1
|
Dong Y, Meng F, Wang J, Wei J, Zhang K, Qin S, Li M, Wang F, Wang B, Liu T, Zhong W, Cao H. Desulfovibrio vulgaris flagellin exacerbates colorectal cancer through activating LRRC19/TRAF6/TAK1 pathway. Gut Microbes 2025; 17:2446376. [PMID: 39718561 DOI: 10.1080/19490976.2024.2446376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
The initiation and progression of colorectal cancer (CRC) are intimately associated with genetic, environmental and biological factors. Desulfovibrio vulgaris (DSV), a sulfate-reducing bacterium, has been found excessive growth in CRC patients, suggesting a potential role in carcinogenesis. However, the precise mechanisms underlying this association remain incompletely understood. We have found Desulfovibrio was abundant in high-fat diet-induced Apcmin/+ mice, and DSV, a member of Desulfovibrio, triggered colonocyte proliferation of germ-free mice. Furthermore, the level of DSV progressively rose from healthy individuals to CRC patients. Flagella are important accessory structures of bacteria, which can help them colonize and enhance their invasive ability. We found that D. vulgaris flagellin (DVF) drove the proliferation, migration, and invasion of CRC cells and fostered the growth of CRC xenografts. DVF enriched the epithelial-mesenchymal transition (EMT)-associated genes and characterized the facilitation of DVF on EMT. Mechanistically, DVF induced EMT through a functional transmembrane receptor called leucine-rich repeat containing 19 (LRRC19). DVF interacted with LRRC19 to modulate the ubiquitination of tumor necrosis factor receptor-associated factor (TRAF)6, rather than TRAF2. This interaction drove the ubiquitination of pivotal molecule TAK1, further enhancing its autophosphorylation and ultimately contributing to EMT. Collectively, DVF interacts with LRRC19 to activate the TRAF6/TAK1 signaling pathway, thereby promoting the EMT of CRC. These data shed new light on the role of gut microbiota in CRC and establish a potential clinical therapeutic target.
Collapse
Affiliation(s)
- Yue Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siqi Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fucheng Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
2
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
3
|
Verma M, Garg M, Yadav P, Khan AS, Rahman SS, Ali A, Kamthan M. Modulation of intestinal signal transduction pathways: Implications on gut health and disease. Eur J Pharmacol 2025; 998:177531. [PMID: 40118324 DOI: 10.1016/j.ejphar.2025.177531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The gastrointestinal (GI) tract is essential for nutrient absorption and protection against pathogens and toxins. Its epithelial lining undergoes continuous renewal every 3-5 days, driven by intestinal stem cells (ISCs). ISCs are primarily of two types: actively proliferating crypt base columnar cells (CBCs), marked by Lgr5 expression, and quiescent label-retaining cells (+4 LRCs), which act as reserves during stress or injury. Key signaling pathways, such as Wnt/β-catenin, Notch, bone morphogenetic proteins (BMPs), and epidermal growth factor (EGF), are crucial in maintaining epithelial homeostasis. These pathways regulate ISCs proliferation and their differentiation into specialized epithelial cells, including goblet cells, paneth cells, enteroendocrine cells, and enterocytes. Disruptions in ISCs signaling can arise from extrinsic factors (e.g., dietary additives, heavy metals, pathogens) or intrinsic factors (e.g., genetic mutations, metabolic changes). Such disruptions impair tight junction integrity, induce inflammation, and promote gut dysbiosis, often perpetuating a cycle of intestinal dysfunction. Chronic ISCs dysregulation is linked to severe intestinal disorders, including colorectal cancer (CRC) and inflammatory bowel disease (IBD). This review emphasizes the critical role of ISCs in maintaining epithelial renewal and how various factors disrupt their signaling pathways, jeopardizing intestinal health and contributing to diseases. It also underscores the importance of protecting ISCs function to mitigate the risk of inflammation-related disorders. It highlights how understanding these regulatory mechanisms could guide therapeutic strategies for preserving GI tract integrity and treating related conditions.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
4
|
Chung KS, Heo SW, Lee JH, Han HS, Kim GH, Kim YR, Kim MS, Hong JE, Rhee KJ, Lee KT. Protective potential of nodakenin in high-fat diet-mediated colitis-associated cancer: Inhibition of STAT3 activation and Wnt/β-catenin pathway, and gut microbiota modulation. Int Immunopharmacol 2025; 157:114734. [PMID: 40318275 DOI: 10.1016/j.intimp.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
A high-fat diet (HFD) exerts complex effects on the risk of colitis-associated cancer (CAC). Nodakenin, a key phytochemical isolated from the dried roots of Angelicae gigas Nakai (Umbelliferae), possesses anti-inflammatory and anti-adipogenic properties and shows potential as a therapeutic agent for colorectal cancer (CRC). In this study, we investigated the protective effects and underlying molecular mechanisms of nodakenin in an animal model of CRC induced by HFD, azoxymethane (AOM), and dextran sodium sulfate (DSS). Oral administration of nodakenin significantly alleviated clinical symptoms, such as recovery of weight, spleen weight, and colon length, and suppressed tumor progression in the colonic tissues of HFD/AOM/DSS-induced CRC mice. Nodakenin inhibited the activation of STAT3-related inflammatory mediators and downregulated proteins involved in the Wnt/β-catenin signaling pathway. These effects contributed to the disruption of epithelial-mesenchymal transition (EMT) and the restoration of tight junction integrity within the colonic tissue. Furthermore, nodakenin treatment improved the composition of the gut microbiota, leading to observable species-level differences. Network analysis revealed significant correlations between clinical parameters, inflammatory markers, EMT and apoptotic factors, and the composition of the gut microbiota. Specifically, negative correlations were observed between spleen weight and Alistipes, as well as between MCP-1 and Clostridium_g21. Positive correlations with spleen weight were observed with species belonging to Anaerotruncus, Emergencia, and Parvibacter. Bacteroidaceae_uc and Bacteroides correlated positively with MCP-1, Streptococcus correlated positively with PUMA, and Harryflintia, Odoribacteraceae_uc, and Roseburia correlated positively with cleaved caspase-3. Overall, our findings suggested that nodakenin effectively alleviates HFD/AOM/DSS-induced CRC by targeting inflammatory pathways (STAT3 and Wnt/β-catenin), suppressing EMT, and restoring gut microbiota balance. These multiple mechanisms underscore its potential as a promising agent for the prevention and treatment of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Hui Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye-Rin Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Su Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Klima S, Hurrell T, Goolam M, Gouws C, Engelbrecht AM, Kaur M, van den Bout I. A new dawn: Vitalising translational oncology research in Africa with the help of advanced cell culture models. Transl Oncol 2025; 56:102391. [PMID: 40228390 PMCID: PMC12017847 DOI: 10.1016/j.tranon.2025.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
The advent of in vitro models such as induced pluripotent stem cells (iPSC) and patient derived (disease) organoids is supporting the development of population and patient specific model systems reflecting human physiology and disease. However, there remains a significant underrepresentation of non-European, especially African model systems. The development of such models should be enthusiastically embraced by Sub-Saharan African countries (SSAC) and middle-income countries (LIMC) to direct their own research focused on the improvement of health of their own populations at a sustainable cost within their respective funding environments. Great care needs to be taken to develop national frameworks to direct, sustainably fund and support such efforts in a way that maximises the output of such models for the investment required. Here, we highlight how advanced culture models can play a role in vitalising local healthcare research by focusing on locally relevant health care questions using appropriate cell culture models. We also provide a potential national platform example that could maximise such output at the lowest cost. This framework presents an opportunity for SSAC and LMIC to base their healthcare research on locally relevant models to ensure that developed health care initiatives and interventions are best suited for the populations they serve and thus represent a reset in global health care research at large.
Collapse
Affiliation(s)
- Stefanie Klima
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Tracey Hurrell
- Bioengineering and Integrated Genomics Group, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, South Africa; UCT Neuroscience Institute, Cape Town, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, South Africa; Desmond Tutu School of Medicine, Faculty of Health Sciences, North-West University, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
6
|
Phadwal K, Haggarty J, Kurian D, Marti JA, Sun J, Houston RD, Betancor MB, MacRae VE, Whitfield PD, Macqueen DJ. Rapamycin induced autophagy enhances lipid breakdown and ameliorates lipotoxicity in Atlantic salmon cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025:159636. [PMID: 40389074 DOI: 10.1016/j.bbalip.2025.159636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/22/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
Autophagy is a highly conserved cellular recycling process essential for homeostasis in all eukaryotic cells. Lipid accumulation and its regulation by autophagy are key areas of research for understanding metabolic disorders in human and model mammals. However, the role of autophagy in lipid regulation remains poorly characterized in non-model fish species of importance to food production, which could be important for managing health and welfare in aquaculture. Addressing this knowledge gap, we investigate the role of autophagy in lipid regulation using a macrophage-like cell line (SHK-1) from Atlantic salmon (Salmo salar L.), the world's most commercially valuable farmed finfish. Multiple lines of experimental evidence reveal that the autophagic pathway responsible for lipid droplet breakdown is conserved in Atlantic salmon cells. We employed global lipidomics and proteomics analyses on SHK-1 cells subjected to lipid overload, followed by treatment with rapamycin to induce autophagy. This revealed that activating autophagy via rapamycin enhances storage of unsaturated triacylglycerols and suppresses key lipogenic proteins, including fatty acid elongase 6, fatty acid binding protein 2 and acid sphingomyelinase. Moreover, fatty acid elongase 6 and fatty acid binding protein 2 were identified as possible cargo for autophagosomes, suggesting a critical role for autophagy in lipid metabolism in fish. Together, this study establishes a novel model of lipotoxicity and advances understanding of lipid autophagy in fish cells, with significant implications for addressing fish health issues in aquaculture.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Jennifer Haggarty
- Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Judit Aguilar Marti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Phillip D Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
7
|
Goto N, Agudo J, Yilmaz ÖH. Early immune evasion in colorectal cancer: interplay between stem cells and the tumor microenvironment. Trends Cancer 2025:S2405-8033(25)00112-8. [PMID: 40382216 DOI: 10.1016/j.trecan.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Most colorectal cancers (CRCs) are characterized by a low mutational burden and an immune-cold microenvironment, limiting the efficacy of immune checkpoint blockade (ICB) therapies. While advanced tumors exhibit diverse immune evasion mechanisms, emerging evidence suggests that aspects of immune escape arise much earlier, within precancerous lesions. In this review, we discuss how early driver mutations and epigenetic alterations contribute to the establishment of an immunosuppressive microenvironment in CRC. We also highlight the dynamic crosstalk between cancer cells, stromal niche cells, and immune cells driving immune evasion and liver metastasis. A deeper understanding of these early events may guide the development of more effective preventive and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Norihiro Goto
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Boston, MA 02215, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02215, USA; New York Stem Cell Foundation, New York, NY 10019, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Ameku T, Laddach A, Beckwith H, Milona A, Rogers LS, Schwayer C, Nye E, Tough IR, Thoumas JL, Gautam UK, Wang YF, Jha S, Castano-Medina A, Amourda C, Vaelli PM, Gevers S, Irvine EE, Meyer L, Andrew I, Choi KL, Patel B, Francis AJ, Studd C, Game L, Young G, Murphy KG, Owen B, Withers DJ, Rodriguez-Colman M, Cox HM, Liberali P, Schwarzer M, Leulier F, Pachnis V, Bellono NW, Miguel-Aliaga I. Growth of the maternal intestine during reproduction. Cell 2025; 188:2738-2756.e22. [PMID: 40112802 DOI: 10.1016/j.cell.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
The organs of many female animals are remodeled by reproduction. Using the mouse intestine, a striking and tractable model of organ resizing, we find that reproductive remodeling is anticipatory and distinct from diet- or microbiota-induced resizing. Reproductive remodeling involves partially irreversible elongation of the small intestine and fully reversible growth of its epithelial villi, associated with an expansion of isthmus progenitors and accelerated enterocyte migration. We identify induction of the SGLT3a transporter in a subset of enterocytes as an early reproductive hallmark. Electrophysiological and genetic interrogations indicate that SGLT3a does not sustain digestive functions or enterocyte health; rather, it detects protons and sodium to extrinsically support the expansion of adjacent Fgfbp1-positive isthmus progenitors, promoting villus growth. Our findings reveal unanticipated specificity to physiological organ remodeling. We suggest that organ- and state-specific growth programs could be leveraged to improve pregnancy outcomes or prevent maladaptive consequences of such growth.
Collapse
Affiliation(s)
- Tomotsune Ameku
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Anna Laddach
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Beckwith
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexandra Milona
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Loranzie S Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelia Schwayer
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | - Umesh Kumar Gautam
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Yi-Fang Wang
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Shreya Jha
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alvaro Castano-Medina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Patric M Vaelli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Elaine E Irvine
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Leah Meyer
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ivan Andrew
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ka Lok Choi
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alice J Francis
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - George Young
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bryn Owen
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maria Rodriguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | | | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Irene Miguel-Aliaga
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
9
|
Shi R, Lu W, Zhao Z, Wang B. Low-density Lipoprotein Regulates Intestinal Stem Cell Homeostasis via PPAR Pathway. J Lipid Res 2025:100826. [PMID: 40379213 DOI: 10.1016/j.jlr.2025.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/15/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025] Open
Abstract
Epidemiological studies have highlighted a strong association between hyperlipidemia and an increased risk of cancer in the gut. Intestinal stem cells (ISCs) have been demonstrated as the cells of origin for tumorigenesis in the gut. However, the impact of hyperlipidemia on ISC homeostasis remains unclear. Here, we show that hyperlipidemia induced by low-density lipoprotein receptor (Ldlr) deficiency enhances ISC proliferation in vivo. Additionally, LDL treatment impairs organoid survival but increases ISC stemness ex vivo, as evidenced by the formation of poorly differentiated spheroid and higher ISC self-renewal capacity. Mechanistically, LDL treatment activates PPAR pathways, and pharmacological inhibition of PPAR and its downstream targets, including CPT1A and PDK4, mitigates the effect of LDL on ISCs. These findings demonstrate that hyperlipidemia modulates ISC homeostasis, providing new insights into the mechanism linking hyperlipidemia with tumorigenesis in the gut.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wei Lu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhiming Zhao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
Sheng X, Jin L, Yao Z, Gu J, Zhu L, Huang A, Peng J, Xu X, Ge X, Zhou W, Sheng J, Xu Z, Bai R. Psychological stress-induced systemic corticosterone directly sabotages intestinal stem cells and exacerbates colitis. Cell Discov 2025; 11:46. [PMID: 40360481 PMCID: PMC12075755 DOI: 10.1038/s41421-025-00796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/15/2025] [Indexed: 05/15/2025] Open
Abstract
Psychological stress has profound impacts on the gastrointestinal tract via the brain‒gut axis. However, its effects on intestinal stem cells (ISCs) and the resulting implication for intestinal homeostasis remain poorly understood. Here, we observed a notable reduction in both the quantity and proliferative capacity of ISCs under chronic stress conditions, driven by elevated levels of corticosterone resulting from activation of the hypothalamic‒pituitary‒adrenal (HPA) axis. Mechanistically, corticosterone directly interacts with its receptor, nuclear receptor subfamily 3 group c member 1 (NR3C1), leading to increased expression of FKBP prolyl isomerase 5 (FKBP5) in ISCs. Subsequently, FKBP5 negatively regulates AKT activation by facilitating its dephosphorylation at Ser473, ultimately enhancing nuclear translocation of forkhead box O (FoxO) and inhibiting ISC proliferative activity. Consequently, ISC dysfunction contributes to the stress-driven exacerbation of DSS-induced colitis. Collectively, these findings reveal an intrinsic brain-to-gut regulatory pathway whereby psychological stress impairs ISC activity via corticosterone elevation, providing a mechanistic explanation for stress-enhanced susceptibility to colitis.
Collapse
Affiliation(s)
- Xiaole Sheng
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanfei Jin
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengrong Yao
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaji Gu
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longtao Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Andi Huang
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junxuan Peng
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolong Ge
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghao Sheng
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengping Xu
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongpan Bai
- Department of General Surgery, Sir Run Run Shaw Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Yuan F, Jia G, Wen W, Xu S, Gunchick V, Deng K, Long J, Yu D, Shu XO, Zheng W. Blood metabolic biomarkers and colorectal cancer risk: results from large prospective cohort and Mendelian randomisation analyses. Br J Cancer 2025:10.1038/s41416-025-02997-4. [PMID: 40307439 DOI: 10.1038/s41416-025-02997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Emerging evidence suggests metabolic dysregulation may contribute to colorectal cancer (CRC) aetiology. We aimed to identify pre-diagnostic metabolic biomarkers for CRC risk in 230,420 UK Biobank participants. METHODS Nuclear magnetic resonance spectroscopy was used to quantify 249 metabolic biomarkers in plasma samples collected at baseline. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals (CIs) for associations of metabolic biomarkers with CRC risk after adjusting for potential confounders. To infer the potential causality of biomarkers that were associated with CRC independent of the others, we performed genome-wide association analyses among 199,732 UK Biobank participants of European ancestry to identify biomarker-associated genetic variants, followed by two-sample Mendelian randomization (MR) analyses using summary statistics of 78,473 CRC cases and 107,143 controls of European ancestry. RESULTS During a median follow-up time of 9.7 years, 2,410 incident primary CRC cases were identified. Among 43 CRC-associated (P-value < 0.001) metabolic biomarkers, ten biomarkers including fatty acids (FAs), inflammation, ketone bodies, and lipoprotein lipids were associated with CRC risk after mutual adjustment. MR analyses provided strong evidence for potential causal associations of CRC risk with percentages of linolic acid [odds ratio (OR) = 0.89, 95% CI = 0.83-0.96, P-value = 3 × 10-3] and saturated FAs (OR = 1.14, 95% CI = 1.03-1.25, P-value = 9 × 10-3) to total FAs. CONCLUSIONS We identified multiple CRC-associated metabolic biomarkers. Perturbed lipid and lipoprotein metabolism may promote colorectal carcinogenesis.
Collapse
Affiliation(s)
- Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valerie Gunchick
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Lu Y, Chen L, Lin Y, Zhang Y, Wang Y, Yu W, Ren F, Guo H. Fatty acid metabolism: The crossroads in intestinal homeostasis and tumor. Metabolism 2025; 169:156273. [PMID: 40280478 DOI: 10.1016/j.metabol.2025.156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Fatty acids (FAs) have various functions on cell regulation considering their abundant types and metabolic pathways. In addition, the relation between FA and other nutritional metabolism makes their functions more complex. As the first place for diet-derived FA metabolism, intestine is significantly influenced despite lack of clear conclusions due to the inconsistent findings. In this review, we discuss the regulation of fatty acid metabolism on the fate of intestinal stem cells in homeostasis and disorders, and also focus on the intestinal tumor development and treatment from the aspect of gut microbiota-epithelium-immune interaction. We summarize that the balances between FA oxidation and glycolysis, between oxidative phosphorylation and ketogenesis, between catabolism and anabolism, and the specific roles of individual FA types determine the diverse effects of intestinal FA metabolism in different cases. We hope this will inspire further dissection and suggest precise dietary/metabolic intervention for different demands related to intestinal health.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lining Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqi Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Ruiz CF, Ge X, McDonnell R, Agabiti SS, McQuaid DC, Tang A, Kharwa M, Goodell J, Saavedra-Peña RDM, Wing A, Li G, Medici NP, Robert ME, Varshney RR, Rudolph MC, Gorelick FS, Wysolmerski J, Canals D, Haley JD, Rodeheffer MS, Muzumdar MD. Diet-induced phospholipid remodeling dictates ferroptosis sensitivity and tumorigenesis in the pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.645324. [PMID: 40235976 PMCID: PMC11996499 DOI: 10.1101/2025.04.04.645324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
High-fat diet (HFD) intake has been linked to an increased risk of pancreatic ductal adenocarcinoma (PDAC), a lethal and therapy-resistant cancer. However, whether and how specific dietary fats drive cancer development remains unresolved. Leveraging an oncogenic Kras -driven mouse model that closely mimics human PDAC progression, we screened a dozen isocaloric HFDs differing solely in fat source and representing the diversity of human fat consumption. Unexpectedly, diets rich in oleic acid - a monounsaturated fatty acid (MUFA) typically associated with good health - markedly enhanced tumorigenesis. Conversely, diets high in polyunsaturated fatty acids (PUFAs) suppressed tumor progression. Relative dietary fatty acid saturation levels (PUFA/MUFA) governed pancreatic membrane phospholipid composition, lipid peroxidation, and ferroptosis sensitivity in mice, concordant with circulating PUFA/MUFA levels being linked to altered PDAC risk in humans. These findings directly implicate dietary unsaturated fatty acids in controlling ferroptosis susceptibility and tumorigenesis, supporting potential "precision nutrition" strategies for PDAC prevention.
Collapse
|
15
|
Liang X, Tian R, Li T, Wang H, Qin Y, Qian M, Fan J, Wang D, Cui HY, Jiang J. Integrative insights into the role of CAV1 in ketogenic diet and ferroptosis in pancreatic cancer. Cell Death Discov 2025; 11:139. [PMID: 40180904 PMCID: PMC11968908 DOI: 10.1038/s41420-025-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer exhibits high mortality rates with limited therapeutic options. Emerging evidence suggests that the ketogenic diet may act as adjuvant therapy by triggering ferroptosis in cancer cells, though the underlying molecular mechanisms remain unclear. This study aims to investigate the molecular mechanisms linking ketogenic metabolism and ferroptosis, with an emphasis on key regulatory proteins. We demonstrated that pancreatic adenocarcinoma (PAAD) tissues significantly enhanced ketogenic and ferroptosis phenotypes compared to normal tissues, both correlating with poorer patient prognosis. These phenotypes showed strong interdependence mediated by CAV1. In the pancreatic tumor microenvironment, CAV1 was predominantly expressed in tumor cells. Through in vitro cell experiments, we clarified that Na-OHB downregulated CAV1 expression in pancreatic cancer cells, inhibiting the transcription of the CAV1/AMPK/NRF2 downstream ferroptosis-protective genes SLC7A11 and SLC40A1. Additionally, we demonstrated the interaction between CAV1 and SLC7A11 molecules; when CAV1 was downregulated, it affected the stability of SLC7A11, leading to the ubiquitination and degradation of the translated SLC7A11 protein. Through these dual mechanisms, Na-OHB caused Fe2+ overload, lipid peroxidation accumulation, and oxidative stress in pancreatic cancer cells, ultimately triggering ferroptosis. In ketogenic diet-fed tumor-bearing mouse models, we also observed a significant increase in lipid peroxidation and other related biomarkers, while CAV1 and SLC7A11 levels were markedly decreased compared to the normal diet group. Our findings identify CAV1 as a pivotal molecular link between ketogenic metabolism and ferroptosis in pancreatic cancer. The multi-level regulatory axis involving CAV1-mediated transcriptional regulation and post-translational modifications provides mechanistic insights into ketogenic diet-induced ferroptosis, suggesting potential therapeutic targets for pancreatic cancer adjuvant treatment.
Collapse
Affiliation(s)
- Xue Liang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Ruofei Tian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Ting Li
- Cardiovascular Surgery Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Yifei Qin
- Institutes of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Meirui Qian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, Liaoning, 110003, China
| | - Dan Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Hong-Yong Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Jianli Jiang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
16
|
Zhang J, Li C, Dionigi G, Sun H. Tumor-Infiltrating Lymphocytes as Mediators of the Obesity and Papillary Thyroid Carcinoma Lymph Node Metastasis Association: An Observational Retrospective Cohort Study. Ann Surg Oncol 2025; 32:2353-2371. [PMID: 39658714 DOI: 10.1245/s10434-024-16647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Obesity increases the risk of papillary thyroid carcinoma (PTC) and lymph node metastasis (LNM), possibly via modulation of the tumor immunological microenvironment. MATERIALS AND METHODS The STROCSS guideline was followed to conduct a retrospective cohort study. Binary logistic regression analysis with odds ratios (OR) was performed to assess the association between tumor-infiltrating lymphocytes (TILs), obesity, and LNM. Using The Cancer Genome Atlas (TCGA) data, we examined the relationship between immune cell subsets and obesity-regulating molecules in thyroid cancer tissues. The Cox regression risk model was used to analyze the prognosis of thyroid cancer. RESULTS After adjusting for confounding factors, our findings revealed that overweight and obesity were associated with a decrease in TIL infiltration (OR 0.876, p = 0.005 and OR 0.795, p = 0.001, respectively). Furthermore, these conditions were observed to be correlated with increased likelihood of LNM (OR 1.134, p = 0.005 and OR 1.307, p < 0.001, respectively). On the contrary, TIL infiltration was inversely associated with LNM (OR 0.868, p < 0.001). When controlling for TIL infiltration as the sole variable, the combination of obesity and TIL infiltration did not independently predict LNM (adjusted OR 1.442, p = 0.113). However, obesity alone was found to elevate the likelihood of LNM (adjusted OR 1.539, p = 0.02). Additionally, adiponectin (a crucial adipokine) was reduced in obesity and demonstrated a negative correlation with the abundance of infiltrated dendritic cells and regulatory T cells, as evidenced by TCGA data analysis. Furthermore, ADIPOR2 expression negatively correlated with LNM and positively associated with unfavorable prognosis in PTC, with a hazard ratio of 0.480 (p = 0.007). CONCLUSIONS TIL infiltration may affect obesity-associated PTC LNM. Obesity may affect LNM and result in poor prognosis through ADIPOR2 regulation of antitumor immune cells.
Collapse
Affiliation(s)
- Jiao Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory of Thyroid Disease Prevention and Control, Changchun City, Jilin Province, China
| | - Changlin Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory of Thyroid Disease Prevention and Control, Changchun City, Jilin Province, China
| | - Gianlorenzo Dionigi
- Division of Surgery, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory of Thyroid Disease Prevention and Control, Changchun City, Jilin Province, China.
| |
Collapse
|
17
|
Nguyen NTB, Gevers S, Kok RNU, Burgering LM, Neikes H, Akkerman N, Betjes MA, Ludikhuize MC, Gulersonmez C, Stigter ECA, Vercoulen Y, Drost J, Clevers H, Vermeulen M, van Zon JS, Tans SJ, Burgering BMT, Rodríguez Colman MJ. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metab 2025; 37:903-919.e10. [PMID: 39933514 DOI: 10.1016/j.cmet.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Tumors arise from uncontrolled cell proliferation driven by mutations in genes that regulate stem cell renewal and differentiation. Intestinal tumors, however, retain some hierarchical organization, maintaining both cancer stem cells (CSCs) and cancer differentiated cells (CDCs). This heterogeneity, coupled with cellular plasticity enabling CDCs to revert to CSCs, contributes to therapy resistance and relapse. Using genetically encoded fluorescent reporters in human tumor organoids, combined with our machine-learning-based cell tracker, CellPhenTracker, we simultaneously traced cell-type specification, metabolic changes, and reconstructed cell lineage trajectories during tumor organoid development. Our findings reveal distinctive metabolic phenotypes in CSCs and CDCs. We find that lactate regulates tumor dynamics, suppressing CSC differentiation and inducing dedifferentiation into a proliferative CSC state. Mechanistically, lactate increases histone acetylation, epigenetically activating MYC. Given that lactate's regulation of MYC depends on the bromodomain-containing protein 4 (BRD4), targeting cancer metabolism and BRD4 inhibitors emerge as a promising strategy to prevent tumor relapse.
Collapse
Affiliation(s)
- Nguyen T B Nguyen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rutger N U Kok
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Lotte M Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marlies C Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Can Gulersonmez
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Edwin C A Stigter
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Yvonne Vercoulen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam, the Netherlands; Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Maria J Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Goggin KE, Seo SJ, Wu BG, Ivelja S, Kugler MC, Chang M, Darawshy F, Li Y, Chung CJ, Kyeremateng Y, Tsay JCJ, Singh S, Sterman DH, Segal LN, Egilmez NK, Li Q. Differential Effects of High-Fiber and Low-Fiber Diets on Antitumor Immunity and Colon Tumor Progression in a Murine Model. Cancer Prev Res (Phila) 2025; 18:223-234. [PMID: 39911064 PMCID: PMC12053542 DOI: 10.1158/1940-6207.capr-24-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
The role of dietary fiber in colon cancer prevention remains controversial. We investigated its impact on antitumor immunity and the gut microbiota in APCmin/+ mice infected with enterotoxigenic Bacteroides fragilis. Mice were fed high-fiber, low-fiber, or chow diets, and the tumor burden, survival, cytokines, microbiota, and metabolites were analyzed. Contrary to the belief that high fiber inhibits tumor progression, it had no significant impact compared with chow diet. However, the low-fiber diet significantly reduced the tumor burden and improved survival. Mechanistically, high fiber increased proinflammatory cytokines and CD4+Foxp3+RORγt+IL-17A+ regulatory T cells, whereas low fiber enhanced anti-inflammatory cytokines and cytotoxic T cells. High fiber enriched microbial taxa associated with IL-17A+RORγt+ regulatory T cells and altered metabolites, including reduced tryptophan and increased short-chain fatty acids and bile acids. Low fiber produced opposite effects. These findings suggest that dietary fiber's effects on colon cancer depends on microbial infection and immune status, emphasizing the need for personalized dietary interventions in colon cancer management. Prevention Relevance: Dietary fiber's impact on colon cancer progression highlights the need for personalized dietary approaches, considering microbial infection and immune status.
Collapse
Affiliation(s)
- Kevin E Goggin
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - SeonYeong Jamie Seo
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Benjamin G. Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, NY 10006
| | - Sinisa Ivelja
- Department of Pathology, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Miao Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Fares Darawshy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Cecilia J. Chung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Jun-Chieh J. Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, NY 10006
| | - Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY 10006
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Qingsheng Li
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
19
|
Jiang Z, He L, Li D, Zhuo L, Chen L, Shi RQ, Luo J, Feng Y, Liang Y, Li D, Congmei X, Fu Y, Chen YM, Zheng JS, Tao L. Human gut microbial aromatic amino acid and related metabolites prevent obesity through intestinal immune control. Nat Metab 2025; 7:808-822. [PMID: 40087408 PMCID: PMC12021661 DOI: 10.1038/s42255-025-01246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Obesity affects millions of people in the world. The gut microbiome influences body fat accumulation, but the mechanisms remain to be investigated. Here, we show an association between microbial aromatic amino acid metabolites in serum and body fat accumulation in a large Chinese longitudinal cohort. We next identify that 4-hydroxyphenylacetic acid (4HPAA) and its analogues effectively protect male mice from high-fat-diet-induced obesity. These metabolites act on intestinal mucosa to regulate the immune response and control lipid uptake, which protects against obesity. We further demonstrate that T cells and B cells are not vital for 4HPAA-mediated obesity prevention, and innate lymphoid cells have antagonistic roles. Together, these findings reveal specific microbial metabolites as pivotal molecules to prohibit obesity through immune control, establishing mechanisms of host modulation by gut microbial metabolites.
Collapse
Affiliation(s)
- Zengliang Jiang
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Jiaxing, Zhejiang, China
| | - Liuqing He
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Diyin Li
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Laibao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lingjun Chen
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Rui-Qi Shi
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jianhua Luo
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yuhui Feng
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yuhui Liang
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Danyang Li
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xiao Congmei
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Liang Tao
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
20
|
Fang F, Li G, Li X, Wu J, Liu Y, Xin H, Wang Z, Fang J, Jiang Y, Qian W, Hou X, Song J. Piezo1 regulates colon stem cells to maintain epithelial homeostasis through SCD1-Wnt-β-catenin and programming fatty acid metabolism. Cell Rep 2025; 44:115400. [PMID: 40080500 DOI: 10.1016/j.celrep.2025.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
Piezo1, which maintains the integrity and function of the intestinal epithelial barrier, is essential for colonic epithelial homeostasis. However, whether and how Piezo1 regulates colon stem cell fate remains unclear. Here, we show that Piezo1 inhibition promotes colon stem cell proliferation. Mechanistically, stearoyl-CoA 9-desaturase 1 (SCD1) is downstream of Piezo1 to affect colon stem cell stemness by acting on the Wnt-β-catenin pathway. For mice, the altered colon stem cell stemness after Piezo1 knockdown and activation was accompanied by a reprogrammed fatty acid (FA) metabolism in colon crypts. Notably, we found that GsMTX4 protects injured colon stem cell stemness in mouse and human colitis organoids. Our results elucidated the role of Piezo1 in regulating normal and postinjury colon stem cell fates through SCD1-Wnt-β-catenin and the SCD1-mediated FA desaturation process. These results provide fresh perspectives on the mechanical factors regulating colon stem cell fate and therapeutic strategies for related intestinal diseases.
Collapse
Affiliation(s)
- Feifei Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gangping Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyan Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiandi Wu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haoren Xin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianhua Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yudong Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Haque PS, Goodman D, Kuusivuori-Robinson T, Coughlan C, Delgado-Deida Y, Onyiah JC, Zempleni J, Theiss AL. Obese Adipose Tissue Extracellular Vesicles Activate Mitochondrial Fatty Acid β-oxidation to Drive Colonic Stemness. Cell Mol Gastroenterol Hepatol 2025; 19:101504. [PMID: 40122519 DOI: 10.1016/j.jcmgh.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND & AIMS Patients with obesity and mouse models of obesity exhibit abnormalities in intestinal epithelial cells, including enhanced stemness. Adipose tissue (AT) is the largest endocrine organ secreting cytokines, hormones, and extracellular vesicles (EVs). Here, we characterized EV protein cargo from obese and non-obese AT and demonstrate the role of obese adipose-derived EVs in enhancing colonic stemness. METHODS EVs were isolated from visceral AT from mice fed high-fat diet to induce obesity or control matched-diet. EV cargo was characterized by unbiased proteomics. Mouse colonoids were treated with EVs and analyzed for fatty acid β-oxidation (FAO), expression of stem marker genes, stem function, and β-catenin expression and acetylation. Mice deficient in adipocyte-specific Tsg101 expression were generated to alter adipocyte EV protein cargo, and colonic stemness was measured. RESULTS EVs secreted from obese visceral AT (Ob EVs) were significantly enriched with acyl-CoA dehydrogenase long chain (ACADL), an initiator enzyme of FAO. Compared with non-obese EVs, colonoids treated with Ob EVs exhibited increased exogenous ACADL protein expression, FAO, growth, persistence of stem/progenitor function, and increased β-catenin protein expression and acetylation that was abolished by FAO inhibition. Mice deficient in adipocyte-specific Tsg101 expression exhibited Ob EVs with altered protein expression profiles and were protected from obesity-induced enhanced colonic stemness. CONCLUSIONS The contents of Ob EVs are poised to fuel FAO and to promote obesity-induced stemness in the colon. Alteration of metabolism is a key mechanism of adipose-to-intestinal tissue communication elicited by EVs, thereby influencing basal colonic stem cell homeostasis during obesity.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Desiree Goodman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Thor Kuusivuori-Robinson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Christina Coughlan
- Division of Neurology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joseph C Onyiah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado.
| |
Collapse
|
22
|
Newman AAC, Dalman JM, Moore KJ. Cardiovascular Disease and Cancer: A Dangerous Liaison. Arterioscler Thromb Vasc Biol 2025; 45:359-371. [PMID: 39781742 PMCID: PMC11864891 DOI: 10.1161/atvbaha.124.319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer. In parallel, studies using preclinical mouse models of myocardial infarction, heart failure, and cardiac remodeling support the notion that cardiovascular disorders accelerate the growth of solid tumors and metastases. These findings have ushered in a new and burgeoning field termed reverse cardio-oncology that investigates the impact of cardiovascular disease pathophysiology on cancer emergence and progression. Recent studies have begun to illuminate the mechanisms driving this relationship, including shared risk factors, reprogramming of immune responses, changes in gene expression, and the release of cardiac factors that result in selective advantages for tumor cells or their local milieu, thus exacerbating cancer pathology. Here, we review the evidence supporting the relationship between cardiovascular disease and cancer, the mechanistic pathways enabling this connection, and the implications of these findings for patient care.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessie M Dalman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Kathryn J Moore
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Zhang H, Tian Y, Xu C, Chen M, Xiang Z, Gu L, Xue H, Xu Q. Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer. Cell Death Discov 2025; 11:78. [PMID: 40011436 DOI: 10.1038/s41420-025-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Miaomiao Chen
- Department of Radiology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
24
|
Cote AL, Munger CJ, Ringel AE. Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions. Cell Rep 2025; 44:115234. [PMID: 39862435 DOI: 10.1016/j.celrep.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors. We also examine how metabolic diseases influence cancer progression, metastasis, and treatment. Finally, we consider how metabolic interventions can be deployed to improve immunotherapy. The overall goal is to highlight how metabolic heterogeneity in the human population shapes the immune response to cancer.
Collapse
Affiliation(s)
- Andrea L Cote
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chad J Munger
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Chi F, Zhang Q, Shay JE, Hoeve JT, Yuan Y, Yang Z, Shin H, Solanki S, Shah YM, Agudo J, Yilmaz ÖH. Dietary cysteine enhances intestinal stemness via CD8 + T cell-derived IL-22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638423. [PMID: 39990373 PMCID: PMC11844450 DOI: 10.1101/2025.02.15.638423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A critical question in physiology is understanding how tissues adapt and alter their cellular composition in response to dietary cues. The mammalian small intestine, a vital digestive organ that absorbs nutrients, is maintained by rapidly renewing Lgr5+ intestinal stem cells (ISCs) at the intestinal crypt base. While Lgr5+ ISCs drive intestinal adaptation by altering self-renewal and differentiation divisions in response to diverse diets such as high-fat diets and fasting regimens, little is known about how micronutrients, particularly amino acids, instruct Lgr5+ ISC fate decisions to control intestinal homeostasis and repair after injury. Here, we demonstrate that cysteine, an essential amino acid, enhances the ability of Lgr5+ ISCs to repair intestinal injury. Mechanistically, the effects of cysteine on ISC-driven repair are mediated by elevated IL-22 from intraepithelial CD8αβ+ T cells. These findings highlight how coupled cysteine metabolism between ISCs and CD8+ T cells augments intestinal stemness, providing a dietary approach that exploits ISC and immune cell crosstalk for ameliorating intestinal damage.
Collapse
Affiliation(s)
- Fangtao Chi
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Jessica E.S. Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yin Yuan
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Zhenning Yang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Sumeet Solanki
- Molecular & Integrative Physiology Department and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology Department and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Boston, MA 02215, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Department of Pathology, Beth Israel Deaconess Medical Center and Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Seo DW, Hong KT, Lee JH, Lee J, Jeong YT. Dual independent mechanisms underlying gut epithelial remodeling upon sugar substitute consumption. FASEB J 2025; 39:e70374. [PMID: 39902882 PMCID: PMC11891951 DOI: 10.1096/fj.202402105rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Intestinal epithelial cells (IECs) are dynamically regulated by luminal contents, including dietary ingredients, food additives, and microbiota-derived metabolites. Although sugar substitutes are commonly used as food additives for their sweet taste and lower calorie content, there is limited experimental evidence regarding their potential to drive gut remodeling. In this study, we designed experimental models for short-term consumption of erythritol, a natural sugar alcohol widely used as a sugar substitute, and investigated its effects on gut remodeling and the underlying mechanisms. Our findings indicate that erythritol consumption induces hyperplasia in tuft cells (TCs) and goblet cells (GCs), as well as enhances the activity of intestinal stem cells-increases in expression levels of leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), the key intestinal stem cell marker, in the number of proliferating stem cells, and facilitation of their differentiation into villi cells-while maintaining the number of Lgr5+ intestinal stem cells. Notably, the enhanced stem cell activity was observed even in Trpm5 knockout mice, suggesting that it is mechanistically independent of TC hyperplasia. Instead, we demonstrated the functional involvement of the gut microbiota, as antibiotic treatment abolished this effect, and fecal material transfer from erythritol-consumed mice replicated the enhancement of stem cell activity in recipient mice. Furthermore, we identified acetate as the metabolite responsible for enhancing stem cell activity. These findings suggest the functional decoupling of TC hyperplasia and the enhancement of stem cell activity, providing a potential therapeutic avenue for gut epithelial diseases.
Collapse
Affiliation(s)
- Dong Woo Seo
- Department of PharmacologyKorea University College of MedicineSeoulRepublic of Korea
- BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Kyung Tae Hong
- Department of PharmacologyKorea University College of MedicineSeoulRepublic of Korea
| | - Jung Hoon Lee
- Department of PharmacologyKorea University College of MedicineSeoulRepublic of Korea
- BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Jun‐Seok Lee
- Department of PharmacologyKorea University College of MedicineSeoulRepublic of Korea
- BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Yong Taek Jeong
- Department of PharmacologyKorea University College of MedicineSeoulRepublic of Korea
- BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
28
|
Merchant S, Paul A, Reyes A, Cassidy D, Leach A, Kim D, Muh S, Grabowski G, Hoxhaj G, Zhao Z, Morrison SJ. Different effects of fatty acid oxidation on hematopoietic stem cells based on age and diet. Cell Stem Cell 2025; 32:263-275.e5. [PMID: 39708796 DOI: 10.1016/j.stem.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Fatty acid oxidation is of uncertain importance in most stem cells. We show by 14C-palmitate tracing and metabolomic analysis that hematopoietic stem/progenitor cells (HSPCs) engage in long-chain fatty acid oxidation that depends upon carnitine palmitoyltransferase 1a (CPT1a) and hydroxyacyl-CoA dehydrogenase (HADHA) enzymes. CPT1a or HADHA deficiency had little or no effect on HSPCs or hematopoiesis in young adult mice. Young HSPCs had the plasticity to oxidize other substrates, including glutamine, and compensated for loss of fatty acid oxidation by decreasing pyruvate dehydrogenase phosphorylation, which should increase function. This metabolic plasticity declined as mice aged, when CPT1a or HADHA deficiency altered hematopoiesis and impaired hematopoietic stem cell (HSC) function upon serial transplantation. A high-fat diet increased fatty acid oxidation and reduced HSC function. This was rescued by CPT1a or HADHA deficiency, demonstrating that increased fatty acid oxidation can undermine HSC function. Long-chain fatty acid oxidation is thus dispensable in young HSCs but necessary during aging and deleterious with a high-fat diet.
Collapse
Affiliation(s)
- Salma Merchant
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Animesh Paul
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda Reyes
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Cassidy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Leach
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerik Grabowski
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Ghimire J, Collins ME, Snarski P, King AN, Ruiz E, Iftikhar R, Penrose HM, Moroz K, Rorison T, Baddoo M, Naeem MA, Zea AH, Magness ST, Flemington EF, Crawford SE, Savkovic SD. Obesity-Facilitated Colon Cancer Progression Is Mediated by Increased Diacylglycerol O-Acyltransferases 1 and 2 Levels. Gastroenterology 2025; 168:286-299.e6. [PMID: 39299402 DOI: 10.1053/j.gastro.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND & AIMS The obesity epidemic is associated with increased colon cancer progression. As lipid droplets (LDs) fuel tumor growth, we aimed to determine the significance of diacyltransferases (diacylglycerol o-acyltransferases 1 and 2 [DGAT1/2]), responsible for LDs biogenesis, in obesity-mediated colonic tumorigenesis. METHODS Human colon cancer samples, colon cancer cells, colonospheres, and ApcMin/+ colon cancer mouse model on a high-fat diet were employed. For DGAT1/2 inhibition, enzymatic inhibitors and small interfering RNA were used. Expression, pathways, cell cycle, and growth were assessed. Bioinformatic analyses of CUT&RUN and RNA sequencing data were performed. RESULTS DGAT1/2 levels in human colon cancer tissue are significantly elevated with disease severity and obesity (vs normal). Their levels are increased in human colon cancer cells (vs nontransformed) and further enhanced by fatty acids prevalent in obesity; augmented DGAT2 expression is MYC-dependent. Inhibition of DGAT1/2 improves FOXO3 activity by attenuating PI3K, resulting in reduced MYC-dependent DGAT2 expression and accumulation of LDs, suggesting feedback. This inhibition attenuated growth in colon cancer cells and colonospheres via FOXO3/p27kip1 cell cycle arrest and reduced colonic tumors in ApcMin/+ mice on a high-fat diet. Transcriptomic analysis revealed that DGAT1/2 inhibition targeted metabolic and tumorigenic pathways in human colon cancer and colon cancer crypts, stratifying human colon cancer samples from normal. Further analysis revealed that this inhibition is predictive of advanced disease-free state and survival in patients with colon cancer. CONCLUSIONS This is a novel mechanism of DGAT1/2-dependent metabolic and tumorigenic remodeling in obesity-facilitated colon cancer, providing a platform for future development of effective treatments for patients with colon cancer.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Angelle N King
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Emmanuelle Ruiz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tyler Rorison
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Muhammad Anas Naeem
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Arnold H Zea
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott T Magness
- Department of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
30
|
Guerbette T, Ciesielski V, Brien M, Catheline D, Viel R, Bostoën M, Perrin JB, Burel A, Janvier R, Rioux V, Lan A, Boudry G. Bioenergetic adaptations of small intestinal epithelial cells reduce cell differentiation enhancing intestinal permeability in obese mice. Mol Metab 2025; 92:102098. [PMID: 39814101 PMCID: PMC11795564 DOI: 10.1016/j.molmet.2025.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function. However, diet-induced obesity (DIO) may impair mitochondrial activity of IEC and consequently, intestinal homeostasis. The aim of the project was to determine whether DIO alters the mitochondrial function of IEC, and what are the consequences on intestinal homeostasis. METHODS C57Bl/6J mice were fed a control diet for 22 weeks or a high fat diet (58 kcal% fat). Bioenergetic adaptations of IEC were evaluated on isolated crypts and villi from mouse jejunum. To determine the link between mitochondrial function and alterations of intestinal homeostasis in response to lipid overload, we used the jejunal epithelial cell line IPEC-J2 in vitro and mouse jejunum organoids. RESULTS Here, we report that DIO in mice induced lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria. Using the IPEC-J2 cell line, we showed that IEC lipid metabolism and oxidative stress machinery adaptations preceded mitochondrial bioenergetic ones. Moreover, we unraveled the intricate link between IEC energetic status and proliferation / differentiation balance since enhancing mitochondrial function with the AMPK activator AICAR in jejunal organoids reduced proliferation and initiated IEC differentiation and conversely. We confirmed that the reduced IEC mitochondrial function observed in DIO mice was associated with increased proliferation and reduced differentiation, promoting expression of the permissive Cldn2 in the jejunal epithelium of DIO mice. CONCLUSIONS Our study provides new insights into metabolic adaptations of IEC in obesity by revealing that excess lipid intake diminishes mitochondrial number in IEC, reducing IEC differentiation that contribute to increased epithelial permeability.
Collapse
Affiliation(s)
| | - Vincent Ciesielski
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Manon Brien
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Daniel Catheline
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Roselyne Viel
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), plateforme H2P2, Rennes, France
| | - Mégane Bostoën
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | | | - Agnès Burel
- Plateforme MRic, UMS 3480 BIOSIT, Rennes, France
| | - Régis Janvier
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Vincent Rioux
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Annaïg Lan
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France.
| |
Collapse
|
31
|
Wang C, Lv T, Jin B, Li Y, Fan Z. Regulatory role of PPAR in colorectal cancer. Cell Death Discov 2025; 11:28. [PMID: 39875357 PMCID: PMC11775197 DOI: 10.1038/s41420-025-02313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors in the digestive system, and the majority of patients are found to be in advanced stages, which is a burden to human health all over the world. Moreover, in recent years, CRC has been progressively becoming younger, with an increasing incidence mainly among patients <50 years old. Despite the increase in awareness of CRC and the continuous improvement of medical treatment nowadays, the challenge of CRC still needs to be conquered. By now, the pathogenesis of CRC is complex and not fully understood. With the deepening of research, it has been revealed that PPARs, as a transcription factor, are inextricably linked to CRC. This article outlines the mechanisms by which PPARs are involved in CRC development. An in-depth understanding of the pathways related to PPARs may provide new ways of developing effective therapies for CRC with PPARs as potential targets.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Tingcong Lv
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China.
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
32
|
Chen H, Liu C, Cui S, Xia Y, Zhang K, Cheng H, Peng J, Yu X, Li L, Yu H, Zhang J, Zheng JS, Zhang B. Intermittent fasting triggers interorgan communication to suppress hair follicle regeneration. Cell 2025; 188:157-174.e22. [PMID: 39674178 DOI: 10.1016/j.cell.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Intermittent fasting has gained global popularity for its potential health benefits, although its impact on somatic stem cells and tissue biology remains elusive. Here, we report that commonly used intermittent fasting regimens inhibit hair follicle regeneration by selectively inducing apoptosis in activated hair follicle stem cells (HFSCs). This effect is independent of calorie reduction, circadian rhythm alterations, or the mTORC1 cellular nutrient-sensing mechanism. Instead, fasting activates crosstalk between adrenal glands and dermal adipocytes in the skin, triggering the rapid release of free fatty acids into the niche, which in turn disrupts the normal metabolism of HFSCs and elevates their cellular reactive oxygen species levels, causing oxidative damage and apoptosis. A randomized clinical trial (NCT05800730) indicates that intermittent fasting inhibits human hair growth. Our study uncovers an inhibitory effect of intermittent fasting on tissue regeneration and identifies interorgan communication that eliminates activated HFSCs and halts tissue regeneration during periods of unstable nutrient supply.
Collapse
Affiliation(s)
- Han Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Shiyao Cui
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Yingqian Xia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jingyu Peng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Xiaoling Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Luyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hualin Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
33
|
Campbell SL, Christofk HR. Lessons Learned from Cancer Metabolism for Physiology and Disease. Cold Spring Harb Perspect Med 2025; 15:a041554. [PMID: 38858085 PMCID: PMC11694740 DOI: 10.1101/cshperspect.a041554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.
Collapse
Affiliation(s)
- Sydney L Campbell
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Isotani R, Igarashi M, Miura M, Naruse K, Kuranami S, Katoh M, Nomura S, Yamauchi T. Nicotine enhances the stemness and tumorigenicity in intestinal stem cells via Hippo-YAP/TAZ and Notch signal pathway. eLife 2025; 13:RP95267. [PMID: 39752217 PMCID: PMC11698494 DOI: 10.7554/elife.95267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited. In this study, we demonstrate that NIC increases the abundance and proliferative activity of murine intestinal stem cells (ISCs) in vivo and ex vivo. Moreover, NIC induces Yes-associated protein (YAP) /Transcriptional coactivator with PDZ-binding motif (TAZ) and Notch signaling in ISCs via α7-nicotinic acetylcholine receptor (nAchR) and protein kinase C (PKC) activation; this effect was not detected in Paneth cells. The inhibition of Notch signaling by dibenzazepine (DBZ) nullified the effects of NIC on ISCs. NIC enhances in vivo tumor formation from ISCs after loss of the tumor suppressor gene Apc, DBZ inhibited NIC-induced tumor growth. Hence, this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggests the use of DBZ as a potential therapeutic strategy for treating intestinal tumors.
Collapse
Affiliation(s)
- Ryosuke Isotani
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masaki Igarashi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masaomi Miura
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Kyoko Naruse
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Satoshi Kuranami
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo Graduate, School of MedicineTokyoJapan
- Department of Frontier Cardiovascular Science, The University of Tokyo, Graduate School of MedicineTokyoJapan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo Graduate, School of MedicineTokyoJapan
- Department of Frontier Cardiovascular Science, The University of Tokyo, Graduate School of MedicineTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
35
|
Taurin S, Alzahrani R, Aloraibi S, Ashi L, Alharmi R, Hassani N. Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy. Transl Oncol 2025; 51:102226. [PMID: 39622151 DOI: 10.1016/j.tranon.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/11/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Reem Alzahrani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Sahar Aloraibi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Layal Ashi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Rawan Alharmi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Noora Hassani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
36
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
37
|
Wang D, Wu N, Li P, Zhang X, Xie W, Li S, Wang D, Kuang Y, Chen S, Liu Y. Eicosapentaenoic acid enhances intestinal stem cell-mediated colonic epithelial regeneration by activating the LSD1-WNT signaling pathway. J Adv Res 2024:S2090-1232(24)00628-3. [PMID: 39743214 DOI: 10.1016/j.jare.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is often associated with impaired proliferation and differentiation of intestinal stem cells (ISCs). Eicosapentaenoic acid (EPA), which is predominantly found in fish oil, has been recognized for its intestinal health benefits, although the potential mechanisms are not well understood. OBJECTIVES This study aimed to investigate the regulatory role and mechanism of EPA in colonic epithelial regeneration, specifically from the perspective of ISCs. METHODS Wild-type mice whose diet was supplemented with 5% EPA-enriched fish oil were subjected to dextran sulfate sodium (DSS) to induce colitis. We utilized intestinal organoids, ISC-specific lysine-specific demethylase 1 (LSD1) knockout mice, and WNT inhibitor-treated mice to explore how EPA influences ISC proliferation and differentiation. ISC proliferation, differentiation and apoptosis were assessed using tdTomato and propidium iodide tracer testing, histological analyses, and immunofluorescence staining. RESULTS EPA treatment significantly mitigated the symptoms of DSS-induced acute colitis, as evidenced by lower body weight loss and decreased disease activity index, histological scores and proinflammatory cytokine levels. Additionally, EPA increased the numbers of proliferative cells, absorptive cells, goblet cells, and enteroendocrine cells, which enhanced the regeneration of intestinal epithelium. Pretreatment with EPA increased ISC proliferation and differentiation, and protected against TNF-α-induced cell death in intestinal organoids. Mechanistically, EPA upregulated G protein-coupled receptor 120 (GPR120) to induce LSD1 expression, which facilitated ISC proliferation and differentiation in organoids. ISC-specific ablation of LSD1 negated the protective effect of EPA on DSS-induced colitis in mice. Moreover, EPA administration activated the WNT signaling pathway downstream of LSD1 in ISCs, while inhibiting WNT signaling abolished the beneficial effects of EPA. CONCLUSIONS These findings demonstrate that EPA promotes ISC proliferation and differentiation, thereby enhancing colonic epithelial regeneration through the activation of LSD1-WNT signaling. Consequently, dietary supplementation with EPA represents a promising alternative therapeutic strategy for managing IBD.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Nianbang Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaojuan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenshuai Xie
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shunkang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ding Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
38
|
Mao T, Xu X, Liu L, Wu Y, Wu X, Niu W, You D, Cai X, Lu L, Zhou H. ABL1‒YAP1 axis in intestinal stem cell activated by deoxycholic acid contributes to hepatic steatosis. J Transl Med 2024; 22:1119. [PMID: 39707364 DOI: 10.1186/s12967-024-05865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Yes-associated protein 1 (YAP1) regulates the survival, proliferation, and stemness of cells, and contributes to the development of metabolic dysfunction associated fatty liver disease (MAFLD). However, the regulatory role of intestinal YAP1 in MAFLD still remains unclear. METHODS Terminal ileal specimens were used to compare intestinal YAP1 activation in patients with and without MAFLD. Mice targeted for knocking out YAP1 in the intestinal epithelium were fed a high-fat diet (HFD) for 8 consecutive weeks. In a separate group, the mice were fed an HFD supplemented with the bile acid binder cholestyramine (CHO) or a low-fat diet with deoxycholic acid (DCA). Immunofluorescence, Immunohistochemistry, Western blot, RT-qPCR, ELISA, 16S rDNA sequencing, tissue and enteroid culture techniques were used to evaluate the effects of an HFD or DCA on the gut‒liver axis in mice or humans. RESULTS Intestinal YAP1 was activated in both humans with MAFLD and mice fed an HFD. In in vivo studies, YAP1 knockout in intestinal epithelial cells of mice alleviated the hepatic steatosis induced by an HFD, and mitigated the adverse effects of HFD on the gut‒liver axis, including the upregulation of lipopolysaccharide (LPS) and inflammation levels, enrichment of intestinal Gram-negative bacteria, and inhibition of intestinal stem cell (ISC) differentiation into the goblet and Paneth cells. High-fat feeding (HFF) produced high concentrations of DCA. The consumption of DCA mimics these HFF-induced changes, and is accompanied by the activation of Abelson tyrosine-protein kinase 1 (ABL1) and its direct substrate, YAP1, in the terminal ileum. In vitro studies further confirmed that DCA upregulated the tyrosine phosphorylation of YAP1Y357 in ISC by activating ABL1, which inhibited the differentiation of ISCs into secretory cells. CONCLUSIONS Our findings reveal that the activation of the ABL1‒YAP1 axis in ISCs by DCA contributes to hepatic steatosis through the gut‒liver axis, which may provide a potential intestinal therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Tiancheng Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xianjun Xu
- Division of Life Sciences and Medicine, Department of Gastroenterology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Leheng Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yulun Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiaowan Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenlu Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dandan You
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Hui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
39
|
Hadefi A, Leprovots M, Dinsart G, Marefati M, Vermeersch M, Monteyne D, Pérez-Morga D, Lefort A, Libert F, Verset L, Liefferinckx C, Moreno C, Devière J, Trépo E, Garcia MI. Duodenal Organoids From Metabolic Dysfunction-Associated Steatohepatitis Patients Exhibit Absorptive and Barrier Alterations. GASTRO HEP ADVANCES 2024; 4:100599. [PMID: 39996241 PMCID: PMC11849614 DOI: 10.1016/j.gastha.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/07/2024] [Indexed: 02/26/2025]
Abstract
Background and Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Though MASH is closely tied to metabolic risk factors, the underlying pathogenic mechanisms remain scarcely understood. Recent research has emphasized the importance of the gut-liver axis in its pathogenesis, an aspect less explored in human studies. Here, we investigated whether the duodenal epithelium of MASH patients could exhibit intrinsic dysfunctions. Methods Duodenal epithelial organoids were generated from 16 MASH patients and 14 healthy controls. Biopsies and patient-derived organoid transcriptomes were then analyzed to evaluate if specific intestinal pathways were differentially modulated in MASH subjects. Functional assays were performed to assess the duodenal epithelial absorptive potential and barrier functionality. Results Organoid formation efficiency was similar between control-derived duodenal epithelial organoids and MASH-derived duodenal epithelial organoids (MDEOs) (71% and 69%, respectively). Despite global heterogeneity in growth patterns, MDEOs frequently exhibited cystic spheroid morphology. MDEOs displayed altered digestive potential associated with reduced mature absorptive cell fate, but they retained their lipid metabolic capacity, possibly mediated by lipid oxidation in stem/progenitor cells. Additionally, MDEOs misexpressed components of tight and adherens junctions and desmosomes compared to controls. However, MDEOs maintained pore and leak pathway integrity, indicating that the duodenal epithelial barrier remained functionally preserved under tested conditions. Conclusion This study provides evidence that the duodenal epithelium of MASH patients exhibits significant alterations in its nutrition-related and barrier functions. This study sheds light on the intricate dynamics of duodenal epithelial alterations in MASH, highlighting potential therapeutic avenues for restoring intestinal functions.
Collapse
Affiliation(s)
- Alia Hadefi
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Morgane Leprovots
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Gilles Dinsart
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Maryam Marefati
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Daniel Monteyne
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Anne Lefort
- BRIGHTcore ULB-VUB and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérick Libert
- BRIGHTcore ULB-VUB and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Laurine Verset
- Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Centre d’Anatomie pathologique, rue Meylermeersch, Brussels, Belgium
| | - Claire Liefferinckx
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Devière
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie-Isabelle Garcia
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| |
Collapse
|
40
|
Phuong-Nguyen K, Mahmood M, Rivera L. Deleterious Effects of Yoyo Dieting and Resistant Starch on Gastrointestinal Morphology. Nutrients 2024; 16:4216. [PMID: 39683609 DOI: 10.3390/nu16234216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Obesity is associated with structural deterioration in the gut. Yoyo dieting, which refers to repeated phases of dieting and non-dieting periods leading to cyclic weight loss and regain, is a common occurrence in individuals with obesity. However, there is limited evidence on how gut structures are affected in yoyo dieting. There is good evidence suggesting that increased intake of resistant starch (RS) may be beneficial in promoting structural improvements in the gut. This investigation aimed to explore the effect of yoyo dieting on gastrointestinal structure and whether RS has beneficial effects in improving obesity-related gastrointestinal damage. METHOD In this study, male and female C57BL/6 mice were assigned to six different diets for 20 weeks: (1) control diet, (2) high fat diet (HF), (3) yoyo diet (alternating HF and control diets every 5 weeks), (4) control diet with RS, (5) HF with RS, and (6) yoyo diet with RS. Distal colon was collected for epithelial barrier integrity measurement. The small and large intestines were collected for histological assessment. RESULTS After 20 weeks, yoyo dieting resulted in increased colonic inflammation and exacerbated mucosal damage in comparison with continuous HF diet feeding. RS supplemented in HF and yoyo diets reduced mucosal damage in comparison to diets without RS. However, RS supplementation in a control diet significantly increased inflammation, crypt length, and goblet cell density. There were no significant differences in epithelial change and epithelial barrier integrity across diet groups. CONCLUSIONS This study suggests that yoyo dieting worsens gut damage, and incorporating high levels of RS may be detrimental in the absence of dietary challenge.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Malik Mahmood
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
41
|
Morris I, Vrieling F, Bouwman A, Stienstra R, Kalkhoven E. Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype. Adipocyte 2024; 13:2421750. [PMID: 39484712 PMCID: PMC11540091 DOI: 10.1080/21623945.2024.2421750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.
Collapse
Affiliation(s)
- Imogen Morris
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Annemieke Bouwman
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Kalkhoven
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Holmes C, Illingworth CH, Parry L. Recent advances on the impact of protumorigenic dietary‐derived bacterial metabolites on the intestinal stem cell. EFOOD 2024; 5. [DOI: 10.1002/efd2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/27/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractThe links between diet, microbiome, immunity, and colorectal cancer are well established. The metabolite output of the microbiome, which has a large influence over host health and disease, is related to the composition of the diet. These metabolites subsequently impact on immune and intestinal epithelial either directly or indirectly via production of secondary metabolites. Here we summarize the latest findings and briefly discuss their potential for managing disease risk.
Collapse
Affiliation(s)
- Carys Holmes
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
- University of Exeter Newman Building, Stocker Road Exeter UK
| | - Charlotte H. Illingworth
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| | - Lee Parry
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| |
Collapse
|
43
|
Ogura J, Yamanoi K, Ishida K, Nakamura E, Ito S, Aoyama N, Nakanishi Y, Menju T, Kawaguchi K, Hosoe Y, Taki M, Murakami R, Yamaguchi K, Hamanishi J, Mandai M. A stearate-rich diet and oleate restriction directly inhibit tumor growth via the unfolded protein response. Exp Mol Med 2024; 56:2659-2672. [PMID: 39617788 DOI: 10.1038/s12276-024-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024] Open
Abstract
Fatty acids are known to have significant effects on the properties of cancer cells. Therefore, these compounds have been incorporated into therapeutic strategies. However, few studies have examined the effects of individual fatty acids and their interactions in depth. This study analyzed the effects of various fatty acids on cancer cells and revealed that stearic acid, an abundant saturated fatty acid, had a stronger inhibitory effect on cell growth than did palmitic acid, which is also an abundant saturated fatty acid, by inducing DNA damage and apoptosis through the unfolded protein response (UPR) pathway. Intriguingly, the negative effects of stearate were reduced by the presence of oleate, a different type of abundant fatty acid. We combined a stearate-rich diet with the inhibition of stearoyl-CoA desaturase-1 to explore the impact of diet on tumor growth. This intervention significantly reduced tumor growth in both ovarian cancer models and patient-derived xenografts (PDXs), including those with chemotherapy resistance, notably by increasing stearate levels while reducing oleate levels within the tumors. Conversely, the negative effects of a stearate-rich diet were mitigated by an oleate-rich diet. This study revealed that dietary stearate can directly inhibit tumor growth through mechanisms involving DNA damage and apoptosis mediated by the UPR pathway. These results suggest that dietary interventions, which increase stearic acid levels while decreasing oleic acid levels, may be promising therapeutic strategies for cancer treatment. These results could lead to the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Jumpei Ogura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kentaro Ishida
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eijiro Nakamura
- Department of Urology and Retroperitoneal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Ito
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Aoyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
44
|
Rahman MM, Kraft C, Clark C, Nicholson RJ, Marchetti M, Williams E, Zhang C, Holland WL, Summers SA, Edgar BA. Bwa, an ortholog of alkaline ceramidase-ACER2, promotes intestinal stem cell proliferation through pro-inflammatory cytokine signaling in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624044. [PMID: 39651270 PMCID: PMC11623631 DOI: 10.1101/2024.11.26.624044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sphingolipids, including ceramides, are an important component of high-fat diets. These molecules can regulate fatty acid oxidation and intestinal stem cell proliferation, predisposing the gut to tumorigenesis. However, the molecular mechanisms involved in ceramide metabolism-mediated intestinal stem cell (ISC) proliferation and tumorigenesis are poorly understood. To understand how changes in sphingolipid metabolite flux affect intestinal stem cells, we manipulated the activities of each of the enzymes of the ceramide synthetic pathway using cell type-specific over-expression or depletion of the corresponding mRNAs in each intestinal cell type of the Drosophila midgut. We documented cell-autonomous and non-cell-autonomous effects, including alterations in cell size, number, differentiation, and proliferation. In our screen, the altered expression of several ceramide metabolism enzymes led to changes in ISC proliferation, cell sizes, and overall cellularity. Among other genes, over-expression of ceramidase homolog, Brain washing (bwa) in gut enteroblasts (EB) increased EB cell size and caused a non-cell-autonomous, 7-8-fold increase in ISC proliferation. Our analysis confirmed previous reports that bwa does not have ceramidase activity, and lipidomic studies indicated that bwa increases the saturation status of sphingolipids, free fatty acids, and other lipids. The pro-proliferative effects of bwa could be counter-acted by depleting a serine palmitoyltransferase, Lace , or a sphingosine acyltransferase, Schlank , which are needed for ceramide synthesis, or by co-expressing a ceramide desaturase enzyme, ifc , indicating that increased saturated ceramides were causal for ISC proliferation and the disruption of gut homeostasis. Accumulating saturated sphingolipids and fatty acids induced inflammatory signaling in the gut, and activated ISC proliferation through the pro-inflammatory cytokines, Upd3 and Upd2. We propose that saturated sphingolipids promote ISC proliferation through pro-inflammatory pathways.
Collapse
|
45
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
46
|
Liping Z, Sheng Y, Yinhang W, Yifei S, Jiaqun H, Xiaojian Y, Shuwen H, Jing Z. Comprehensive retrospect and future perspective on bacteriophage and cancer. Virol J 2024; 21:278. [PMID: 39501333 PMCID: PMC11539450 DOI: 10.1186/s12985-024-02553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Researchers gradually focus on the relationship between phage and cancer. OBJECTIVE To summarize the research hotspots and trends in the field of bacteriophage and cancer. METHODS The downloaded articles were searched from the Web of Science Core Collection database from January 2008 to June 2023. Bibliometric analysis was carried out through CiteSpace, including the analysis of cooperative networks (country/region, institution, and author), co-citations of references, and key words.Visual analysis of three topics, including gut phage, phage and bacteria, and phage and tumor, was conducted. RESULTS Overall, the United States and China have the most phage-related research. In terms of gut phage, the future research directions are "gut microbiome", "database" and "microbiota". The bursting citations explored the phage-dominated viral genome to discover its diversity and individual specificity and investigated associations among bacteriome, metabolome, and virome. In terms of phage and bacteria, "lipopolysaccharide" and "microbiota" are future research directions. Future research hotspots should mainly concentrate on the further exploration and application of phage properties. As for phages and tumors, the future research directions should be "colorectal cancer", "protein" and "phage therapy". Future directions are likely to focus on the research on phages in cancer mechanisms, cancer diagnosis, and cancer treatment combined with genetic engineering techniques. CONCLUSION Phage therapy would become a hot spot and research direction of tumor and phage research, and the relationship between phage and tumor, especially colorectal cancer (CRC), is expected to be further explored.
Collapse
Affiliation(s)
- Zhong Liping
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Sheng
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Huang Jiaqun
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Xiaojian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
- ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500, Rueil-Malmaison, France.
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
47
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
49
|
Huang M, Zhang Y, Ni M, Shen M, Tao Y, Shen W, Sun D, Li L, Xu C, Tan J, Lai Y, Yu C, Tao L, Fan M, Cheng H. Shen-Bai-Jie-Du decoction suppresses the progression of colorectal adenoma to carcinoma through regulating gut microbiota and short-chain fatty acids. Chin Med 2024; 19:149. [PMID: 39465423 PMCID: PMC11514841 DOI: 10.1186/s13020-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Shen-Bai-Jie-Du decoction (SBJDD), a traditional Chinese herb formula developed based on evidence-based medicine, is efficacy to reduce the recurrence and carcinogenesis of colorectal adenoma. However, the mechanism of SBJDD to treat colorectal adenoma remains unclear. The present study aims to investigate the efficacy and mechanism of SBJDD on colorectal adenoma carcinogenesis from the aspects of regulating gut microbiota and short-chain fatty acids (SCFAs). METHODS Twenty-one patients diagnosed with colorectal adenoma were recruited in the study and required to take SBJDD for four consecutive weeks. Analysis of gut microbiota was conducted using 16S rRNA gene amplicon sequencing, while levels of SCFAs in fecal and serum samples were determined through HPLC-MS/MS. Additionally, twenty-four Apcmin/+ mice were randomly assigned to normal diet (ND), high-fat diet (HFD), and SBJDD groups. The pharmacological effects and mechanism of SBJDD on colorectal adenoma carcinogenesis were assessed using RT-qPCR, HE staining, IHC staining, Western blot, IF staining, and Flow cytometry assays. RESULTS Our clinical study has shown that SBJDD can regulate the gut microbiota composition and enhance SCFAs production in patients with colorectal adenoma. SBJDD alleviated colorectal adenoma formation and carcinogenesis, as well as protected the integrity of the intestinal barrier in the Apcmin/+ mice model compared to the HFD group. Additionally, SBJDD was found to regulate gut microbiota capable of producing SCFAs. G protein-coupled receptors GPR43, GPR41, and GPR109a were effectively activated in the SBJDD group, while HDAC1 and HDAC3 were inhibited. Furthermore, decreased expression levels of interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), along with elevated expression level of interleukin 10 (IL-10), were observed in the colorectal tissue of the SBJDD group. Finally, SBJDD exhibited the ability to reduce the proportion of M1-type macrophages while increasing the proportion of M2-type macrophages. CONCLUSIONS Our study objectively demonstrated the pharmacological effects of SBJDD in inhibiting the progression of colorectal adenoma and investigated its mechanisms in terms of regulating gut microbiota, increasing SCFAs, and reducing colorectal inflammation.
Collapse
Affiliation(s)
- Min Huang
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Zhang
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mingxin Ni
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Shen
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- The First Affiliated Hospital of Soochow University, Soochow, 215123, China
| | - Yuquan Tao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixing Shen
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongdong Sun
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liu Li
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changliang Xu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiani Tan
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyang Lai
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengtao Yu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihuiping Tao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Minmin Fan
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haibo Cheng
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
50
|
Ojo BA, Heo L, Fox SR, Waddell A, Moreno-Fernandez ME, Gibson M, Tran T, Dunn AL, Elknawy EIA, Saini N, López-Rivera JA, Divanovic S, de Jesus Perez VA, Rosen MJ. Patient-derived colon epithelial organoids reveal lipid-related metabolic dysfunction in pediatric ulcerative colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609271. [PMID: 39229116 PMCID: PMC11370613 DOI: 10.1101/2024.08.22.609271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background & Aims Ulcerative colitis (UC) is associated with epithelial metabolic derangements which exacerbate gut inflammation. Patient-derived organoids recapitulate complexities of the parent tissue in health and disease; however, whether colon organoids (colonoids) model metabolic impairments in the pediatric UC epithelium is unclear. This study determined the functional metabolic differences in the colon epithelia using epithelial colonoids from pediatric patients. Methods We developed biopsy-derived colonoids from pediatric patients with endoscopically active UC, inactive UC, and those without endoscopic or histologic evidence of colon inflammation (non-IBD controls). We extensively interrogated metabolic dysregulation through extracellular flux analyses and tested potential therapies that recapitulate or ameliorate such metabolic dysfunction. Results Epithelial colonoids from active UC patients exhibit elevated oxygen consumption and proton leak supported by enhanced glycolytic capacity and dysregulated lipid metabolism. The hypermetabolic features in active UC colonoids were associated with increased cellular stress and chemokine secretion, specifically during differentiation. Transcriptomic and pathway analyses indicated a role for PPAR-α in lipid-induced hypermetabolism in active UC colonoids, which was validated by PPAR-α activation in non-IBD colonoids. Accordingly, limiting neutral lipid accumulation in active UC colonoids through pharmacological inhibition of PPAR-α induced a metabolic shift towards glucose consumption, suppressed hypermetabolism and chemokine secretion, and improved cellular stress markers. Control and inactive UC colonoids had similar metabolic and transcriptomic profiles. Conclusions Our pediatric colonoids revealed significant lipid-related metabolic dysregulation in the pediatric UC epithelium that may be alleviated by PPAR-α inhibition. This study supports the advancement of colonoids as a preclinical human model for testing epithelial-directed therapies against such metabolic dysfunction. What You Need to Know Background and Context: Colon mucosa healing in pediatric UC requires reinstating normal epithelial function but a lack of human preclinical models of the diseased epithelium hinders the development of epithelial-directed interventions. New Findings Using colon biopsy-derived epithelial organoids, samples from pediatric patients with active UC show hyperactive metabolic function largely driven by enhanced lipid metabolism. Pharmacologic inhibition of lipid metabolism alleviates metabolic dysfunction, cellular stress, and chemokine production. Limitations Though our epithelial colon organoids from active UC patients show targetable metabolic and molecular features from non-IBD controls, they were cultured under sterile conditions, which may not fully capture any potential real-time contributions of the complex inflammatory milieu typically present in the disease. Clinical Research Relevance Current therapies for pediatric UC mainly target the immune system despite the need for epithelial healing to sustain remission. We identified a pharmacologic target that regulates epithelial metabolism and can be developed for epithelial-directed therapy in UC.Basic Research Relevance: Pediatric UC patient tissue adult stem cell-derived colon epithelial organoids retain disease-associated metabolic pathology and can serve as preclinical human models of disease. Excess reliance on lipids as an energy source leads to oxidative and inflammatory dysfunction in pediatric UC colon organoids. Preprint: This manuscript is currently on bioRxiv. doi: https://doi.org/10.1101/2024.08.22.609271 Lay Summary: Using patient tissue-derived colon epithelial organoids, the investigators identified epithelial metabolic dysfunction and inflammation in pediatric ulcerative colitis that can be alleviated by PPAR-a inhibition.
Collapse
|