1
|
Taha SR, Karimi M, Mahdavi B, Yousefi Tehrani M, Bemani A, Kabirian S, Mohammadi J, Jabbari S, Hushmand M, Mokhtar A, Pourhanifeh MH. Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy. Epigenetics Chromatin 2025; 18:3. [PMID: 39810224 PMCID: PMC11734566 DOI: 10.1186/s13072-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD). OBJECTIVE This review aims to explore the relationship between ncRNAs and PCD in CRC, focusing on how ncRNAs influence cancer cell survival, proliferation, and treatment resistance. METHODS A comprehensive literature analysis was conducted to examine recent findings on the role of ncRNAs in modulating various PCD mechanisms, including apoptosis, autophagy, necroptosis, and pyroptosis, and their impact on CRC development and therapeutic response. RESULTS ncRNAs were found to significantly regulate PCD pathways, impacting tumor growth, metastasis, and treatment sensitivity in CRC. Their influence on these pathways highlights the potential of ncRNAs as biomarkers for early CRC detection and as targets for innovative therapeutic interventions. CONCLUSION Understanding the involvement of ncRNAs in PCD regulation offers new insights into CRC biology. The targeted modulation of ncRNA-PCD interactions presents promising avenues for personalized cancer treatment, which may improve patient outcomes by enhancing therapeutic effectiveness and reducing resistance.
Collapse
Affiliation(s)
- Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. LouisWashington, MO, USA
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kiev, Ukraine.
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Ali Bemani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahriar Kabirian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Mohammadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Jabbari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Hushmand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mokhtar
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- PAKAN Institute, Tehran, Iran.
| |
Collapse
|
2
|
Guo J, Chen Q, Han S, Wang T, Xia K, Yu B, Qiu T, Zhou J. Construction of an autophagy-related genes risk model as predicting prognosis: BAG1 suppresses growth of clear cell renal cell carcinoma. Int Immunopharmacol 2024; 140:112737. [PMID: 39128415 DOI: 10.1016/j.intimp.2024.112737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The incidence of clear cell renal cell carcinoma (ccRCC) is increasing annually. While the cure rate and prognosis of early ccRCC are promising, the 5-year survival rate of patients with metastatic ccRCC is below 12%. Autophagy disfunction is closely related to infection, cancer, neurodegeneration and aging. Nevertheless, there has been limited exploration of the association between autophagy and ccRCC through bioinformatics analysis. METHODS A novel risk model of autophagy-related genes (ARGs) was constructed to predict the prognosis of patients with ccRCC and guide the individualized treatment to some extent. Relevant data samples were obtained from the TCGA database, and ccRCC-related ARGs were identified by Pearson correlation analysis, leading to the establishment of a risk model covering 10 ccRCC-related ARGs. Many indicators were used to assess the accuracy of the risk model. RESULTS Receiver operating characteristic (ROC) curve analysis showed that the risk model had high accuracy, indicating that the risk model could predict the prognosis of ccRCC patients. Moreover, the findings revealed significant differences about immune and metabolic features in low- and high-risk groups. The study also found that BAG1 within the risk model was closely related to the prognosis of ccRCC and an independent risk factor. In vitro and in vivo experiments validated for the first time that BAG1 could suppress the proliferation, migration, and invasion of ccRCC. CONCLUSION The construction of ARGs risk model, can well predict the prognosis of ccRCC patients, and provide guidance for individual therapy to patients. It was also found that BAG1 has significant prognostic value for ccRCC patients and acts as a tumor suppressor gene in ccRCC. These findings have crucial implications for the prognosis and treatment of ccRCC patients.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Wuhan University Institute of Urological Disease, 430060 Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| | - Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Wuhan University Institute of Urological Disease, 430060 Wuhan, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Central Laboratory, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Hsueh TC, Chen PH, Hong JR. ISKNV Triggers AMPK/mTOR-Mediated Autophagy Signaling through Oxidative Stress, Inducing Antioxidant Enzyme Expression and Enhancing Viral Replication in GF-1 Cells. Viruses 2024; 16:914. [PMID: 38932206 PMCID: PMC11209599 DOI: 10.3390/v16060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) infections can induce the process of host cellular autophagy but have rarely been identified within the molecular autophagy signaling pathway. In the present study, we demonstrated that ISKNV induces ROS-mediated oxidative stress signals for the induction of 5'AMP-activated protein kinase/mechanistic target of rapamycin kinase (AMPK/mTOR)-mediated autophagy and upregulation of host antioxidant enzymes in fish GF-1 cells. We also examined ISKNV-induced oxidative stress, finding that reactive oxidative species (ROS) increased by 1.5-fold and 2.5-fold from day 2 to day 3, respectively, as assessed by the H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was blocked by NAC treatment in fish GF-1 cells. Furthermore, ISKNV infection was shown to trigger oxidative stress/Nrf2 signaling from day 1 to day 3; this event was then correlated with the upregulation of antioxidant enzymes such as Cu/ZnSOD and MnSOD and was blocked by the antioxidant NAC. Using an MDC assay, TEM analysis and autophagy marker LC3-II/I ratio, we found that ROS stress can regulate autophagosome formation within the induction of autophagy, which was inhibited by NAC treatment in GF-1 cells. Through signal analysis, we found that AMPK/mTOR flux was modulated through inhibition of mTOR and activation of AMPK, indicating phosphorylation levels of mTOR Ser 2448 and AMPK Thr 172 from day 1 to day 3; however, this process was reversed by NAC treatment, which also caused a reduction in virus titer (TCID50%) of up to 1000 times by day 3 in GF-1 cells. Thus, ISKNV-induced oxidative stress signaling is blocked by antioxidant NAC, which can also either suppress mTOR/AMPK autophagic signals or reduce viral replication. These findings may provide the basis for the creation of DNA control and treatment strategies.
Collapse
Affiliation(s)
- Tsai-Ching Hsueh
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Han Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Tiwari M, Srivastava P, Abbas S, Jegatheesan J, Ranjan A, Sharma S, Maurya VP, Saxena AK, Sharma LK. Emerging Role of Autophagy in Governing Cellular Dormancy, Metabolic Functions, and Therapeutic Responses of Cancer Stem Cells. Cells 2024; 13:447. [PMID: 38474411 PMCID: PMC10930960 DOI: 10.3390/cells13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tumors are composed of heterogeneous populations of dysregulated cells that grow in specialized niches that support their growth and maintain their properties. Tumor heterogeneity and metastasis are among the major hindrances that exist while treating cancer patients, leading to poor clinical outcomes. Although the factors that determine tumor complexity remain largely unknown, several genotypic and phenotypic changes, including DNA mutations and metabolic reprograming provide cancer cells with a survival advantage over host cells and resistance to therapeutics. Furthermore, the presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Therefore, these CSCs have been investigated in detail recently as potential targets to treat cancer and prevent recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, recent studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death. Thus, it is intriguing to address whether autophagy promotes or inhibits CSC functions and whether autophagy modulation can be used to regulate CSC functions, either alone or in combination. This review describes the roles of autophagy in the regulation of metabolic functions, proliferation and quiescence of CSCs, and its role during therapeutic stress. The review further highlights the autophagy-associated pathways that could be used to regulate CSCs. Overall, the present review will help to rationalize various translational approaches that involve autophagy-mediated modulation of CSCs in controlling cancer progression, metastasis, and recurrence.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Pransu Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Sabiya Abbas
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Janani Jegatheesan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ashish Ranjan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ved Prakash Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ajit Kumar Saxena
- Department of Pathology/Lab Medicine, All India Institute of Medical Science, Patna 801507, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| |
Collapse
|
6
|
Tanaka M, Sugimoto K, Akasaka H, Yoshida S, Takahashi T, Fujimoto T, Xie K, Yasunobe Y, Yamamoto K, Hirabayashi T, Nakanishi R, Fujino H, Rakugi H. Effects of interleukin-15 on autophagy regulation in the skeletal muscle of mice. Am J Physiol Endocrinol Metab 2024; 326:E326-E340. [PMID: 38294696 DOI: 10.1152/ajpendo.00311.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical School, Okayama, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Osaka Rosai Hospital, Osaka, Japan
| |
Collapse
|
7
|
Dalle Carbonare L, Minoia A, Vareschi A, Piritore FC, Zouari S, Gandini A, Meneghel M, Elia R, Lorenzi P, Antoniazzi F, Pessoa J, Zipeto D, Romanelli MG, Guardavaccaro D, Valenti MT. Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression. Cells 2024; 13:408. [PMID: 38474372 PMCID: PMC10930675 DOI: 10.3390/cells13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Alberto Gandini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy; (A.G.); (F.A.)
| | - Mirko Meneghel
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Rossella Elia
- Department of Medicine, University of Verona, 37134 Verona, Italy;
| | - Pamela Lorenzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy; (A.G.); (F.A.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | | | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| |
Collapse
|
8
|
Xu JY, Fan JX, Hu M, Zeng J. Microorganism-regulated autophagy in gastrointestinal cancer. PeerJ 2023; 11:e16130. [PMID: 37786582 PMCID: PMC10541808 DOI: 10.7717/peerj.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Gastrointestinal cancer has always been one of the most urgent problems to be solved, and it has become a major global health issue. Microorganisms in the gastrointestinal tract regulate normal physiological and pathological processes. Accumulating evidence reveals the role of the imbalance in the microbial community during tumorigenesis. Autophagy is an important intracellular homeostatic process, where defective proteins and organelles are degraded and recycled under stress. Autophagy plays a dual role in tumors as both tumor suppressor and tumor promoter. Many studies have shown that autophagy plays an important role in response to microbial infection. Here, we provide an overview on the regulation of the autophagy signaling pathway by microorganisms in gastrointestinal cancer.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Chongqing Normal University, Chongqing, China
| | | | - Min Hu
- Chongqing Normal University, Chongqing, China
| | - Jun Zeng
- Chongqing Normal University, Chongqing, China
| |
Collapse
|
9
|
Clavero E, Sanchez-Maldonado JM, Macauda A, Ter Horst R, Sampaio-Marques B, Jurczyszyn A, Clay-Gilmour A, Stein A, Hildebrandt MAT, Weinhold N, Buda G, García-Sanz R, Tomczak W, Vogel U, Jerez A, Zawirska D, Wątek M, Hofmann JN, Landi S, Spinelli JJ, Butrym A, Kumar A, Martínez-López J, Galimberti S, Sarasquete ME, Subocz E, Iskierka-Jażdżewska E, Giles GG, Rybicka-Ramos M, Kruszewski M, Abildgaard N, Verdejo FG, Sánchez Rovira P, da Silva Filho MI, Kadar K, Razny M, Cozen W, Pelosini M, Jurado M, Bhatti P, Dudzinski M, Druzd-Sitek A, Orciuolo E, Li Y, Norman AD, Zaucha JM, Reis RM, Markiewicz M, Rodríguez Sevilla JJ, Andersen V, Jamroziak K, Hemminki K, Berndt SI, Rajkumar V, Mazur G, Kumar SK, Ludovico P, Nagler A, Chanock SJ, Dumontet C, Machiela MJ, Varkonyi J, Camp NJ, Ziv E, Vangsted AJ, Brown EE, Campa D, Vachon CM, Netea MG, Canzian F, Försti A, Sainz J. Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization. Int J Mol Sci 2023; 24:8500. [PMID: 37239846 PMCID: PMC10218542 DOI: 10.3390/ijms24108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Collapse
Affiliation(s)
- Esther Clavero
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (E.C.); (M.J.)
| | - José Manuel Sanchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain;
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, 31-066 Kraków, Poland;
| | - Alyssa Clay-Gilmour
- Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA;
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Michelle A. T. Hildebrandt
- Department of Lymphoma–Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - Ramón García-Sanz
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (R.G.-S.); (M.E.S.)
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark;
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Daria Zawirska
- Department of Hematology, University Hospital, 30-688 Kraków, Poland;
| | - Marzena Wątek
- Holycross Medical Oncology Center, 25-735 Kielce, Poland;
- Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (D.C.)
| | - John J. Spinelli
- Division of Population Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | | | - Sara Galimberti
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - María Eugenia Sarasquete
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (R.G.-S.); (M.E.S.)
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | | | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Malwina Rybicka-Ramos
- Department of Hematology, Specialist Hospital No. 1 in Bytom, Academy of Silesia, Faculty of Medicine, 40-055 Katowice, Poland;
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Francisco García Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.V.); (P.S.R.)
| | - Pedro Sánchez Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.V.); (P.S.R.)
| | - Miguel Inacio da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany;
| | | | - Małgorzata Razny
- Department of Hematology, Rydygier Hospital, 31-826 Cracow, Poland;
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA 92697, USA;
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy;
| | - Manuel Jurado
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (E.C.); (M.J.)
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Medicine, University of Granada, 18012 Granada, Spain
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marek Dudzinski
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.D.); (M.M.)
| | - Agnieszka Druzd-Sitek
- Department of Lymphoproliferative Diseases, Maria Skłodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Aaron D. Norman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
- Genetic Epidemiology and Risk Assessment Program, Mayo Clinic Comprehensive Cancer Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal and ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal;
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.D.); (M.M.)
| | | | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, DK-6200 Aabenraa, Denmark;
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Vicent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; (V.R.); (S.K.K.)
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Shaji K. Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; (V.R.); (S.K.K.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Charles Dumontet
- UMR INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | | | - Nicola J. Camp
- Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA;
| | - Annette Juul Vangsted
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark;
| | - Elizabeth E. Brown
- Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (D.C.)
| | - Celine M. Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain;
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Autophagy in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14205072. [PMID: 36291856 PMCID: PMC9600546 DOI: 10.3390/cancers14205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Autophagy is a dynamic and tightly regulated process that seems to have dual effects in cancer. In some contexts, it can induce carcinogenesis and promote cancer cell survival, whereas in others, it acts preventing tumor cell growth and tumor progression. Thus, autophagy functions seem to strictly depend on cancer ontogenesis, progression, and type. Here, we will dive into the current knowledge of autophagy in hematological malignancies and will highlight the main genetic components involved in each cancer type. Abstract Autophagy is a highly conserved metabolic pathway via which unwanted intracellular materials, such as unfolded proteins or damaged organelles, are digested. It is activated in response to conditions of oxidative stress or starvation, and is essential for the maintenance of cellular homeostasis and other vital functions, such as differentiation, cell death, and the cell cycle. Therefore, autophagy plays an important role in the initiation and progression of tumors, including hematological malignancies, where damaged autophagy during hematopoiesis can cause malignant transformation and increase cell proliferation. Over the last decade, the importance of autophagy in response to standard pharmacological treatment of hematological tumors has been observed, revealing completely opposite roles depending on the tumor type and stage. Thus, autophagy can promote tumor survival by attenuating the cellular damage caused by drugs and/or stabilizing oncogenic proteins, but can also have an antitumoral effect due to autophagic cell death. Therefore, autophagy-based strategies must depend on the context to create specific and safe combination therapies that could contribute to improved clinical outcomes. In this review, we describe the process of autophagy and its role on hematopoiesis, and we highlight recent research investigating its role as a potential therapeutic target in hematological malignancies. The findings suggest that genetic variants within autophagy-related genes modulate the risk of developing hemopathies, as well as patient survival.
Collapse
|
12
|
Chen Y, Li Q, Ren S, Chen T, Zhai B, Cheng J, Shi X, Song L, Fan Y, Guo D. Investigation and experimental validation of curcumin-related mechanisms against hepatocellular carcinoma based on network pharmacology. J Zhejiang Univ Sci B 2022; 23:682-698. [PMID: 35953761 PMCID: PMC9381327 DOI: 10.1631/jzus.b2200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To determine the potential molecular mechanisms underlying the therapeutic effect of curcumin on hepatocellular carcinoma (HCC) by network pharmacology and experimental in vitro validation. METHODS The predictive targets of curcumin or HCC were collected from several databases. the identified overlapping targets were crossed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. Two of the candidate pathways were selected to conduct an experimental verification. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay was used to determine the effect of curcumin on the viability of HepG2 and LO2 cells. The apoptosis and autophagy of HepG2 cells were respectively detected by flow cytometry and transmission electron microscopy. Besides, western blot and real-time polymerase chain reaction (PCR) were employed to verify the p53 apoptotic pathway and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) autophagy pathway. HepG2 cells were pretreated with pifithrin-α (PFT-α) and GSK690693 for further investigation. RESULTS The 167 pathways analyzed by KEGG included apoptosis, autophagy, p53, and AMPK pathways. The GO enrichment analysis demonstrated that curcumin was involved in cellular response to drug, regulation of apoptotic pathway, and so on. The in vitro experiments also confirmed that curcumin can inhibit the growth of HepG2 cells by promoting the apoptosis of p53 pathway and autophagy through the AMPK pathway. Furthermore, the protein and messenger RNA (mRNA) of the two pathways were downregulated in the inhibitor-pretreated group compared with the experimental group. The damage-regulated autophagy modulator (DRAM) in the PFT-α-pretreated group was downregulated, and p62 in the GSK690693-pretreated group was upregulated. CONCLUSIONS Curcumin can treat HCC through the p53 apoptotic pathway and the AMPK/Unc-51-like kinase 1 (ULK1) autophagy pathway, in which the mutual transformation of autophagy and apoptosis may occur through DRAM and p62.
Collapse
Affiliation(s)
- Yang Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qian Li
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Sisi Ren
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jiangxue Cheng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaoyan Shi
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Liang Song
- Medical Experimental Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
- Shaanxi Provincial Key Laboratory of TCM Constitution and Disease Prevention, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China. ,
| |
Collapse
|
13
|
Interleukin 7 inhibit autophagy via P53 regulated AMPK/mTOR signaling pathway in non-small cell lung cancer. Sci Rep 2022; 12:11208. [PMID: 35778432 PMCID: PMC9249745 DOI: 10.1038/s41598-022-14742-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Interleukin 7 (IL-7) has been demonstrated regulating lymphangiogenesis, apoptosis, and proliferation. Whether IL-7 induce or inhibit autophagy in non-small cell lung cancer (NSCLC) are unknown. In this study, Western blot was used to detect cytoplasmic and nuclear protein of p53, total protein of AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Light chain 3 (LC3). Quantitative Real-Time PCR (qRT-PCR) was used to detect p53 mRNA level after treated with IL-7. Then using transmission electron microscopy to observe the morphological change of autophagosome. 123 cases of NSCLC were collected for survival analysis, immunohistochemistry staining and cox regression multivariate analysis. We find that IL-7 induce the p53 translocation from nucleus to cytoplasm, then IL-7 down-regulate phosphorylation of AMPK and up-regulate phosphorylation of mTOR. The expression of AMPK and p53 were associated with IL-7/IL-7R and mTOR expression. Clinically, AMPK and p53 were well correlated with stage and survival of lung cancer patients. IL-7R, mTOR and tumor stage were the strongest predictors of survival. In conclusion, IL-7 inhibit autophagy in NSCLC via P53 regulated AMPK/mTOR signaling pathway. AMPK and p53 are correlated with patients’ survival. IL-7R, mTOR and tumor stage are the strongest predictor of survival.
Collapse
|
14
|
Chai D, Shi SY, Sobhani N, Ding J, Zhang Z, Jiang N, Wang G, Li M, Li H, Zheng J, Bai J. IFI35 Promotes Renal Cancer Progression by Inhibiting pSTAT1/pSTAT6-Dependent Autophagy. Cancers (Basel) 2022; 14:cancers14122861. [PMID: 35740527 PMCID: PMC9221357 DOI: 10.3390/cancers14122861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Interferon-induced protein 35 (IFI35), is currently acknowledged to govern the virus-related immune inflammatory responses. However, the biological significance and function of IFI35 in renal cell cancer (RCC) is still not well understood. Here, IFI35 expression and function were investigated in RCC tissues, renal cancer cells, and animal models. The results showed that IFI35 expression was significantly increased in 200 specimens of RCC patients. We found that higher IFI35 levels were significantly correlated with poor RCC prognosis. In human cell lines, the knockdown of IFI35 suppressed the malignant behavior of renal cancer cells. Similarly, the IFI35 knockdown resulted in significant inhibition of tumor progression in the subcutaneous or lung metastasis mouse model. Furthermore, the knockdown of IFI35 promoted the induction of autophagy by enhancing the autophagy-related gene expression (LC3-II, Beclin-1, and ATG-5). Additionally, blockade of STAT1/STAT6 phosphorylation (pSTAT1/pSTAT6) abrogated the induced autophagy by IFI35 knockdown in renal cancer cells. The autophagy inhibitor 3-MA also abolished the prevention of tumor growth by deleting IFI35 in renal cancer models. The above results suggest that the knockdown of IFI35 suppressed tumor progression of renal cancer by pSTAT1/pSTAT6-dependent autophagy. Our research revealed that IFI35 may serve as a potential diagnosis and therapeutic target for RCC.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Shang Yuchen Shi
- Department of Stereotactic Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China;
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China;
| | - Nan Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China;
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China;
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
- Correspondence: (J.Z.); (J.B.)
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; (D.C.); (J.D.); (Z.Z.); (N.J.); (G.W.); (M.L.)
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
- Correspondence: (J.Z.); (J.B.)
| |
Collapse
|
15
|
Abdelhamid AM, Saber S, Youssef ME, Gaafar AGA, Eissa H, Abd-Eldayem MA, Alqarni M, Batiha GES, Obaidullah AJ, Shahien MA, El-Ahwany E, Amin NA, Etman MA, Kaddah MMY, Abd El-Fattah EE. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomed Pharmacother 2021; 145:112455. [PMID: 34844106 DOI: 10.1016/j.biopha.2021.112455] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is on the rise worldwide, and its incidence in diabetic patients is two to three times that of non-diabetics. Current therapeutic options fail to provide considerable survival benefits to patients with HCC. There is a strong possibility that the FDA-approved antidiabetic combination of empagliflozin and metformin could show complementary effects to control HCC progression. However, their multitarget effects have not yet been studied on HCC development. Therefore, the present study aims to evaluate the antitumorigenic activity of this combination in non-diabetic mice with diethylnitrosamine-induced HCC. Empagliflozin/metformin combination prolonged survival and improved histological features of mice livers. Additionally, Empagliflozin/metformin showed anti-inflammatory potential and relieved oxidative stress. On the one hand these effects are likely attributed to the ability of metformin to inactivate NF-κB in an AMPK-dependent mechanism and on the other hand to the ability of the empagliflozin to inhibit the MAPKs, p38 and ERK1/2. Empagliflozin also showed a less robust effect on AMPK than that of metformin. Moreover, empagliflozin enhanced the autophagy inducing activity of metformin. Furthermore, empagliflozin/metformin exhibited increased apoptotic potential. Consequently, empagliflozin augmented the antitumorigenic function of metformin by exerting better control of angiogenesis, and metastasis. To conclude, our findings suggest empagliflozin as an ideal adjunct to metformin for the inhibition of HCC progression. In addition, since the incidence of hypoglycemia is minimal due to insulin-independent mechanism of action of both treatments, empagliflozin/metformin could be a promising therapeutic modality for the management of diabetic patients with HCC; and even non diabetic ones.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Awad Shahien
- Department of Clinical Pharmacology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Ali Etman
- Research and Development, Department of Drug Stability, Safe Pharma, Pharco Pharmaceuticals, Alexandria, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
16
|
Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, Yang H, Liu M, Ren S, Meng X, Xu H. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther 2021; 226:107868. [PMID: 33901505 DOI: 10.1016/j.pharmthera.2021.107868] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of malignant afflictions burdening people worldwide, mainly caused by shortages of effective medical intervention and poorly mechanistic understanding of the pathogenesis of CRC. Non-coding RNAs (ncRNAs) are a type of heterogeneous transcripts without the capability of coding protein, but have the potency of regulating protein-coding gene expression. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic contents are delivered to cellular lysosomes for degradation, resulting in the turnover of cellular components and producing energy for cell functions. A growing body of evidence reveals that ncRNAs, autophagy, and the crosstalks of ncRNAs and autophagy play intricate roles in the initiation, progression, metastasis, recurrence and therapeutic resistance of CRC, which confer ncRNAs and autophagy to serve as clinical biomarkers and therapeutic targets for CRC. In this review, we sought to delineate the complicated roles of ncRNAs, mainly including miRNAs, lncRNAs and circRNAs, in the pathogenesis of CRC, particularly focus on the regulatory role of ncRNAs in CRC-related autophagy, attempting to shed light on the complex pathological mechanisms, involving ncRNAs and autophagy, responsible for CRC tumorigenesis and development, so as to underpin the ncRNAs- and autophagy-based therapeutic strategies for CRC in clinical setting.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
17
|
So KY, Park BH, Oh SH. Cytoplasmic sirtuin 6 translocation mediated by p62 polyubiquitination plays a critical role in cadmium-induced kidney toxicity. Cell Biol Toxicol 2021; 37:193-207. [PMID: 32394328 DOI: 10.1007/s10565-020-09528-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Sirtuin 6 (Sirt6) is important for maintaining kidney homeostasis and function. Cd exposure increases the risk of developing kidney diseases. However, the role of Sirt6 in kidney disease mechanisms is unclear. Here, we evaluated the role of Sirt6 in Cd-induced kidney toxicity. After Cd exposure, p62/sequestosome-1 (SQSTM1), an autophagy substrate, accumulated in mouse kidney mesangial cells in monomeric and polyubiquitinated (polyUb) forms. Sirt6 accumulated in response to Cd treatment at concentrations below the half-maximal inhibitory concentration and decreased after 12 h of treatment. Sirt6 and p62 co-localized in the nucleus and redistributed to the cytosol after Cd treatment. Sirt6 was mainly present in nuclei-rich membrane fractions. Sirt6 interacted with p62. Ub, and microtubule-associated protein light chain 3 (LC3). Knockdown of p62 promoted Sirt6 nuclear accumulation and inhibited apoptosis. Sirt6 overexpression altered levels of polyUb-p62 and apoptosis. At earlier times during Cd treatment, polyubiquitination of p62 and apoptosis were reduced. Cytoplasmic translocation of Sirt6 occurred later, with increased polyubiquitination of p62 and apoptosis. Bafilomycin 1 (BaF1) treatment promoted cytosolic Sirt6 accumulation, increasing cell death. Silencing autophagy related 5 (Atg5) increased nuclear Sirt6 levels, reduced polyUb-p62, and inhibited cell death, indicating that autophagy was necessary for Sirt6 redistribution. Cd resistance was associated with reduced polyUb-p62 and persistent Sirt6 expression. Cd treatment in mice for 4 weeks promoted p62, Sirt6, and LC3-II accumulation, inducing apoptosis in kidney tissues. Overall, our findings show that polyUb-p62 targeted Sirt6 to autophagosomes, playing a crucial role in Cd-induced cell death and kidney damage.
Collapse
Affiliation(s)
- Keum-Young So
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea.
| |
Collapse
|
18
|
Li J, Pu K, Li C, Wang Y, Zhou Y. A Novel Six-Gene-Based Prognostic Model Predicts Survival and Clinical Risk Score for Gastric Cancer. Front Genet 2021; 12:615834. [PMID: 33692828 PMCID: PMC7938863 DOI: 10.3389/fgene.2021.615834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Autophagy plays a vital role in cancer initiation, malignant progression, and resistance to treatment. However, autophagy-related genes (ARGs) have rarely been analyzed in gastric cancer (GC). The purpose of this study was to analyze ARGs in GC using bioinformatic analysis and to identify new biomarkers for predicting the overall survival (OS) of patients with GC. Methods: The gene expression profiles and clinical data of patients with GC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and ARGs were obtained from two other datasets (the Human Autophagy Database and Molecular Signatures Database). Lasso, univariate, and multivariate Cox regression analyses were performed to identify the OS-related ARGs. Finally, a six-ARG model was identified as a prognostic indicator using the risk-score model, and survival and prognostic performance were analyzed based on the Kaplan-Meier test and ROC curve. Estimate calculations were used to assess the immune status of this model, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed for investigating the functions and terms associated with the model-related genes in GC. Results: The six ARGs, DYNLL1, PGK2, HPR, PLOD2, PHYHIP, and CXCR4, were identified using Lasso and Cox regression analyses. Survival analysis revealed that the OS of GC patients in the high-risk group was significantly lower than that of the low-risk group (p < 0.05). The ROC curves revealed that the risk score model exhibited better prognostic performance with respect to OS. Multivariate Cox regression analysis indicated that the model was an independent predictor of OS and was not affected by most of the clinical traits (p < 0.05). The model-related genes were associated with immune suppression and several biological process terms, such as extracellular structure organization and matrix organization. Moreover, the genes were associated with the P13K-Akt signaling pathway, focal adhesion, and MAPK signaling pathway. Conclusions: This study presents potential prognostic biomarkers for GC patients that would aid in determining the best patient-specific course of treatment.
Collapse
Affiliation(s)
- Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chunmei Li
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
He YH, Tian G. Autophagy as a Vital Therapy Target for Renal Cell Carcinoma. Front Pharmacol 2021; 11:518225. [PMID: 33643028 PMCID: PMC7902926 DOI: 10.3389/fphar.2020.518225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process that degrades and recycles superfluous organelles or damaged cellular contents. It has been found to have dual functions in renal cell carcinoma (RCC). Many autophagy-related proteins are regarded as prognostic markers of RCC. Researchers have attempted to explore synthetic and phytochemical drugs for RCC therapy that target autophagy. In this review, we highlight the importance of autophagy in RCC and potential treatments related to autophagy.
Collapse
Affiliation(s)
- Ying-Hua He
- Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo Tian
- Hepatobiliary and Pancreatic Intervention Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Mishra RK, Ahmad A, Vyawahare A, Kumar A, Khan R. Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. Curr Top Med Chem 2020; 20:1810-1823. [PMID: 32543361 DOI: 10.2174/1568026620666200616133814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies (mAbs) have always provided outstanding therapeutic arsenal in the
treatment of cancer, be it hematological malignancies or solid tumors. Monoclonal antibodies mediated
targeting of cancer genes in general and tumor-suppressor genes, in particular, have appreciably allowed
the possibilities of trafficking these antibodies to specific tumor mechanisms and aim for the pin-point
maneuvered tumor treatment strategies. The conventional cancer treatment options are associated with
enormous limitations like drug resistance, acute and pan-toxic side effects and collateral damage to other
unrelated cells and organs. Therefore, monoclonal antibody-mediated treatments have some special advantages
of specific targeting of cancer-related genes and minimizing the off-target side effects. A large
number of monoclonal antibody-mediated treatment regimen viz. use of immunoconjugates, clinically
targeting TGFβ with pan-TGFβ monoclonal antibodies, p53 by its monoclonal antibodies and EGFRtargeted
monoclonal antibodies, etc. have been observed in the recent past. In this review, the authors
have discussed some of the significant advances in the context of targeting tumor suppressor genes with
monoclonal antibodies. Approximately 250 articles were scanned from research databases like PubMed
central, Europe PubMed Central and google scholar up to the date of inception, and relevant reports on
monoclonal antibody-mediated targeting of cancer genes were selected. mAb mediated targeting of tumor
suppressor genes is a recent grey paradigm, which has not been explored up to its maximum potential.
Therefore, this review will be of appreciable significance that it will boost further in-depth understanding
of various aspects of mAb arbitrated cancer targeting and will warrant and promote further rigorous
research initiatives in this regard. The authors expect that this review will acquaint the readers
with the current status regarding the recent progress in the domain of mAbs and their employability and
targetability towards tumor suppressor genes in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
21
|
Tian H, Wang W, Meng X, Wang M, Tan J, Jia W, Li P, Li J, Zhou Q. ERas Enhances Resistance to Cisplatin-Induced Apoptosis by Suppressing Autophagy in Gastric Cancer Cell. Front Cell Dev Biol 2020; 7:375. [PMID: 32083074 PMCID: PMC7005724 DOI: 10.3389/fcell.2019.00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC), a common type of malignant cancer, remains the fifth most frequently diagnosed cancer and the third leading cause of cancer-related deaths worldwide. Despite developments in the treatment of GC, the prognosis remains poor. Embryonic stem cell-expressed Ras (ERas), a novel member of the Ras protein family, has recently been identified as an oncogene involved in the tumorigenic growth of embryonic stem cells. A recent study reported that ERas is expressed in most GC cell lines and GC specimens, and it promotes tumorigenicity in GC through induction of the epithelial mesenchymal transition (EMT) and activation of the PI3K/AKT pathway. Here, we found that ERas blocked autophagy flux in BGC-823 and AGS GC cells, which may occur through activation of the AKT/mTOR signaling pathway. Moreover, ERas overexpression suppressed cisplatin-induced apoptosis, and rapamycin treatment significantly attenuated ERas-mediated cisplatin resistance in GC cells. These data suggest that ERas may be a potential therapeutic target to improve the outcomes of GC patients by regulating the autophagy process.
Collapse
Affiliation(s)
- Huajian Tian
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Wenjun Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Xiao Meng
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Miaomiao Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Junyang Tan
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Wenjuan Jia
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Peining Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jianshuang Li
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Qinghua Zhou
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Yang Y, Shu X, Shu XO, Bolla MK, Kweon SS, Cai Q, Michailidou K, Wang Q, Dennis J, Park B, Matsuo K, Kwong A, Park SK, Wu AH, Teo SH, Iwasaki M, Choi JY, Li J, Hartman M, Shen CY, Muir K, Lophatananon A, Li B, Wen W, Gao YT, Xiang YB, Aronson KJ, Spinell JJ, Gago-Dominguez M, John EM, Kurian AW, Chang-Claude J, Chen ST, Dörk T, Evans DGR, Schmidt MK, Shin MH, Giles GG, Milne RL, Simard J, Kubo M, Kraft P, Kang D, Easton DF, Zheng W, Long J. Re-evaluating genetic variants identified in candidate gene studies of breast cancer risk using data from nearly 280,000 women of Asian and European ancestry. EBioMedicine 2019; 48:203-211. [PMID: 31629678 PMCID: PMC6838373 DOI: 10.1016/j.ebiom.2019.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously conducted a systematic field synopsis of 1059 breast cancer candidate gene studies and investigated 279 genetic variants, 51 of which showed associations. The major limitation of this work was the small sample size, even pooling data from all 1059 studies. Thereafter, genome-wide association studies (GWAS) have accumulated data for hundreds of thousands of subjects. It's necessary to re-evaluate these variants in large GWAS datasets. METHODS Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets. FINDINGS Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P < 2·19 × 10-4. The associations for four variants reached P < 5 × 10-8 and have been reported by previous GWAS, including rs6435074 and rs6723097 (CASP8), rs17879961 (CHEK2) and rs2853669 (TERT). The remaining eight variants were rs676387 (HSD17B1), rs762551 (CYP1A2), rs1045485 (CASP8), rs9340799 (ESR1), rs7931342 (CHR11), rs1050450 (GPX1), rs13010627 (CASP10) and rs9344 (CCND1). Further investigating these 10 genes identified associations for two additional variants at P < 5 × 10-8, including rs4793090 (near HSD17B1), and rs9210 (near CYP1A2), which have not been identified by previous GWAS. INTERPRETATION Though most candidate gene variants were not associated with breast cancer risk, we found 14 variants showing an association. Our findings warrant further functional investigation of these variants. FUND: National Institutes of Health.
Collapse
Affiliation(s)
- Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manjeet K Bolla
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyriaki Michailidou
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Boyoung Park
- Department of Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Keitaro Matsuo
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Happy Valley, Hong Kong; Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hong Kong; Department of Surgery, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Sue Kyung Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soo Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia; Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Jingmei Li
- Human Genetics, Genome Institute of Singapore, Singapore; Department of Surgery, National University Hospital, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan; Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK; Institute of Population Health, University of Manchester, Manchester, UK
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK; Institute of Population Health, University of Manchester, Manchester, UK
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kristan J Aronson
- Department of Public Health Sciences, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - John J Spinell
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago De Compostela, Spain; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Esther M John
- Department of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA; Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison W Kurian
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shou-Tung Chen
- Division of General Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - D Gareth R Evans
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Quebec, Canada
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Douglas F Easton
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
23
|
AMPK: A promising molecular target for combating cisplatin toxicities. Biochem Pharmacol 2019; 163:94-100. [DOI: 10.1016/j.bcp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
|
24
|
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell 2019; 18:e12876. [PMID: 30430746 PMCID: PMC6351830 DOI: 10.1111/acel.12876] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulation of dysfunctional and damaged cellular proteins and organelles occurs during aging, resulting in a disruption of cellular homeostasis and progressive degeneration and increases the risk of cell death. Moderating the accrual of these defunct components is likely a key in the promotion of longevity. While exercise is known to promote healthy aging and mitigate age‐related pathologies, the molecular underpinnings of this phenomenon remain largely unclear. However, recent evidences suggest that exercise modulates the proteome. Similarly, caloric restriction (CR), a known promoter of lifespan, is understood to augment intracellular protein quality. Autophagy is an evolutionary conserved recycling pathway responsible for the degradation, then turnover of cellular proteins and organelles. This housekeeping system has been reliably linked to the aging process. Moreover, autophagic activity declines during aging. The target of rapamycin complex 1 (TORC1), a central kinase involved in protein translation, is a negative regulator of autophagy, and inhibition of TORC1 enhances lifespan. Inhibition of TORC1 may reduce the production of cellular proteins which may otherwise contribute to the deleterious accumulation observed in aging. TORC1 may also exert its effects in an autophagy‐dependent manner. Exercise and CR result in a concomitant downregulation of TORC1 activity and upregulation of autophagy in a number of tissues. Moreover, exercise‐induced TORC1 and autophagy signaling share common pathways with that of CR. Therefore, the longevity effects of exercise and CR may stem from the maintenance of the proteome by balancing the synthesis and recycling of intracellular proteins and thus may represent practical means to promote longevity.
Collapse
Affiliation(s)
- Kurt A. Escobar
- Department of Kinesiology; California State University, Long Beach; Long Beach California
| | - Nathan H. Cole
- Department of Health, Exercise, & Sports Sciences; University of New Mexico; Albuquerque New Mexico
| | - Christine M. Mermier
- Department of Health, Exercise, & Sports Sciences; University of New Mexico; Albuquerque New Mexico
| | - Trisha A. VanDusseldorp
- Department of Exercise Science & Sports Management; Kennesaw State University; Kennesaw Georgia
| |
Collapse
|
25
|
Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X, Ling H, Zeng T. Autophagy and its role in gastric cancer. Clin Chim Acta 2018; 489:10-20. [PMID: 30472237 DOI: 10.1016/j.cca.2018.11.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Autophagy, which is tightly regulated by a series of autophagy-related genes (ATGs), is a vital intracellular homeostatic process through which defective proteins and organelles are degraded and recycled under starvation, hypoxia or other specific cellular stress conditions. For both normal cells and tumour cells, autophagy not only sustains cell survival but can also promote cell death. Autophagy-related signalling pathways include mTOR-dependent pathways, such as the AMPK/mTOR and PI3K/Akt/mTOR pathways, and non-mTOR dependent pathways, such as the P53 pathway. Additionally, autophagy plays a dual role in gastric carcinoma (GC), including a tumour-suppressor role and a tumour-promoter role. Long-term Helicobacter pylori infection can impair autophagy, which may eventually promote tumourigenesis of the gastric mucosa. Moreover, Beclin1, LC3 and P62/SQSTM1 are regarded as autophagy-related markers with GC prognostic value. Autophagy inhibitors and autophagy inducers show promise for GC treatment. This review describes research progress regarding autophagy and its significant role in gastric cancer.
Collapse
Affiliation(s)
- Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Zhihong Cai
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Xi Zeng
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China.
| | - Tiebing Zeng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China; Institute of Pathogenic Biology, Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
26
|
Ciechomska IA, Marciniak MP, Jackl J, Kaminska B. Pre-treatment or Post-treatment of Human Glioma Cells With BIX01294, the Inhibitor of Histone Methyltransferase G9a, Sensitizes Cells to Temozolomide. Front Pharmacol 2018; 9:1271. [PMID: 30450051 PMCID: PMC6224489 DOI: 10.3389/fphar.2018.01271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is a malignant, primary brain tumor, highly resistant to conventional therapies. Temozolomide (TMZ) is a first line therapeutic agent in GBM patients, however, survival of such patients is poor. High level of DNA repair protein, O6-methylguanine-DNA-methyltransferase (MGMT) and occurrence of glioma stem-like cells contribute to GBM resistance to the drug. Here, we explored a possibility of epigenetic reprograming of glioma cells to increase sensitivity to TMZ and restore apoptosis competence. We combined TMZ treatment with BIX01294, an inhibitor of histone methyltransferase G9a, known to be involved in cancerogenesis. Two treatment combinations were tested: BIX01294 was administered to human LN18 and U251 glioma cell cultures 48 h before TMZ or 48 h after TMZ treatment. Despite their different status of the MGMT gene promoter, there was no correlation with the response to TMZ. The analyses of cell viability, appearance of apoptotic alterations in morphology of cells and nuclei, and markers of apoptosis, such as levels of cleaved caspase 3, caspase 7 and PARP, revealed that both pre-treatment and post-treatment with BIX01294 sensitize glioma cells to TMZ. The additive effect was stronger in LN18 cells. Moreover, BIX01294 enhanced the cytotoxic effect of TMZ on glioma stem-like cells, although it was not associated with modulation of the pluripotency markers (NANOG, SOX2, CD133) expression or methylation of NANOG and SOX2 gene promoters. Accordingly, knockdown of methyltransferase G9a augments TMZ-induced cell death in LN18 cells. We found the significant increases of the LC3-II levels in LN18 cells treated with BIX01294 alone and with drug combination that suggests involvement of autophagy in enhancement of anti-tumor effect of TMZ. Treatment with BIX01294 did not affect methylation of the MGMT gene promoter. Altogether, our results suggest that G9a is a potential therapeutic target in malignant glioma and the treatment with the G9a inhibitor reprograms glioma cells and glioma stem-like cells to increase sensitivity to TMZ and restore apoptosis competence.
Collapse
Affiliation(s)
- Iwona Anna Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Patrycja Marciniak
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Judyta Jackl
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
27
|
AIM2 is a potential therapeutic target in human renal carcinoma and suppresses its invasion and metastasis via enhancing autophagy induction. Exp Cell Res 2018; 370:561-570. [DOI: 10.1016/j.yexcr.2018.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022]
|
28
|
Pierzynowska K, Gaffke L, Cyske Z, Puchalski M, Rintz E, Bartkowski M, Osiadły M, Pierzynowski M, Mantej J, Piotrowska E, Węgrzyn G. Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metab Brain Dis 2018; 33:989-1008. [PMID: 29542037 PMCID: PMC6060747 DOI: 10.1007/s11011-018-0214-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Puchalski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Bartkowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Osiadły
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Pierzynowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
29
|
Pawlowska E, Szczepanska J, Szatkowska M, Blasiak J. An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme-Role in Pathogenesis and Therapeutic Perspective. Int J Mol Sci 2018; 19:ijms19030889. [PMID: 29562589 PMCID: PMC5877750 DOI: 10.3390/ijms19030889] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy, cellular senescence, programmed cell death and necrosis are key responses of a cell facing a stress. These effects are partly interconnected, but regulation of their mutual interactions is not completely clear. That regulation seems to be especially important in cancer cells, which have their own program of development and demand more nutrition and energy than normal cells. Glioblastoma multiforme (GBM) belongs to the most aggressive and most difficult to cure cancers, so studies on its pathogenesis and new therapeutic strategies are justified. Using an animal model, it was shown that autophagy is required for GBM development. Temozolomide (TMZ) is the key drug in GBM chemotherapy and it was reported to induce senescence, autophagy and apoptosis in GBM. In some GBM cells, TMZ induces small toxicity despite its significant concentration and GBM cells can be intrinsically resistant to apoptosis. Resveratrol, a natural compound, was shown to potentiate anticancer effect of TMZ in GBM cells through the abrogation G2-arrest and mitotic catastrophe resulting in senescence of GBM cells. Autophagy is the key player in TMZ resistance in GBM. TMZ can induce apoptosis due to selective inhibition of autophagy, in which autophagic vehicles accumulate as their fusion with lysosomes is blocked. Modulation of autophagic action of TMZ with autophagy inhibitors can result in opposite outcomes, depending on the step targeted in autophagic flux. Studies on relationships between senescence, autophagy and apoptosis can open new therapeutic perspectives in GBM.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Magdalena Szatkowska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
30
|
Subramanian G, Kuzmanovic T, Zhang Y, Peter CB, Veleeparambil M, Chakravarti R, Sen GC, Chattopadhyay S. A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7. PLoS Pathog 2018; 14:e1006877. [PMID: 29381763 PMCID: PMC5806901 DOI: 10.1371/journal.ppat.1006877] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/09/2018] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
The interferon (IFN) system represents the first line of defense against a wide range of viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimulated Genes (ISGs), whose protein products act as viral restriction factors by interfering with specific stages of virus life cycle, such as entry, transcription, translation, genome replication, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autophagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG shRNA library for blocking IFN’s protective effect against Sendai virus (SeV) replication. The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory syncytial virus was confirmed by its genetic ablation or ectopic expression in several types of mouse and human cells. TDRD7’s antiviral action was mediated by its ability to inhibit autophagy, a cellular catabolic process which was robustly induced by SeV infection and required for its replication. Mechanistic investigation revealed that TDRD7 interfered with the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autophagy. AMPK activity was required for efficient replication of several paramyxoviruses, as demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibitors. Therefore, our study has identified a new antiviral ISG with a new mode of action. The antiviral functions of interferons (IFNs) are mediated by the IFN-induced proteins, encoded by the IFN Stimulated Genes (ISGs). Because ISGs are virus-specific, we performed a high throughput genetic screen to identify novel antiviral ISGs against Sendai virus (SeV), a respirovirus of the Paramyxoviridae family. Our screen isolated a small subset of anti-SeV ISGs, among which we focused on a novel ISG, Tudor domain containing 7 (TDRD7). The antiviral activity of TDRD7 was confirmed by genetic ablation of the endogenous, and the ectopic expression of the exogenous, TDRD7 in human and mouse cell types. Investigation of the mechanism of antiviral action revealed that TDRD7 inhibited ‘virus-induced autophagy’, which was required for the replication of SeV. Autophagy, a cellular catabolic process, was robustly induced by SeV infection, and was inhibited by TDRD7. TDRD7 interfered with the ‘induction’ step of autophagy by inhibiting the activation of AMP-dependent Kinase (AMPK). AMPK is a multifunctional metabolic kinase, which was activated by SeV infection, and its activity was required for virus replication. Genetic ablation and inhibition of AMPK activity by physiological (TDRD7) or chemical (Compound C) inhibitors strongly attenuated SeV replication. The anti-AMPK activity of TDRD7 was capable of inhibiting other members of Paramyxoviridae family, human parainfluenza virus type 3 and respiratory syncytial virus. Therefore, our study uncovered a new antiviral mechanism of IFN by inhibiting the activation of autophagy-inducing kinase AMPK.
Collapse
Affiliation(s)
- Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Teodora Kuzmanovic
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Ying Zhang
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Cara Beate Peter
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Manoj Veleeparambil
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Ritu Chakravarti
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Ganes C. Sen
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States of America
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
31
|
Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and Autophagy. Cancers (Basel) 2018; 10:cancers10010018. [PMID: 29329237 PMCID: PMC5789368 DOI: 10.3390/cancers10010018] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
Collapse
Affiliation(s)
- Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
32
|
Chang H, Li X, Cai Q, Li C, Tian L, Chen J, Xing X, Gan Y, Ouyang W, Yang Z. The PI3K/Akt/mTOR pathway is involved in CVB3-induced autophagy of HeLa cells. Int J Mol Med 2017; 40:182-192. [PMID: 28560385 PMCID: PMC5466389 DOI: 10.3892/ijmm.2017.3008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 05/26/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies have found that viral myocarditis (VMC) associated with coxsackievirus B3 (CVB3) causes autophagy activation after infection, but the specific mechanism is not clear. The present study demonstrated that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway participates in CVB3-induced autophagy. We found that the light chain 3 (LC3)-II/LC3-I ratio was increased and p62 and p-mTOR were altered at different times during CVB3 infection. To further assess the effects of this signaling pathway on CVB3 infection and viral replication, we selected 24 h post-inoculation (h.p.i.) as our research time point to conduct our next study. We inhibited the function of PI3K, Akt1 and mTOR. The outcome showed that inhibition of PI3K with ZSTK474 alleviated autophagy and decreased CVB3 mRNA replication and VP1 expression. Inhibition of mTOR with rapamycin promoted autophagy and viral mRNA replication but did not impact VP1 expression. Inhibition of Akt with MK2206 aggravated autophagy induced by viral infection. In our research, p62 exhibited a decrease at the beginning of infection but then increased as infection time increased. This finding may serve as a clue to elucidate the function of autophagy at different times of infection. However, the details merit further study. In conclusion, our findings suggest that the PI3K/Akt/mTOR signaling pathway participates in the process of autophagy induced by CVB3 infection. This finding may provide a new perspective of CVB3-induced autophagy.
Collapse
Affiliation(s)
- Huan Chang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qian Cai
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunyun Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lang Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaowei Xing
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Gan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
33
|
Xu F, Fang Y, Yan L, Xu L, Zhang S, Cao Y, Xu L, Zhang X, Xie J, Jiang G, Ge C, An N, Zhou D, Yuan N, Wang J. Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy. Sci Rep 2017; 7:45385. [PMID: 28345663 PMCID: PMC5366945 DOI: 10.1038/srep45385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 12/27/2022] Open
Abstract
Beclin 1 is a well-established core mammalian autophagy protein that is embryonically indispensable and has been presumed to suppress oncogenesis via an autophagy-mediated mechanism. Here, we show that Beclin 1 is a prenatal primary cytoplasmic protein but rapidly relocated into the nucleus during postnatal development in mice. Surprisingly, deletion of beclin1 in in vitro human cells did not block an autophagy response, but attenuated the expression of several DNA double-strand break (DSB) repair proteins and formation of repair complexes, and reduced an ability to repair DNA in the cells exposed to ionizing radiation (IR). Overexpressing Beclin 1 improved the repair of IR-induced DSB, but did not restore an autophagy response in cells lacking autophagy gene Atg7, suggesting that Beclin 1 may regulate DSB repair independent of autophagy in the cells exposed to IR. Indeed, we found that Beclin 1 could directly interact with DNA topoisomerase IIβ and was recruited to the DSB sites by the interaction. These findings reveal a novel function of Beclin 1 in regulation of DNA damage repair independent of its role in autophagy particularly when the cells are under radiation insult.
Collapse
Affiliation(s)
- Fei Xu
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lili Yan
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lan Xu
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
- Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, The First Affiliated Hospital, Soochow University School of Medicine, Suzhou 215123, China
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yan Cao
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Xiaoying Zhang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Jialing Xie
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Gaoyue Jiang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Ni An
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
- Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, The First Affiliated Hospital, Soochow University School of Medicine, Suzhou 215123, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
- Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, The First Affiliated Hospital, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
34
|
Qu B, Yao L, Ma HL, Chen HL, Zhang Z, Xie J. Prognostic significance of autophagy-related proteins expression in resected human gastric adenocarcinoma. ACTA ACUST UNITED AC 2017; 37:37-43. [PMID: 28224423 DOI: 10.1007/s11596-017-1691-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Gastric adenocarcinoma (GC) is one of the most common malignancies in the world and one of the most frequent causes of cancer-related death. Autophagy is a highly regulated catabolic pathway responsible for the degradation of long-lived proteins and damaged intracellular organelles. However, the mechanism and guiding significance of autophagy in the development and progression of GC have remained to be elucidated. This study aimed to explore the clinicopathological significances and prognostic values of autophagy-related proteins AMBRA1 and Beclin-1 in GC. Quantum dots based immunofluorescence histochemistry (QDs-IHC) was performed to observe the expression of AMBRA1 and Beclin-1 proteins in the tissue microarrays including 163 specimens of GC and 20 noncancerous gastric tissues. Simultaneously, AMBRA1 and Beclin-1 proteins were detected by Western blotting in the 10 fresh GC and corresponding normal gastric tissues. The results showed that the expression levels of both AMBRA1 and Beclin-1 proteins were higher in GC tissues than in noncancerous gastric tissues by QDs-IHC and Western blotting (P<0.05). High AMBRA1 expression was detected in 90 of 163 (55.2%) GCs and high Beclin-1 expression was detected in 83 of 163 (50.9%) GCs. High AMBRA1 expression was closely related to depth of invasion, and lymph nodes metastasis (P<0.05). High expression of Beclin-1 protein was correlated with tumor grade (P<0.05). Positive correlation was observed between AMBRA1 and Beclin-1. Survival analysis indicated the high expression of AMBRA1 and Beclin- 1 was an independent factor in predicting poor overall survival (OS) of GC patients. These findings suggest the high expression of AMBRA1 and Beclin-1 proteins is significantly correlated with GC progression. High AMBRA1 and Beclin-1 expression heralds worse outcome of GC patients, suggesting a novel candidate prognostic marker and a therapeutic target for GC.
Collapse
Affiliation(s)
- Bing Qu
- Department of General Surgery, China Resources & WISCO General Hospital, Wuhan, 430080, China
| | - Lei Yao
- Department of General Surgery, China Resources & WISCO General Hospital, Wuhan, 430080, China
| | - Hua-Ling Ma
- Department of Pathology, China Resources & WISCO General Hospital, Wuhan, 430080, China
| | - Hong-Lei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Zhi Zhang
- Department of Science and Education, China Resources & WISCO General Hospital, Wuhan, 430080, China.
| | - Jiang Xie
- Department of General Surgery, China Resources & WISCO General Hospital, Wuhan, 430080, China.
| |
Collapse
|
35
|
Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype. PLoS One 2016; 11:e0164438. [PMID: 27792742 PMCID: PMC5085087 DOI: 10.1371/journal.pone.0164438] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.
Collapse
|
36
|
Visconte V, Przychodzen B, Han Y, Nawrocki ST, Thota S, Kelly KR, Patel BJ, Hirsch C, Advani AS, Carraway HE, Sekeres MA, Maciejewski JP, Carew JS. Complete mutational spectrum of the autophagy interactome: a novel class of tumor suppressor genes in myeloid neoplasms. Leukemia 2016; 31:505-510. [PMID: 27773925 PMCID: PMC5844476 DOI: 10.1038/leu.2016.295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- V Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - B Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Y Han
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - S T Nawrocki
- Department of Medicine, Division of Translational and Regenerative Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - S Thota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - K R Kelly
- Department of Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - B J Patel
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - C Hirsch
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - A S Advani
- Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - H E Carraway
- Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M A Sekeres
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J S Carew
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Medicine, Division of Translational and Regenerative Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
37
|
Abstract
Lysosomes (or lytic bodies) were so named because they contain high levels of hydrolytic enzymes. Lysosome function and dysfunction have been found to play important roles in human disease, including cancer; however, the ways in which lysosomes contribute to tumorigenesis and cancer progression are still being uncovered. Beyond serving as a cellular recycling center, recent evidence suggests that the lysosome is involved in energy homeostasis, generating building blocks for cell growth, mitogenic signaling, priming tissues for angiogenesis and metastasis formation, and activating transcriptional programs. This review examines emerging knowledge of how lysosomal processes contribute to the hallmarks of cancer and highlights vulnerabilities that might be exploited for cancer therapy.
Collapse
Affiliation(s)
- Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
38
|
Kim KH, Song HH, Ahn KS, Oh SR, Sadikot RT, Joo M. Ethanol extract of the tuber of Alisma orientale reduces the pathologic features in a chronic obstructive pulmonary disease mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:21-30. [PMID: 27154406 DOI: 10.1016/j.jep.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The tuber of Alismataceae Alisma orientale Juzepzuk has been prescribed as a remedy for treating the diseases associated with body fluid dysfunction such as edema and inflammatory lung diseases. Chronic obstructive pulmonary disease (COPD) is a debilitating, inflammatory lung disease without effective treatment. Along with persistent inflammation, autophagy has been recently reported to contribute to COPD. Here, by employing a murine model, we examined whether the tuber of the plant is effective against COPD MATERIALS AND METHODS: The ethanol extract of the tuber of A. orientale Juzepzuk (EEAO) was fingerprinted by HPLC. For the establishment of COPD lung, mice received single intratracheal (i.t.) spraying of elastase and LPS per week for 2 weeks. After approximated to the dose prescribed typically to patients, EEAO was administered to the lung 2h after each LPS treatment. Morphometric analyses, semi-quantitative RT-PCR, and western blot were performed to evaluate the effects of EEAO on emphysema, inflammation, and autophagy in mouse lungs. The effect of EEAO on autophagy was also assessed by western blot at the cellular level with murine macrophages and human lung epithelial cells. RESULTS When receiving i.t. elastase and LPS for 2 weeks, mice developed emphysema and inflammation in the lung. EEAO treatment, however, significantly reduced emphysema and inflammatory cell infiltration to the lung with concomitant decrease of the production of pro-inflammatory cytokines including TNF-α, IL-6, and TGF-β, signature cytokines of COPD. Unlike control mice, the lungs of the COPD mice expressed LC3-II, a biomarker for autophagy formation, which was decreased by EEAO treatment. EEAO also lowered the expression of LC3-II in murine macrophage, RAW 264.7, and human lung epithelial cell, BEAS-2B, which was associated with EEAO activating mTOR. CONCLUSION EEAO relieved COPD pathologic features in a mouse model, which was associated with suppression of lung inflammation, emphysema, and autophagy. Our results suggest an effectiveness of the tuber of A. orientale in chronic inflammatory lung diseases such as COPD.
Collapse
Affiliation(s)
- Kyun Ha Kim
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hyuk-Hwan Song
- R&D Team, Agency for Korea National Food Cluster, 460 Iksan-Daero, Iksan, Jeonbuk 507-749, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chung-Buk 363-883, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chung-Buk 363-883, Republic of Korea
| | - Ruxana T Sadikot
- Pulmonary, Critical Care and Sleep Medicine, School of Medicine, Emory University, 1670 Clairmont Rd., Decatur, GA 30033, United States
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| |
Collapse
|
39
|
Di Fazio P, Waldegger P, Jabari S, Lingelbach S, Montalbano R, Ocker M, Slater EP, Bartsch DK, Illig R, Neureiter D, Wissniowski TT. Autophagy-related cell death by pan-histone deacetylase inhibition in liver cancer. Oncotarget 2016; 7:28998-29010. [PMID: 27058414 PMCID: PMC5045373 DOI: 10.18632/oncotarget.8585] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic, catabolic degradation process and cell fate essential regulatory mechanism. Protracted autophagy triggers cell death; its aberrant function is responsible for several malignancies. Panobinostat, a potent pan-deacetylase inhibitor, causes endoplasmic reticulum stress-induced cell death. The aim of this study was to investigate the role of autophagy in deacetylase inhibitor-triggered liver cancer cell death.HepG2 (p53wt) and Hep3B (p53 null) liver cancer cell lines were exposed to panobinostat. RT-qPCR and western blot confirmed autophagic factor modulation. Immuno-fluorescence, -precipitation and -histochemistry as well as transmission electron microscopy verified autophagosome formation. The cytotoxicity of panobinostat and autophagy modulators was detected using a real time cell viability assay.Panobinostat induced autophagy-related factor expression and aggregation. Map1LC3B and Beclin1 were significantly over-expressed in HepG2 xenografts in nude mice treated with panobinostat for 4 weeks. Subcellular distribution of Beclin1 increased with the appearance of autophagosomes-like aggregates. Cytosolic loss of p53, in HepG2, and p73, in Hep3B cells, and a corresponding gain of their nuclear level, together with modulation of DRAM1, were observed. Autophagosome aggregation was visible after 6 h of treatment. Treatment of cells stably expressing GFP-RFPtag Map1LC3B resulted in aggregation and a fluorescence switch, thus confirming autophagosome formation and maturation. Tamoxifen, an inducer of autophagy, caused only a block in cell proliferation; but in combination with panobinostat it resulted in cell death.Autophagy triggers cell demise in liver cancer. Its modulation by the combination of tamoxifen and panobinostat could be a new option for palliative treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Petra Waldegger
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, Innsbruck, Austria
| | - Samir Jabari
- Institute for Anatomy I, University of Erlangen-Nurnberg, Erlangen, Germany
| | | | - Roberta Montalbano
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
- Experimental Medicine Oncology, Bayer Pharma AG, Berlin Germany
| | - Emily P. Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Detlef K. Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Romana Illig
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Thaddeus T. Wissniowski
- Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
40
|
He S, Zhao Z, Yang Y, O'Connell D, Zhang X, Oh S, Ma B, Lee JH, Zhang T, Varghese B, Yip J, Dolatshahi Pirooz S, Li M, Zhang Y, Li GM, Ellen Martin S, Machida K, Liang C. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun 2015; 6:7839. [PMID: 26234763 PMCID: PMC4526116 DOI: 10.1038/ncomms8839] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy-related factors are implicated in metabolic adaptation and cancer metastasis. However, the role of autophagy factors in cancer progression and their effect in treatment response remain largely elusive. Recent studies have shown that UVRAG, a key autophagic tumour suppressor, is mutated in common human cancers. Here we demonstrate that the cancer-related UVRAG frameshift (FS), which does not result in a null mutation, is expressed as a truncated UVRAG(FS) in colorectal cancer (CRC) with microsatellite instability (MSI), and promotes tumorigenesis. UVRAG(FS) abrogates the normal functions of UVRAG, including autophagy, in a dominant-negative manner. Furthermore, expression of UVRAG(FS) can trigger CRC metastatic spread through Rac1 activation and epithelial-to-mesenchymal transition, independently of autophagy. Interestingly, UVRAG(FS) expression renders cells more sensitive to standard chemotherapy regimen due to a DNA repair defect. These results identify UVRAG as a new MSI target gene and provide a mechanism for UVRAG participation in CRC pathogenesis and treatment response.
Collapse
Affiliation(s)
- Shanshan He
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Zhen Zhao
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Yongfei Yang
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Douglas O'Connell
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Xiaowei Zhang
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Soohwan Oh
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Joo-Hyung Lee
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Tian Zhang
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Bino Varghese
- Department of Radiology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Janae Yip
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Sara Dolatshahi Pirooz
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Ming Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Colorectal Surgery, Peking University Cancer Hospital &Institute, Beijing 100142, China
| | - Yong Zhang
- Department of Surgical Oncology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guo-Min Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Sue Ellen Martin
- Department of Pathology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
41
|
Hou L, Li Y, Song H, Zhang Z, Sun Y, Zhang X, Wu K. Protective Macroautophagy Is Involved in Vitamin E Succinate Effects on Human Gastric Carcinoma Cell Line SGC-7901 by Inhibiting mTOR Axis Phosphorylation. PLoS One 2015; 10:e0132829. [PMID: 26168048 PMCID: PMC4500415 DOI: 10.1371/journal.pone.0132829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022] Open
Abstract
Vitamin E succinate (VES), a potential cancer therapeutic agent, potently induces apoptosis and inhibits the growth of various cancer cells. Autophagy has been supposed to promote cancer cell survival or trigger cell death, depending on particular cancer types and tumor microenvironments. The role of autophagy in the growth suppressive effect of VES on gastric cancer cell is basically unknown. We aimed to determine whether and how autophagy affected the VES-induced inhibition of SGC-7901 human gastric carcinoma cell growth. SGC-7901 cells were treated with VES or pre-treated with autophagy inhibitor, chloroquine (CQ) and 3-methyladenine (3-MA). Electron microscopy, fluorescence microscopy and Western blot were used to study whether VES induced autophagy reaction in SGC-7901 cells. Western blot evaluated the activities of the mammalian target of rapamycin (mTOR) axis. Then we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry to detect the level of cell viability and apoptosis. Collectively, our data indeed strongly support our hypothesis that VES treatment produced cytological variations that depict autophagy, increased the amount of intracellular green fluorescent protein—microtubule associated protein 1 light chain 3 (GFP-LC3) punctate fluorescence and the number of autophagic vacuoles. It altered the expression of endogenous autophagy marker LC3. VES activated the suppression of mTOR through inhibiting upstream regulators p38 MAPK and Akt. mTOR suppression consequently inhibited the activation of mTOR downstream targets p70S6K and 4E-BP-1. The activation of the upstream mTOR inhibitor AMPK had been up-regulated by VES. The results showed that pre-treatment SGC-7901 with autophagy inhibitors before VES treatment could increase the capacity of VES to reduce cell viability and to provoke apoptosis. In conclusion, VES-induced autophagy participates in SGC-7901 cell protection by inhibiting mTOR axis phosphorylation. Our findings not only strengthen our understanding of the roles of autophagy in cancer biology, but may also be useful for developing new treatments for gastric cancer patients.
Collapse
Affiliation(s)
- Liying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuze Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of the Fourth Internal Medicine, The Fourth Hospital of Heilongjiang Province, Harbin, China
| | - Huacui Song
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhihong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanpei Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuguang Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Internal Medicine, Hematology and Oncology, Harbin Children’s Hospital, Harbin, China
| | - Kun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
42
|
Tan Q, Wang H, Hu Y, Hu M, Li X, Aodengqimuge, Ma Y, Wei C, Song L. Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Sci 2015; 106:1023-32. [PMID: 26041409 PMCID: PMC4556392 DOI: 10.1111/cas.12712] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Chemotherapeutic resistance in breast cancer, whether acquired or intrinsic, remains a major clinical obstacle. Thus, increasing tumor cell sensitivity to chemotherapeutic agents will be helpful in improving the clinical management of breast cancer. In the present study, we found an induction of HO-1 expression in doxorubicin (DOX)-treated MDA-MB-231 human breast adenocarcinoma cells, which showed insensitivity to DOX treatment. Knockdown HO-1 expression dramatically upregulated the incidence of MDA-MB-231 cell death under DOX treatment, indicating that HO-1 functions as a critical contributor to drug resistance in MDA-MB-231 cells. We further observed that DOX exposure induced a cytoprotective autophagic flux in MDA-MB-231 cells, which was dependent on HO-1 induction. Moreover, upregulation of HO-1 expression required the activation of both signal transducer and activator of transcription (STAT)3 and its upstream regulator, protein kinase Src. Abrogating Src/STAT3 pathway activation attenuated HO-1 and autophagy induction, thus increasing the chemosensitivity of MDA-MB-231 cells. Therefore, we conclude that Src/STAT3-dependent HO-1 induction protects MDA-MB-231 breast cancer cells from DOX-induced death through promoting autophagy. In the following study, we further demonstrated the contribution of Src/STAT3/HO-1/autophagy pathway activation to DOX resistance in another breast cancer cell line, MDA-MB-468, which bears a similar phenotype to MDA-MB-231 cells. Therefore, activation of Src/STAT3/HO-1/autophagy signaling pathway might play a general role in protecting certain subtypes of breast cancer cells from DOX-induced cytotoxicity. Targeting this signaling event may provide a potential approach for overcoming DOX resistance in breast cancer therapeutics.
Collapse
Affiliation(s)
- Qixing Tan
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Breast Surgery, Guangxi Medical University Tumor Hospital, Nanning, China
| | - Hongli Wang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, China
| | - Yongliang Hu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Meiru Hu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of New Drug Screening Center, China Pharmaceutical University, Nanjing, China
| | - Aodengqimuge
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of New Drug Screening Center, China Pharmaceutical University, Nanjing, China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Tumor Hospital, Nanning, China
| | - Lun Song
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism 2015; 64:658-65. [PMID: 25672217 DOI: 10.1016/j.metabol.2015.01.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/05/2015] [Accepted: 01/25/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying the metabolic effects of exercise are not completely understood. We know that autophagy plays an important role in maintaining cellular homeostasis. In this study, we aimed to better understand the metabolic effects of autophagy in skeletal muscle and the role of Sestrins/AMPK in mediating the beneficial effects of physical exercise through autophagy. MATERIAL/METHODS We used wild type and AMPKα2(-/-) C57BL/6 mice as animal models to elucidate the role of AMPK in autophagy activation and the metabolism-promoting effects of acute and regular exercise. C2C12 myotubes were used to study the metabolic effects of autophagy in vitro. RESULTS Autophagy promotes glucose uptake in skeletal muscle. A single bout of exercise increased the activity of autophagy in the skeletal muscle of wild type mice but not of AMPKα2(-/-) mice. This difference was associated with increased amounts of both Sestrin2 and Sestrin3 coimmunoprecipitated with AMPKα2. Long-term physical exercise significantly increased the basal level of muscle autophagy and protein expression of Sestrin2 and Sestrin3 in both normal chow and high-fat diet-fed mice. CONCLUSION We believe that exercise-induced AMPK and Sestrins interaction may be involved in the beneficial metabolic effects of exercise by activating autophagy. This interaction provides a molecular mechanism that is a potential target in metabolic syndromes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation and Sports Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Hairui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, School of Medicine, Temple University, Philadelphia, PA 19103
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
44
|
The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J 2015; 467:47-62. [PMID: 25583260 DOI: 10.1042/bj20141441] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an 'analogue-sensitive' (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery.
Collapse
|
45
|
Shukla S, Patric IRP, Patil V, Shwetha SD, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Somasundaram K. Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth. J Biol Chem 2014; 289:22306-18. [PMID: 24923441 DOI: 10.1074/jbc.m114.567032] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.
Collapse
Affiliation(s)
- Sudhanshu Shukla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Irene Rosita Pia Patric
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivayogi D Shwetha
- Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Alangar S Hegde
- the Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India, and
| | | | | | - Vani Santosh
- Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Kumaravel Somasundaram
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
46
|
Wang Z, Han W, Sui X, Fang Y, Pan H. Autophagy: A novel therapeutic target for hepatocarcinoma (Review). Oncol Lett 2014; 7:1345-1351. [PMID: 24765136 PMCID: PMC3997714 DOI: 10.3892/ol.2014.1916] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradation process and plays an important role in hepatocarcinogenesis. Available data show that autophagy is involved in anti-hepatocarcinoma (HCC) therapies. Autophagy regulation involves a novel target for overcoming therapeutic resistance and sensitizing HCC to currently therapeutic methods. This is a systematic review on the interface of autophagy and the development of HCC and outlining the role of autophagy in current anti-HCC approaches. Understanding the significance of autophagy in anti-HCC therapy may offer a novel therapeutic target for improving anti-cancer efficacy and prolong survival for HCC patients.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
47
|
Lithium improves survival of PC12 pheochromocytoma cells in high-density cultures and after exposure to toxic compounds. Int J Cell Biol 2014; 2014:135908. [PMID: 24563652 PMCID: PMC3915898 DOI: 10.1155/2014/135908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023] Open
Abstract
Autophagy is an evolutionary conserved mechanism that allows for the degradation of long-lived proteins and entire organelles which are driven to lysosomes for digestion. Different kinds of stressful conditions such as starvation are able to induce autophagy. Lithium and rapamycin are potent autophagy inducers with different molecular targets. Lithium stimulates autophagy by decreasing the intracellular myo-inositol-1,4,5-triphosphate levels, while rapamycin acts through the inhibition of the mammalian target of rapamycin (mTOR). The correlation between autophagy and cell death is still a matter of debate especially in transformed cells. In fact, the execution of autophagy can protect cells from death by promptly removing damaged organelles such as mitochondria. Nevertheless, an excessive use of the autophagic machinery can drive cells to death via a sort of self-cannibalism. Our data show that lithium (used within its therapeutic window) stimulates the overgrowth of the rat Pheochromocytoma cell line PC12. Besides, lithium and rapamycin protect PC12 cells from toxic compounds such as thapsigargin and trimethyltin. Taken together these data indicate that pharmacological activation of autophagy allows for the survival of Pheochromocytoma cells in stressful conditions such as high-density cultures and exposure to toxins.
Collapse
|
48
|
Ricci A, Cherubini E, Scozzi D, Pietrangeli V, Tabbì L, Raffa S, Leone L, Visco V, Torrisi MR, Bruno P, Mancini R, Ciliberto G, Terzano C, Mariotta S. Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts. J Cell Physiol 2013; 228:1516-24. [PMID: 23444126 DOI: 10.1002/jcp.24307] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 11/06/2022]
Abstract
Autophagy is the main cellular pathway for degradation of long-lived proteins and organelles and regulates cell fate in response to stress. Beclin 1 is a key regulator of this process. In some settings autophagy and apoptosis seem to be interconnected. Recent reports indicate that fibroblasts in idiopathic pulmonary fibrosis (IPF) acquire resistance to apoptosis. Here, we examined the expression of beclin 1, and of the anti apoptotic protein Bcl-2 in human IPF fibroblasts using immunohistochemistry and molecular biology in bioptic sections, in primary cultures of fibroblasts taken from patients with IPF and in fibroblast cell lines. Expression of beclin 1 in fibroblasts from IPF was down-regulated in comparison with fibroblasts from normal lungs while the anti-apoptotic protein Bcl-2 expression was over-expressed. Treatment of fibroblast cell cultures with cisplatin induced a significant increase in beclin 1 and caspase 3 protein levels but a reduction in Bcl-2 expression. These observations were confirmed by the analysis of acid compartments and transmission electron microscopy. Our results demonstrate a modified expression of the apoptotic beclin 1 Bcl-2 proteins in human IPF fibroblasts suggesting the existence of an autophagy/apoptosis system dysfunction.
Collapse
Affiliation(s)
- Alberto Ricci
- Dipartimento di Medicina Clinica e Molecolare, Università La Sapienza, Azienda Ospedaliera Sant'Andrea, UOC Pneumologia, Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, Das SK, Sarkar D, Fisher PB. Autophagy: cancer's friend or foe? Adv Cancer Res 2013; 118:61-95. [PMID: 23768510 DOI: 10.1016/b978-0-12-407173-5.00003-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The functional relevance of autophagy in tumor formation and progression remains controversial. Autophagy can promote tumor suppression during cancer initiation and protect tumors during progression. Autophagy-associated cell death may act as a tumor suppressor, with several autophagy-related genes deleted in cancers. Loss of autophagy induces genomic instability and necrosis with inflammation in mouse tumor models. Conversely, autophagy enhances survival of tumor cells subjected to metabolic stress and may promote metastasis by enhancing tumor cell survival under environmental stress. Unraveling the complex molecular regulation and multiple diverse roles of autophagy is pivotal in guiding development of rational and novel cancer therapies.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lu SZ, Harrison-Findik DD. Autophagy and cancer. World J Biol Chem 2013; 4:64-70. [PMID: 23977422 PMCID: PMC3746279 DOI: 10.4331/wjbc.v4.i3.64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/13/2013] [Accepted: 07/19/2013] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a homeostatic and evolutionarily conserved mechanism of self-digestion by which the cells degrade and recycle long-lived proteins and excess or damaged organelles. Autophagy is activated in response to both physiological and pathological stimuli including growth factor depletion, energy deficiency or the upregulation of Bcl-2 protein expression. A novel role of autophagy in various cancers has been proposed. Interestingly, evidence that supports both a positive and negative role of autophagy in the pathogenesis of cancer has been reported. As a tumor suppression mechanism, autophagy maintains genome stability, induces senescence and possibly autophagic cell death. On the other hand, autophagy participates in tumor growth and maintenance by supplying metabolic substrate, limiting oxidative stress, and maintaining cancer stem cell population. It has been proposed that the differential roles of autophagy in cancer are disease type and stage specific. In addition, substrate selectivity might be involved in carrying out the specific effect of autophagy in cancer, and represents one of the potential directions for future studies.
Collapse
|