1
|
Binte Hanafi Z, Mei Y, Teo HY, Zhu Y, Yong Lionel CC, Chiu JW, Lu J, Liu H. Calpain 2 regulates IL-1α secretion and inhibits tumor development via modulating calpain 1 expression in the tumor microenvironment. Oncoimmunology 2025; 14:2451444. [PMID: 39803956 PMCID: PMC11730618 DOI: 10.1080/2162402x.2025.2451444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells. In this study, we report that calpain 2 also modulates IL-1α secretion. Notably, a deficiency in calpain 2 resulted in enhanced hepatocellular carcinoma development within an IL-1α-enriched tumor microenvironment. Further investigations revealed that calpain 2 deficiency increased calpain 1 expression, implying a compensatory mechanism between the two calpains. Mechanistically, calpain 2 deficiency led to increased expression of FoxO3, which is a forkhead transcription factor that promotes calpain 1 expression. Collectively, these results suggest that calpain 2 modulates calpain 1 expression, and therefore IL-1α secretion through the induction of FoxO3, offering novel potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Zuhairah Binte Hanafi
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Mei
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chew Chin Yong Lionel
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Wen Chiu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinhua Lu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Xie Y, Mi X, Xing Y, Dai Z, Pu Q. Past, present, and future of exosomes research in cancer: A bibliometric and visualization analysis. Hum Vaccin Immunother 2025; 21:2488551. [PMID: 40207548 DOI: 10.1080/21645515.2025.2488551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer seriously threatens the lives and health of people worldwide, and exosomes seem to play an important role in managing cancer effectively, which has attracted extensive attention from researchers in recent years. This study aimed to scientifically visualize exosomes research in cancer (ERC) through bibliometric analysis, reviewing the past, summarizing the present, and predicting the future, with a view to providing valuable insights for scholars and policy makers. Researches search and data collection from Web of Science Core Collection and clinical trial.gov. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. As of December 1, 2024, and March 8, 2025, we identified 8,001 ERC-related publications and 107 ERC-related clinical trials, with an increasing trend in annual publications. Our findings supported that China, Nanjing Medical University, and International Journal of Molecular Sciences were the most productive countries, institutions, and journals, respectively. Whiteside, Theresa L. had the most publications, while Théry, C was the most co-cited scholar. In addition, Cancer Research was the most co-cited journal. Spatial and temporal distribution of clinical trials was the same as for publications. High-frequency keywords were "extracellular vesicle," "microRNA" and "biomarker." Additional, "surface functionalization," "plant," "machine learning," "nanomaterials," "promotes metastasis," "engineered exosomes," and "macrophage-derived exosomes" were promising research topics. Our study comprehensively and visually summarized the structure, hotspots, and evolutionary trends of ERC. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xingqi Mi
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jiang J, Peng W, Sun N, Zhao D, Cui W, Lai Y, Zhang C, Duan C, Zeng W. Unraveling the anoikis-cancer nexus: a bibliometric analysis of research trends and mechanisms. Future Sci OA 2025; 11:2484159. [PMID: 40160087 PMCID: PMC11959893 DOI: 10.1080/20565623.2025.2484159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cancer, influenced by genetics and the environment, involves anoikis, a cell death mechanism upon extracellular matrix detachment crucial for metastasis. Understanding this relationship is key for therapy. We analyze cancer and anoikis trends using bibliometrics. METHODS A search was conducted from Web of Science Core, PubMed, Scopus and non-English databases such as the CNKI (inception- 21 December 2024). Data analysis employed Microsoft Excel, VOSviewer, CiteSpace, R software, and the online platform (https://bibliometric.com/). RESULTS 2510 publications were retrieved, with a significant increase in the last decade. China led, the University of Texas system was productive, and the Oncogene Journal was popular. Breast, and colorectal cancers were frequently studied. Among them, representative tumor-related mechanisms were identified, commonalities such as (EMT, ECM, autophagy) and respective specific mechanisms were summarized. CONCLUSION This bibliometric analysis highlights rapid advances in anoikis research in cancer, emphasizing EMT and FAK pathways' translational potential, guiding targeted therapies, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Nianzhe Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
5
|
Leote RJB, Barsan MM, Sanz CG, Diculescu VC. Electrochemical bienzymatic biosensor for pyruvate kinase activity evaluation and inhibitor screening. Talanta 2025; 291:127886. [PMID: 40056645 DOI: 10.1016/j.talanta.2025.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study describes the development of a pyruvate kinase (PyK)-biosensor for the evaluation of PyK activity, as a diagnostic tool for early cancer screening and detection of kinase inhibitors used in cancer treatment, with the evaluation of the inhibition mechanism. The biosensor was constructed by co-immobilizing the enzymes PyK and pyruvate oxidase (PyOx) on Au film electrodes by crosslinking with glutaraldehyde (GA) and evaluated electrochemically by cyclic voltammetry (CV) and fixed potential amperometry (CA). First, the experimental conditions were optimized in terms of applied potential, enzyme ratio PyK:PyOx and enzyme substrate concentration: phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP). The biosensor sensitivity towards PEP detection was 2.11 ± 0.08 μA mM-1 cm-2, with very high reproducibility and repeatability, which made it suitable for inhibition studies of PyK inhibitor. The inhibition mechanism of shikonin was determined in relation to both PEP and ADP, with the calculation of IC50 values and binding constants (Ki). Detection of shikonin was possible at very low concentrations in the linear range of 0.1-4.0 pM. The electrochemical results were validated by UV-Vis spectrophotometry. The developed biosensor is a valuable tool for drug screening by enabling enzyme catalytic function examination with applicability to identify inhibitors, estimate their affinity, inhibition mechanism linked to their molecular mechanisms of action and evaluate selectivity, of great interest in both pharmaceutical and medical domains.
Collapse
Affiliation(s)
- Ricardo Jose Branco Leote
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Măgurele, Romania; Faculty of Physics, University of Bucharest, Atomistilor 405, 077125, Măgurele, Romania
| | - Madalina Maria Barsan
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Măgurele, Romania
| | - Caroline G Sanz
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Măgurele, Romania
| | - Victor C Diculescu
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Măgurele, Romania.
| |
Collapse
|
6
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
7
|
Chen N, Li Z, Liu H, Jiang A, Zhang L, Yan S, He W, Yang J, Liu T. Enhancing PD-1 blockade in NSCLC: Reprogramming tumor immune microenvironment with albumin-bound statins targeting lipid rafts and mitochondrial respiration. Bioact Mater 2025; 49:140-153. [PMID: 40124597 PMCID: PMC11930202 DOI: 10.1016/j.bioactmat.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/09/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) has shown limited response to immunotherapy, primarily due to an immunosuppressive tumor microenvironment characterized by hypoxia and lipid raft formation, which together inhibit T-cell infiltration and function, impeding effective immune responses. To address these challenges, we developed Abstatin, an albumin-bound fluvastatin formulation that targets lipid raft disruption and mitochondrial respiration inhibition, aiming to reduce hypoxia and destabilize lipid rafts to enhance T-cell activity within the tumor. Using bioinformatics analysis, in vitro assays, and in vivo studies in both murine and humanized PDX models, we demonstrated that Abstatin reprograms the NSCLC microenvironment by concurrently lowering hypoxia levels and lipid raft integrity, thereby restoring T-cell infiltration, enhancing cytotoxic T-cell function, and ultimately improving response to Anti-PD-1 therapy. Results showed that Abstatin significantly amplifies Anti-PD-1 efficacy with minimal toxicity, indicating a favorable safety profile for clinical use. This study highlights Abstatin as a promising immunotherapy adjuvant that addresses critical barriers in NSCLC by modulating metabolic pathways linked to immune resistance. Abstatin's approach, which combines modulation of cellular metabolism with immune sensitization, broadens the potential of immunotherapy and provides a practical, scalable strategy to enhance treatment outcomes in NSCLC and potentially other tumors, offering insights into combinatory cancer therapies.
Collapse
Affiliation(s)
- Na Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Zhanfeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Heyuan Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Aimin Jiang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Liqiang Zhang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Jingyue Yang
- Department of Clinical Oncology, Air Force Medical University, Xi'an, 710032, PR China
| | - Tianya Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| |
Collapse
|
8
|
Sekar Y, Ishwar D, Tan B, Venkatakrishnan K. Nano biosensor unlocks tumor derived immune signals for the early detection of ovarian cancer. Biosens Bioelectron 2025; 278:117368. [PMID: 40088704 DOI: 10.1016/j.bios.2025.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Ovarian cancer is a critical health issue for women nowadays. Its impact is significant because of its high mortality rate (324,603 worldwide), late-stage diagnosis and poor survival rate. Lack of screening tests, vague symptoms, misdiagnosis, and age factor makes it even more difficult to detect. Neutrophils, a subset of immune cells, undergo tumor-specific changes as ovarian cancer progresses inside ovarian tumour microenvironment. Therefore, monitoring the time-specific activity of neutrophils in circulation has the potential to aid in the diagnosis of ovarian cancer. Most ovarian tumor-specific antigens are unknown, making it difficult to identify neutrophils associated with ovarian tumor. We present ovarian tumor-associated circulating neutrophil cell profiling as a stand-alone cancer diagnostic method using a liquid biopsy. Using a SERS-functionalized nano probe, the metabolic profiles of neutrophils from ovarian tumor interaction are detected. We demonstrate that neutrophils associated with cancer stem cells have a distinct metabolic profile and are useful in the diagnosis of early ovarian cancer. Using 5 μL of peripheral blood and an artificial neural network, the characteristics of neutrophil profiles in patient blood could distinguish cancer cohort from non-cancer (healthy) with a 90 % sensitivity and 100 % specificity. Our results demonstrate the viability of using circulating neutrophils for non-invasive cancer diagnostics.
Collapse
Affiliation(s)
- Yuvaraj Sekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Deeptha Ishwar
- Department of Stomatology, Faculty of Dental Medicine, Universite de Montreal, Montreal, QC, H3C 3J7, Canada
| | - Bo Tan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Krishnan Venkatakrishnan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada.
| |
Collapse
|
9
|
Bazzal AA, Hoteit BH, Chokor M, Safawi A, Zibara Z, Rizk F, Kawssan A, Danaf N, Msheik L, Hamdar H. Potential therapeutic applications of medical gases in cancer treatment. Med Gas Res 2025; 15:309-317. [PMID: 39829166 PMCID: PMC11918469 DOI: 10.4103/mgr.medgasres-d-24-00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.
Collapse
Affiliation(s)
- Abbas Al Bazzal
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Bassel H Hoteit
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Mariam Chokor
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Abdallah Safawi
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Zahraa Zibara
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Fatima Rizk
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Aya Kawssan
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Naseeb Danaf
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Layal Msheik
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Hiba Hamdar
- Research Department, Plovdiv Medical University, Plovdiv, Bulgaria
- Research Department, Medical Learning Skills Academy, Beirut, Lebanon
| |
Collapse
|
10
|
Atabay M, Inci F, Saylan Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens Bioelectron 2025; 277:117275. [PMID: 39999607 DOI: 10.1016/j.bios.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Cancer affects millions of people, and early detection and efficient treatment are two strong levers to hurdle this disease. Recent studies on exosomes, a subset of extracellular vesicles, have deliberately shown the potential to function as a biomarker or treatment tool, thereby attracting the attention of researchers who work on developing biosensors. Due to the ability of computational methods to predict of the behavior of biomolecules, the combination of experimental and computational methods would enhance the analytical performance of the biosensor, including sensitivity, accuracy, and specificity, even detecting such vesicles from bodily fluids. In this regard, the role of computational methods such as molecular docking, molecular dynamics simulation, and density functional theory is overviewed in the development of biosensors. This review highlights the investigations and studies that have been reported using these methods to design exosome-based biosensors. This review concludes with the role of the quantum mechanics/molecular mechanics method in the investigation of chemical processes of biomolecular systems and the deficiencies in using this approach to develop exosome-based biosensors. In addition, the artificial intelligence theory is explained briefly to show its importance in the study of these biosensors.
Collapse
Affiliation(s)
- Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
11
|
Liu S, Cai J, Qian X, Zhang J, Zhang Y, Meng X, Wang M, Gao P, Zhong X. TPX2 lactylation is required for the cell cycle regulation and hepatocellular carcinoma progression. Life Sci Alliance 2025; 8:e202402978. [PMID: 40107714 PMCID: PMC11924114 DOI: 10.26508/lsa.202402978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
Targeting protein for Xklp2 (TPX2) is critical for mitosis and spindle assembly because of its control of Aurora kinase A (AURKA). However, the regulation of TPX2 activity and its subsequent effects on mitosis and cancer progression remain unclear. Here, we show that TPX2 is lactylated at K249 in hepatocellular carcinoma (HCC) tumour tissues and that this process is regulated by the lactylase CBP and the delactylase HDAC1. Lactate reduction via either shRNAs targeting lactate dehydrogenase A or the lactate dehydrogenase A inhibitor GSK2837808A decreases the level of TPX2 lactylation. Importantly, TPX2 lactylation is required for the cell cycle regulation and tumour growth. Mechanistically, TPX2 lactylation disrupts protein phosphatase 1 (PP1) binding to AURKA, enhances AURKA T288 phosphorylation, and facilitates the cell cycle progression. Overall, our study reveals a previously unappreciated role of TPX2 lactylation in regulating cell cycle progression and HCC tumorigenesis, exposing an important correlation between metabolic reprogramming and cell cycle regulation in HCC.
Collapse
Affiliation(s)
- Shengzhi Liu
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Cai
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyu Qian
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjiao Zhang
- https://ror.org/0530pts50 School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yi Zhang
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiang Meng
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Mingjie Wang
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Gao
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- https://ror.org/0530pts50 School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Xiuying Zhong
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Deng X, Luo X, Fang Z, Chen X, Luo Q. Effect of tristetraprolin on esophageal squamous cell carcinoma cell proliferation. Tissue Cell 2025; 94:102785. [PMID: 39954564 DOI: 10.1016/j.tice.2025.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Tristetraprolin (TTP) can inhibit the abnormal proliferation of malignant tumors but there are no studies involving TTP and esophageal squamous cell carcinoma (ESCC). We aimed to determine the effect of TTP on ESCC cell proliferation and to elucidate the underlying mechanism. METHODS The human ESCC cell line, KYSE-510, and the human ESCC cell line, KYSE-150, stably infected with tetracycline-inducible expression (Tet-on-TTP and Tet-on-EV, respectively) were screened with puromycin. After Tet-on-TTP KYSE-150 cells were treated with different concentrations of doxycycline [Dox] (0, 0.5, and 1 ug/mL), the levels of TTP mRNA and protein expression were detected by real-time fluorescent quantitative PCR and western blotting, respectively. The effects of TTP on proliferation and migration were estimated by CCK-8 and Transwell assays, respectively. Cell apoptosis and cell cycle were measured by flow cytometry. Cellular apoptosis-related gene protein expression was determined by western blotting. RESULTS TTP overexpression significantly inhibited KYSE-510 and KYSE-150 proliferation. TTP overexpression also significantly inhibited KYSE-150 migration. In addition, TTP expression upregulation promoted the KYSE-150 apoptosis and induced cell cycle arrest in the G2 phase, downregulated Bcl-2 expression, and upregulated Bax expression. CONCLUSION TTP inhibited ESCC cell proliferation, promoted ESCC cell apoptosis, and arrested cell cycle progression in the G2 phase.
Collapse
Affiliation(s)
- Xiaoya Deng
- Department of Respiratory Medicine, Shapingba Hospital affiliated to Chongqing University (Shapingba District People's Hospital of Chongqing), Chongqing 400016, China
| | - Xiaoqin Luo
- Out-patient department, Chongqing MingXing Hospital, Chongqing 405200, China
| | - Zhanglan Fang
- General Internal Medicine Department, Chongqing University Cancer Hospital, Chongqing, China
| | - Xinyu Chen
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qinli Luo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
14
|
Chen W, Zhang Z, Han Y, Li X, Liu C, Sun Y, Ren Y, Guan X. Remodeling tumor microenvironment by versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy to synergistically enhance anticancer efficiency. Biomaterials 2025; 317:123104. [PMID: 39813969 DOI: 10.1016/j.biomaterials.2025.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs). The CD@PB NPs exhibited multifunctionality: (1) Long in vivo circulation and acidic TME-responsive PEG deshielding for being efficiently internalized into cells. (2) Endosomal-pH triggered drug release and PEI-facilitated drug-escaping from endosome into cytoplasm. (3) DMS down-regulated thick stroma and weakened mechanical barriers for facilitating NP penetration. (4) DMS mediated nuclear pore dilation to promote more DOX entering nucleus and enhance treatment effects. (5) DOX induced potent immunogenic cell death (ICD), activated antitumor immunity and exerted chemoimmunotherapy. The versatile CD@PB NPs displayed excellent antitumor efficacy against 4T1 mouse breast cancer, which effectively remodeled immunosuppressive TME and orchestrated mechanotherapy with chemoimmunotherapy to synergistically enhance antitumor efficiency. The study provided an illuminating paradigm for multidimensional cancer therapy.
Collapse
Affiliation(s)
- Wenqiang Chen
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Zhe Zhang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yunfei Han
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Li
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunhui Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Yanju Sun
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Yanyan Ren
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Xiuwen Guan
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
15
|
Pereira JC, de Sousa RWR, Conceição MLP, do Nascimento MLLB, de Almeida ATA, Dos Reis AC, de Sousa Cavalcante ML, Dos Reis Oliveira C, Martins IRR, Torres-Leal FL, Dittz D, de Castro E Sousa JM, Ferreira PMP, Carneiro da Silva FC. Buthionine sulfoximine acts synergistically with doxorubicin as a sensitizer molecule on different tumor cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:409-431. [PMID: 39815616 DOI: 10.1080/15287394.2024.2448663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines. Cell viability, migration, and clonogenicity were assessed using the following assays MTT, scratch, and colony formation. Antioxidant levels of GSH, as well as activities catalase (CAT), and superoxide dismutase (SOD) were measured. BSO alone exhibited minimal cytotoxic effects, while DOX alone reduced cell viability significantly. The combination of BSO+DOX decreased IC50 values for most cell lines, demonstrating a synergistic effect, especially in B16/F10, S180, and SVEC4-10 cells. BSO+DOX combination significantly inhibited cell migration and clonogenicity compared to DOX alone. While GSH levels were decreased with BSO+DOX treatment activities of CAT and SOD increased following DOX administration but remained unchanged by BSO. These results suggest that BSO may be considered a valuable tool to improve DOX therapeutic efficacy, particularly in cases of chemotherapy-resistant tumors, as BSO enhances DOX activity while potentially reducing systemic chemotherapeutic drug toxicity.
Collapse
Affiliation(s)
- Joedna Cavalcante Pereira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | | | - Ana Tárcila Alves de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Mickael Laudrup de Sousa Cavalcante
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Camila Dos Reis Oliveira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Italo Rossi Roseno Martins
- Academic Unit of Life Sciences, Teachers' Forming Center, Federal University of Campina Grande, Cajazeiras-PB, Brazil
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (Domen), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Federal University of Piaui, Teresina-PI, Brazil
| | - Dalton Dittz
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| |
Collapse
|
16
|
Runello F, Jary A, Duin S, Kim Y, van Eer K, Voss FO, Thuijs NB, Bleeker MCG, Steenbergen RDM. DNA methylation and copy number alterations in the progression of HPV-associated high-grade vulvar intraepithelial lesion. Int J Cancer 2025; 156:1926-1935. [PMID: 39936378 PMCID: PMC11924301 DOI: 10.1002/ijc.35366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Human papillomavirus (HPV)-associated high-grade vulvar intraepithelial lesion (HSIL) is a precursor of vulvar squamous cell carcinoma (VSCC). Because of the 8% cancer risk, many vulvar HSIL patients undergo aggressive and mutilating treatments. Characterizing HSIL by their progression risk can help individualize treatment strategies. Accordingly, copy number alterations (CNAs) and DNA methylation have been identified as biomarkers for cancer risk stratification of HSIL. Here, we assessed their potential correlation, and relation to HPV16 (sub)lineages and progression to vulvar cancer. Eighty-two vulvar formalin-fixed paraffin-embedded (FFPE) samples, including controls, HSIL, HSIL adjacent to VSCC and VSCC, with previously determined DNA methylation profiles, were analysed for CNAs using mFAST-SeqS. Genome-wide z-scores were calculated to determine overall aneuploidy (aneuploidy scores), and compared to the methylation levels and status of marker panel ZNF582/SST/miR124-2. For 52 HPV16-positive cases, HPV (sub)lineages were determined by Sanger sequencing. HPV16 lineage A was predominant (86.4%), followed equally by lineages B, C, and D. Frequent chromosomal alterations included chr1pq, chr3q, chr9q gains, and chr2q, chr4q losses. Median aneuploidy scores increased across disease categories, from 0 in controls, to 3 in HSIL, 16 in HSIL adjacent to VSCC and 29 in VSCC. A positive relationship between aneuploidy scores and DNA methylation levels was found (ρ = 0.61, Spearman's rank correlation test). Aneuploidy scores were significantly higher in methylation-positive samples (p < .001). In conclusion, we showed that DNA methylation and CNAs both rise with increasing severity of disease, indicating their prognostic value for cancer risk stratification of HSIL, while no relation to HPV16 (sub)lineages was found.
Collapse
Affiliation(s)
- Flavia Runello
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Aude Jary
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sylvia Duin
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Yongsoo Kim
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kahren van Eer
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Netherlands
| | - Féline O Voss
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Nikki B Thuijs
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Guan X, Wu D, Zhu H, Zhu B, Wang Z, Xing H, Zhang X, Yan J, Guo Y, Lu Y. 3D pancreatic ductal adenocarcinoma desmoplastic model: Glycolysis facilitating stemness via ITGAV-PI3K-AKT-YAP1. BIOMATERIALS ADVANCES 2025; 170:214215. [PMID: 39889369 DOI: 10.1016/j.bioadv.2025.214215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The distinctive desmoplastic tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is crucial in determining the stemness of tumor cells. And the conventional two-dimensional (2D) culture does not adequately mimic the TME. Therefore, a three-dimensional (3D) PDAC desmoplastic model was constructed using GelMA and HAMA, which provides benefits in terms of simulating both the main components (COL and HA) and the crosslinking of the extracellular matrix. We found that the 3D PDAC desmoplastic model upregulated the expression of the markers for stemness (NANOG and OCT4) and glycolysis (HK2 and GLUT2), and elevated the level of glycolysis, including increased glucose consumption and lactic acid production. Additionally, YAP1 played a crucial role in promoting glycolysis, which boosted stemness. Furthermore, RNA sequencing (RNA-seq) was employed to explore the underlying mechanisms associated with stemness within the 3D desmoplastic model. Subsequent KEGG pathway analysis indicated the activation of the PI3K-AKT signaling pathway, providing insights into the molecular processes at play. Using bioinformatics, qRT-PCR and western blot, we proposed that ITGAV-PI3K-AKT-YAP1 axis may account for the glycolysis mediated the stemness. Collectively, the 3D desmoplastic model may serve as a new platform for understanding the underlying mechanism by which the TME induces stemness.
Collapse
Affiliation(s)
- Xiaoqi Guan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Hongyu Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Zhen Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Haowei Xing
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Xue Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, China
| | - Jiashuai Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China.
| |
Collapse
|
19
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
20
|
Hu D, Zhang Z, Wang Y, Li S, Zhang J, Wu Z, Sun M, Jiang J, Liu D, Ji X, Wang S, Wang Y, Luo X, Huang W, Xia L. Transcription factor ELF4 in physiology and diseases: Molecular roles and clinical implications. Genes Dis 2025; 12:101394. [PMID: 40083328 PMCID: PMC11904542 DOI: 10.1016/j.gendis.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 03/16/2025] Open
Abstract
Transcription factor E74 like ETS transcription factor 4 (ELF4), a member of the ETS family, is highly expressed in normal human hematopoietic tissue, ovary, placenta, colon, and certain pathological cell lines. During normal physiological processes, ELF4 regulates differentiation in osteogenic, adipocyte, and neuronal types. It also exerts a critical impact on the development of the immune system. However, its function is dysregulated through posttranslational modifications, gene fusions, and complex signaling crosstalk under pathological conditions. Furthermore, serving as a double-edged sword in cancer, ELF4 exhibits both tumor-suppressing and tumor-promoting effects. Specifically, ELF4 plays a critical role in cancer metastasis, proliferation, and modulation of the tumor microenvironment. This review provides an in-depth overview of the molecular structure and post-translational modifications of ELF4. It also summarizes the hallmarks of ELF4 in physiology and diseases, with a particular focus on its significance in oncology. Notably, this review underscores the potential of ELF4 as a prognostic biomarker, highlighting its clinical relevance. Finally, it discusses unresolved questions and future research directions of ELF4. An in-depth understanding of ELF4 biology could facilitate its clinical translation and offer promising targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| |
Collapse
|
21
|
Vinogradov AE, Anatskaya OV. "Cell dedifferentiation" versus "evolutionary reversal" theories of cancer: The direct contest of transcriptomic features. Int J Cancer 2025; 156:1802-1813. [PMID: 39888036 DOI: 10.1002/ijc.35352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Cell dedifferentiation is considered an important hallmark of cancer. The atavistic reversal to a unicellular-like (UC) state is a less widely accepted concept, so far not included in the conventional hallmarks. The activated expression of ontogenetically earlier and evolutionary earlier genes in cancers supports both theories because ontogenesis partially recapitulates phylogenesis during cell differentiation (the cellular biogenetic law). We directly contested both types of gene signatures in stem vs. differentiated and cancer vs. normal cells, using meta-analysis of human single-cell transcriptomes (totally, 38 pairwise comparisons involving over 18,600 cells). Because compared cells can differ in proliferation rate, the correction for cell cycle activity was applied. Taken together as multiple variables in stem vs. differentiated cells analyses, the ontogenetic signature excluded the UC signature from predictive variables, usually even forcing it to change the sign of prediction (from plus to minus). In contrast, in cancer vs. normal cells, the UC signature excluded the ontogenetic signature. Thus, the direct contest decided in favor of the atavistic theory and placed a UC-like state as a central hallmark of cancer, which has a plausible evolutionarily formed mechanism (UC attractor) and can generate other hallmarks. These data suggest a paradigm shift in the understanding of oncogenesis and propose an integrative framework for cancer research. In a practical sense, the upregulation of UC signature over ontogenetic signature indicates potential tumorigenicity, which can be used in early diagnostics and regenerative medicine. For therapy, these results suggest the UC center of cellular networks as a universal target.
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
22
|
Wu Y, Jia N, Sun J, Liao W, Xu J, Chen W, Zhao C. The roles of algal polysaccharides in modulating tumor immune microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156610. [PMID: 40085993 DOI: 10.1016/j.phymed.2025.156610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Polysaccharides from algae provide a range of biology and health benefits. Lately, there has been a significant interest in how algal polysaccharides affect the immune microenvironment around tumors. PURPOSE To elucidate the subtle interactions between algal polysaccharides and the tumor immune microenvironment to further understand the medicinal potential of algal polysaccharides. STUDY DESIGN To give a summary of the sources, bioactivities and characteristics of the tumor immune microenvironment of algal polysaccharides, and to analyze alteration of the immunological milieu surrounding tumors by algal polysaccharides and their potential as immunomodulators of chemotherapeutic agents. METHODS Search popular academic search engines using selected keywords for articles ending before September 2024 using selected keywords Google Scholar, PubMed, ScienceDirect, Scopus, Web of Science, Springer, and official websites. RESULTS Algal polysaccharides can fight tumors by changing how immune cells work and affecting inflammation in different ways. Moreover, algal polysaccharides have shown promise in mitigating the adverse effects associated with conventional cancer treatments, such as chemotherapy. Algal polysaccharides, through their immunomodulatory effects, can alleviate some of these side effects, leading to an enhanced overall treatment outcome. CONCLUSION As research continues to uncover the underlying mechanisms of their antitumor effects, algal polysaccharides are poised to become a vital component in the development of novel cancer treatments, providing new hope for patients and advancing the field of oncology.
Collapse
Affiliation(s)
- Yinfeng Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingyu Sun
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wei Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
23
|
Zhang X, Ye XS. A review on the development of sialyltransferase inhibitors. Carbohydr Res 2025; 551:109427. [PMID: 39977976 DOI: 10.1016/j.carres.2025.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Sialylation of terminal glycoconjugates is involved in many important physiological and pathological processes such as tumor metastasis, drug resistance, organismal immunity, and viral infections. Sialyltransferases are enzymes responsible for sialylation modification in organisms, and potent sialyltransferase inhibitors can not only serve as probes for glycobiology studies, but also hold great promise to become agents for tumor therapy and viral infection control in the clinic. This review summarizes the latest progress in the development and application of various sialyltransferase inhibitors. The current challenges and development trends are also discussed.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
24
|
Mi Q, Sun H, Wang H, Li Q, Yin P, Wang Q, Tong J, Liu S, Bi Y, Yu L. Ginsenoside Rg5 inhibits the proliferation of HeLa cell through cell cycle pathway. Food Sci Biotechnol 2025; 34:2011-2024. [PMID: 40196332 PMCID: PMC11972262 DOI: 10.1007/s10068-025-01817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 04/09/2025] Open
Abstract
The issue of Cervical cancer has received considerable critical attention. It was the leading cause of death in female cancer patients. Ginsenoside Rg5 has been implicated in the growth of human cancer cells, but the lack of research to determine the influence mechanism has been a significant challenge for many years. In this study, ginsenoside Rg5 was used to treat HeLa cells, and RT-qPCR, Western Blotting and RNA-seq were used to analyze the differentially expressed genes in HeLa cells to study the preliminary mechanism of ginsenoside Rg5 on cervical cancer. The results of RT-qPCR and Western Blotting were in agreement with RNA-seq analysis, which showed a down-regulation of proteins in the cell cycle pathway. These results all indicate that the expression of Minichromosome Maintenance Complex Component 6 (MCM6), Cyclin A2 (CCNA2), Cyclin-dependent kinase 6 (CDK6) and Cell division cycle 6 (CDC6) in HeLa cells treated with ginsenoside Rg5 is significantly reduced, with MCM6 exhibiting the most significant inhibitory effect, making it a potential target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Hang Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Heyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Qiuyang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Qiannan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Jian Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Shuang Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
25
|
Jiang T, Jin H, Ji X, Zheng X, Xu CX, Zhang PJ. Drivers of centrosome abnormalities: Senescence progression and tumor immune escape. Semin Cancer Biol 2025; 110:56-64. [PMID: 39929410 DOI: 10.1016/j.semcancer.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/18/2025]
Abstract
Centrosome abnormalities are a distinguishing feature of cancer and play a role in the aging process. Cancer cells may evade the immune system by activating immune checkpoints, altering their surrounding microenvironment, abnormalities in antigen presentation and recognition, and metabolic reprogramming to inhibit T-cell activity, allowing cancer cells to survive and spread within the host. When the centrosomes are abnormally shaped or numbered, mitotic errors can occur, cellular senescence occurs, cell death occurs, genomic instability occurs, and aneuploidy forms, resulting in diseases such as cancer. The present study is exploring the strategy of research progress in which centrosome abnormalities contribute to the aging process in various different ways as well as fuel immune escape from cancer cells, providing a new direction for cancer immunotherapy.
Collapse
Affiliation(s)
- Tao Jiang
- Medicine Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xintong Ji
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing 40003, China
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
26
|
Feng B, Gao T, Chen L, Xing Y. ARMC10 Drives Glioblastoma Progression Through Activating Notch Pathway. Mol Carcinog 2025; 64:883-896. [PMID: 39987562 DOI: 10.1002/mc.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
This study aimed to check the biological functions and uncover the mechanism of armadillo repeat protein C10 (ARMC10) in glioblastoma (GBM). The expression and potential mechanisms of ARMC10 in GBM were analyzed by bioinformatics analysis. In GBM cells, function-loss experiments were used to evaluate the influences of ARMC10 on cell proliferation, cell invasion, lipid levels, and cell migration by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, cell counting kit-8 assay, transwell assay, BODIPY staining, and wound healing assay. Mouse xenograft models were constructed to validate the influences of ARMC10 in vivo. ARMC10 levels in GBM were upregulated, and patients with low ARMC10 levels displayed a better prognosis. ARMC10 knockdown resulted in a decrease of GBM cell invasion, migration, and proliferation. GSEA showed that ARMC10 was positively associated with the Notch pathway and fatty acid metabolism. ARMC10 knockdown reduced the levels of triglyceride, cholesterol, and lipid, and inhibited the expression of proteins related to fatty acid metabolism and Notch pathway. Moreover, notch receptor 1 (Notch1) overexpression reversed the inhibition of cell proliferation, fatty acid metabolism, and invasion induced by ARMC10 knockdown. In vivo, ARMC10 knockdown suppressed tumor growth. RMC10 knockdown suppressed GBM malignant progression, which had a bearing on Notch pathway.
Collapse
Affiliation(s)
- Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Chen
- Department of Neurosurgery, HeJiang County Traditional Chinese Medicine Hospital, Luzhou, China
| | - Yi Xing
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Dai JZ, Hsu WJ, Lin MH, Shueng PW, Lee CC, Yang CC, Lin CW. YAP-mediated DDX3X confers resistance to ferroptosis in breast cancer cells by reducing lipid peroxidation. Free Radic Biol Med 2025; 232:330-339. [PMID: 40089076 DOI: 10.1016/j.freeradbiomed.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Metabolic shifts in cancer cells were found to participate in tumorigenesis, especially driving chemotherapeutic resistance. Ferroptosis is a newly discovered form of cell death induced by excessive accumulations of iron and lipid peroxidation. Susceptibility to ferroptosis can be intrinsically regulated by various cellular metabolic pathways. Therefore, inducing ferroptosis might be a promising anticancer therapeutic strategy. DEAD-box helicase 3 X-linked (DDX3X), a critical modulator of RNA metabolism, was identified as an oncogene in breast cancer and also participates in cancer metabolism and chemotherapeutic resistance. However, the molecular regulation of the association between DDX3X and ferroptosis is largely unknown. Herein, we investigated the correlation between resistance to ferroptosis and DDX3X expression in breast cancer cells. We found that elevation of DDX3X was associated with increased resistance to a ferroptosis inducer in breast cancer cells, and manipulating DDX3X expression regulated the sensitivity to the ferroptosis inducer. Importantly, DDX3X upregulated expression of the anti-ferroptotic enzyme glutathione peroxidase 4 (GPX4) gene to confer ferroptosis resistance in breast cancer cells. Moreover, DDX3X was transcriptionally upregulated by the yes-associated protein (YAP). Knockdown of YAP downregulated DDX3X mRNA expression and facilitated lipid peroxidation, but that were restored in the presence of DDX3X. Clinically, coexpression of DDX3X and YAP was found in a variety of malignancy, and their elevation conferred poor survival prognosis in patients with breast cancer. Together, our findings reveal the crucial role of DDX3X in sensitivity to ferroptosis and underscore its potential as a diagnostic marker and therapeutic target. DDX3X renders resistance to ferroptosis and plays a role in mitigating lipid peroxidation, paving the way for therapeutic vulnerability via targeting cancer metabolism.
Collapse
Affiliation(s)
- Jia-Zih Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Jing Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- Graduate Institute of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey; Department of Food Technology and Nutrition, Faculty of Technologies, Klaipėda State University of Applied Sciences, Lithuania
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan; Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Sha Q, Li X, Gu X, Yuan T, Hua J. A self-aggregated thermally activated delayed fluorescence nanoprobe for HClO imaging and activatable photodynamic therapy. Talanta 2025; 286:127570. [PMID: 39809071 DOI: 10.1016/j.talanta.2025.127570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Hypochlorous acid (HClO/ClO-) is a common ROS that exhibits elevated activity levels in cancer cells. In this study, an ClO--triggered TADF probe, PTZ-MNI, was designed based on a naphthalimide core. PTZ-MNI self-assemble in aqueous environments, exhibiting significantly enhanced fluorescence that demonstrated typical aggregation-induced delayed fluorescence (AIDF) characteristics. The probe not only showed high sensitivity to ClO- but also exhibited remarkable selectivity over other reactive oxygen species and disturbance. PTZ-MNI displayed TADF characteristic, including sensitivity to oxygen in toluene, insensitivity to oxygen in aggregated states that maintain long fluorescence lifetimes, a vertical conformation, and a minimal ΔEST of 0.01 eV. Cell imaging studies showed the probe could trace ClO- by red to green fluorescence in HeLa cell. The colocalization analysis indicated its excellent lysosome-targeting specificity. In addition, PTZ-MNI-O, the compound after oxidation, exhibited effective ROS generation ability and significant PDT effect after irradiation. This work provides guidance for the rational design of responsive TADF luminescent materials used in cell imaging and activatable-PDT.
Collapse
Affiliation(s)
- Qingyang Sha
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Xinsheng Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Xixin Gu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Tao Yuan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
29
|
Huang Z, Chu T, Ma A, Lin W, Gao Y, Zhang N, Shi M, Zhang X, Yang Y, Ma W. Discovery of Bi-magnolignan as a novel BRD4 inhibitor inducing apoptosis and DNA damage for cancer therapy. Biochem Pharmacol 2025; 235:116843. [PMID: 40024351 DOI: 10.1016/j.bcp.2025.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Bi-magnolignan (BM), a novel compound isolated from Magnolia Officinalis leaves, exhibits significant anti-tumor activity in vitro. However, the underlying mechanism remains elusive. This study examines the anti-tumor properties of BM and its mechanism of action, specifically through its interaction with BRD4, a key regulator in oncogene transcription and genome stability. Molecular docking and biolayer interferometry assay (BLI) collectively demonstrate that BM exhibits strong binding affinity to the bromodomain (BD) region of BRD4. Cellular thermal shift assay (CETSA) results confirm that BM binding increases the thermostability of BRD4, providing further evidence of the interaction between BM and BRD4. RNA-seq analysis and western blotting reveal that BM abolishes the G2/M DNA damage checkpoint and disrupts homologous recombination (HR) repair mechanisms. To explore the downstream effects of BRD4, we performed gene set enrichment analysis (GSEA) using RNA-seq data. The results indicate that BM significantly inhibits BRD4 function, leading to the downregulation of various BRD4 target genes at the transcriptional level, including MYC. Importantly, overexpression of BRD4 rescues cells from BM-induced apoptosis, DNA damage, disrupted G2/M checkpoint, and HR deficiency (HRD), highlighting the specificity of BM for BRD4. Furthermore, in vivo experiments demonstrate that BM effectively suppresses tumor growth. Collectively, these findings underscore the potential of BM as a novel and potent BRD4 inhibitor, suggesting promising prospects for the development of targeted anti-tumor therapies that specifically inhibit BRD4.
Collapse
Affiliation(s)
- Zifeng Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Tong Chu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Aijun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yan Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Na Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yanchao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
30
|
Liu L, Wu M, Chen Y, Cheng Y, Liu S, Zhang X, Xie Q, Cao L, Wei L, Fang Y, Jafri A, Sferra TJ, Shen A, Li L. Downregulating FGGY carbohydrate kinase domain containing promotes cell senescence by activating the p53/p21 signaling pathway in colorectal cancer. Int J Mol Med 2025; 55:81. [PMID: 40116125 PMCID: PMC11964412 DOI: 10.3892/ijmm.2025.5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/14/2025] [Indexed: 03/23/2025] Open
Abstract
Carbohydrate kinases serve an oncogenic role in several types of cancer; however, the function of FGGY carbohydrate kinase domain containing (FGGY) in colorectal cancer (CRC) remains unknown. The present study investigated the function and possible molecular mechanisms of FGGY in CRC. The results showed that elevated levels of FGGY mRNA and protein were observed in CRC tissues, and a higher expression of FGGY was associated with advanced N stage and reduced overall survival time in patients with CRC. Silencing FGGY inhibited the viability of CRC cells by inducing cell cycle arrest and promoting apoptosis in vitro, thereby attenuating tumor growth in a xenograft mouse model. FGGY knockdown also enriched the senescence‑associated heterochromatin foci (SAHF) pathway and p53 pathway, as further confirmed by enhancing senescence‑associated β‑galactosidase (SA‑β‑gal) activity, with increased levels of SAHF‑associated proteins HP1γ and trimethylation of H3K9 (H3k9me3) in CRC cells, as well as upregulation of p53 and its downstream protein p21. Furthermore, p53 knockout rescued FGGY knockdown‑mediated reductions in cell viability, SA‑β‑gal activity, and the levels of HP1γ and H3k9me3 in CRC cells. These findings indicated that FGGY could act as a newly identified potential oncogene in CRC, partially through regulating the p53/p21 signaling pathway and altering cell senescence.
Collapse
Affiliation(s)
- Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Department of Scientific Research, Affiliated Sanming Integrated Medicine Hospital of Fujian University of Traditional Chinese Medicine, Sanming, Fujian 365001, P.R. China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Sijia Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xinran Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liujing Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Histology Core, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J. Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li Li
- Shengli Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Health Management, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
31
|
Zhang B, Zhou Q, Xue C, Zhang P, Ke X, Wang Y, Zhang Y, Deng L, Jing M, Han T, Zhou F, Dong W, Zhou J. Predicting telomerase reverse transcriptase promoter mutation status in glioblastoma by whole-tumor multi-sequence magnetic resonance texture analysis. Magn Reson Imaging 2025; 118:110360. [PMID: 39983804 DOI: 10.1016/j.mri.2025.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE This study aimed to determine the feasibility of preoperative multi-sequence magnetic resonance texture analysis (MRTA) for predicting TERT promoter mutation status in IDH-wildtype glioblastoma (IDHwt GB). METHODS The clinical and imaging data of 111 patients with IDHwt GB at our hospital between November 2018 and June 2023 were retrospectively analyzed as the training set, and those of 23 patients with IDHwt GB between July 2023 and November 2023 were interpreted as the validation set. We used molecular sequencing results to classify the training set into TERT promoter mutation and wildtype groups. Textural features of the whole-tumor volume were extracted, including T2-weighted imaging (T2WI), T2-fluid-attenuated inversion recovery, apparent diffusion coefficient (ADC) map, and contrast-enhanced T1-weighted imaging (CE-T1). All textural features were obtained using open-source pyradiomics. After feature selection, logistic regression was used to build prediction models, and a nomogram was generated. Finally, the model was validated using validation cohort. RESULTS The CE-T1_Model (AUC 0.704) had a better predictive ability than the T2_Model (AUC 0.684) and ADC_Model (AUC 0.624). The MRI_Combined_Model (CE-T1, T2, and ADC texture features) (AUC 0.780) had a better predictive ability than the Clinical_Model (AUC 0.758). The Combined_Model (CE-T1, T2, ADC texture features, and clinical features) had the best predictive performance (AUC 0.871), with a sensitivity, specificity, and accuracy of 82.60 %, 83.30 %, and 80.18 %, respectively. The AUC, sensitivity, specificity, and accuracy in the validation cohort were 0.775, 86.70 %, 75.00 %, and 69.57 %, respectively. CONCLUSIONS Whole-tumor multi-sequence MRTA can be used as non-invasive quantitative parameters to assist in the preoperative clinical prediction of TERT promoter mutation status in IDHwt GB.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Yige Wang
- Medical Department, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Fengyu Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Wenjie Dong
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China.
| |
Collapse
|
32
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
33
|
Samoudi A, Abolhasani-Zadeh F, Afgar A, Jalilian E, Zeinalynezhad H, Langroudi L. Treatment of cancer-associated fibroblast-like cells with celecoxib enhances the anti-cancer T helper 1/Treg responses in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6099-6112. [PMID: 39652176 DOI: 10.1007/s00210-024-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/15/2024] [Indexed: 04/11/2025]
Abstract
Tumor inflammation, as one of the hallmarks of cancer, has been the target for anti-cancer treatments. Celecoxib is a selective inhibitor of the enzyme cycloxygenase-2 (COX-2) and inhibits the production of PGE2, which is an important mediator of tumor inflammation produced by cancer cells and cells of the tumor microenvironment. In this study, we aimed at inhibiting COX-2 using celecoxib, expressed in cancer-associated fibroblast (CAF)-like cells isolated from breast cancer and evaluated the alterations in their cytokine profile and gene expression. CAF-like cells were isolated by explant culture from 13 breast cancer tissues. Simultaneously, peripheral blood mononuclear cells (PBMCs) were isolated from patients' blood. CAF-like cells were treated with 10 µM of celecoxib and expression of genes COX-2, smooth muscle actin-alpha (α-SMA), and production of prostaglandin E2 (PGE2), Interleukin 10 (IL10), and transforming growth factor beta1 (TGF-β1) was evaluated. Next, PBMCs were co-cultured with celecoxib-treated CAF-like cells and the expression of genes T-bet, Foxp3, GATA-3; production of cytokines IFN-ɣ, IL-10, IL-4, TGF-β1, and the mediator PGE2 were assessed by real-time-PCR and ELISA, respectively. Isolated CAF-like cells showed expression of fibroblast activation protein (FAP). Treatment with celecoxib was able to efficiently reduce the production of PGE2 and the expression of α-SMA in isolated CAF-like cells. Furthermore, PBMCs in co-culture with these cells showed enhanced Th1 phenotype including T-bet and IFNγ expression and decreased the phenotypical markers of regulatory T cells such as FoxP3 and IL-10 and TGF-β1 production. Our study shows the important role of COX-2 in CAFs by promoting immune suppression. Our results suggested that high expression of COX-2 in CAFs may serve as a new therapeutic, targeting CAFs in enhancing immune responses in breast cancer treatment.
Collapse
Affiliation(s)
- Arash Samoudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran
| | | | - Ali Afgar
- Research center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Elnaz Jalilian
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran
| | - Hamid Zeinalynezhad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Langroudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran.
| |
Collapse
|
34
|
Pan J, Liu R, Lu W, Peng H, Yang J, Zhang Q, Yu T, Huo B, Wei X, Liang H, Zhou L, Sun Y, Hu Y, Wen S, Fu J, Chiao PJ, Xia X, Liu J, Huang P. SQLE-catalyzed squalene metabolism promotes mitochondrial biogenesis and tumor development in K-ras-driven cancer. Cancer Lett 2025; 616:217586. [PMID: 40015662 DOI: 10.1016/j.canlet.2025.217586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
It is well known that activation of oncogenic K-ras alone is insufficient to drive tumor development and that additional factors are needed for full malignant transformation, but the metabolic pathways and regulatory mechanisms that facilitate K-ras-driven cancer development remain to be characterized. Here we show that SQLE, a key enzyme in cholesterol synthesis, is upregulated in K-ras-driven cancer and its high expression is correlated with poor clinical outcome. K-ras regulates SQLE expression in a biphasic manner through reactive oxygen species and MYC signaling. Surprisingly, the pro-oncogenic role of SQLE is not mediated by promoting cholesterol synthesis, but by metabolic removal of squalene and thus mitigating its suppressive effect on the PGC-1α-mediated mitochondrial biogenesis and metabolism. Genetic silencing of SQLE in pancreatic cancer cells causes an accumulation of cellular squalene, which binds to Sp1 protein and causes a formation of a tight Sp1-TFAP2E promoter DNA complex with a highly negative binding score. This aberrant squalene/Sp1/TFAP2E promoter complex hinders the expression of TFAP2E and its downstream molecule PGC-1α, leading to suppression of mitochondrial metabolism and an almost complete inhibition of tumor formation in vivo. Importantly, administration of pharmacological squalene to mice bearing pancreatic cancer xenografts could significantly inhibit tumor growth. Our study has revealed a previously unrecognized role of SQLE in regulating gene expression and mitochondrial metabolism to facilitate K-ras-driven cancer development, and identified SQLE as a novel therapeutic target for potential treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Junchen Pan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Rui Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Wenhua Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Hongyu Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Qianrui Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bitao Huo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Haixi Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lin Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yameng Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yumin Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jie Fu
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaojun Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jinyun Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Hainan Academy of Biomedical Sciences, Hainan Medical University, Haiko, Hainan, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Wang T, Weng M, Li K, Li G, Hu S, Hu Z, Li Y, Li M, Wu D, Liang Z, Yu F, Wang G, Li X. LIN28B enhances the chemosensitivity of colon cancer cells via inducing genomic instability by upsetting the balance between the production and removal of reactive oxygen species. Cancer Lett 2025; 616:217572. [PMID: 39986369 DOI: 10.1016/j.canlet.2025.217572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Genomic instability is an enabling characteristic that allows cancer cells to acquire additional hallmarks of cancer through the accumulation of alterations in driver genes. Furthermore, it creates opportunities to enhance the sensitivity of cancer cells to chemotherapeutic agents targeting DNA, owing to the presence of incomplete DNA damage repair pathways. This study identifies LIN28B as a crucial regulator of colon cancer cells' sensitivity to DNA damage- or repair-related compounds by promoting genomic instability. LIN28B mechanistically reduces glutathione (GSH) synthesis and activity by inhibiting the expression of four GSH metabolic enzymes (GCLC, G6PD, GSTM4, and GSTT2B), thereby reducing the capacity of cells to eliminate reactive oxygen species (ROS). LIN28B enhances the proinflammatory signaling pathway in cancer cells through the upregulation of ARID3A, a transcription factor that transactivates PTGES and PTGES2, resulting in increased production of PGE2, a key inflammatory mediator that can elevate ROS generation. In conclusion, LIN28B altered the equilibrium of ROS production and elimination in colon cancer, resulting in elevated ROS levels and subsequent genomic instability.
Collapse
Affiliation(s)
- Tianzhen Wang
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Mingjiao Weng
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen, 518000, PR China
| | - Kai Li
- Department of Oncology 2, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China
| | - Guoli Li
- Department of Anus and Intestine Surgery, Chifeng Municipal Hospital, No.1 Middle Section of Zhaowuda Road, Chifeng, Inner Mongolia, 024000, PR China
| | - Shijie Hu
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Ziyi Hu
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Yanping Li
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Muhan Li
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Di Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, PR China
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen, 518000, PR China.
| | - Fei Yu
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150081, PR China.
| | - Xiaobo Li
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
36
|
Li N, Tong H, Hou W, Liu Q, Xiang F, Zhu JW, Xu SL, He Z, Wang B. Neural-cancer crosstalk: Reciprocal molecular circuits driving gastric tumorigenesis and emerging therapeutic opportunities. Cancer Lett 2025; 616:217589. [PMID: 40015663 DOI: 10.1016/j.canlet.2025.217589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The nervous system plays an important role in regulating physiological functions of the stomach, and its abnormal activity often impairs gastric homeostasis. In response to constant exposure to oncogenic stimuli that leads to gastric tumorigenesis, the neural system becomes an essential component of the tumor microenvironment via perineural infiltration, de novo neurogenesis, and axonogenesis, thereby driving cancer initiation and progression. In this review, we highlight emerging discoveries related to neural-cancer crosstalk and discuss how the nervous system is remodeled by tumor cells including neural components and modulators (including neurotransmitters and neuropeptides). Moreover, we provide a systematic analysis of neural control of the cellular hallmarks of cancer. Finally, we propose how the molecular circuits of neural-cancer crosstalk could be exploited as potential targets for novel anti-cancer treatment, providing new insights into a new modality of neural-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Huyun Tong
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Wenqing Hou
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Qin Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China; Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Jian-Wu Zhu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| | - Zongsheng He
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China; Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China; Jinfeng Laboratory, Chongqing, 401329, PR China.
| |
Collapse
|
37
|
Subramaniam S, Jeet V, Gunter JH, Janjua Khan T, Feng Y, Clements JA, Srinivasan S, Popat A, Batra J. Lactoferrin-encapsulated dichloroacetophenone (DAP) nanoparticles enhance drug delivery and anti-tumor efficacy in prostate cancer. Cancer Lett 2025; 616:217522. [PMID: 39924080 DOI: 10.1016/j.canlet.2025.217522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Pyruvate Dehydrogenase Kinase 1 (PDK1) regulates glycolysis and oxidative phosphorylation pathways and is linked to prostate cancer metastasis and poor prognosis. The therapeutic application of 2,2-dichloroacetophenone (DAP), a PDK1 inhibitor, remains underexplored in prostate cancer. In this study we demonstrated that DAP exhibited a superior ability to inhibit prostate cancer cell proliferation, migration and colony formation at a lower concentration (20 μM) compared to a previously established inhibitor, dichloroacetate (DCA), which required concentrations of 30 mM or higher. However, poor aqueous solubility and lower stability of DAP limits its therapeutic application. Nano formulation of DAP with natural lactoferrin enhanced its dispersion and stability by increasing polydispersity index and intensity, and reduced zeta potential values upon conjugation that overcame the solubility limitations of DAP. The lactoferrin-DAP nanoparticles exhibited enhanced therapeutic efficacy by precisely targeting prostate cancer cells that express high lactoferrin receptors and high anti-tumor activity in vitro (at 1 μM) and in mouse prostate tumor xenografts (20 mg/kg). Mechanistically, these nanoparticles induce apoptosis in cancer cells by inducing caspase3/7 activity and disrupting the glycolytic and oxidative phosphorylation pathways. Moreover, lactoferrin-conjugated DAP nanoparticles suppressed the viability of docetaxel-resistant cells exhibiting a higher inhibitory efficacy compared to free DAP and DCA. Targeting PDK1 through lactoferrin-conjugated DAP nanoparticles represents a potent targeted therapeutic strategy for disrupting prostate tumor metabolism and offers promising implications for overcoming drug resistance.
Collapse
Affiliation(s)
- Sugarniya Subramaniam
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Varinder Jeet
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia
| | - Jennifer H Gunter
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia; The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | | | - Yuran Feng
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia; The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research Institute, Woolloongabba, QLD, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia; The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
38
|
Chan HY, Wang Q, Howie A, Bucci J, Graham P, Li Y. Extracellular vesicle biomarkers redefine prostate cancer radiotherapy. Cancer Lett 2025; 616:217568. [PMID: 39978570 DOI: 10.1016/j.canlet.2025.217568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Radiotherapy (RT) remains a cornerstone in the treatment of prostate cancer (PCa). Extracellular vesicles (EVs), nano-sized particles secreted by cells, play important roles in intercellular communication within the tumour microenvironment (TME) and contribute to tumour growth, metastasis, and therapy resistance. Recent advancements demonstrate the potential of EVs as biomarkers for cancer diagnosis, prognosis, and treatment monitoring. Accumulating evidence supports the role of EVs in modulating RT outcomes by shaping the TME, mediating radioresistance, and influencing cancer metastasis. Despite substantial progress, challenges remain, including the heterogeneity of EV biogenesis, variability in cargo composition, and the absence of standardised methods for EV isolation and characterisation. While the therapeutic and diagnostic prospects of EVs in PCa management are promising, further research is needed to clarify the mechanisms through which EVs impact RT and to translate these findings into clinical practice. Incorporating EV research into PCa treatment paradigms could enhance diagnostic accuracy, enable real-time monitoring of RT responses, and support the development of new targeted therapeutic strategies. This review discusses recent progress in understanding EVs in the context of RT for PCa, focuses on their roles in modulating tumour growth, contributing to radioresistance within the TME, and facilitating the monitoring of RT efficacy and recurrence. In addition, the potential of EVs as biomarkers for liquid biopsy and their applications in enhancing radiosensitivity or overcoming radioresistance is also explored.
Collapse
Affiliation(s)
- Hei Yeung Chan
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Andrew Howie
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
39
|
Bai P, Wang P, Ren T, Tang Q, Zhang N, Zhao L, Zhong R, Sun G. Discovery of a novel Wnt inhibitor DK419: Reversing temozolomide resistance in glioblastoma by switching off Wnt/β-catenin signaling pathway to inhibit MGMT expression. Eur J Med Chem 2025; 288:117411. [PMID: 39978109 DOI: 10.1016/j.ejmech.2025.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Temozolomide (TMZ) remains the primary oral chemotherapeutic agent for glioblastoma, but its efficacy is hampered by resistance mechanisms involving O6-methylguanine-DNA methyltransferase (MGMT). MGMT repairs the TMZ-induced lethal O6-methylguanine (O6-MeG) lesions, leading to treatment resistance. Current small molecule covalent MGMT inhibitors have limited clinical application due to severe hematological toxicity when used with TMZ. Therefore, alternative strategies to overcome MGMT-mediated resistance are critically needed. Targeting the Wnt/β-catenin signaling pathway to suppress MGMT expression presents a promising approach. We synthesized and discovered that a novel Wnt inhibitor, DK419 (6-chloro-2-(trifluoromethyl)-N-(4-(trifluoromethyl)phenyl)-1H -benzimidazole-4-carboxamide), effectively suppressed MGMT expression within 12 h in TMZ-resistant SF763 and SF767 cell lines. DK419 demonstrated synergistic cytotoxic effects with TMZ in these cell lines, while only an additive effect was observed in MGMT-negative SF126 cells. Furthermore, DK419 significantly enhanced TMZ's inhibitory effects on cell proliferation, colony formation, invasion, and migration, while also promoting apoptosis. In a resistant mouse tumor xenograft model, DK419 significantly boosted TMZ's tumor growth suppression, maintaining good biosafety. Western blot analysis revealed that DK419 markedly inhibited the nuclear translocation of β-catenin and decreased the expression of its downstream targets, Cyclin D1 and MGMT. The addition of the Wnt activator LiCl reversed DK419-induced effects on β-catenin nuclear translocation and Cyclin D1 and MGMT expression. For the first time, our findings demonstrate that DK419 can significantly enhance glioblastoma sensitivity to TMZ by modulating the Wnt/β-catenin pathway to downregulate MGMT expression.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
40
|
Chen Y, Wang J, Gu L, Chen H, Gai Z, Hu R, Qing B, Yuan Y, Xia Z. lncRNA NR_146969 promotes the progression of lung adenocarcinoma. Exp Cell Res 2025; 447:114535. [PMID: 40147711 DOI: 10.1016/j.yexcr.2025.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Emerging research suggests that dysregulation of long non-coding RNAs (lncRNAs) is closely linked to the onset and progression of cancer. In this study, we used lncRNA array technology to identify differentially expressed lncRNAs in lung adenocarcinoma patients and normal lung tissues. The study further explored the clinical significance and function of candidate lncRNAs in lung adenocarcinoma (LUAD). The results showed that lncRNA NR_146969 was upregulated in LAUD specimens and was associated with lymph node metastasis and clinical staging in LUAD patients. METHODS The biological functions of lncRNA NR_146969 were observed using CCK-8, colony formation, transwell assay and xenograft tumor model. Explore the potential mechanism of action of lncRNA NR_146969 by FISH, dual luciferase reporter assay and recovery assay. RESULTS Overall, lncRNA NR_146969 plays an oncogenic role in LUAD. Mechanically, lncRNA NR_146969 targets SLC6A14 via miR-26a-1-3p, leading to phosphorylation of the AKT/mTOR pathway, which promotes LUAD growth and metastasis. CONCLUSION Therefore, targeting lncRNA NR_146969 may provide a new therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Juan Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengling Gai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Rui Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
41
|
Zuazo-Gaztelu I, Lawrence D, Oikonomidi I, Marsters S, Pechuan-Jorge X, Gaspar CJ, Kan D, Segal E, Clark K, Beresini M, Braun MG, Rudolph J, Modrusan Z, Choi M, Sandoval W, Reichelt M, DeWitt DC, Kujala P, van Dijk S, Klumperman J, Ashkenazi A. A nonenzymatic dependency on inositol-requiring enzyme 1 controls cancer cell cycle progression and tumor growth. PLoS Biol 2025; 23:e3003086. [PMID: 40208872 DOI: 10.1371/journal.pbio.3003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Endoplasmic-reticulum resident inositol-requiring enzyme 1α (IRE1) supports protein homeostasis via its cytoplasmic kinase-RNase module. Known cancer dependency on IRE1 entails its enzymatic activation of the transcription factor XBP1s and regulated RNA decay. We discovered that some cancer cells surprisingly require IRE1 but not its enzymatic activity. IRE1 knockdown but not enzymatic IRE1 inhibition or XBP1 disruption attenuated cell cycle progression and tumor growth. IRE1 silencing led to activation of TP53 and CDKN1A/p21 in conjunction with increased DNA damage and chromosome instability, while decreasing heterochromatin as well as DNA and histone H3K9me3 methylation. Immunoelectron microscopy detected endogenous IRE1 at the nuclear envelope. Thus, cancer cells co-opt IRE1 either enzymatically or nonenzymatically, which has significant implications for IRE1's biological role and therapeutic targeting.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Lawrence
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ioanna Oikonomidi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Scot Marsters
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ximo Pechuan-Jorge
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Catarina J Gaspar
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Kan
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ehud Segal
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Maureen Beresini
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Marie-Gabrielle Braun
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Joachim Rudolph
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Meena Choi
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Wendy Sandoval
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - David C DeWitt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Pekka Kujala
- Center for Molecular Medicine-Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine-Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine-Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Avi Ashkenazi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
42
|
Wang Y, Xu W, Zhang B, Wang X, Gou S. Concept of Targeted Drug Conjugate and Its Application in Reversing Drug Resistance. J Med Chem 2025; 68:7353-7366. [PMID: 40170467 DOI: 10.1021/acs.jmedchem.4c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Small-molecule targeted drugs have become the mainstream cancer treatment due to their specific therapy. However, drug resistance inevitably happens to cancer patients. Herein, we propose the "targeted drug conjugate (TDC)" concept to design drugs that enhance antitumor activity, reduce toxicity, and reverse resistance. Upon this idea, compounds Lapa-603 and Lapa-604 were obtained by modifying Pt(II) units with Lapatinib's pharmacophore. Research has found that Lapa-604 can potently inhibit the proliferation of the tested cancer cells and reverse multiple cancer cell resistance by targeting the EGFR protein and causing severe DNA damage. More importantly, Lapa-604 presented higher tumor growth inhibitory efficacy than Lapatinib, Cisplatin, or their physical mixtures in both MDA-MB-231 and BT474 xenograft tumor models. Our research has provided promise for the design and development of novel drugs based on the TDC concept that can effectively overcome drug resistance with stronger antitumor activity and lower toxicity than the corresponding combination therapy.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Jiangsu Province Key Laboratory for Biopharmaceuticals and Small Molecule Drugs, Southeast University, Nanjing 211189, P. R. China
| | - Wenqing Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Jiangsu Province Key Laboratory for Biopharmaceuticals and Small Molecule Drugs, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
43
|
Ma Z, Zhou M, Chen H, Shen Q, Zhou J. Deubiquitinase-Targeting Chimeras (DUBTACs) as a Potential Paradigm-Shifting Drug Discovery Approach. J Med Chem 2025; 68:6897-6915. [PMID: 40135978 DOI: 10.1021/acs.jmedchem.4c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Developing proteolysis-targeting chimeras (PROTACs) is well recognized through target protein degradation (TPD) toward promising therapeutics. While a variety of diseases are driven by aberrant ubiquitination and degradation of critical proteins with protective functions, target protein stabilization (TPS) rather than TPD is emerging as a unique therapeutic modality. Deubiquitinase-targeting chimeras (DUBTACs), a class of heterobifunctional protein stabilizers consisting of deubiquitinase (DUB) and protein-of-interest (POI) targeting ligands conjugated with a linker, can rescue such proteins from aberrant elimination. DUBTACs stabilize the levels of POIs in a DUB-dependent manner, removing ubiquitin from polyubiquitylated and degraded proteins. DUBTACs can induce a new interaction between POI and DUB by forming a POI-DUBTAC-DUB ternary complex. Herein, therapeutic benefits of TPS approaches for human diseases are introduced, and recent advances in developing DUBTACs are summarized. Relevant challenges, opportunities, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Qiang Shen
- Department of Interdisciplinary Oncology, School of Medicine, LSU LCMC Health Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
44
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025:10.1038/s41568-025-00803-0. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
45
|
Xu J, Ming X, Wu J, Liu W, Xiao Y. Circ_0035381 contributes to the progression of acute myeloid leukemia via regulating miR-186-5p/CDCA3 pathway. Expert Rev Hematol 2025. [PMID: 40205799 DOI: 10.1080/17474086.2025.2484377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in acute myeloid leukemia (AML) and may be useful for AML therapy. Herein, the project aimed to explore the functions and mechanisms of circ_0035381 in AML. RESEARCH DESIGN AND METHODS Circ_0035381, microRNA-186-5p (miR-186-5p), and cell division cycle associated 3 (CDCA3) expression were determined using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Western blot assay was used to measure protein levels. 5'-ethynyl-2'-deoxyuridine (EdU) and flow cytometry were adopted to measure cell proliferation and apoptosis. Glucose consumption and lactate uptake were examined with commercial kits. The relationships between miR-186-5p and circ_0035381 or CDCA3 were validated using dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_0035381 was increased in the AML subject and AML cell line. Circ_0035381 deficiency hindered the proliferation and glycolysis level and promoted apoptosis in the AML cell line. Circ_0035381 sponged miR-186-5p and miR-186-5p inhibition reversed the effect of circ_0035381 knockdown on AML cell progression. CDCA3 was the target gene of miR-186-5p. CDCA3 overexpression reversed circ_0035381 knockdown-mediated AML cell proliferation and glycolysis inhibition and apoptosis promotion. CONCLUSIONS Circ_0035381 promoted AML progression by elevating CDCA3 through sponging miR-186-5p, providing some clues for the diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Jiaying Wu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Wanying Liu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
46
|
Liu B, Zeng M, Kang W, Li S, Wang X, Yu H, Wu H. Integrating serum pharmacochemistry, network pharmacology, and metabolomics to elucidate the detoxification and effect-adjusting mechanism of Chebulae Fructus-processing on Mongolian medicine Euphorbia pekinensis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119582. [PMID: 40054641 DOI: 10.1016/j.jep.2025.119582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia pekinensis Radix (EP) is a traditional medicinal plant widely used in Mongolian and Chinese medicine for its potent therapeutic properties in treating edema, ascites, and various inflammatory conditions. However, EP has toxicity, which can cause swelling and congestion of the gastrointestinal mucosa. Chebulae Fructus is a unique processing method in Mongolian medicine that is believed to mitigate EP's toxicity and adjust its effect, though the mechanisms underlying this detoxification remain poorly understood. AIM OF THE STUDY This study employed an integrative approach combining network pharmacology, serum pharmacochemistry, pharmacology, and metabolomics to investigate the intestinal detoxification and synergistic effects of Chebulae Fructus-processed Euphorbia pekinensis (PEP). MATERIALS AND METHODS The blood-absorbed components of EP and PEP were identified by UPLC-MS/MS. To evaluate holistic effect of the two medicine, network pharmacology was applied to focus on serum components and identify the key compounds and targets mediating effect in addressing five TCM syndromes, as well as modern medicine symptoms including seven types of cancer and myocardial infarction. In terms of detoxification, non-targeted metabolomics was utilized to analyze significant intestinal metabolites and pathways affected by EP and PEP in normal mice. RESULTS A total of 77 and 109 blood-absorbed components were identified from EP and PEP, respectively, including terpenoids, phenolic acids, alkaloids, flavonoids, and tannins. In network pharmacology analysis, key hub genes were identified as therapeutic targets, with PEP exhibiting possibly enhanced effects than EP since it was associated with more targets and diseases in the network. Furthermore, PEP modulated histamine metabolism and arginine biosynthesis pathways, thereby reducing intestinal inflammation. CONCLUSION This study highlights the different anti-cancer and ascites-reducing potential of EP and PEP, emphasizing the detoxification benefits of Chebulae Fructus processing. These findings provide a foundation for the safe and effective therapeutic use of PEP for treating ascites and cancer, while minimizing intestinal toxicity, thereby promoting the safe utilization of medicinal Euphorbiaceae plants.
Collapse
Affiliation(s)
- Bingbing Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; National Base of State Ministry of Education for Inheritance of Chinese Medicine Processing Technology, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China.
| | - Min Zeng
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China
| | - Hongli Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; National Base of State Ministry of Education for Inheritance of Chinese Medicine Processing Technology, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China.
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; National Base of State Ministry of Education for Inheritance of Chinese Medicine Processing Technology, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing, 210023, China.
| |
Collapse
|
47
|
Sun J, Wang S, Peng S, Gao T, Gao Z. RBM24 regulates apoptosis rates by modulating global transcriptome profile in CAL27 cells. Sci Rep 2025; 15:12069. [PMID: 40200085 PMCID: PMC11978760 DOI: 10.1038/s41598-025-96932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
RNA binding proteins (RBPs) are key factors regulating post-transcriptional events. Categorized as RBPs, RBM24 expression levels have been shown to be a prognosis-related pivotal gene in oral squamous cell carcinoma. We analyzed the binding targets and regulated post-transcriptional events of RBM24 in RBM24-overexpressing cell lines and controls using iRIP-seq and RNA-seq. RBM24-overexpressing cells showed significant changes in gene expression, which are involved in biological pathways related to apoptosis and immune inflammation. RBM24-regulated genes that undergo alternative splicing are primarily engaged in biological processes related to DNA damage repair and RNA metabolism. More notably, we found that RBM24 binds to lncRNAs in addition to pre-mRNAs. These results indicated that RBM24 could play a key role in cancer progression by finding clinical therapeutic targets for Oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 450000, China
| | - Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 450000, China
| | - Tingting Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
48
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
49
|
Banoo T, Sandhu K, Chockalingam S, Nagarajan S. Easy access to a self-assembled glycolipid derived from bhilawanol: a promising anti-cancer drug. Chem Commun (Camb) 2025. [PMID: 40202124 DOI: 10.1039/d5cc01621e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
In this study, we synthesised a series of self-assembling glycoconjugates derived from bhilawanol under environmentally friendly conditions in good yields. These self-assembling glycoconjugates displayed anti-cancer activity toward HeLa cells at an IC50 value of 125 μM with minimal side effects, holding immense potential in cancer therapeutics.
Collapse
Affiliation(s)
- Tohira Banoo
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Kajal Sandhu
- Cell Signaling Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India
| | - S Chockalingam
- Cell Signaling Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India
| | - Subbiah Nagarajan
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| |
Collapse
|
50
|
Guo Z, Dong RW, Wu Y, Dong S, Alahari SK. Cyclin-dependent kinase 4 and 6 inhibitors in breast cancer treatment. Oncogene 2025:10.1038/s41388-025-03378-0. [PMID: 40200094 DOI: 10.1038/s41388-025-03378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the second largest cancer in the world, and it has highest mortality rate in women worldwide. The aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway plays an important role in uncontrolled breast cancer cell proliferation. Therefore, targeting CDK4/6 to improve overall survival rates has been a strong interest in breast cancer therapeutics. Till date, four CDK4/6 inhibitors have been developed and approved for hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer therapies with great success. However, acquired resistance to CDK4/6 inhibitors has emerged and limits their effectiveness in breast cancer. In this review, we systematically discussed the mechanisms of resistance to CDK4/6 inhibitors including the cell cycle-specific and cell cycle-nonspecific mechanisms. Also, we analyzed combination strategies with other signaling inhibitors in clinical and preclinical settings that further expand the clinical application of CDK4/6 inhibitors in future breast cancer therapies.
Collapse
Affiliation(s)
- Zhengfei Guo
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Richard W Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yusheng Wu
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Shengli Dong
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|