1
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2025; 480:2707-2723. [PMID: 39576465 DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
The metabolic reprogramming of amino acids is an important component of tumor metabolism. Branched-chain amino acids (BCAAs) perform important functions in tumor progression. They are the important amino donor and are involved in the synthesis of various non-essential amino acids, nucleotides, and polyamines to satisfy the increased demand for nitrogen sources. This review summarizes the studies related to abnormalities in BCAA metabolism during tumorigenesis and the potential therapeutic targets. The expression of BCAA transporters was significantly upregulated in tumor cells, which increases BCAA uptake. High expression of the BCAA transaminases is prevalent in various tumors, however, the dehydrogenation step of BCAA catabolism is inhibited in tumors. This review shows that BCAA metabolic reprogramming is an important tumor metabolic feature, and metabolic genes of BCAAs play a crucial role in tumor metabolism, representing a good auxiliary target for early clinical diagnosis and treatment. In addition, BCAAs are indispensable for maintaining immune system function, and dietary supplementation with BCAAs can enhance the activity of immune cells. Therefore, BCAA supplementation in tumor patients may affect the interaction between the immune system and tumors.
Collapse
Affiliation(s)
- Zheng Li
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | | | - Xuechao Wu
- Wuxi Neurosurgical Institute, Wuxi, China
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Fei Liu
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX, 76010, USA
| | - Jiayi Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.
| | - Xiaojie Lu
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Nanjing Medical University, Nanjing, China.
- Wuxi Neurosurgical Institute, Wuxi, China.
- Department of Neurosurgery, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| | - Rui Chi
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Department of Laboratory Medicine, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| |
Collapse
|
2
|
Li Z, Guan Y, Gao J, Zhu L, Zeng Z, Jing Q, Wan Q, Fan Q, Ren X, Pei H, Zhang D, Rong Y, Rong Z, He J, Zhang Y, Li N, Chen P, Sun L, Xu B, Nie Y, Deng Y. PPDPF-mediated regulation of BCAA metabolism enhances mTORC1 activity and drives cholangiocarcinoma progression. Oncogene 2025; 44:1415-1433. [PMID: 40025229 DOI: 10.1038/s41388-025-03320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Tumor cells display profound changes in the metabolism of branched-chain amino acids (BCAA). However, how these changes are regulated to facilitate tumorigenesis is not yet completely understood. Here, we identified pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a BCAA-responsive protein through extensive screening using stable isotope labeling with amino acids in cell culture (SILAC). PPDPF is upregulated in cholangiocarcinoma to enhance the malignant phenotype of cholangiocarcinoma cells by activating the mTORC1 signaling pathway. Metabolic flux analysis and mechanistic studies revealed that PPDPF prevented the interaction between MCCA and MCCB, thus inhibiting leucine catabolism and activating mTORC1 signaling. Moreover, upon amino acid starvation, ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2) and OTU deubiquitinase 4 (OTUD4) cooperatively regulated the stability of the PPDPF protein by modulating its ubiquitination. Additionally, monocytes/macrophage-derived IL-10 increased the BCAA content in cholangiocarcinoma cells and stabilized the PPDPF protein, even under amino acid starvation conditions. Knockout of PPDPF or restriction of leucine intake significantly inhibits the progression of cholangiocarcinoma in a mouse model. Collectively, we discovered a novel role for PPDPF in promoting the progression of cholangiocarcinoma by activating mTORC1 signaling through the inhibition of leucine catabolism. The present study suggests that targeting PPDPF or decreasing dietary leucine intake may provide a new strategy to improve the treatment efficacy of cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China
| | - Yidi Guan
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Gao
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Zhu
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zimei Zeng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Quan Wan
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Fan
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Ren
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiping Pei
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Dexiang Zhang
- Department of General Surgery, Zhongshan Xuhui Hospital Affiliated to Fudan University, Shanghai, China
| | - Yefei Rong
- The Department of Emergency Surgery, the Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuoxian Rong
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Junju He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Pan Chen
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China.
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yingjie Nie
- Department of Research, the University of HongKong-Shenzhen Hospital, Shenzhen, China.
| | - Yuezhen Deng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Yangjiang Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, 529500, Yangjiang, Guangdong, China.
| |
Collapse
|
3
|
Mei W, Wei M, Tang C, Li W, Ye B, Xin S, Ma W, Ye L. BCAT2 binding to PCBP1 regulates the PI3K/AKT signaling pathway to inhibit autophagy-related apoptosis and ferroptosis in prostate cancer. Cell Death Dis 2025; 16:337. [PMID: 40274762 PMCID: PMC12022009 DOI: 10.1038/s41419-025-07559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Prostate cancer (PCa) has emerged as a predominant cause of cancer-related mortality among men globally. The mechanisms of branched-chain amino acids (BCAAs) contributing to the development of PCa remain inadequately elucidated. The objective of this study was to examine the involvement of BCAAs and BCAT2 in tumorigenesis. BCAAs exhibited elevated expression levels in PCa tissues and cells. Among the critical enzymes involved in the BCAA metabolic pathway, only BCAT2 demonstrated significant expression in PCa and was closely associated with tumor progression and patient prognosis. RNA sequencing along with related functional experiments indicated that BCAT2 can inhibit autophagy, autophagy-related apoptosis, and ferroptosis in PCa. Furthermore, the results of co-immunoprecipitation, mass spectrometry, and other methodologies established that PCBP1, as a downstream protein interacting with BCAT2, co-regulates the PI3K/AKT pathway, thereby influencing progression of PCa. Moreover, BCAT2 interacted with PCBP1 at Leucine 239 to collaboratively regulate the PI3K/AKT signaling pathway, which is crucial for the initiation and progression of PCa. Targeting BCAT2 may represent a promising therapeutic strategy to prevent proliferation of PCa.
Collapse
Affiliation(s)
- Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Mengyu Wei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Bowen Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiyong Xin
- Department of Urology, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Weiguo Ma
- Department of Urology, Tongxin People's Hospital, Ningxia, 751300, China.
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Zhang Y, Zhang S, Sun H, Xu L. The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma. Cell Death Discov 2025; 11:186. [PMID: 40253354 PMCID: PMC12009291 DOI: 10.1038/s41420-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Renal cell carcinoma (RCC), a therapeutically recalcitrant genitourinary malignancy, exemplifies the profound interplay between oncogenic signaling and metabolic adaptation. Emerging evidence positions metabolic reprogramming as a central axis of RCC pathogenesis, characterized by dynamic shifts in nutrient utilization that transcend canonical Warburg physiology to encompass lipid anabolism, glutamine auxotrophy, and microenvironment-driven metabolic plasticity. This orchestrated rewiring of cellular energetics sustains tumor proliferation under hypoxia while fostering immunosuppression through metabolite-mediated T cell exhaustion and myeloid-derived suppressor cell activation. Crucially, RCC exhibits metabolic heterogeneity across histological subtypes and intratumoral regions-a feature increasingly recognized as a determinant of therapeutic resistance. Our review systematically deciphers the molecular architecture of RCC metabolism, elucidating how VHL/HIF axis mutations, mTOR pathway dysregulation, and epigenetic modifiers converge to reshape glucose flux, lipid droplet biogenesis, and amino acid catabolism. We present novel insights into spatial metabolic zonation within RCC tumors, where pseudohypoxic niches engage in lactate shuttling and cholesterol efflux to adjacent vasculature, creating pro-angiogenic and immunosuppressive microdomains. Therapeutically, we evaluate first-in-class inhibitors targeting rate-limiting enzymes in de novo lipogenesis and glutamine metabolism, while proposing biomarker-driven strategies to overcome compensatory pathway activation. We highlight the synergy between glutaminase inhibitors and PD-1 blockade in reinvigorating CD8+ T cell function, and the role of lipid-loaded cancer-associated fibroblasts in shielding tumors from ferroptosis. Finally, we outline a translational roadmap integrating multi-omics profiling, functional metabolomics, and spatial biology to match metabolic vulnerabilities with precision therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shengli Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongbin Sun
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhu K, Du D, Shi Y, Hu F, Zhang W, Ni H, Hafeez E, Chen D. Poria cocos Polysaccharide Delays Aging by Enhancing the Antioxidant Ability and Suppressing the Expression of the Branched-Chain Amino Acid Transferase-Encoding Gene in Drosophila melanogaster. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9033-9046. [PMID: 40178444 DOI: 10.1021/acs.jafc.4c12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Poria cocos polysaccharides (PCP), the main component of Poria cocos, possess a variety of biological activities, including antitumor, immunomodulatory, and antioxidant effects. However, whether PCP has an antiaging effect remains unclear. Here, we studied the beneficial effects and the mechanism of PCP on delaying aging using the Drosophila model. The results showed that the dietary supplementation of PCP significantly extended the lifespan, improved the climbing ability, attenuated intestinal barrier dysfunction, alleviated gastrointestinal acid-base imbalance, and prevented intestinal stem cells (ISCs) hyperproliferation. In addition, PCP notably increased the activities of SOD and CAT and reduced the content of MDA. Furthermore, RNA-Seq showed that PCP supplementation led to the differential expression of 638 genes. KEGG analysis revealed that these differentially expressed genes were strongly enriched in the signaling pathway of cofactor biosynthesis. Among these genes, the expression of the branched-chain amino acid transferase-encoding gene (bcat) was significantly downregulated. The bcat-knockdown prolonged the flies' lifespan, while bcat-overexpression reduced the lifespan. Interestingly, PCP addition can rescue the flies' lifespan in the background of bcat-overexpression. Taken together, our data indicate that PCP delays aging by enhancing the antioxidant ability and suppressing the expression of the bcat gene in Drosophila.
Collapse
Affiliation(s)
- Kai Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuxia Shi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenting Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hang Ni
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Eqra Hafeez
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
6
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
7
|
Alcicek S, Ronellenfitsch MW, Steinbach JP, Manzhurtsev A, Thomas DC, Weber KJ, Prinz V, Forster MT, Hattingen E, Pilatus U, Wenger KJ. Optimized Long-TE 1H sLASER MR Spectroscopic Imaging at 3T for Separate Quantification of Glutamate and Glutamine in Glioma. J Magn Reson Imaging 2025. [PMID: 40197808 DOI: 10.1002/jmri.29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Glutamate and glutamine are critical metabolites in gliomas, each serving distinct roles in tumor biology. Separate quantification of these metabolites using in vivo MR spectroscopy (MRS) at clinical field strengths (≤ 3T) is hindered by their molecular similarity, resulting in overlapping, hence indistinguishable, spectral peaks. PURPOSE To develop an MRS imaging (MRSI) protocol to map glutamate and glutamine separately at 3T within clinically feasible time, using J-modulation to enhance spectral differentiation, demonstrate its reliability/reproducibility, and quantify the metabolites in glioma subregions. STUDY TYPE Prospective. POPULATION Phantoms, 5 healthy subjects, and 30 patients with suspected glioma. IDH wild-type glioblastoma cases were evaluated to establish a uniform group. FIELD STRENGTH/SEQUENCE 3T, Research protocol: 2D 1H sLASER MRSI (40 and 120 ms TE) with water reference, 3D T1-weighted and 2D T2-weighted. Trial-screening process: T1-weighted, T1-weighted contrast-enhanced, T2-weighted, FLAIR. ASSESSMENT Spectral simulations and phantom measurements were performed to design and validate the protocol. Spectral quality/fitting parameters for scan-rescan measurements were obtained using LCModel. The proposed long-TE data were compared with short-TE data. BraTS Toolkit was employed for fully automated tumor segmentation. STATISTICAL TESTS Scan-rescan comparison was performed using Bland-Altman analysis. LCModel coefficient of modeling covariance (CMC) between glutamate and glutamine was mapped to evaluate their model interactions for each spectral fitting. Metabolite levels in tumor subregions were compared using one-way ANOVA and Kruskal-Wallis. A p value < 0.05 was considered statistically significant. RESULTS Spectral quality/fitting parameters and metabolite levels were highly consistent between scan-rescan measurements. A negative association between glutamate and glutamine models at short TE (CMC = -0.16 ± 0.06) was eliminated at long TE (0.01 ± 0.05). Low glutamate in tumor subregions (non-enhancing-tumor-core: 5.35 ± 4.45 mM, surrounding-non-enhancing-FLAIR-hyperintensity: 7.39 ± 2.62 mM, and enhancing-tumor: 7.60 ± 4.16 mM) was found compared to contralateral (10.84 ± 2.94 mM), whereas glutamine was higher in surrounding-non-enhancing-FLAIR-hyperintensity (9.17 ± 6.84 mM) and enhancing-tumor (7.20 ± 4.42 mM), but not in non-enhancing-tumor-core (4.92 ± 3.38 mM, p = 0.18) compared to contralateral (2.94 ± 1.35 mM). DATA CONCLUSION The proposed MRSI protocol (~12 min) enables separate mapping of glutamate and glutamine reliably along with other MRS-detectable standard metabolites in glioma subregions at 3T. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Seyma Alcicek
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
| | - Andrei Manzhurtsev
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
| | - Dennis C Thomas
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Katharina J Weber
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Institute of Neurology (Edinger-Institute), Frankfurt am Main, Germany
| | - Vincent Prinz
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt am Main, Germany
| | - Marie-Thérèse Forster
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt am Main, Germany
| | - Elke Hattingen
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
| | - Katharina J Wenger
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| |
Collapse
|
8
|
Wang T, Han XH, Chen JJ, Wang X, Zhang Z, Han XJ, Lu Z. SIRT5-mediated BCAT1 desuccinylation and stabilization leads to ferroptosis insensitivity and promotes cell proliferation in glioma. Cell Death Dis 2025; 16:261. [PMID: 40195331 PMCID: PMC11977203 DOI: 10.1038/s41419-025-07626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Glioma is a highly aggressive brain tumor with limited treatment success due to its resistance to conventional therapies. Sirtuin 5 (SIRT5) has emerged as a promising target for cancer therapy, though it exhibits dual roles in different cancer types. In this study, we investigate the role of SIRT5 in glioma and its corresponding mechanisms. Our findings demonstrate that SIRT5 expression is elevated in glioma cells both in vitro and in vivo. SIRT5 knockdown significantly reduced glioma cell proliferation and enhanced sensitivity to ferroptosis. Proteomic and metabolomic analyses identifies branched-chain amino acid (BCAA) metabolism as a key downstream pathway regulated by SIRT5 through branched-chain aminotransferase 1 (BCAT1). Specifically, SIRT5-mediated desuccinylation of BCAT1 at K39 inhibits its interaction with the E3 ligase CHIP, thereby preventing BCAT1 degradation via the ubiquitin-proteasome system. Moreover, BCAT1 overexpression reverses the proliferation inhibition and ferroptosis sensitivity observed in SIRT5-knockdown cells. Clinically, we reveal a positive correlation between SIRT5 and BCAT1 levels in glioma samples, with higher expression levels predicting more advanced glioma grades and poorer clinical outcomes. Collectively, this study highlights the critical role of SIRT5 in promoting glioma progression via metabolic regulation and ferroptosis insensitivity, offering a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jun-Jun Chen
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xing Wang
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Dutta H, Jain N. Degrading mutant IDH1 employing a PROTAC-based approach impairs STAT3 activation. Arch Biochem Biophys 2025; 765:110281. [PMID: 39828078 DOI: 10.1016/j.abb.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells. Thus, inhibiting mutant IDH1 using mutant IDH1-specific inhibitors can result in drug resistance. Therefore, to block mutant IDH1, it is imperative to identify alternative modes of therapy. In these lines, recent findings show that PROteolysis TArgeting Chimera (PROTAC) molecules can be designed to degrade target proteins in cancer cells. However, it is unknown whether degrading mutant IDH1 leads to STAT3 activation. Therefore, in this study, we asked if degrading mutant IDH1 by employing a PROTAC-based approach leads to STAT3 activation. To answer the question, we adopted the dTAG system, where we fused FKBP12F36V to mutant IDH1 proteins and used the FKBP12F36V-specific PROTAC, dTAG-13, to degrade mutant IDH1-FKBP12F36V. We assessed STAT3 activation in dTAG-13-treated cells expressing mutant IDH1-FKBP12F36V. We found that fusing FKBP12F36V-HA to mutant IDH1 phenocopies mutant IDH1 with similar expression levels, enzyme activity, and cellular localization. We observed that dTAG-13 degrades mutant IDH1-FKBP12F36V-HA in a dose- and time-responsive manner. Unlike inhibiting, degrading mutant IDH1-FKBP12F36V-HA did not lead to pSTAT3-Y705 activation. We conclude that degrading mutant IDH1 by employing a PROTAC-based approach impairs STAT3 activation. Based on these observations, we suggest that mutant IDH1-specific PROTACs can be developed to degrade mutant IDH1 in gliomas.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Liang Z, Zhao S, Liu Y, Cheng C. The promise of mitochondria in the treatment of glioblastoma: a brief review. Discov Oncol 2025; 16:142. [PMID: 39924629 PMCID: PMC11807951 DOI: 10.1007/s12672-025-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Glioblastoma (GBM) is a prevalent and refractory type of brain tumor. Over the past two decades, there have been minimal advancements in GBM therapy. The current standard treatment involves surgical excision followed by radiation and chemotherapy. Compared to other tumors, GBM is more challenging to treat due to the presence of glioma stem-like cells (GSCs) and the blood-brain barrier, resulting in an extremely low survival rate. Mitochondria play a critical role in tumor respiration, metabolism, and multiple signaling pathways involved in tumor formation, progression, and cell apoptosis. Consequently, mitochondria represent promising targets for developing novel anticancer agents, including those targeting oxidative phosphorylation, reactive oxygen species (ROS), mitochondrial transfer, and mitophagy. This review outlines the mitochondrial-related therapeutic targets in GBM, highlighting the potential of mitochondria as a target for GBM treatment.
Collapse
Affiliation(s)
- Zhuo Liang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
11
|
Yuan Z, Li M, Tang Z. BCAT1 promotes cell proliferation, migration, and invasion via the PI3K-Akt signaling pathway in oral squamous cell carcinoma. Oral Dis 2025; 31:364-375. [PMID: 39056279 DOI: 10.1111/odi.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To analyze the expression, biological function of branched chain amino-acid transaminase 1 (BCAT1) in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Real-time PCR and immunohistochemistry were used to analyze the expression of BCAT1 protein in OSCC and normal oral tissues. Based on the clinicopathological information of patients, the relationship between the expression of BCAT1 protein and other clinicopathological factors was analyzed. Real-time PCR and western blot assays were used to analyze the expression of BCAT1 gene and protein in normal human oral keratinocytes (HOK) and human OSCC cells, respectively. After BCAT1 overexpression or knockdown, the proliferation, cell cycle, migration, and invasion of human OSCC cells were analyzed by CCK8, flow cytometry, wound healing, and transwell invasion assays, respectively. After adding the BCAT1 inhibitor EGR240 to OSCC cells, the changes in cell proliferation, migration, and invasion ability in OSCC cells were analyzed. Based on the TCGA database, the involved signal pathway in BCAT1-related and BCAT1-binding genes was obtained for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, verified by western blot assays. After inhibiting PI3K, the effect of BCAT1 on the expression of the downstream phosphorylated protein of the PI3K-Akt signaling pathway was analyzed by western blot assays. The relationship between the expression of BCAT1 and EMT-related protein of OSCC cells was also analyzed. RESULTS The expression of BCAT1 gene and protein were upregulated in OSCC tissue, which positively correlated with the pathological grade of patients with OSCC. Compared with normal oral keratinocytes, BCAT1 gene and protein were upregulated in OSCC cells. BCAT1 overexpression promoted the proliferation, migration, and invasion of OSCC cells. BCAT1 knockdown or inhibition could reduce the proliferation, migration, and invasion abilities of OSCC cells. The results of bioinformatics analysis and Western bolt showed that BCAT1 could regulate the activation of PI3K-Akt signaling pathway, and promote epithelial-mesenchymal transition (EMT) of OSCC cells. CONCLUSIONS BCAT1 could promote the proliferation, migration, and invasion of OSCC cells via PI3K-Akt signaling pathway, which is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
| | - Ming Li
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
12
|
Sahu V, Lu C. Metabolism-driven chromatin dynamics: Molecular principles and technological advances. Mol Cell 2025; 85:262-275. [PMID: 39824167 PMCID: PMC11750176 DOI: 10.1016/j.molcel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources. We discuss recent advances in our understanding of the mechanisms by which metabolic enzyme activities shape the chromatin structure and modifications, how specificity may emerge from their seemingly broad effects, and technologies that facilitate the study of epigenome-metabolome interplay. The recognition that metabolites are immanent components of the chromatin regulatory network has significant implications for the evolution, function, and therapeutic targeting of the epigenome.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
13
|
Wood J, Smith SJ, Castellanos-Uribe M, Lourdusamy A, May ST, Barrett DA, Grundy RG, Kim DH, Rahman R. Metabolomic characterisation of the glioblastoma invasive margin reveals a region-specific signature. Heliyon 2025; 11:e41309. [PMID: 39816516 PMCID: PMC11732679 DOI: 10.1016/j.heliyon.2024.e41309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment. Multi-region surgical sampling was performed on five adult GBM patients based on pre-operative brain imaging and fluorescence-guided surgery. Polar and hydrophobic metabolites extracted from tumour fragments were assessed, followed by putative assignment of metabolite identifications based on retention times and molecular mass. Class discrimination between tumour regions through showed clear separation of tumour regions based on polar metabolite profiles. Metabolic pathway assignments revealed several significantly altered metabolites between the tumour core and invasive region to be associated with purine and pyrimidine metabolism. This proof-of-principle study assesses intratumour heterogeneity through mass spectrometry-based metabolite profiling of multi-region biopsies. Bioinformatic interpretation of the GBM metabolome has highlighted the invasive region to be biologically distinct compared to tumour core and revealed putative drug-targetable metabolic pathways associated with purine and pyrimidine metabolism.
Collapse
Affiliation(s)
- James Wood
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Stuart J. Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | | | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Sean T. May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Richard G. Grundy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| |
Collapse
|
14
|
Bo T, Osaki T, Fujii J. Dephosphorylation of branched-chain α-keto acid dehydrogenase E1α (BCKDHA) promotes branched-chain amino acid catabolism and renders cancer cells resistant to X-rays by mitigating DNA damage. Biochem Biophys Res Commun 2025; 742:151154. [PMID: 39672007 DOI: 10.1016/j.bbrc.2024.151154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Branched-chain amino acids (BCAAs) facilitate cancer cell proliferation and survival. Stresses, including X-irradiation, increase BCAA uptake. However, the role of BCAA metabolism in cancer cell survival remains unclear. Therefore, this study aimed to elucidate the role of the BCAA catabolic pathway in cancer cell survival following X-irradiation. X-irradiation dose-dependently dephosphorylated branched-chain α-keto acid dehydrogenaseE1α (BCKDHA) suggesting the activation of the BCKDH complex, which catalyzes the rate-determining step of BCAA catabolism. We considered that activation of BCKDH promoted the BCAA catabolism, which resulted in cancer cell resistance to X-irradiation. Consistent with this notion, cells with BCKDHA knockdown exhibited increased radiosensitivity, which was associated with the increase in mitotic catastrophe and residual double-strand breaks by decreasing cellular ATP levels after X-irradiation. Our results suggest that BCKDHA dephosphorylation promotes BCAA catabolism, leading to cell survival by mitigating DNA damage after X-irradiation. Thus, BCAA catabolic pathway may be a target for radiation therapy.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Japan.
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Japan
| |
Collapse
|
15
|
Shao Q, Wykretowicz J, Hu N, Bedi K, Rizk M, Malek IA, Kumar S, Lombard DB, Shedden K, Scott D, Malek SN. Aberrant BCAT1 expression augments MTOR activity and accelerates disease progression in chronic lymphocytic leukemia. Leukemia 2025; 39:112-121. [PMID: 39455853 PMCID: PMC11717693 DOI: 10.1038/s41375-024-02448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
We performed gene expression profiling of mRNA/cDNA isolated from N = 117 flow sorted CLL. We detected aberrant expression of the metabolic enzyme branched chain amino acid transferase (BCAT1) in CLL with del17p/TP53mut. Through extensive validation, we confirmed the highly preferential expression of BCAT1 in CLL with del17p/TP53mut (66%) or trisomy 12 (77%). BCAT1 was not expressed in B cells isolated from normal human lymph nodes. The products of the bidirectional BCAT1 reaction, including leucine, acetyl-CoA, and alpha-ketoglutarate are known activators of MTOR. We measured an ~two-fold higher MTOR activity via normalized p-S6K levels in primary CLL with BCAT1 high versus absent expression before and after sIgM crosslinking. Through steady state metabolomics and heavy isotope metabolic tracing in primary CLL cells, we demonstrate that CLL cells are avid consumers of branched chain amino acids (BCAAs) and that BCAT1 in CLL engages in bidirectional substrate reactions. Of additional interest, CLL with aberrant BCAT1 expression were less sensitive to Venetoclax-induced apoptosis. Biologically, three CLL-derived cell lines with disruption of BCAT1 had substantially reduced growth ex vivo. Clinically, the expression of any detectable BCAT1 protein in CLL independently associated with shorter median survival (125 months versus 296 months; p < 0.0001), even after exclusion of del17p/TP53mut cases.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- TOR Serine-Threonine Kinases/metabolism
- Disease Progression
- Transaminases/metabolism
- Transaminases/genetics
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic
Collapse
Affiliation(s)
- Qiangqiang Shao
- Departments of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jedrzej Wykretowicz
- Departments of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Hu
- Departments of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Karan Bedi
- Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed Rizk
- Departments of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Isabella A Malek
- Departments of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Kerby Shedden
- Statistics, University of Michigan, Ann Arbor, MI, USA
| | - David Scott
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Sami N Malek
- Departments of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Huang H, Qin J, Wen Z, Wang C, Chen C, Liu Y, Li H, Cao S, Yang X. Association of branched-chain amino acids and risk of three urologic cancers: a Mendelian randomization study. Transl Cancer Res 2024; 13:6709-6720. [PMID: 39816560 PMCID: PMC11729756 DOI: 10.21037/tcr-24-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/31/2024] [Indexed: 01/18/2025]
Abstract
Background Multiple studies suggest a plausible connection between urologic cancers and branched-chain amino acids (BCAAs) breakdown metabolic enzymes. Nevertheless, there is scarce exploration into the variations in circulating BCAAs. In our research, we utilize bidirectional, two-sample Mendelian randomization (MR) analysis to predict the link between BCAAs levels and three distinct types of urological tumors. Methods The study examined data from the UK Biobank, including a comprehensive genome-wide association study (GWAS) of total BCAAs, leucine, isoleucine, and valine, alongside three urological system tumors [prostate cancer (PCa), kidney cancer, and bladder cancer] sourced from the Medical Research Council Integrative Epidemiology Unit (MRC-IEU) and FinnGen Consortium databases. The primary analytical approach involved the use of the inverse variance weighted (IVW) method, complemented by MR-PRESSO global testing and MR-Egger regression to identify potential horizontal pleiotropy. Heterogeneity was evaluated using the Cochran Q test. Results The levels of circulating total BCAAs [odds ratio (OR) =1.002688, 95% confidence interval (CI): 1.000, 1.005, P=0.03], leucine (OR =1.0038, 95% CI: 1.001, 1.007, P=0.008), isoleucine (OR =1.003352, 95% CI: 1.000, 1.007, P=0.04), and valine (OR =1.00279, 95% CI: 1.001, 1.005, P=0.009) showed positive associations with PCa risk. However, there was inadequate evidence to establish a link between BCAAs and bladder or kidney cancer. Conclusions In summary, an association existed between elevated levels of circulating total BCAAs, leucine, isoleucine, and valine, and an increased risk of PCa. However, no correlation was detected between BCAAs and kidney or bladder cancer.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Qin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Langzhong People’s Hospital, Langzhong, China
| | - Chongjian Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyuan Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Song Cao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Health Management Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
17
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
18
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
19
|
Bale AA, Thammineni S, Bhargava R, Harley B. Hyaluronic Acid Influences Amino Acid Metabolism via Differential L-Type Amino Acid Transporter 1 Expression in the U87-Malignant Glioma Cell Line. ADVANCED NANOBIOMED RESEARCH 2024; 4:2400107. [PMID: 40017591 PMCID: PMC11864772 DOI: 10.1002/anbr.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
The Glioblastoma (GBM) tumor microenvironment is heterogeneous, complex, and is being increasingly understood as a significant contributor to tumor progression. In brain tumors, the extracellular matrix contains a large concentration of Hyaluronic acid (HA) that makes it important to study its role in cancer progression. In particular, abnormal accumulation of HA is observed in gliomas and is often associated with poor prognosis. In addition, HA is a polymer and its molecular weight (MW) distribution may influence tumor cell activity. Here, we evaluate the influence of the molecular weight of HA on tumor cell metabolism. We use a 2D cell culture approach to expose the U87-MG cell line to different HA MWs (10, 60, and 500 kDa) and glucose concentrations (0, 5.5, and 25 mM). Notably, we found that HA influences GBM amino acid metabolism via reduction in LAT1 transporter protein expression. We also report an influence on mitochondrial respiration levels and a difference in the accumulation of some key products of cell metabolic activity (lactic acid, glutamic acid and succinic acid). Overall, these results indicate that HA MW can influence GBM metabolic state, with implications for cell invasion and tumor progression.
Collapse
Affiliation(s)
- Ashwin A. Bale
- Department of Chemical and Biomolecular Engineering, Urbana-Champaign, Urbana, 61802, USA
| | | | - Rohit Bhargava
- Department of Chemical and Biomolecular Engineering, Urbana-Champaign, Urbana, 61802, USA
- Department of Bioengineering, Urbana-Champaign, Urbana, 61802, USA
- Cancer Center at Illinois, Urbana-Champaign, Urbana, 61802, USA
- Departments of Electrical & Computer Engineering, Mechanical Science & Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Urbana, 61802, USA
- Carl R. Woese Institute for Genomic Biology University of Illinois, Urbana-Champaign, Urbana, 61802, USA
| | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, Urbana-Champaign, Urbana, 61802, USA
- Cancer Center at Illinois, Urbana-Champaign, Urbana, 61802, USA
- Carl R. Woese Institute for Genomic Biology University of Illinois, Urbana-Champaign, Urbana, 61802, USA
| |
Collapse
|
20
|
Ma Q, Li H, Song Z, Deng Z, Huang W, Liu Q. Fueling the fight against cancer: Exploring the impact of branched-chain amino acid catalyzation on cancer and cancer immune microenvironment. Metabolism 2024; 161:156016. [PMID: 39222743 DOI: 10.1016/j.metabol.2024.156016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Metabolism of Branched-chain amino acids (BCAAs) is essential for the nutrient necessities in mammals. Catalytic enzymes serve to direct the whole-body BCAAs oxidation which involve in the development of various metabolic disorders. The reprogrammed metabolic elements are also responsible for malignant oncogenic processes, and favor the formation of distinctive immunosuppressive microenvironment surrounding different cancers. The impotent immune surveillance related to BCAAs dysfunction is a novel topic to investigate. Here we focus on the BCAA catalysts that contribute to metabolic changes and dysregulated immune reactions in cancer progression. We summarize the current knowledge of BCAA catalyzation, highlighting the interesting roles of BCAA metabolism in the treatment of cancers.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| |
Collapse
|
21
|
何 长, 何 华, 杨 小, 幸 浩, 吕 粟, 吴 敏. [Research Progress in Applying Hyperpolarized 13C Labeling Technology in Neurological Metabolic Diagnostics]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1343-1349. [PMID: 39990827 PMCID: PMC11839364 DOI: 10.12182/20241160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 02/25/2025]
Abstract
By using hyperpolarized 13C labeling technology, the magnetic resonance signals of 13C-labeled metabolic substrates are enhanced, which enables the in vivo monitoring of their metabolic states through magnetic resonance spectroscopy. Compared with traditional non-invasive metabolic diagnostic technologies, hyperpolarized 13C technology exhibits a number of strengths, including real-time monitoring, high precision, non-invasiveness, the absence of radiation, and the ability to assess a broader range of metabolic pathways, showing great potential for application in the treatment of glioma, stroke, Alzheimer disease, and cerebral injury. Following the approval of [1-13C]-pyruvate for clinical trials by U.S. Food and Drug Administration (FDA), there has been growing academic interest in this technology. Currently, the primary challenge lies in creating more probes and promoting their clinical applications. Herein, we outlined the principles of hyperpolarized 13C labeling technology, examined its current role in neurological metabolic diagnostics, and explored the future directions, including conducting hyperpolarized 13C magnetic resonance spectroscopy (MRS) technology at higher magnetic field strengths (such as 7T), designing additional magnetic resonance sequences specific to hyperpolarized 13C MRS, and its integration with other neuro-metabolic diagnostic methods.
Collapse
Affiliation(s)
- 长蔚 何
- 四川大学物理学院 (成都 610064)College of Physics, Sichuan University, Chengdu 610064, China
| | - 华龙 何
- 四川大学物理学院 (成都 610064)College of Physics, Sichuan University, Chengdu 610064, China
| | - 小方 杨
- 四川大学物理学院 (成都 610064)College of Physics, Sichuan University, Chengdu 610064, China
| | - 浩洋 幸
- 四川大学物理学院 (成都 610064)College of Physics, Sichuan University, Chengdu 610064, China
- 四川大学华西医院 放射科 磁共振研究中心 功能与分子影像四川省重点实验室 (成都 610041)Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu 610041, China
| | - 粟 吕
- 四川大学物理学院 (成都 610064)College of Physics, Sichuan University, Chengdu 610064, China
| | - 敏 吴
- 四川大学物理学院 (成都 610064)College of Physics, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
23
|
Yang S, Jian J, Zhao X, Wang L, Chen Z, Liu X. Causal Association of Adipose Tissue with Bladder Cancer and the Mediating Effects of Circulating Metabolites: A Mendelian Randomization Study. J Cancer 2024; 15:6521-6530. [PMID: 39668829 PMCID: PMC11632975 DOI: 10.7150/jca.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024] Open
Abstract
Background: Previous studies have indicated that there is an association between obesity and bladder cancer (BCa). However, the relationship between fat distribution, which is more representative of the risk of obesity, and BCa remains unclear. This study aimed to investigate the causal relationship between fat distribution and BCa, and the mediating role of circulating metabolites. Methods: The necessary data were obtained from a large Genome-Wide Association Studies (GWAS) database. Two-sample and two-step Mendelian randomization (MR) analyses were performed to investigate the association between fat distribution and BCa, as well as the mediating effect of circulating metabolites. The inverse variance weighted (IVW) method was the main analysis method. Heterogeneity tests, horizontal pleiotropy analyses, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) tests, and leave-one-out analyses were performed to assess the stability of the results. Results: The IVW method indicated that abdominal subcutaneous adipose tissue adjusted for body mass index (BMI) and height (ASATadj) and abdominal subcutaneous/gluteofemoral adipose tissue (ASAT/GFAT) increased the risk of BCa. The odds ratio (OR) for ASATadj was 1.78 (95% CI=1.27-2.50, p=0.001) and that for ASAT/GFAT was 1.64 (95% CI=1.01-2.66, p=0.047). Furthermore, two-step MR analysis revealed that the effect of ASAT/GFAT on BCa was mediated by valine (proportion mediated: 7.13%, 95% CI = 3.57%-10.69%, p=0.045). Conclusions: Our research shows that, unlike most studies which focus on visceral fat, ASAT also impacts human health by increasing the risk of BCa, with the blood metabolite valine involved in this process. Monitoring and reducing ASAT accumulation can help reducce the disease burden of BCa.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
25
|
Li S, Guo Y, Zhu G, Sun L, Zhou F. Identify BCAT1 plays an oncogenic role and promotes EMT in KIRC via single cell RNA-seq and experiment. Front Oncol 2024; 14:1446324. [PMID: 39324007 PMCID: PMC11422235 DOI: 10.3389/fonc.2024.1446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a major subtype of renal cell carcinoma with poor prognosis due to its invasive and metastatic nature. Despite advances in understanding the molecular underpinnings of various cancers, the role of branched-chain amino acid transferase 1 (BCAT1) in KIRC remains underexplored. This study aims to fill this gap by investigating the oncogenic role of BCAT1 in KIRC using single-cell RNA-seq data and experimental validation. Methods Single-cell transcriptomic data GSE159115 was utilized to investigate potential biomarkers in KIRC. After screening, we used BCAT1 as a target gene and investigated its function and mechanism in KIRC through databases such as TCGA-GTEx, using genome enrichment analysis (GSEA), genome variation analysis (GSVA), gene ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG). BCAT1 expression was detected in clinical tissue samples using Western Blotting (WB) and immunohistochemical (IHC) staining techniques. We established cell lines stably overexpressing and knocking down BCAT1 and performed WB, qRT-PCR, cell scratch assay and transwell assay. Results BCAT1 was highly expressed in KIRC and was associated with disease prognosis and TME. Patients with mutations in the BCAT1 gene had shorter overall survival (OS) and disease-free survival (DFS). patients with high BCAT1 expression had shorter OS, progression-free interval (PFI), and disease-specific survival (DSS). GSEA showed that BCAT1 was significantly enriched in epithelial mesenchymal transition (EMT). Bioinformatics analysis and WB and IHC staining showed that BCAT1 expression was higher in KIRC than in paracancerous tissues. In vitro experiments confirmed that BCAT1 in KIRC cells may promote EMT affecting its invasion, migration. We constructed a protein interaction network (PPI) to hypothesize proteins that may interact with BCAT1. Single-sample gene set enrichment analysis (ssGSEA) revealed the immune infiltration environment of BCAT1. Furthermore, hypomethylation of the BCAT1 promoter region in KIRC may contribute to disease progression by promoting BCAT1 expression. Conclusion BCAT1 promotes KIRC invasion and metastasis through EMT and has prognostic predictive value and potential as a biomarker. It may become a novel biomarker.
Collapse
Affiliation(s)
- Shiqing Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinsheng Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanhua Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Li Q, Jiang S, Lei K, Han H, Chen Y, Lin W, Xiong Q, Qi X, Gan X, Sheng R, Wang Y, Zhang Y, Ma J, Li T, Lin S, Zhou C, Chen D, Yuan Q. Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism. J Clin Invest 2024; 134:e177220. [PMID: 39255038 PMCID: PMC11473147 DOI: 10.1172/jci177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Translation of mRNA to protein is tightly regulated by transfer RNAs (tRNAs), which are subject to various chemical modifications that maintain structure, stability, and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report that the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite incompetent proliferation and osteogenic commitment. Further exploration revealed that impairment of Rho GTPase signaling upregulated the level of branched-chain amino acid transaminase 1 (BCAT1) that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation by targeting either ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulation of cellular metabolism and indicates suspension of translation initiation as a quality control mechanism in response to tRNA dysregulation.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Han
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yarong Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieyi Ma
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Li
- West China–Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Feng L, Chen Y, Mei X, Wang L, Zhao W, Yao J. Prognostic Signature in Osteosarcoma Based on Amino Acid Metabolism-Associated Genes. Cancer Biother Radiopharm 2024; 39:517-531. [PMID: 38512709 DOI: 10.1089/cbr.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background: Osteosarcoma (OS) is undeniably a formidable bone malignancy characterized by a scarcity of effective treatment options. Reprogramming of amino acid (AA) metabolism has been associated with OS development. The present study was designed to identify metabolism-associated genes (MAGs) that are differentially expressed in OS and to construct a MAG-based prognostic risk signature for this disease. Methods: Expression profiles and clinicopathological data were downloaded from Gene Expression Omnibus (GEO) and UCSC Xena databases. A set of AA MAGs was obtained from the MSigDB database. Differentially expressed genes (DEGs) in GEO dataset were identified using "limma." Prognostic MAGs from UCSC Xena database were determined through univariate Cox regression and used in the prognostic signature development. This signature was validated using another dataset from GEO database. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, single sample gene set enrichment analysis, and GDSC2 analyses were performed to explore the biological functions of the MAGs. A MAG-based nomogram was established to predict 1-, 3-, and 5-year survival. Real-time quantitative polymerase chain reaction, Western blot, and immunohistochemical staining confirmed the expression of MAGs in primary OS and paired adjacent normal tissues. Results: A total of 790 DEGs and 62 prognostic MAGs were identified. A MAG-based signature was constructed based on four MAGs: PIPOX, PSMC2, SMOX, and PSAT1. The prognostic value of this signature was successfully validated, with areas under the receiver operating characteristic curves for 1-, 3-, and 5-year survival of 0.714, 0.719, and 0.715, respectively. This MAG-based signature was correlated with the infiltration of CD56dim natural killer cells and resistance to several antiangiogenic agents. The nomogram was accurate in predictions, with a C-index of 0.77. The expression of MAGs verified by experiment was consistent with the trends observed in GEO database. Conclusion: Four AA MAGs were prognostic of survival in OS patients. This MAG-based signature has the potential to offer valuable insights into the development of treatments for OS.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Mei
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjing Zhao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Zou L, Wang W, Huang W, Ni X, Li W, Cheng Y, Tian Q, Liu L, Zhu F, Duan Q. FYN-mediated phosphorylation of BCKDK at Y151 promotes GBM proliferation by increasing the oncogenic metabolite N-acetyl-L-alanine. Heliyon 2024; 10:e33663. [PMID: 39170503 PMCID: PMC11336342 DOI: 10.1016/j.heliyon.2024.e33663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Branched chain α-keto acid dehydrogenase kinase (BCKDK) is a key enzyme involved in the metabolism of branched-chain amino acids (BCAAs). Its potential as a therapeutic target and prognostic factor for a variety of cancers has been widely reported. In this study, we investigated the expression of BCKDK in clinical glioma samples and found that BCKDK was significantly overexpressed in glioblastoma (GBM) and was associated with its poor prognosis. We further found that BCKDK is phosphorylated by tyrosine protein kinase Fyn at Y151, which increases its catalytic activity and stability, and demonstrate through in vivo and in vitro experiments that BCKDK phosphorylation promotes GBM cell proliferation. In addition, we found that the levels of the metabolite N-acetyl-L-alanine (NAAL) in GBM cells with high BCKDK were higher than those in the silencing group, and silencing or inhibition of BCKDK promotes the expression of ACY1, an enzyme that catalyzes the hydrolysis of NAAL into acetic acid and alanine. Exogenous addition of NAAL can activate the ERK signaling pathway and promote the proliferation of GBM cells. Taken together, we identified a novel mechanism of BCKDK activation and found NAAL is a novel oncogenic metabolite. Our study confirms the importance of the Fyn-BCKDK-ACY1-NAAL signalling axis in the development of GBM and suggests that p-BCKDK (Y151) and NAAL can serve as potential predictors of GBM progression and prognosis.
Collapse
Affiliation(s)
- Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenda Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaofang Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wensheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China
- The Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan, 450000, China
| | - Qiuhong Duan
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan, 450000, China
| |
Collapse
|
29
|
Zhang T, Pan Z, Gao J, Wu Q, Bai G, Li Y, Tong L, Feng F, Lai M, Liu Y, Song P, Ning Y, Tang H, Luo W, Chen Y, Fang Y, Zhang H, Liu Q, Zhang Y, Wang H, Chen Z, Chen Y, Geng M, Ji H, Zhao G, Zhou H, Ding J, Xie H. Branched-chain amino acid transaminase 1 confers EGFR-TKI resistance through epigenetic glycolytic activation. Signal Transduct Target Ther 2024; 9:216. [PMID: 39143065 PMCID: PMC11324870 DOI: 10.1038/s41392-024-01928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Third-generation EGFR tyrosine kinase inhibitors (TKIs), exemplified by osimertinib, have demonstrated promising clinical efficacy in the treatment of non-small cell lung cancer (NSCLC). Our previous work has identified ASK120067 as a novel third-generation EGFR TKI with remarkable antitumor effects that has undergone New Drug Application (NDA) submission in China. Despite substantial progress, acquired resistance to EGFR-TKIs remains a significant challenge, impeding the long-term effectiveness of therapeutic approaches. In this study, we conducted a comprehensive investigation utilizing high-throughput proteomics analysis on established TKI-resistant tumor models, and found a notable upregulation of branched-chain amino acid transaminase 1 (BCAT1) expression in both osimertinib- and ASK120067-resistant tumors compared with the parental TKI-sensitive NSCLC tumors. Genetic depletion or pharmacological inhibition of BCAT1 impaired the growth of resistant cells and partially re-sensitized tumor cells to EGFR TKIs. Mechanistically, upregulated BCAT1 in resistant cells reprogrammed branched-chain amino acid (BCAA) metabolism and promoted alpha ketoglutarate (α-KG)-dependent demethylation of lysine 27 on histone H3 (H3K27) and subsequent transcriptional derepression of glycolysis-related genes, thereby enhancing glycolysis and promoting tumor progression. Moreover, we identified WQQ-345 as a novel BCAT1 inhibitor exhibiting antitumor activity both in vitro and in vivo against TKI-resistant lung cancer with high BCAT1 expression. In summary, our study highlighted the crucial role of BCAT1 in mediating resistance to third-generation EGFR-TKIs through epigenetic activation of glycolysis in NSCLC, thereby supporting BCAT1 as a promising therapeutic target for the treatment of TKI-resistant NSCLC.
Collapse
MESH Headings
- Humans
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Transaminases/genetics
- Transaminases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Glycolysis/drug effects
- Glycolysis/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/genetics
- Mice
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Acrylamides/pharmacology
- Animals
- Aniline Compounds/pharmacology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Indoles
- Pyrimidines
Collapse
Affiliation(s)
- Tao Zhang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zilu Pan
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Gao
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Gang Bai
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fang Feng
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengzhen Lai
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingqiang Liu
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peiran Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yi Ning
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Tang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Fang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiupei Liu
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham, Ningbo, China
| | - Yudi Zhang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hua Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Chen
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Ji
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Guilong Zhao
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Hu Zhou
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jian Ding
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hua Xie
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
30
|
Picart T, Hervey-Jumper S. Central nervous system regulation of diffuse glioma growth and invasion: from single unit physiology to circuit remodeling. J Neurooncol 2024; 169:1-10. [PMID: 38834748 PMCID: PMC11269341 DOI: 10.1007/s11060-024-04719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Understanding the complex bidirectional interactions between neurons and glioma cells could help to identify new therapeutic targets. Herein, the techniques and application of novel neuroscience tools implemented to study the complex interactions between brain and malignant gliomas, their results, and the potential therapeutic opportunities were reviewed. METHODS Literature search was performed on PubMed between 2001 and 2023 using the keywords "glioma", "glioblastoma", "circuit remodeling", "plasticity", "neuron networks" and "cortical networks". Studies including grade 2 to 4 gliomas, diffuse midline gliomas, and diffuse intrinsic pontine gliomas were considered. RESULTS Glioma cells are connected through tumour microtubes and form a highly connected network within which pacemaker cells drive tumorigenesis. Unconnected cells have increased invasion capabilities. Glioma cells are also synaptically integrated within neural circuitry. Neurons promote tumour growth via paracrine and direct electrochemical mechanisms, including glutamatergic AMPA-receptors. Increased glutamate release in the tumor microenvironment and loss of peritumoral GABAergic inhibitory interneurons result in network hyperexcitability and secondary epilepsy. Functional imaging, local field potentials and subcortical mapping, performed in awake patients, have defined patterns of malignant circuit remodeling. Glioma-induced remodeling is frequent in language and even motor cortical networks, depending on tumour biological parameters, and influences functional outcomes. CONCLUSION These data offer new insights into glioma tumorigenesis. Future work will be needed to understand how tumor intrinsic molecular drivers influence neuron-glioma interactions but also to integrate these results to design new therapeutic options for patients.
Collapse
Affiliation(s)
- Thiebaud Picart
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, Hospices Civils de Lyon, Bron, France
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Wang S, Liu Y, Zhao X, Wang X, Lou J, Jin P, Zhang Y, Yu J, Wang K. RUNX1::ETO and CBFβ::MYH11 converge on aberrant activation of BCAT1 to confer a therapeutic vulnerability in core-binding factor-acute myeloid leukaemia. Br J Haematol 2024; 205:552-567. [PMID: 38802066 DOI: 10.1111/bjh.19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Effectively targeting transcription factors in therapeutic interventions remains challenging, especially in core-binding factor-acute myeloid leukaemia (CBF-AML) characterized by RUNX1::ETO and CBFβ::MYH11 fusions. However, recent studies have drawn attention towards aberrant amino acid metabolisms as actionable therapeutic targets. Here, by integrating the expression profile and genetic makeup in AML cohort, we found higher BCAT1 expression in CBF-AML patients compared with other subtypes. Metabolic profiling revealed that high BCAT1 expression led to reprogrammed branch amino acid metabolism in CBF-AML and was associated with sphingolipid pathway relating to the fitness of leukaemia cells, supported by transcriptomic profiling. Mechanistically, we demonstrated in cell lines and primary patient samples that BCAT1 was directly activated by RUNX1::ETO and CBFβ::MYH11 fusion proteins similarly in a RUNX1-dependent manner through rewiring chromatin conformation at the BCAT1 gene locus. Furthermore, BCAT1 inhibition resulted in blunted cell cycle, enhanced apoptosis and myeloid differentiation of CBF-AML cells in vitro, and alleviated leukaemia burden and prolonged survival in vivo. Importantly, pharmacological inhibition of BCAT1 using the specific inhibitor Gabapentin demonstrated therapeutic effects, as evidenced by delayed leukaemia progression and improved survival in vivo. In conclusion, our study uncovers BCAT1 as a genetic vulnerability and a promising targeted therapeutic opportunity for CBF-AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Animals
- Core Binding Factor beta Subunit/genetics
- Core Binding Factor beta Subunit/metabolism
- Mice
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Siyang Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xujie Zhao
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoling Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacheng Lou
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Jin
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyi Yu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Lu Z, Wang XY, He KY, Han XH, Wang X, Zhang Z, Qu XH, Chen ZP, Han XJ, Wang T. CHIP-mediated ubiquitin degradation of BCAT1 regulates glioma cell proliferation and temozolomide sensitivity. Cell Death Dis 2024; 15:538. [PMID: 39075053 PMCID: PMC11286746 DOI: 10.1038/s41419-024-06938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Glioma, a malignant and infiltrative neoplasm of the central nervous system, poses a significant threat due to its high mortality rates. Branched-chain amino acid transaminase 1 (BCAT1), a key enzyme in branched-chain amino acid (BCAA) catabolism, exhibits elevated expression in gliomas and correlates strongly with poor prognosis. Nonetheless, the regulatory mechanisms underlying this increased BCAT1 expression remains incompletely understood. In this study, we reveal that ubiquitination at Lys360 facilitates BCAT1 degradation, with low ubiquitination levels contributing to high BCAT1 expression in glioma cells. The Carboxyl terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase, interacts with BCAT1 via its coiled-coil (CC) domain, promoting its K48-linkage ubiquitin degradation through proteasomal pathway. Moreover, CHIP-mediated BCAT1 degradation induces metabolic reprogramming, and impedes glioma cell proliferation and tumor growth both in vitro and in vivo. Furthermore, a positive correlation is observed between low CHIP expression, elevated BCAT1 levels, and unfavorable prognosis among glioma patients. Additionally, we show that the CHIP/BCAT1 axis enhances glioma sensitivity to temozolomide by reducing glutathione (GSH) synthesis and increasing oxidative stress. These findings underscore the critical role of CHIP/BCAT1 axis in glioma cell proliferation and temozolomide sensitivity, highlighting its potential as a diagnostic marker and therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Kai-Yi He
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xing Wang
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhi-Ping Chen
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China.
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China.
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China.
| |
Collapse
|
33
|
Ehara T, Ohka F, Motomura K, Saito R. Epilepsy in Patients with Gliomas. Neurol Med Chir (Tokyo) 2024; 64:253-260. [PMID: 38839295 PMCID: PMC11304448 DOI: 10.2176/jns-nmc.2023-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 06/07/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a complication that significantly impairs the quality of life and course of treatment of patients with brain tumors. Several recent studies have shed further light on the mechanisms and pathways by which genes and biological molecules in the tumor microenvironment can cause epilepsy. Moreover, epileptic seizures have been found to promote the growth of brain tumors, making the control of epilepsy a critical factor in treating brain tumors. In this study, we summarize the previous research and recent findings concerning BTRE. Expectedly, a deeper understanding of the underlying genetic and molecular mechanisms leads to safer and more effective treatments for suppressing epileptic symptoms and tumor growth.
Collapse
Affiliation(s)
- Takuro Ehara
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
34
|
Wang H, Zhou F, Wan J, Yu H, Wang J. Long noncoding RNA TMPO-AS1 upregulates BCAT1 expression to promote cell proliferation in nasopharyngeal carcinoma via microRNA let-7c-5p. Genes Environ 2024; 46:14. [PMID: 38937856 PMCID: PMC11210057 DOI: 10.1186/s41021-024-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) is a group of RNA transcripts that contribute to tumor development by post-transcriptionally regulating cancer-related genes. Nasopharyngeal carcinoma (NPC) is an epithelial tumor that occurs in the nasopharynx and is common in North Africa and Southeast Asia. The study investigated the functions of lncRNA TMPO-AS1 in NPC cell proliferation and apoptosis as well as its related competing endogenous RNA (ceRNA) mechanism. METHODS Candidate microRNA and genes that may regulated by TMPO-AS1 were predicted with the bioinformatic tool starBase. TMPO-AS1 expression in NPC tissue, cells, nuclear part, and cytoplasmic part was measured by RT-qPCR. MTT assay, EdU assay, and flow cytometry analysis were carried out to evaluate NPC cell viability, proliferation, and apoptosis, respectively. RNA immunoprecipitation assay and luciferase reporter assay were conducted to detect the binding between TMPO-AS1 and let-7c-5p or that between let-7c-5p and BCAT1. RESULTS TMPO-AS1 and BCAT1 showed high expression in NPC tissue and cells, while let-7c-5p was downregulated in NPC. The silencing of TMPO-AS1 suppressed NPC cell proliferation while promoting cell apoptosis. Moreover, TMPO-AS1 interacted with let-7c-5p and negatively regulated let-7c-5p expression. BCAT1 was a target of let-7c-5p and was inversely regulated by let-7c-5p in NPC cells. The repressive impact of TMPO-AS1 knockdown on NPC cell growth was countervailed by overexpressed BCAT1. CONCLUSION TMPO-AS1 accelerates NPC cell proliferation and represses cell apoptosis by interacting with let-7c-5p to regulate BCAT1 expression.
Collapse
Affiliation(s)
- Huan Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Fuming Zhou
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jia Wan
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Hong Yu
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jin Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China.
| |
Collapse
|
35
|
Wang W, Li Y, Tang L, Shi Y, Li W, Zou L, Zhang L, Cheng Y, Yuan Z, Zhu F, Duan Q. Cross-talk between BCKDK-mediated phosphorylation and STUB1-dependent ubiquitination degradation of BCAT1 promotes GBM progression. Cancer Lett 2024; 591:216849. [PMID: 38621458 DOI: 10.1016/j.canlet.2024.216849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Branched-chain amino acid transferase 1 (BCAT1) is highly expressed in multiple cancers and is associated with poor prognosis, particularly in glioblastoma (GBM). However, the post-translational modification (PTM) mechanism of BCAT1 is unknown. Here, we investigated the cross-talk mechanisms between phosphorylation and ubiquitination modifications in regulating BCAT1 activity and stability. We found that BCAT1 is phosphorylated by branched chain ketoacid dehydrogenase kinase (BCKDK) at S5, S9, and T312, which increases its catalytic and antioxidant activity and stability. STUB1 (STIP1 homology U-box-containing protein 1), the first we found and reported E3 ubiquitin ligase of BCAT1, can also be phosphorylated by BCKDK at the S19 site, which disrupts the interaction with BCAT1 and inhibits its degradation. In addition, we demonstrate through in vivo and in vitro experiments that BCAT1 phosphorylation inhibiting its ubiquitination at multiple sites is associated with GBM proliferation and that inhibition of the BCKDK-BCAT1 axis enhances the sensitivity to temozolomide (TMZ). Overall, we identified novel mechanisms for the regulation of BCAT1 modification and elucidated the importance of the BCKDK-STUB1-BCAT1 axis in GBM progression.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Youwei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Pain Management, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Liu Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yue Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wensheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Liyuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yue Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Zheng Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Feng Zhu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China; The Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan, 450000, China; Medical and Industry Crossover Research Institute of Medical College, Henan University, Kaifeng, Henan, 475000, China.
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China; The Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan, 450000, China; Medical and Industry Crossover Research Institute of Medical College, Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
36
|
Lu Z, Sun GF, He KY, Zhang Z, Han XH, Qu XH, Wan DF, Yao D, Tou FF, Han XJ, Wang T. Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167220. [PMID: 38718847 DOI: 10.1016/j.bbadis.2024.167220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.
Collapse
Affiliation(s)
- Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Gui-Feng Sun
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Kai-Yi He
- Department of Pharmacology, School of Pharmaceutical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Deng-Feng Wan
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Dongyuan Yao
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Fang-Fang Tou
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China.
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
37
|
Gewurz B, Guo R, Lim M, Shah H, Paulo J, Zhang Y, Yang H, Wang LW, Strebinger D, Smith N, Li M, Leong M, Lutchenkov M, Liang JH, Li Z, Wang Y, Puri R, Melnick A, Green M, Asara J, Papathanassiu A, Gygi S, Mootha V. Multi-omic Analysis of Human B-cell Activation Reveals a Key Lysosomal BCAT1 Role in mTOR Hyperactivation by B-cell receptor and TLR9. RESEARCH SQUARE 2024:rs.3.rs-4413958. [PMID: 38854072 PMCID: PMC11160916 DOI: 10.21203/rs.3.rs-4413958/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof. T-independent BCR/TLR9 co-stimulation, which drives malignant and autoimmune B-cell states, jointly induced PD-L1 plasma membrane expression, supported by NAD metabolism and oxidative phosphorylation. BCR/TLR9 also highly induced the transaminase BCAT1, which localized to lysosomal membranes to support branched chain amino acid synthesis and mTORC1 hyperactivation. BCAT1 inhibition blunted BCR/TLR9, but not CD40L/IL4-triggered B-cell proliferation, IL10 expression and BCR/TLR pathway-driven lymphoma xenograft outgrowth. These results provide a valuable resource, reveal receptor-mediated immunometabolism remodeling to support key B-cell phenotypes including PD-L1 checkpoint signaling, and identify BCAT1 as a novel B-cell therapeutic target.
Collapse
Affiliation(s)
| | | | - Matthew Lim
- Department of Cell Biology, Harvard Medical School
| | | | | | | | - Haopeng Yang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center
| | | | | | | | - Meng Li
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine
| | | | | | | | | | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University
| | | | - Michael Green
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center
| | | | | | | | | |
Collapse
|
38
|
Lange F, Gade R, Einsle A, Porath K, Reichart G, Maletzki C, Schneider B, Henker C, Dubinski D, Linnebacher M, Köhling R, Freiman TM, Kirschstein T. A glutamatergic biomarker panel enables differentiating Grade 4 gliomas/astrocytomas from brain metastases. Front Oncol 2024; 14:1335401. [PMID: 38835368 PMCID: PMC11148222 DOI: 10.3389/fonc.2024.1335401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Background The differentiation of high-grade glioma and brain tumors of an extracranial origin is eminent for the decision on subsequent treatment regimens. While in high-grade glioma, a surgical resection of the tumor mass is a fundamental part of current standard regimens, in brain metastasis, the burden of the primary tumor must be considered. However, without a cancer history, the differentiation remains challenging in the imaging. Hence, biopsies are common that may help to identify the tumor origin. An additional tool to support the differentiation may be of great help. For this purpose, we aimed to identify a biomarker panel based on the expression analysis of a small sample of tissue to support the pathological analysis of surgery resection specimens. Given that an aberrant glutamate signaling was identified to drive glioblastoma progression, we focused on glutamate receptors and key players of glutamate homeostasis. Methods Based on surgically resected samples from 55 brain tumors, the expression of ionotropic and metabotropic glutamate receptors and key players of glutamate homeostasis were analyzed by RT-PCR. Subsequently, a receiver operating characteristic (ROC) analysis was performed to identify genes whose expression levels may be associated with either glioblastoma or brain metastasis. Results Out of a total of 29 glutamatergic genes analyzed, nine genes presented a significantly different expression level between high-grade gliomas and brain metastases. Of those, seven were identified as potential biomarker candidates including genes encoding for AMPA receptors GRIA1, GRIA2, kainate receptors GRIK1 and GRIK4, metabotropic receptor GRM3, transaminase BCAT1 and the glutamine synthetase (encoded by GLUL). Overall, the biomarker panel achieved an accuracy of 88% (95% CI: 87.1, 90.8) in predicting the tumor entity. Gene expression data, however, could not discriminate between patients with seizures from those without. Conclusion We have identified a panel of seven genes whose expression may serve as a biomarker panel to discriminate glioblastomas and brain metastases at the molecular level. After further validation, our biomarker signatures could be of great use in the decision making on subsequent treatment regimens after diagnosis.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Richard Gade
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Claudia Maletzki
- Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
39
|
Tripathy S, Singh S, Banerjee M, Modi DR, Prakash A. Coagulation proteases and neurotransmitters in pathogenicity of glioblastoma multiforme. Int J Neurosci 2024; 134:398-408. [PMID: 35896309 DOI: 10.1080/00207454.2022.2107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma is an aggressive type of cancer that begins in cells called astrocytes that support nerve cells that can occur in the brain or spinal cord. It can form in the brain or spinal cord. Despite the variety of modern therapies against GBM, it is still a deadly disease. Patients usually have a median survival of approximately 14 to 15 months from the diagnosis. Glioblastoma is also known as glioblastoma multiforme. The pathogenesis contributing to the proliferation and metastasis of cancer involves aberrations of multiple signalling pathways through multiple genetic mutations and altered gene expression. The coagulant factors like thrombin and tissue factor play a noteworthy role in cancer invasion. They are produced in the microenvironment of glioma through activation of protease-activated receptors (PARs) which are activated by coagulation proteases. PARs are members of family G-protein-coupled receptors (GPCRs) that are activated by coagulation proteases. These components play a key role in tumour cell angiogenesis, migration, invasion, and interactions with host vascular cells. Further, the release of neurotransmitters is also found to regulate malignancy in gliomas. Exploration of the interplay between malignant neural circuitry with the normal conditions is also decisive in finding effective therapies for these apparently invasive tumours. The present review discusses the molecular classification of gliomas, activation of PARs by coagulation protease, and its role in metastasis of gliomas. Further, the differential involvement of neurotransmitters in the pathogenesis of gliomas has also been discussed. Targeting these molecules may present a potential therapeutic approach for the treatment of gliomas.
Collapse
Affiliation(s)
- Sukanya Tripathy
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
40
|
Zhao Y, Yang Y, Yang R, Sun C, Gao X, Gu X, Yuan Y, Nie Y, Xu S, Han R, Zhang L, Li J, Hu P, Wang Y, Chen H, Cao X, Wu J, Wang Z, Gu Y, Ye J. IDH1 mutation inhibits differentiation of astrocytes and glioma cells with low oxoglutarate dehydrogenase expression by disturbing α-ketoglutarate-related metabolism and epigenetic modification. LIFE METABOLISM 2024; 3:loae002. [PMID: 39872214 PMCID: PMC11749698 DOI: 10.1093/lifemeta/loae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2025]
Abstract
Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive. In this study, we found that low expression of oxoglutarate dehydrogenase (OGDH) was a common feature in IDH-mutated gliomas, as well as in astrocytes. This low expression of OGDH resulted in the accumulation of α-KG and promoted astrocyte maturation. However, IDH1 mutation significantly reduced α-KG levels and increased glutaminolysis and DNA/histone methylation in astrocytes. These metabolic and epigenetic alterations inhibited astrocyte maturation and led to cortical dysplasia in mice. Moreover, our results also indicated that reduced OGDH expression can promote the differentiation of glioma cells, while IDH1 mutations impeded the differentiation of glioma cells with low OGDH by reducing the accumulation of α-KG and increasing glutaminolysis. Finally, we found that l-glutamine increased α-KG levels and augmented the differentiation-promoting effects of AGI5198, an IDH1-mutant inhibitor, in IDH1-mutant glioma cells. Collectively, this study reveals that low OGDH expression is a crucial metabolic characteristic of IDH-mutant gliomas, providing a potential strategy for the treatment of IDH-mutant gliomas by targeting α-KG homeostasis.
Collapse
Affiliation(s)
- Yuanlin Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ying Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Risheng Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Pathology, Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong 510000, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Xing Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiwen Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuan Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yating Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Shenhui Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ruili Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Jing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Peizhen Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yingmei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Huangtao Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yu Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jing Ye
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
41
|
Pan J, Wang Y, Huang S, Mao S, Ling Q, Li C, Li F, Yu M, Huang X, Huang J, Lv Y, Li X, Ye W, Wang H, Wang J, Jin J. High expression of BCAT1 sensitizes AML cells to PARP inhibitor by suppressing DNA damage response. J Mol Med (Berl) 2024; 102:415-433. [PMID: 38340163 DOI: 10.1007/s00109-023-02409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Previous evidence has confirmed that branched-chain aminotransferase-1 (BCAT1), a key enzyme governing branched-chain amino acid (BCAA) metabolism, has a role in cancer aggression partly by restricting αKG levels and inhibiting the activities of the αKG-dependent enzyme family. The oncogenic role of BCAT1, however, was not fully elucidated in acute myeloid leukemia (AML). In this study, we investigated the clinical significance and biological insight of BCAT1 in AML. Using q-PCR, we analyzed BCAT1 mRNAs in bone marrow samples from 332 patients with newly diagnosed AML. High BCAT1 expression independently predicts poor prognosis in patients with AML. We also established BCAT1 knockout (KO)/over-expressing (OE) AML cell lines to explore the underlying mechanisms. We found that BCAT1 affects cell proliferation and modulates cell cycle, cell apoptosis, and DNA damage/repair process. Additionally, we demonstrated that BCAT1 regulates histone methylation by reducing intracellular αKG levels in AML cells. Moreover, high expression of BCAT1 enhances the sensitivity of AML cells to the Poly (ADP-ribose) polymerase (PARP) inhibitor both in vivo and in vitro. Our study has demonstrated that BCAT1 expression can serve as a reliable predictor for AML patients, and PARP inhibitor BMN673 can be used as an effective treatment strategy for patients with high BCAT1 expression. KEY MESSAGES: High expression of BCAT1 is an independent risk factor for poor prognosis in patients with CN-AML. High BCAT1 expression in AML limits intracellular αKG levels, impairs αKG-dependent histone demethylase activity, and upregulates H3K9me3 levels. H3K9me3 inhibits ATM expression and blocks cellular DNA damage repair process. Increased sensitivity of BCAT1 high expression AML to PARP inhibitors may be used as an effective treatment strategy in AML patients.
Collapse
Affiliation(s)
- Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Shujuan Huang
- Department of Hematology, the First Affiliated Hospital of University of Science and Technology of China, Anhui, Hefei, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Mengxia Yu
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
You H, Song G, Xu Z, Chen S, Shen W, Liu H, Deng B, Li J, Huang G. HuR promotes castration-resistant prostate cancer progression by altering ERK5 activation via posttranscriptional regulation of BCAT1. J Transl Med 2024; 22:178. [PMID: 38369471 PMCID: PMC10874581 DOI: 10.1186/s12967-024-04970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment, and the underlying mechanism has not been fully elucidated. This study aimed to clarify the role and mechanism of Human antigen R (HuR) as a therapeutic target for CRPC progression. METHODS HuR was knocked out by Cas9 or inhibited by the HuR-specific inhibitor KH-3 in CRPC cell lines and in a mouse xenograft model. The effects of HuR inhibition on tumour cell behaviors and signal transduction were examined by proliferation, transwell, and tumour xenograft assays. Posttranscriptional regulation of BCAT1 by HuR was determined by half-life and RIP assays. RESULTS HuR knockout attenuated the proliferation, migration, and invasion of PC3 and DU145 cells in vitro and inhibited tumour progression in vivo. Moreover, BCAT1 was a direct target gene of HuR and mediated the oncogenic effect of HuR on CRPC. Mechanistically, HuR directly interacted with BCAT1 mRNA and upregulated BCAT1 expression by increasing the stability and translation of BCAT1, which activated ERK5 signalling. Additionally, the HuR-specific inhibitor KH-3 attenuated CRPC progression by disrupting the HuR-BCAT1 interaction. CONCLUSIONS We confirmed that the HuR/BCAT1 axis plays a crucial role in CRPC progression and suggest that inhibiting the HuR/BCAT1 axis is a promising therapeutic approach for suppressing CRPC progression.
Collapse
Affiliation(s)
- Hang You
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Guojing Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Saipeng Chen
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China.
| |
Collapse
|
43
|
Zheng J, Liu Y, Wang J, Shi J, Li L, Jiang X, Tao L. Integrated single-cell and bulk characterization of branched chain amino acid metabolism-related key gene BCAT1 and association with prognosis and immunogenicity of clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:2715-2735. [PMID: 38309289 PMCID: PMC10911380 DOI: 10.18632/aging.205506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The relationship between clear cell renal cell carcinoma (ccRCC) and branched-chain amino acids (BCAA) metabolism has yet to be thoroughly explored. METHODS The BCAA metabolism-related clusters were constructed using non-negative matrix factorization (NMF). The features of BCAA metabolism in ccRCC were evaluated by building a prognostic model using least absolute shrinkage and selection operator (LASSO) regression algorithm. Real-time quantitative PCR (RT-qPCR) was employed to analyze differential expression of branched-chain amino acid transaminase 1 (BCAT1) between cancer and paracancer tissues and between different cell lines. Cell counting kit-8, wound healing and Transwell chamber assays were conducted to determine changes in proliferative and metastatic abilities of A498 and 786-O cells. RESULTS Two BCAA metabolism-related clusters with distinct prognostic and immune infiltration characteristics were identified in ccRCC. The BCAA metabolic signature (BMS) was capable of distinguishing immune features, tumor mutation burden, responses to immunotherapy, and drug sensitivity among ccRCC patients. RT-qPCR revealed overexpression of BCAT1 in ccRCC tissues and cell lines. Additionally, single-gene RNA sequencing analysis demonstrated significant enrichment of BCAT1 in macrophages and tumor cells. BCAT1 played tumor-promoting role in ccRCC and was closely associated with immunosuppressive cells and checkpoints. BCAT1 promoted ccRCC cell proliferation and metastasis. CONCLUSIONS The BMS played a crucial role in determining the prognosis, tumor mutation burden, responses to immunotherapy and drug sensitivity of ccRCC patients, as well as the immune cell infiltration features. BCAT1 was linked to immunosuppressive microenvironments and may offer new sights into ccRCC immunotherapeutic targets.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| | - Yingqing Liu
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| | - Jiawei Wang
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| | - Jiewu Shi
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| | - Lin Li
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| | - Xuefeng Jiang
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| | - Lingsong Tao
- Department of Urology, Wuhu Hospital Affiliated to East China Normal University, Wuhu 241000, Anhui, People’s Republic of China
| |
Collapse
|
44
|
Boskovic P, Wilke N, Man KH, Lichter P, Francois L, Radlwimmer B. Branched-chain amino acid transaminase 1 regulates glioblastoma cell plasticity and contributes to immunosuppression. Neuro Oncol 2024; 26:251-265. [PMID: 37769206 PMCID: PMC10836774 DOI: 10.1093/neuonc/noad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common malignant brain tumor in adults. Cellular plasticity and the poorly differentiated features result in a fast relapse of the tumors following treatment. Moreover, the immunosuppressive microenvironment proved to be a major obstacle to immunotherapeutic approaches. Branched-chain amino acid transaminase 1 (BCAT1) was shown to drive the growth of glioblastoma and other cancers;however, its oncogenic mechanism remains poorly understood. METHODS Using human tumor data, cell line models and orthotopic immuno-competent and -deficient mouse models, we investigated the phenotypic and mechanistic effects of BCAT1 on glioblastoma cell state and immunomodulation. RESULTS Here, we show that BCAT1 is crucial for maintaining the poorly differentiated state of glioblastoma cells and that its low expression correlates with a more differentiated glioblastoma phenotype. Furthermore, orthotopic tumor injection into immunocompetent mice demonstrated that the brain microenvironment is sufficient to induce differentiation of Bcat1-KO tumors in vivo. We link the transition to a differentiated cell state to the increased activity of ten-eleven translocation demethylases and the hypomethylation and activation of neuronal differentiation genes. In addition, the knockout of Bcat1 attenuated immunosuppression, allowing for an extensive infiltration of CD8+ cytotoxic T-cells and complete abrogation of tumor growth. Further analysis in immunodeficient mice revealed that both tumor cell differentiation and immunomodulation following BCAT1-KO contribute to the long-term suppression of tumor growth. CONCLUSIONS Our study unveils BCAT1's pivotal role in promoting glioblastoma growth by inhibiting tumor cell differentiation and sustaining an immunosuppressive milieu. These findings offer a novel therapeutic avenue for targeting glioblastoma through the inhibition of BCAT1.
Collapse
Affiliation(s)
- Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nathalie Wilke
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Liliana Francois
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Lai SW, Weng PW, Yadav VK, Pikatan NW, Yeh CT, Hsieh MS, Chou CL. Underlying mechanisms of novel cuproptosis-related dihydrolipoamide branched-chain transacylase E2 (DBT) signature in sunitinib-resistant clear-cell renal cell carcinoma. Aging (Albany NY) 2024; 16:2679-2701. [PMID: 38305803 PMCID: PMC10911363 DOI: 10.18632/aging.205504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024]
Abstract
Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.
Collapse
Affiliation(s)
- Shiue-Wei Lai
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, Taiwan
| | - Ming-Shou Hsieh
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| |
Collapse
|
46
|
Lokumcu T, Iskar M, Schneider M, Helm D, Klinke G, Schlicker L, Bethke F, Müller G, Richter K, Poschet G, Phillips E, Goidts V. Proteomic, Metabolomic, and Fatty Acid Profiling of Small Extracellular Vesicles from Glioblastoma Stem-Like Cells and Their Role in Tumor Heterogeneity. ACS NANO 2024; 18:2500-2519. [PMID: 38207106 PMCID: PMC10811755 DOI: 10.1021/acsnano.3c11427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Glioblastoma is a deadly brain tumor for which there is no cure. The presence of glioblastoma stem-like cells (GSCs) contributes to the heterogeneous nature of the disease and makes developing effective therapies challenging. Glioblastoma cells have been shown to influence their environment by releasing biological nanostructures known as extracellular vesicles (EVs). Here, we investigated the role of GSC-derived nanosized EVs (<200 nm) in glioblastoma heterogeneity, plasticity, and aggressiveness, with a particular focus on their protein, metabolite, and fatty acid content. We showed that conditioned medium and small extracellular vesicles (sEVs) derived from cells of one glioblastoma subtype induced transcriptomic and proteomic changes in cells of another subtype. We found that GSC-derived sEVs are enriched in proteins playing a role in the transmembrane transport of amino acids, carboxylic acids, and organic acids, growth factor binding, and metabolites associated with amino acid, carboxylic acid, and sugar metabolism. This suggests a dual role of GSC-derived sEVs in supplying neighboring GSCs with valuable metabolites and proteins responsible for their transport. Moreover, GSC-derived sEVs were enriched in saturated fatty acids, while their respective cells were high in unsaturated fatty acids, supporting that the loading of biological cargos into sEVs is a highly regulated process and that GSC-derived sEVs could be sources of saturated fatty acids for the maintenance of glioblastoma cell metabolism. Interestingly, sEVs isolated from GSCs of the proneural and mesenchymal subtypes are enriched in specific sets of proteins, metabolites, and fatty acids, suggesting a molecular collaboration between transcriptionally different glioblastoma cells. In summary, this study revealed the complexity of GSC-derived sEVs and unveiled their potential contribution to tumor heterogeneity and critical cellular processes commonly deregulated in glioblastoma.
Collapse
Affiliation(s)
- Tolga Lokumcu
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
- Faculty
of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Murat Iskar
- Friedrich
Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Martin Schneider
- Proteomics
Core Facility, German Cancer Research Center
(DKFZ), Heidelberg 69120, Germany
| | - Dominic Helm
- Proteomics
Core Facility, German Cancer Research Center
(DKFZ), Heidelberg 69120, Germany
| | - Glynis Klinke
- Metabolomics
Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Lisa Schlicker
- Proteomics
Core Facility, German Cancer Research Center
(DKFZ), Heidelberg 69120, Germany
- Division
of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Frederic Bethke
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gabriele Müller
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Karsten Richter
- Core
Facility Electron Microscopy, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gernot Poschet
- Metabolomics
Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Emma Phillips
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Violaine Goidts
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
47
|
Tabesh M, Teymoori F, Ahmadirad H, Mirmiran P, Rahideh ST. Dietary Branched Chain Amino Acids Association with Cancer and Mortality: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer 2024; 76:160-174. [PMID: 38130073 DOI: 10.1080/01635581.2023.2292820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The present study aimed to investigate the association of dietary branched-chain amino acids (BCAAs) and its components with cancer, cancer mortality, and all-cause mortality in a meta-analysis of observational studies. A comprehensive search was conducted between electronic databases (PubMed, Scopus, and Web of Science) until September 2022. Odds ratios (OR), hazard ratios (HR), and relative risks (RR) were extracted. Eight articles (six studies on breast cancer (BC) and digestive cancers risk, and three studies on both BC and digestive cancers mortality, and all-cause mortality) were included. The present study showed no statistically significant association between dietary BCAAs and its components with BC and digestive cancers (RRBCAA: 0.87, 95% CI: 0.68-1.10, RRLeucine: 0.74, 95% CI: 0.52-1.04, RRIsoleucine: 0.98, 95% CI: 0.93-1.04, RRValine: 0.76, 95% CI: 0.55-1.05). Also, no statistically significant relationship between dietary BCAAs and its components with both BC and digestive cancers mortality (RRBCAA: 0.95, 95% CI: 0.68-1.33, RRLeucine: 0.95, 95% CI: 0.79-1.15, RRIsoleucine: 0.95, 95% CI: 0.79-1.14, RRValine: 1.01, 95% CI: 0.84-1.21) and all-cause mortality (RRBCAA: 0.98, 95% CI: 0.73-1.32, RRLeucine: 1.02, 95% CI: 0.81-1.29, RRIsoleucine: 0.96, 95% CI: 0.73-1.27, RRValine: 1.02, 95% CI: 0.79-1.32) were observed. Our findings showed no significant association between dietary BCAAs and its components with BC and digestive cancers, BC and digestive cancers mortality, and all-cause mortality.
Collapse
Affiliation(s)
- Mahdieh Tabesh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Tayebeh Rahideh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Mastall M, Roth P, Bink A, Fischer Maranta A, Läubli H, Hottinger AF, Hundsberger T, Migliorini D, Ochsenbein A, Seystahl K, Imbach L, Hortobagyi T, Held L, Weller M, Wirsching HG. A phase Ib/II randomized, open-label drug repurposing trial of glutamate signaling inhibitors in combination with chemoradiotherapy in patients with newly diagnosed glioblastoma: the GLUGLIO trial protocol. BMC Cancer 2024; 24:82. [PMID: 38225589 PMCID: PMC10789019 DOI: 10.1186/s12885-023-11797-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common and most aggressive malignant primary brain tumor in adults. Glioblastoma cells synthesize and secrete large quantities of the excitatory neurotransmitter glutamate, driving epilepsy, neuronal death, tumor growth and invasion. Moreover, neuronal networks interconnect with glioblastoma cell networks through glutamatergic neuroglial synapses, activation of which induces oncogenic calcium oscillations that are propagated via gap junctions between tumor cells. The primary objective of this study is to explore the efficacy of brain-penetrating anti-glutamatergic drugs to standard chemoradiotherapy in patients with glioblastoma. METHODS/DESIGN GLUGLIO is a 1:1 randomized phase Ib/II, parallel-group, open-label, multicenter trial of gabapentin, sulfasalazine, memantine and chemoradiotherapy (Arm A) versus chemoradiotherapy alone (Arm B) in patients with newly diagnosed glioblastoma. Planned accrual is 120 patients. The primary endpoint is progression-free survival at 6 months. Secondary endpoints include overall and seizure-free survival, quality of life of patients and caregivers, symptom burden and cognitive functioning. Glutamate levels will be assessed longitudinally by magnetic resonance spectroscopy. Other outcomes of interest include imaging response rate, neuronal hyperexcitability determined by longitudinal electroencephalography, Karnofsky performance status as a global measure of overall performance, anticonvulsant drug use and steroid use. Tumor tissue and blood will be collected for translational research. Subgroup survival analyses by baseline parameters include segregation by age, extent of resection, Karnofsky performance status, O6-methylguanine DNA methyltransferase (MGMT) promotor methylation status, steroid intake, presence or absence of seizures, tumor volume and glutamate levels determined by MR spectroscopy. The trial is currently recruiting in seven centers in Switzerland. TRIAL REGISTRATION NCT05664464. Registered 23 December 2022.
Collapse
Affiliation(s)
- Maximilian Mastall
- Department of Neurology, Clinical Neuroscience Center and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, CH-8091, Switzerland
| | - Patrick Roth
- Department of Neurology, Clinical Neuroscience Center and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, CH-8091, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Heinz Läubli
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | | - Thomas Hundsberger
- Department of Neurology and Medical Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Denis Migliorini
- Department of Oncology, Hopitaux Universitaires de Genève, Geneva, Switzerland
| | - Adrian Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Katharina Seystahl
- Department of Neurology and Neurorehabilitation, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center - Klinik Lengg, Zurich, Switzerland
| | - Tibor Hortobagyi
- Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Leonhard Held
- Department of Biostatistics, Epidemiology Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, CH-8091, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Hans-Georg Wirsching
- Department of Neurology, Clinical Neuroscience Center and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, CH-8091, Switzerland.
| |
Collapse
|
49
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
50
|
Zhang C, Yu JJ, Yang C, Yuan ZL, Zeng H, Wang JJ, Shang S, Lv XX, Liu XT, Liu J, Xue Q, Cui B, Tan FW, Hua F. Wild-type IDH1 maintains NSCLC stemness and chemoresistance through activation of the serine biosynthetic pathway. Sci Transl Med 2023; 15:eade4113. [PMID: 38091408 DOI: 10.1126/scitranslmed.ade4113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Cheng Zhang
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, P.R. China
| | - Jiao-Jiao Yu
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Chen Yang
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Zhen-Long Yuan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Jun-Jian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuang Shang
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Xiao-Xi Lv
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Xiao-Tong Liu
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Jing Liu
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Bing Cui
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| | - Feng-Wei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Fang Hua
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P.R. China
| |
Collapse
|