregation. Akt3 localizes to the nucleus, where it associates with and regulates WDR12. During mitosis, WDR12 is localized to the dividing chromosomes, and its depletion results in a similar mitotic phenotype to Akt3 depletion. WDR12 associates with Aurora B, both of which are downregulated under conditions of Akt3 depletion. We used the model oxidant paraquat to induce mitochondrial dysfunction to test whether the Akt3-dependent effect on mitochondrial homeostasis is linked to mitotic function. Paraquat treatment also causes chromosome missegregation by inhibiting the expression of Akt3, WDR12, and Aurora B. The inhibition of ROS rescued both the mitotic fidelity and the expression of Akt3 and Aurora B. Akt3 directly phosphorylates the major nuclear export protein CRM-1, causing an increase in its expression, resulting in the inhibition of PGC-1 nuclear localization, the master regulator of mitochondrial biogenesis. The Akt3/Aurora B pathway is also dependent on CRM-1. CRM-1 overexpression resulted in chromosome missegregation and downregulation of Aurora B similar to that of Akt3 depletion. Akt3 null hearts at midgestation (E14.5), a stage in which proliferation is occurring, have decreased Aurora B expression, increased CRM-1 expression, decreased proliferation, and increased apoptosis. Akt3 null hearts are smaller and have a thinner compact cell layer than age-matched wild-type mice. Akt3 null tissue has dysmorphic nuclear structures, suggesting mitotic catastrophe. Our findings show that mitochondrial dysfunction induced by paraquat or Akt3 depletion results in a CRM-1-dependent disruption of Aurora B and mitotic fidelity.
Collapse
Affiliation(s)
- Zachary J. Hough
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Fatemeh Nasehi
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel G. Corum
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ann C. Foley
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
22
|
Bian C, Wei M, Luo X, Sun J, Ji H. Molecular cloning, characterization and expression analysis of PINK1 (Phosphatase and tensin homolog-induced putative kinase 1) and Parkin (parkin RBR E3 ubiquitin protein ligase) in grass carp (Ctenopharyngodon idellus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105349. [PMID: 40044098 DOI: 10.1016/j.dci.2025.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and parkin RBR E3 ubiquitin protein ligase (Parkin) emerged as mediators of mitophagy and regulators of the immune response in mammals. However, their gene characterizations and roles remain poorly understood in fish. Herein, we identified and characterized pink1 and parkin genes and studied their involvement in immune responses to lipopolysaccharide (LPS) in Ctenopharyngodon idellus kidney (CIK) cells. Bioinformatic analysis found that PINK1 and Parkin were relatively conservative during evolution. In CIK cells, LPS significantly increased the mRNA expression of the transcription factor nf-κb and its downstream proinflammatory cytokines, such as tnfα, il-6 and il-1β, along with the activation of PINK1/Parkin-mediated mitophagy (P < 0.05). Furthermore, inhibition of mitophagy aggravated LPS-induced inflammation in CIK cells. Overall, our findings suggest that PINK1/Parkin-mediated mitophagy may play a protective role in LPS-induced inflammation in fish.
Collapse
Affiliation(s)
- Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xiaolong Luo
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
23
|
Zimmermann P, Kurth S, Giannoukos S, Stocker M, Bokulich NA. NapBiome trial: Targeting gut microbiota to improve sleep rhythm and developmental and behavioural outcomes in early childhood in a birth cohort in Switzerland - a study protocol. BMJ Open 2025; 15:e092938. [PMID: 40032396 DOI: 10.1136/bmjopen-2024-092938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION The gut-brain axis plays a crucial role in the regulation and development of psychological and physical processes. The first year of life is a critical period for the development of the gut microbiome, which parallels important milestones in establishing sleep rhythm and brain development. Growing evidence suggests that the gut microbiome influences sleep, cognition and early neurodevelopment. For term-born and preterm-born infants, difficulties in sleep regulation may have consequences on health. Identifying effective interventions on the gut-brain axis in early life is likely to have long-term implications for the health and development of at-risk infants. METHODS AND ANALYSES In this multicentre, four-group, double-blinded, placebo (PLC)-controlled randomised trial with a factorial design, 120 preterm-born and 260 term-born infants will be included. The study will investigate whether the administration of daily synbiotics or PLC for a duration of 3 months improves sleep patterns and neurodevelopmental outcomes up to 2 years of age. The trial will also: (1) determine the association between gut microbiota, sleep patterns and health outcomes in children up to 2 years of age; and (2) leverage the interactions between gut microbiota, brain and sleep to develop new intervention strategies for at-risk infants. ETHICS AND DISSEMINATION The NapBiome trial has received ethical approval by the Committee of Northwestern and Central Switzerland and Canton Vaud, Switzerland (#2024-01681). Outcomes will be disseminated through publication and will be presented at scientific conferences. Metagenomic data will be shared through the European Nucleotide Archive. TRIAL REGISTRATION NUMBER The US National Institutes of Health NCT06396689.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Community Health and Department of Paediatrics, Fribourg Hospital, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Stamatios Giannoukos
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Stocker
- Neonatology, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Nicholas A Bokulich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Zhu Y, Liu X, Liu X, Shi Y, Li H, Ru S, Tian H. Toxicokinetics and reproductive toxicity of maternal bisphenol AF exposure during gestation in offspring of Sprague Dawley rats. Chem Biol Interact 2025; 409:111424. [PMID: 39938710 DOI: 10.1016/j.cbi.2025.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Bisphenol AF (BPAF) has been widely used as a main alternative to bisphenol A (BPA), and previous in vitro studies have shown that BPAF has higher reproductive toxicity potentials than BPA. However, data on in vivo toxicity of BPAF is still limited. In this study, Sprague Dawley rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to study toxicokinetics and reproductive toxicity in offspring. The results showed that plasma concentrations BPAF peaked within 6 h after birth, followed by a two-phase decay, with clearance rates of approximately 3.0 l/h and terminal half-life values ranging from 77 h to 114 h, suggesting fast absorption and high persistence of BPAF. At postnatal day 21 (PND21), BPAF was found to be bioaccumulated in reproductive organs (testes and ovaries) of the offspring, resulting in adverse effects on reproduction in both sexes. Lower anogenital distance, reduced relative testicular weight, dissolved interstitial cells, fewer primary spermatocytes, decreased testosterone levels, and increased luteinizing hormone levels were detected in male offspring. In female offspring, vacuolization in follicular antrum, fewer follicles, increased 17β-estradiol levels, and increased luteinizing hormone levels in female offspring were found. Gene expression of scavenger receptor class B type I (SR-B1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol regulatory element-binding protein-1c (SREBP-1c), and several steroidogenic enzymes was significantly decreased in male offspring following maternal exposure to BPAF, suggesting that the decreases in testosterone levels is a result of inhibited cholesterol uptake, cholesterol de novo synthesis, and steroidogenesis. In addition, inhibition of pathways of phagosome and cell adhesion molecules might be the underlying molecular mechanism involved in BPAF-induced reproductive disorders in male offspring. This study provides the scientific basis for a comprehensive assessment of the safety of BPAF.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
25
|
Zou Y, Zhang X, Chen XY, Ma XF, Feng XY, Sun Y, Ma T, Ma QH, Zhao XD, Xu DE. Contactin -Associated protein1 Regulates Autophagy by Modulating the PI3K/AKT/mTOR Signaling Pathway and ATG4B Levels in Vitro and in Vivo. Mol Neurobiol 2025; 62:2764-2780. [PMID: 39164481 PMCID: PMC11790771 DOI: 10.1007/s12035-024-04425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Contactin-associated protein1 (Caspr1) plays an important role in the formation and stability of myelinated axons. In Caspr1 mutant mice, autophagy-related structures accumulate in neurons, causing axonal degeneration; however, the mechanism by which Caspr1 regulates autophagy remains unknown. To illustrate the mechanism of Caspr1 in autophagy process, we demonstrated that Caspr1 knockout in primary neurons from mice along with human cell lines, HEK-293 and HeLa, induced autophagy by downregulating the PI3K/AKT/mTOR signaling pathway to promote the conversion of microtubule-associated protein light chain 3 I (LC3-I) to LC3-II. In contrast, Caspr1 overexpression in cells contributed to the upregulation of this signaling pathway. We also demonstrated that Caspr1 knockout led to increased LC3-I protein expression in mice. In addition, Caspr1 could inhibit the expression of autophagy-related 4B cysteine peptidase (ATG4B) protein by directly binding to ATG4B in overexpressed Caspr1 cells. Intriguingly, we found an accumulation of ATG4B in the Golgi apparatuses of cells overexpressing Caspr1; therefore, we speculate that Caspr1 may restrict ATG4 secretion from the Golgi apparatus to the cytoplasm. Collectively, our results indicate that Caspr1 may regulate autophagy by modulating the PI3K/AKT/mTOR signaling pathway and the levels of ATG4 protein, both in vitro and in vivo. Thus, Caspr1 can be a potential therapeutic target in axonal damage and demyelinating diseases.
Collapse
Affiliation(s)
- Yan Zou
- Department of Neurosurgery, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Xin-Yi Chen
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiao-Fang Ma
- Hong Shan Hospital, Wuxi, 214000, Jiangsu, China
| | - Xiao-Yan Feng
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Yang Sun
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Tao Ma
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xu-Dong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China.
- Wuxi Neurosurgical Institute, Wuxi, 214122, Jiangsu, China.
| | - De-En Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
26
|
Ma L, Zhu Y, Zhang Z, Fan D, Zhai H, Li D, Kang W, Qiao X, Lu H, Liu C. Effects of Mandibular Advancement Device on Genioglossus of Rabbits in Obstructive Sleep Apnea Through PINK1/Parkin Pathway. J Oral Rehabil 2025; 52:343-349. [PMID: 39593277 DOI: 10.1111/joor.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Early treatment of mandibular advancement device (MAD) reverses the abnormal changes resulting from obstructive sleep apnoea (OSA), but the underlying mechanism is not clear. We analysed the changes of genioglossus function before and after MAD treatment in OSA rabbits and explored the mechanism of mitochondrial autophagy. METHODS Eighteen male New Zealand rabbits were randomised into three groups: the control group, Group OSA, and Group MAD. After successful modelling, all animals were induced sleep in supine positions for 4-6 h per day for 8 weeks. Cone beam computed tomography (CBCT) and polysomnography (PSG) were performed to record sleep conditions. The genioglossus contractile force and the levels of LC3-I, LC3-II, Beclin-1, PINK1 and Parkin were detected in three groups. In vitro, C2C12 myoblast cells were cultured under normoxic or hypoxic conditions for 24 h, and then the changes in mitochondrial structure and accumulation of autolysosomes were detected by transmission electron microscopy (TEM). RESULTS The contractile tension of the genioglossus in Group OSA was significantly lower than that in the control group. The ratio of LC3II/LC3I and the levels of Beclin-1, PINK1 and Parkin were higher in Group OSA than that in the control group. And the abnormal changes were tended to be normal after MAD treatment. The mitochondrial structure was disrupted, and the number of autolysosomes increased in C2C12 after 24 h of hypoxia. CONCLUSIONS MAD treatment in male rabbits may decrease the contractile tension of the genioglossus and increase the level of mitochondrial autophagy caused by OSA. And the mechanism of mitochondrial autophagy was mediated by the PINK1/Parkin pathway in male rabbits.
Collapse
Affiliation(s)
- Lishuang Ma
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
- Department of Stomatology, Harrison International Peace Hospital, Hengshui, China
| | - Yahui Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Zuo Zhang
- Department of Stomatology, Ningxia People's Hospital, Ningxia, China
| | - Dengying Fan
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Haoyan Zhai
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Dongna Li
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Wenjing Kang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Xing Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Haiyan Lu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Chunyan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| |
Collapse
|
27
|
D'alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial Dysfunction in Alzheimer's Disease. Ageing Res Rev 2025:102713. [PMID: 40023293 DOI: 10.1016/j.arr.2025.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive decline and distinct neuropathological features. The absence of a definitive cure presents a significant challenge in neurology and neuroscience. Early clinical manifestations, such as memory retrieval deficits and apathy, underscore the need for a deeper understanding of the disease's underlying mechanisms. While amyloid-β plaques and tau neurofibrillary tangles have dominated research efforts, accumulating evidence highlights mitochondrial dysfunction as a central factor in AD pathogenesis. Mitochondria, essential cellular organelles responsible for energy production necessary for neuronal function become impaired in AD, triggering several cellular consequences. Factors such as oxidative stress, disturbances in energy metabolism, failures in the mitochondrial quality control system, and dysregulation of calcium release are associated with mitochondrial dysfunction. These abnormalities are closely linked to the neurodegenerative processes driving AD development and progression. This review explores the intricate relationship between mitochondrial dysfunction and AD pathogenesis, emphasizing its role in disease onset and progression, while also considering its potential as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Maria Clara Bila D'alessandro
- Universidade Federal Fluminense, Faculty of Medicine, Desembargador Athayde Parreiras road 100, Niterói, Rio de Janeiro, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| | - Mauro Geller
- Unifeso, Department of immunology and microbiology, Alberto Torres avenue 111, Teresópolis, Rio de Janeiro, Brazil.
| | - Domenico Praticò
- Department of Neurosciences, Lewis Katz School of Medicine. Temple University, 3500 North Broad Street, Philadelphia, Pennsylvania, United States of America.
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Thayer JA, Petersen JD, Huang X, Hawrot J, Ramos DM, Sekine S, Li Y, Ward ME, Narendra DP. Novel reporter of the PINK1-Parkin mitophagy pathway identifies its damage sensor in the import gate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639160. [PMID: 40027798 PMCID: PMC11870511 DOI: 10.1101/2025.02.19.639160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Damaged mitochondria can be cleared from the cell by mitophagy, using a pathway formed by the recessive Parkinson's disease genes PINK1 and Parkin. How mitochondrial damage is sensed by the PINK1-Parkin pathway, however, remains uncertain. Here, using a Parkin substrate-based reporter in genome-wide screens, we identified that diverse forms of mitochondrial damage converge on loss of mitochondrial membrane potential (MMP) to activate PINK1. Consistently, the MMP but not the presequence translocase-associated motor (PAM) import motor provided the essential driving force for endogenous PINK1 import through the inner membrane translocase TIM23. In the absence of TIM23, PINK1 arrested in the translocase of the outer membrane (TOM) during import. The energy-state outside of the mitochondria further modulated the pathway by controlling the rate of new PINK1 synthesis. Our results identify separation of PINK1 from TOM by the MMP, as the key damage-sensing switch in the PINK1-Parkin mitophagy pathway. Highlights MFN2-Halo is a quantitative single-cell reporter of PINK1-Parkin activation.Diverse forms of mitochondrial damage, identified in whole-genome screens, activate the PINK1-Parkin pathway by disrupting the mitochondrial membrane potential (MMP).The primary driving force for endogenous PINK1 import through the TIM23 translocase is the MMP with the PAM import motor playing a supporting role.Loss of TIM23 is sufficient to stabilize PINK1 in the TOM complex and activate Parkin.
Collapse
Affiliation(s)
- Julia A. Thayer
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - Xiaoping Huang
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - James Hawrot
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912,USA
| | - Daniel M. Ramos
- iPSC Neurodegenerative Disease Initiative, National Institute of Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiori Sekine
- Aging Institute, Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E. Ward
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derek P. Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Deng X, Huang Y, Zhang J, Chen Y, Jiang F, Zhang Z, Li T, Hou L, Tan W, Li F. Histone lactylation regulates PRKN-Mediated mitophagy to promote M2 Macrophage polarization in bladder cancer. Int Immunopharmacol 2025; 148:114119. [PMID: 39854875 DOI: 10.1016/j.intimp.2025.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Bladder cancer (BCa), particularly muscle-invasive bladder cancer (MIBC), is associated with poor prognosis, partly because of immune evasion driven by M2 tumor-associated macrophages (TAMs). Understanding the regulatory mechanisms of M2 macrophage polarization via PRKN-mediated mitophagy and histone lactylation (H3K18la) is crucial for improving treatment strategies. METHODS A single-cell atlas from 46 human BCa samples was constructed to identify macrophage subpopulations. Bioinformatics analysis and experimental validation, including ChIP-seq and lactylation modulation assays, were used to investigate the role of PRKN in M2 macrophage polarization and its regulation by H3K18la. RESULTS Single-cell analysis revealed distinct macrophage subpopulations, including M1 and M2 types. PRKN was identified as a critical regulator of mitophagy in M2 macrophages, supporting their immunosuppressive function. Bulk RNA-seq and gene intersection analysis revealed a set of mitophagy-related macrophage polarization genes (Mito_Macro_RGs) enriched in mitophagy and immune pathways. Pseudotime analysis revealed that PRKN was upregulated during the M1-to-M2 transition. siRNA-mediated PRKN knockdown impaired M2 polarization, reducing the expression of CD206 and ARG1. ChIP-seq and histone lactylation modulation confirmed that H3K18la enhanced PRKN expression, promoting mitophagy and M2 polarization and thereby facilitating immune suppression and tumor progression. CONCLUSIONS Histone lactylation regulated PRKN-mediated mitophagy, promoting M2 macrophage polarization and contributing to immune evasion in BCa.
Collapse
Affiliation(s)
- Xiaolin Deng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jinge Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuwen Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Feifan Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zicai Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Tanghua Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Lina Hou
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
30
|
Zhou F, Lian W, Yuan X, Wang Z, Xia C, Yan Y, Wang W, Tong Z, Cheng Y, Xu J, He J, Zhang W. Cornuside alleviates cognitive impairments induced by Aβ 1-42 through attenuating NLRP3-mediated neurotoxicity by promoting mitophagy. Alzheimers Res Ther 2025; 17:47. [PMID: 39972387 PMCID: PMC11837312 DOI: 10.1186/s13195-025-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which mitochondrial dysfunction and neuroinflammation play crucial roles in its progression. Our previous studies found that cornuside from Cornus officinalis Sieb.Et Zucc is an anti-AD candidate, however, its underlying mechanism remains unknown. In the present study, AD mice were established by intracerebroventricular injection of Aβ1-42 and treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated behavioral deficits, protected synaptic plasticity and relieved neuronal damage in Aβ1-42 induced mice. Importantly, cornuside decreased NLRP3 inflammasome activation, characterized by decreased levels of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. Furthermore, cornuside promoted mitophagy accompanied by decreasing SQSTM1/p62 and promoting LC3B-I transforming into LC3B-II, via Pink1/Parkin signaling instead of FUNDC1 or BNIP3 pathways. In order to investigate the relationship between NLRP3 inflammasome and mitophagy in the neuroprotective mechanism of cornuside, we established an in-vitro model in BV2 cells exposed to LPS and Aβ1-42. And cornuside inhibited NLRP3 inflammasome activation and subsequent cytokine release, also protected neurons from damaging factors in microenvironment of conditional culture. Cornuside improved mitochondrial function by promoting oxidative phosphorylation and glycolysis, decreasing the production of ROS and mitochondrial membrane potential depolarization. Besides, mitophagy was also facilitated with increased colocalization of MitoTracker with LC3B and Parkin, and Pink1/Parkin, FUNDC1 and BNIP3 pathways were all involved in the mechanism of cornuside. By blocking the formation of autophagosomes by 3-MA, the protective effects on mitochondria, the inhibition on NLRP3 inflammasome as well as neuronal protection in conditional culture were eliminated. There is reason to believe that the promotion of mitophagy plays a key role in the NLRP3 inhibition of cornuside. In conclusion, cornuside re-establishes the mitophagy flux which eliminates damaged mitochondria and recovers mitochondrial function, both of them are in favor of inhibiting NLRP3 inflammasome activation, then alleviating neuronal and synaptic damage, and finally improving cognitive function.
Collapse
Affiliation(s)
- Fulin Zhou
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenwen Lian
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhuohang Tong
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yungchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Jiekun Xu
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Jun He
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
31
|
Wen S, Ju Z, Wang Y, Zuo CT, Sun X, Zheng T. FRET Nanosensor Based on DNA Tetrahedron for Visualizing PLD3 Fluctuation in Mouse Models of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39973147 DOI: 10.1021/acsami.4c20506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Accumulating evidence supports an important role of phospholipase D3 (PLD3) in the pathogenesis of Alzheimer's disease (AD), while the actual expression level and distribution of PLD3 remains controversial in AD. Developing specific nanoprobes could be a promising strategy to understand PLD3 better, but there are limited approaches available in this field for a simple, reliable, and biocompatible biosensor. In this work, we report a PLD3-induced fluorescence resonance energy transfer (FRET) nanoprobe utilizing tetrahedral DNA nanostructures (TDNs) for visualizing the fluctuation of PLD3 at organ and subcellular levels in AD. Hydrolysis of PLD3 to a specific nucleotide strand on TDN will turn the FRET probe to an OFF state, which results in changes in fluorescent intensity. Immunofluorescent staining of brain sections proved the reliability of TDN nanoprobe to visualize PLD3 and the upregulation of PLD3 was observed in AD mice. Subsequent application of the nanoprobe uncovered PLD3 in the heart tissue of AD mice for the first time. Further investigations on the cellular level revealed a good colocalization of TDN nanoprobes with lysosomes in normal neurons, while their fluorescent signal overlaps better with mitochondria than lysosomes in AD neurons. Our finding provides not only insights into PLD3 but also an inspiring application of TDNs in the mechanism research of AD at multiple levels.
Collapse
Affiliation(s)
- Shuyan Wen
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Zizhao Ju
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Chuan-Tao Zuo
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
32
|
Beesetti S, Guy C, Sirasanagandla S, Yang M, Sumpter RJ, Sheppard H, Pelletier S, Wlodarski MW, Green DR. Distinct developmental outcomes in DNA repair-deficient FANCC c.67delG mutant and FANCC -/- Mice. Cell Death Differ 2025:10.1038/s41418-025-01461-3. [PMID: 39962244 DOI: 10.1038/s41418-025-01461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Fanconi Anemia (FA) is an autosomal recessive disorder characterized by diverse clinical manifestations such as aplastic anemia, cancer predisposition, and developmental defects including hypogonadism, microcephaly, organ dysfunction, infertility, hyperpigmentation, microphthalmia, and skeletal defects. In addition to the well-described defects in DNA repair, mitochondrial dysfunction due to defects in mitochondrial autophagy (mitophagy) is also associated with FA, although its contribution to FA phenotypes is unknown. This study focused on the FANCC gene, which, alongside other FA genes, is integral to DNA repair and mitochondrial quality control. In the present study, we created a FANCC mutant mouse model, based on a human mutation (FANCC c.67delG) that is defective in DNA repair but proficient in mitophagy. We found that the FANCC c.67delG mutant mouse model recapitulates some phenotypes observed in FA patients, such as cellular hypersensitivity to DNA cross-linking agents and hematopoietic defects. In contrast, FA phenotypes such as microphthalmia, hypogonadism, and infertility, present in FANCC-deficient mice, were absent in the FANCC c.67delG mice, suggesting that the N-terminal 55 amino acids of FANCC are dispensable for these developmental processes. Furthermore, the FANCC c.67delG mutation preserved mitophagy, and unlike the FANCC null mutation, did not lead to the accumulation of damaged mitochondria in cells or tissues. This study highlights the multifaceted nature of the FANCC protein, with distinct domains responsible for DNA repair and mitophagy. Our results suggest that developmental defects in FA may not solely stem from DNA repair deficiencies but could also involve other functions, such as mitochondrial quality control.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Shyam Sirasanagandla
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mao Yang
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhea Jr Sumpter
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephane Pelletier
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
33
|
Hemel IMGM, Arts ICW, Moerel M, Gerards M. The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions. Biomolecules 2025; 15:229. [PMID: 40001532 PMCID: PMC11853629 DOI: 10.3390/biom15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
Collapse
|
34
|
Yang Y, Zhou H, Li F, Zhang Y, Yang J, Shen Y, Hu N, Zou Q, Qin L, Zeng H, Huang W. Staphylococcus aureus induces mitophagy via the HDAC11/IL10 pathway to sustain intracellular survival. J Transl Med 2025; 23:156. [PMID: 39905391 DOI: 10.1186/s12967-025-06161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The immune evasion and prolonged survival of Staphylococcus aureus (S. aureus) within macrophages are key factors contributing to the difficulty in curing osteomyelitis. Although macrophages play a vital role as innate immune cells, the mechanisms by which S. aureus survives within them and suppresses host immune functions remain incompletely understood. METHODS This study employed confocal microscopy, flow cytometry, ELISA, and siRNA technology to assess the survival capacity of S. aureus within macrophages and the impact of inflammatory cytokines on its persistence. Proteomics was used to investigate the potential mechanisms and differential proteins involved in S. aureus intracellular survival. Additionally, confocal microscopy, flow cytometry, Mdivi-1 intervention, and Western blot were utilized to validate the role of mitophagy in supporting S. aureus survival. The study further explored how the HDAC11/IL10 axis enhances mitophagy to promote intracellular S. aureus survival by using HDAC11 overexpression, siRNA, and rapamycin intervention combined with confocal microscopy and flow cytometry. RESULTS The findings demonstrated that IL10 promotes mitophagy to clear mitochondrial reactive oxygen species (mtROS), thereby enhancing the intracellular survival of S. aureus within macrophages. Additionally, we discovered that the transcriptional repressor of IL10, HDAC11, was significantly downregulated during S. aureus infection. Overexpression of HDAC11 and the use of the autophagy activator rapamycin further validated that the HDAC11/IL10 axis regulates mitophagy via the mTOR pathway, which is essential for supporting S. aureus intracellular survival. CONCLUSION This study reveals that S. aureus enhances IL10 production by inhibiting HDAC11, thereby promoting mitophagy and mtROS clearance, which supports its survival within macrophages. These findings offer new insights into the intracellular survival mechanisms of S. aureus and provide potential therapeutic approaches for the clinical management of osteomyelitis.
Collapse
Affiliation(s)
- Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
- Department of Orthopaedics, The People's Hospital of Dazu, Chongqing, 402360, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yidong Shen
- Department of Orthopaedics, The First people's Hospital of Yancheng, Yancheng, Jiangsu, 224006, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Vieira J, Barros M, López-Fernández H, Glez-Peña D, Nogueira-Rodríguez A, Vieira CP. Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline. Int J Mol Sci 2025; 26:1325. [PMID: 39941093 PMCID: PMC11818632 DOI: 10.3390/ijms26031325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Dysfunctional mitochondria are present in many neurodegenerative diseases, such as spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD). SCA3/MJD, the most frequent neurodegenerative ataxia worldwide, is caused by the abnormal expansion of the polyglutamine tract (polyQ) at ataxin-3. This protein is known to deubiquitinate key proteins such as Parkin, which is required for mitophagy. Ataxin-3 also interacts with Beclin1 (essential for initiating autophagosome formation adjacent to mitochondria), as well as with the mitochondrial cristae protein TBK1. To identify other proteins of the mitophagy pathway (according to the KEGG database) that can interact with ataxin-3, here we developed a pipeline for in silico analyses of protein-protein interactions (PPIs), called auto-p2docking. Containerized in Docker, auto-p2docking ensures reproducibility and reduces the number of errors through its simplified configuration. Its architecture consists of 22 modules, here used to develop 12 protocols but that can be specified according to user needs. In this work, we identify 45 mitophagy proteins as putative ataxin-3 interactors (53% are novel), using ataxin-3 interacting regions for validation. Furthermore, we predict that ataxin-3 interactors from both Parkin-independent and -dependent mechanisms are affected by the polyQ expansion.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.V.); (M.B.); (A.N.-R.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mariana Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.V.); (M.B.); (A.N.-R.)
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo López-Fernández
- Department of Computer Science, CINBIO, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Daniel Glez-Peña
- Department of Computer Science, CINBIO, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Alba Nogueira-Rodríguez
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.V.); (M.B.); (A.N.-R.)
- Department of Computer Science, CINBIO, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.V.); (M.B.); (A.N.-R.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
36
|
Gu H, Li Q, Liu Z, Li Y, Liu K, Kong X, Zhang Y, Meng Q, Song K, Xie Q, Gao Y, Cheng L. SPP1-ITGα5/β1 Accelerates Calcification of Nucleus Pulposus Cells by Inhibiting Mitophagy via Ubiquitin-Dependent PINK1/PARKIN Pathway Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411162. [PMID: 39721032 PMCID: PMC11831503 DOI: 10.1002/advs.202411162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Low back pain (LBP) caused by nucleus pulposus degeneration and calcification leads to great economic and social burden worldwide. Unexpectedly, no previous studies have demonstrated the association and the underlying mechanism between nucleus pulposus tissue degeneration and calcification formation. Secreted Phosphoprotein 1 (SPP1) exerts crucial functions in bone matrix mineralization and calcium deposition. Here, a novel function of SPP1 is reported, namely that it can aggravate nucleus pulposus cells (NPs) degeneration by negatively regulating extracellular matrix homeostasis. The degenerated NPs have a higher mineralization potential, which is achieved by SPP1. Mechanistically, SPP1 can accelerate the degeneration of nucleus pulposus cells by activating integrin α5β1 (ITGα5/β1), aggravating mitochondrial damage and inhibiting mitophagy. SPP1-ITGα5/β1 axis inhibits mitophagy by PINK1/PARKIN pathway blockade. In conclusion, SPP1 activates ITGα5/β1 to inhibit mitophagy, accelerates NPs degeneration, and induces calcification, thereby leading to intervertebral disc degeneration (IVDD) and calcification, identifying the potentially unknown mechanism and relationship between IVDD and calcification. Important insights are provided into the role of SPP1 in nucleus pulposus calcification in IVDD by inducing nucleus pulposus cell senescence through inhibition of mitophagy and may help develop potential new strategies for IVDD treatment.
Collapse
Affiliation(s)
- Hanwen Gu
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Qi Li
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Zhenchuan Liu
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yanlin Li
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Kaiwen Liu
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Xiangzhen Kong
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yuanqiang Zhang
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Qunbo Meng
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Kangle Song
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Qing Xie
- Department of PharmacyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yuan Gao
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Lei Cheng
- Department of OrthopedicQilu Hospital of Shandong UniversityJinanShandong250012China
| |
Collapse
|
37
|
Cho YL, Tan HWS, Yang J, Kuah BZM, Lim NSY, Fu N, Bay BH, Ling SC, Shen HM. Glucose-6-phosphate dehydrogenase regulates mitophagy by maintaining PINK1 stability. LIFE METABOLISM 2025; 4:loae040. [PMID: 39872984 PMCID: PMC11749863 DOI: 10.1093/lifemeta/loae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown. Here, via a whole-genome CRISPR-Cas9 screening, we identified that G6PD regulates PINK1 (phosphatase and tensin homolog [PTEN]-induced kinase 1)-Parkin-mediated mitophagy. The function of G6PD in mitophagy was verified via multiple approaches. G6PD deletion significantly inhibited mitophagy, which can be rescued by G6PD reconstitution. Intriguingly, while the catalytic activity of G6PD is required, the known PPP functions per se are not involved in mitophagy regulation. Importantly, we found a portion of G6PD localized at mitochondria where it interacts with PINK1. G6PD deletion resulted in an impairment in PINK1 stabilization and subsequent inhibition of ubiquitin phosphorylation, a key starting point of mitophagy. Finally, we found that G6PD deletion resulted in lower cell viability upon mitochondrial depolarization, indicating the physiological function of G6PD-mediated mitophagy in response to mitochondrial stress. In summary, our study reveals a novel role of G6PD as a key positive regulator in mitophagy, which bridges several important cellular processes, namely glucose metabolism, redox homeostasis, and mitochondrial quality control.
Collapse
Affiliation(s)
- Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Basil Zheng Mian Kuah
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Nicole Si Ying Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Naiyang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Faculty of Health Sciences, MOE Frontier Centre for Precision Oncology, University of Macau, Macao 999078, China
| |
Collapse
|
38
|
He Y, Tang Z, Zhu G, Cai L, Chen C, Guan MX. Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis. J Biol Chem 2025; 301:108124. [PMID: 39716492 PMCID: PMC11791119 DOI: 10.1016/j.jbc.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nucleus-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, IV, and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, Pink, BNIP3 and NIX, respectively. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Zhining Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Gao Zhu
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine Between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Tu Y, Ren J, Fang W, Zhou C, Zhao B, Hua T, Chen Y, Chen Z, Feng Y, Jin H, Wang X. Daphnetin-mediated mitophagy alleviates intervertebral disc degeneration via the Nrf2/PINK1 pathway. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39838851 DOI: 10.3724/abbs.2025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), and effective therapies are still lacking. Reactive oxygen species (ROS) stress induces NLRP3 inflammasome activation, and this, along with extracellular matrix metabolism (ECM) degradation in nucleus pulposus cells (NPCs), plays a crucial role in the progression of IDD. Daphnetin (DAP) is a biologically active phytochemical extracted from plants of the Genus Daphne, which possesses various bioactivities, including antioxidant properties. In the present study, we demonstrate that DAP significantly attenuates tert-butyl hydroperoxide (TBHP)-induced ECM degradation, oxidative stress and NLRP3 inflammasome activation in NPCs. Furthermore, DAP could facilitate mitophagy to increase the removal of damaged mitochondria, consequently reducing mitochondrial ROS accumulation and alleviating NLRP3 inflammasome activation. Mechanistically, we unveil that DAP activates mitophagy by stimulating the Nrf2/PINK1 signaling pathway in TBHP-induced NPCs. In vivo experiments further corroborate the protective effect of DAP against IDD progression in a rat model induced by disc puncture. Accordingly, our findings reveal that DAP could be a promising therapeutic candidate for the treatment of IDD.
Collapse
Affiliation(s)
- Yiting Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaping Ren
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Weiyuan Fang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Chencheng Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Binli Zhao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyong Hua
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yiqi Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhenya Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yongzeng Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
40
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
41
|
Shi J, Xu Y, Zhang K, Liu Y, Zhang N, Zhang Y, Zhang H, Liang X, Xue M. Fucoidan Oligosaccharide Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in D-Galactose-Exposed Rats. Nutrients 2025; 17:325. [PMID: 39861454 PMCID: PMC11769225 DOI: 10.3390/nu17020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. Methods: The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage. Results: The findings showed that FOS could effectively mitigate kidney damage and improve the pathological condition of kidney tissues caused by D-gal and enhance kidney function. Intervention with FOS significantly reduced serum creatinine, serum uric acid, and serum urea nitrogen levels, compared to the model group. The protective mechanism of FOS on D-gal-induced kidney injury may be to inhibit oxidative stress and improve impaired mitochondrial function by downregulating the AMPK/ULK1 signaling pathway. FOS could also modulate the expression of mitochondrial autophagy-related proteins (Beclin-1, P62, and LC3II/LC3I), thereby mitigate D-gal-induced excessive mitophagy in the kidney. Furthermore, FOS may protect against kidney injury by preserving intestinal homeostasis. FOS decreased serum lipopolysaccharide levels and enhanced intestinal mucosal barrier function. FOS upregulated the abundances of Bacteroidota, Muribaculaceae, and Lactobacillus, while it decreased the abundances of Firmicutes, NK4A136_group, and Lachnospiraceae_NK4A136_group. FOS supplementation modulated gut microbiota composition, increasing beneficial bacteria and reducing detrimental ones, potentially contributing to improved kidney function. Conclusions: FOS may safeguard against renal injury in D-gal-exposed rats by inhibiting kidney excessive mitophagy, preserving mitochondrial function, and regulating intestinal homeostasis.
Collapse
Affiliation(s)
- Jing Shi
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China;
| | - Yan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.X.); (K.Z.); (N.Z.); (Y.Z.); (H.Z.); (X.L.)
| | - Kening Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.X.); (K.Z.); (N.Z.); (Y.Z.); (H.Z.); (X.L.)
| | - Ying Liu
- Laboratory of Cell and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Nan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.X.); (K.Z.); (N.Z.); (Y.Z.); (H.Z.); (X.L.)
| | - Yabin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.X.); (K.Z.); (N.Z.); (Y.Z.); (H.Z.); (X.L.)
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.X.); (K.Z.); (N.Z.); (Y.Z.); (H.Z.); (X.L.)
| | - Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.X.); (K.Z.); (N.Z.); (Y.Z.); (H.Z.); (X.L.)
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
42
|
Wang W, Yao SY, Luo J, Ding C, Huang Q, Yang Y, Shi Z, Lin J, Pan YC, Zeng X, Guo DS, Chen H. Engineered hypoxia-responsive albumin nanoparticles mediating mitophagy regulation for cancer therapy. Nat Commun 2025; 16:596. [PMID: 39799105 PMCID: PMC11724902 DOI: 10.1038/s41467-025-55905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors. These nanoparticles are hypoxia-responsive and release loaded guest molecules in hypoxic tumor cells. The released hydroxychloroquine disrupts the mitophagy process, thereby increasing oxidative stress and further weakening the tumor cells. Additionally, upon laser irradiation, the photosensitizer generates reactive oxygen species independent of oxygen, inducing mitochondria damage and mitophagy activation. The dual action of simultaneous spatiotemporal mitophagy activation and mitophagy flux blockade results in enhanced autophagic and oxidative stress, ultimately driving tumor cell death. Our work highlights the effectiveness of hydroxychloroquine-mediated mitophagy blockade combined with mitochondria-targeted photosensitizer for cascade-amplified oxidative stress against hypoxic tumors.
Collapse
Affiliation(s)
- Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Shun-Yu Yao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Jingjing Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Chendi Ding
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yao Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiachan Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
43
|
Zheng Q, Jin X, Nguyen TTM, Yi EJ, Park SJ, Yi GS, Yang SJ, Yi TH. Autophagy-Enhancing Properties of Hedyotis diffusa Extracts in HaCaT Keratinocytes: Potential as an Anti-Photoaging Cosmetic Ingredient. Molecules 2025; 30:261. [PMID: 39860131 PMCID: PMC11767327 DOI: 10.3390/molecules30020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics. Hedyotis diffusa (HD), as a medicinal plant, is renowned for its anti-inflammatory and anticancer properties; however, its effects on skin photoaging remain unclear. This study investigates HD's potential to counteract skin photoaging by restoring mitochondrial autophagy in keratinocytes. We used HPLC to detect the main chemical components in HD and, using a UVB-induced photoaging model in HaCaT keratinocytes, examined the effects of HD on reactive oxygen species (ROS) levels, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, and the cell cycle. Cellular respiration was further evaluated with the Seahorse XFp Analyzer, and RT-PCR and Western blotting were used to analyze the impact of HD on mitochondrial autophagy-related gene expression and signaling pathways. Our findings indicate that HD promotes autophagy by modulating the PI3K/AKT/mTOR and PINK/PARK2 pathways, which stabilizes mitochondrial quality, maintains MMP and Ca2+ balance, and reduces cytochrome c release. These effects relieve cell cycle arrest and prevent apoptosis associated with an increased BAX/BCL-2 ratio. Thus, HD holds promise as an effective anti-photoaging ingredient with potential applications in the development of cosmetic products.
Collapse
Affiliation(s)
- Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Gyeong-Seon Yi
- Department of Biopharmaceutical Biotechnology, Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| |
Collapse
|
44
|
Agir N, Georgakopoulos-Soares I, Zaravinos A. A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer. Int J Mol Sci 2025; 26:448. [PMID: 39859167 PMCID: PMC11765132 DOI: 10.3390/ijms26020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of PRKN, PINK1, MAP1LC3A, SRC, BNIP3L, BECN1, and OPTN, across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes. Pathway analysis revealed a complex interplay between the expression of the signature and potential effects on the activity of various cancer-related pathways in pan-cancer. Immune infiltration analysis linked the mitophagy signature with certain immune cell types, particularly OPTN with immune infiltration in melanoma. Methylation patterns correlated with gene expression and immune infiltration. Mutation analysis also showed frequent alterations in PRKN (34%), OPTN (21%), PINK1 (28%), and SRC (15%), with implications for the tumor microenvironment. We also found various correlations between the expression of the mitophagy-related genes and sensitivity in different drugs, suggesting that targeting this signature could improve therapy efficacy. Overall, our findings underscore the importance of mitophagy in cancer biology and drug resistance, as well as its potential for informing treatment strategies.
Collapse
Affiliation(s)
- Nora Agir
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
45
|
Zhou J, Xi Y, Wu T, Zeng X, Yuan J, Peng L, Fu H, Zhou C. A potential therapeutic approach for ulcerative colitis: targeted regulation of mitochondrial dynamics and mitophagy through phytochemicals. Front Immunol 2025; 15:1506292. [PMID: 39840057 PMCID: PMC11747708 DOI: 10.3389/fimmu.2024.1506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC). In this review, we discuss the key effects of mitochondrial dynamics and mitophagy on the pathogenesis of UC, with a particular focus on the cellular energy metabolism, oxidative stress, apoptosis, and immunoinflammatory activities. The therapeutic efficacy of existing drugs and phytochemicals targeting the mitochondrial pathway are discussed to reveal important insights for developing therapeutic strategies for treating UC. In addition, new molecular checkpoints with therapeutic potential are identified. We show that the integration of mitochondrial biology with the clinical aspects of UC may generate ideas for enhancing the clinical management of UC.
Collapse
Affiliation(s)
- Jianping Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Xi
- Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Ting Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Zheng J, Chen J, Cao Z, Wu K, Wang J, Guo Y, Zhuang M. Ubiquitin ligase MARCH5 controls the formation of mitochondria-derived pre-peroxisomes. Dev Cell 2025; 60:30-39.e3. [PMID: 39423820 DOI: 10.1016/j.devcel.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/14/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Peroxisome biogenesis involves two pathways: growth and division from pre-existing mature peroxisomes and de novo biogenesis from the endoplasmic reticulum, with a contribution from mitochondria, particularly in human peroxisome-deficient cells. However, the essential components that control peroxisome de novo biogenesis are largely unknown. Dual organelle localized ubiquitin ligase MARCH5 functions on peroxisomes to control pexophagy. Here, we show that mitochondria-localized MARCH5 is essential for the formation of vesicles in the de novo biogenesis of peroxisomes from mitochondria in human cell lines. Loss of MARCH5 specifically impedes the budding of PEX3-containing vesicles from mitochondria, thereby blocking the formation of pre-peroxisomes. Overall, our study highlights the function of MARCH5 for mitochondria-derived pre-peroxisomes, emphasizing MARCH5 as one regulator to maintain peroxisome homeostasis.
Collapse
Affiliation(s)
- Jun Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhihe Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kaichen Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
47
|
Xu M, Feng P, Yan J, Li L. Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease. Front Pharmacol 2025; 15:1474310. [PMID: 39830343 PMCID: PMC11739169 DOI: 10.3389/fphar.2024.1474310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic respiratory disease worldwide. Mitochondrial quality control mechanisms encompass processes such as mitochondrial biogenesis, fusion, fission, and autophagy, which collectively maintain the quantity, morphology, and function of mitochondria, ensuring cellular energy supply and the progression of normal physiological activities. However, in COPD, due to the persistent stimulation of harmful factors such as smoking and air pollution, mitochondrial quality control mechanisms often become deregulated, leading to mitochondrial dysfunction. Mitochondrial dysfunction plays a pivotal role in the pathogenesis of COPD, contributing toinflammatory response, oxidative stress, cellular senescence. However, therapeutic strategies targeting mitochondria remain underexplored. This review highlights recent advances in mitochondrial dysfunction in COPD, focusing on the role of mitochondrial quality control mechanisms and their dysregulation in disease progression. We emphasize the significance of mitochondria in the pathophysiological processes of COPD and explore potential strategies to regulate mitochondrial quality and improve mitochondrial function through mitochondrial interventions, aiming to treat COPD effectively. Additionally, we analyze the limitations and challenges of existing therapeutic strategies, aiming to provide new insights and methods for COPD treatment.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Feng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ferguson Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
48
|
Siwach A, Patel H, Khairnar A, Parekh P. Molecular Symphony of Mitophagy: Ubiquitin-Specific Protease-30 as a Maestro for Precision Management of Neurodegenerative Diseases. CNS Neurosci Ther 2025; 31:e70192. [PMID: 39840724 PMCID: PMC11751875 DOI: 10.1111/cns.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Mitochondrial dysfunction stands as a pivotal feature in neurodegenerative disorders, spurring the quest for targeted therapeutic interventions. This review examines Ubiquitin-Specific Protease 30 (USP30) as a master regulator of mitophagy with therapeutic promise in Alzheimer's disease (AD) and Parkinson's disease (PD). USP30's orchestration of mitophagy pathways, encompassing PINK1-dependent and PINK1-independent mechanisms, forms the crux of this exploration. METHOD A systematic literature search was conducted in PubMed, Scopus, and Web of Science, selecting studies that investigated USP's function, inhibitor design, or therapeutic efficacy in AD and PD. Inclusion criteria encompassed mechanistic and preclinical/clinical data, while irrelevant or duplicate references were excluded. Extracted findings were synthesized narratively. RESULTS USP30 modulates interactions with translocase of outer mitochondrial membrane (TOM) 20, mitochondrial E3 ubiquitin protein ligase 1 (MUL1), and Parkin, thus harmonizing mitochondrial quality control. Emerging novel USP30 inhibitors, racemic phenylalanine derivatives, N-cyano pyrrolidine, and notably, benzosulphonamide class compounds, restore mitophagy, and reduce neurodegenerative phenotypes across diverse models with minimal off-target effects. Modulation of other USPs also influences neurodegenerative disease pathways, offering additional therapeutic avenues. CONCLUSIONS In highlighting the nuanced regulation of mitophagy by USP30, this work heralds a shift toward more precise and effective treatments, paving the way for a new era in the clinical management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Siwach
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)AhmedabadGujaratIndia
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Harit Patel
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)AhmedabadGujaratIndia
| | - Amit Khairnar
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)AhmedabadGujaratIndia
- Department of Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center (ICRC)St. Anne's University HospitalBrnoCzech Republic
- International Clinical Research Center (ICRC), Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Pathik Parekh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreUSA
| |
Collapse
|
49
|
Zheng C, Nguyen KK, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Arrestin-3 binds parkin and enhances parkin-dependent mitophagy. J Neurochem 2025; 169:e16043. [PMID: 38196269 PMCID: PMC11231064 DOI: 10.1111/jnc.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Arrestins were discovered for their role in homologous desensitization of G-protein-coupled receptors (GPCRs). Later non-visual arrestins were shown to regulate several signaling pathways. Some of these pathways require arrestin binding to GPCRs, the regulation of others is receptor independent. Here, we demonstrate that arrestin-3 binds the E3 ubiquitin ligase parkin via multiple sites, preferentially interacting with its RING0 domain. Identification of the parkin domains involved suggests that arrestin-3 likely relieves parkin autoinhibition and/or stabilizes the enzymatically active "open" conformation of parkin. Arrestin-3 binding enhances ubiquitination by parkin of the mitochondrial protein mitofusin-1 and facilitates parkin-mediated mitophagy in HeLa cells. Furthermore, arrestin-3 and its mutant with enhanced parkin binding rescue mitofusin-1 ubiquitination and mitophagy in the presence of the Parkinson's disease-associated R275W parkin mutant, which is defective in both functions. Thus, modulation of parkin activity via arrestin-3 might be a novel strategy of anti-parkinsonian therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin K. Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
50
|
Zhang JX, Lan MF, Shang JZ, Lai XL, Li LS, Duan TT, Xu RH, Chen KL, Duan X. DMT1 Maintains Iron Homeostasis to Regulate Mitochondrial Function in Porcine Oocytes. J Cell Physiol 2025; 240:e31494. [PMID: 39639679 DOI: 10.1002/jcp.31494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Iron plays critical roles in many cellular functions, including energy production, metabolism, and cell proliferation. However, the role of iron in maintaining oocyte quality remains unclear. In this study, DMT1 was identified as a key iron transporter during porcine oocyte maturation. The results demonstrated that iron deficiency in porcine oocyte led to aberrant meiotic progression, accompanied by increased gene expression of DMT1. Inhibition of DMT1 resulted in the failure of cumulus cell expansion and oocyte maturation, along by the abnormal actin and microtubule assembly. Furthermore, loss of DMT1 function caused disruption in mitochondrial function and dynamics, resulting in oxidative stress and Ca2+ dyshomeostasis. Additionally, the absence of DMT1 function activated PINK1/Parkin-dependent mitophagy in porcine oocyte. These findings suggested that DMT1 played a crucial role in safeguarding oocyte quality by protecting against iron-deficiency-induced mitochondrial dysfunction and autophagy. This study provided compelling evidence that DMT1 and iron homeostasis were crucial for maintaining the capacity of porcine oocyte maturation. Moreover, the results hinted at the potential of DMT1 as a novel therapeutic target for treating iron deficiency-related female reproductive disorders.
Collapse
Affiliation(s)
- Jin-Xin Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Meng-Fan Lan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jian-Zhou Shang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xin-Le Lai
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li-Shu Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Tong-Tong Duan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ru-Hai Xu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kun-Lin Chen
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xing Duan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|