1
|
Zhou L, Zhang Y, Wu S, Kuang Y, Jiang P, Zhu X, Yin K. Type III Secretion System in Intestinal Pathogens and Metabolic Diseases. J Diabetes Res 2024; 2024:4864639. [PMID: 39544522 PMCID: PMC11561183 DOI: 10.1155/2024/4864639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Modern lifestyle changes, especially the consumption of a diet high in salt, sugar, and fat, have contributed to the increasing incidence and prevalence of chronic metabolic diseases such as diabetes, obesity, and gout. Changing lifestyles continuously shape the gut microbiota which is closely related to the occurrence and development of metabolic diseases due to its specificity of composition and structural diversity. A large number of pathogenic bacteria such as Yersinia, Salmonella, Shigella, and pathogenic E. coli in the gut utilize the type III secretion system (T3SS) to help them resist host defenses and cause disease. Although the T3SS is critical for the virulence of many important human pathogens, its relationship with metabolic diseases remains unknown. This article reviews the structure and function of the T3SS, the disruption of intestinal barrier integrity by the T3SS, the changes in intestinal flora containing the T3SS in metabolic diseases, the possible mechanisms of the T3SS affecting metabolic diseases, and the application of the T3SS in the treatment of metabolic diseases. The aim is to provide insights into metabolic diseases targeting the T3SS, thereby serving as a valuable reference for future research on disease diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Yaoyuan Zhang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Shiqi Wu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Yiyu Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Pengfei Jiang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
2
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Dietary Methionine Level Impacts the Growth, Nutrient Metabolism, Antioxidant Capacity and Immunity of the Chinese Mitten Crab ( Eriocheir sinensis) under Chronic Heat Stress. Antioxidants (Basel) 2023; 12:antiox12010209. [PMID: 36671071 PMCID: PMC9854807 DOI: 10.3390/antiox12010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
This study examined whether diets with high dietary methionine levels could alleviate chronic heat stress in Chinese mitten crab Eriocheir sinensis. Crabs were fed three dietary methionine levels of 0.49%, 1.29% and 2.09% for six weeks. The analyzed methionine concentration of diets was 0.48%, 1.05% and 1.72%, respectively. Crabs were fed three different supplemental concentrations of dietary methionine at 24 °C and 30 °C, respectively. The trial was divided into six groups with five replicates in each group, and 40 juvenile crabs (initial average weight 0.71 ± 0.01 g) in each replicate. During the trial, crabs were fed twice daily (the diet of 4% of the body weight was delivered daily). The effects of dietary methionine level on nutrient metabolism, antioxidant capacity, apoptosis factors and immunity were evaluated at a normal water temperature of 24 °C and high temperature of 30 °C. Feed conversion ratio decreased under chronic heat stress. Chronic heat stress increased weight gain, specific growth rate, molting frequency, and protein efficiency ratio. The survival of crabs decreased under chronic heat stress, whereas a high level of dietary methionine significantly improved survival. Chronic heat stress induced lipid accumulation and protein content reduction. The high-methionine diet decreased lipid in the body and hepatopancreas, but increased protein in the body, muscle and hepatopancreas under chronic heat stress. Simultaneously, the high dietary methionine levels mitigated oxidative stress by reducing lipid peroxidation, restoring the antioxidant enzyme system, decreasing apoptosis and activating immune function under chronic heat stress. This study suggests that supplementing 1.72% dietary methionine could alleviate the adverse effects of a high water temperature in E. sinensis farming.
Collapse
|
4
|
Liu JD, Liu WB, Zhang CY, Xu CY, Zheng XC, Zhang DD, Chi C. Dietary glutathione supplementation enhances antioxidant activity and protects against lipopolysaccharide-induced acute hepatopancreatic injury and cell apoptosis in Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 97:440-454. [PMID: 31857224 DOI: 10.1016/j.fsi.2019.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Eriocheir sinensis (E. sinensis) is an important aquaculture species in China. However, deteriorating water environments lead to oxidative stress in these crabs, which subsequently reduces their quality and yield. Glutathione (GSH) is an endogenous antioxidant that is used to mitigate oxidative stress. However, whether dietary GSH can enhance the resistance of E. sinensis to oxidative stress remains unclear. Herein, crabs were fed dietary GSH (the basal diet was supplemented with 0, 300, 600, 900, and 1200 mg/kg diet weight of GSH) for up to 3 weeks and, then, challenged with lipopolysaccharide (LPS; 400 μg/kg body weight). After 6 h, their hepatopancreas were sampled. Diet supplementation with 600 and 900 mg/kg diet weight GSH not only increased the content of GSH in the hepatopancreas, but also enhanced the activities and mRNA expressions of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione-S-transferase (GST) (P < 0.05), compared to that in control crabs challenged with LPS alone. Diet supplementation with 600 or 900 mg/kg GSH also significantly increased the enzyme activities of GSH reductase and γ-glutamyl cysteine synthetase (γ-GCS) in LPS-treated crabs. Haematoxylin-eosin (HE) staining, electron microscopy, and flow cytometry were used to examine the structure and subcellular structure of and apoptosis in the hepatopancreas. The histopathology and sub-microstructure analysis results also showed that diet supplementation with 600 or 900 mg/kg GSH significantly alleviated damage in crabs challenged with LPS and decreased reactive oxygen species (ROS) levels and cell apoptosis ratios in the hepatopancreas, compared to the LPS-treated crabs. To further understand the effect of dietary GSH on LPS-induced apoptosis, the activities and gene or protein expressions of apoptosis-related factors were evaluated. As a result, diet supplementation with 600 or 900 mg/kg GSH significantly decreased the activities of caspases-3, -8, and -9 and inhibited the relative expression of caspase-3 and -8 but increased the expression of B-cell lymphoma-2 (bcl-2) and B-cell lymphoma-2-associated X inhibitor (bax inhibitor) in crabs challenged with LPS. This treatment further significantly downregulated the relative protein levels of caspase-3, -8, -9 and Bax and upregulated those of Bcl-2 in crabs challenged with LPS. However, treatment with 1200 mg/kg GSH caused the opposite effects. Overall, our results reveal that appropriate diets supplemented with 600 or 900 mg/kg GSH could enhance the antioxidant capacity and anti-apoptotic mechanisms in crabs after LPS injection, thereby providing a theoretical basis for the application of dietary GSH in E. sinensis.
Collapse
Affiliation(s)
- Jia-Dai Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Cai-Yan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Chen-Yuan Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiao-Chuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Kumar P, John V, Gupta A, Bhaskar S. Enhanced survival of BCG-stimulated dendritic cells: involvement of anti-apoptotic proteins and NF-κB. Biol Open 2018; 7:bio.032045. [PMID: 29848490 PMCID: PMC6031337 DOI: 10.1242/bio.032045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BCG (Bacillus Calmette-Guérin) is the only available vaccine against TB and is also used for the treatment of superficial bladder cancer. BCG-mediated protection against TB and bladder cancer has been shown to rely on its ability to induce superior CD4+ and CD8+ T cell responses. As the magnitude of T cell responses is defined by dendritic cell (DC) lifespan, we examined the effect of BCG on DC survival and its underlying mechanisms. It was observed that BCG stimulation enhanced DC survival and prolonged DC lifespan in a dose-dependent manner. Live BCG led to a higher DC survival compared with heat-killed BCG. FITC-Annexin V staining showed that BCG promoted DC survival by inhibiting apoptosis. Consistently, higher expressions of anti-apoptotic proteins Bcl-2 and Bcl-xL were observed in BCG-stimulated DCs. Pharmacological inhibition of Bcl-2 and Bcl-xL drastically reduced the DC survival efficacy of BCG. Comparable survival of BCG-stimulated wild-type and MyD88−/− DCs suggested that MyD88 signaling is dispensable for BCG-induced DC survival. NF-κB is one of the key regulators of innate immune responses. We observed that pharmacological inhibition of NF-κB abrogated BCG-mediated increase in DC survival and expression of anti-apoptotic proteins. These findings provide a novel insight into the effect of BCG on DC physiology. Summary: BCG enhanced the survival of dendritic cells (DCs) and prolonged their lifespan. BCG promoted DC survival by up-regulating Bcl-2 and Bcl-xL. Increased survival of BCG-stimulated DCs was dependent on NF-κB, but was independent of MyD88 signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vini John
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananya Gupta
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sangeeta Bhaskar
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K, Gray F, Choa R, Bjanes E, Buza EL, Hu B, Dillon CP, Green DR, Berger SB, Gough PJ, Bertin J, Brodsky IE. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J Exp Med 2017; 214:3171-3182. [PMID: 28855241 PMCID: PMC5679171 DOI: 10.1084/jem.20170347] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
RIPK1 regulates cytokine signaling and cell death during infection and inflammation. Peterson et al. show that RIPK1 kinase activity triggers apoptosis in response to bacterial pathogen blockade of innate immune signaling and that this pathway of effector-triggered immunity is critical for a successful antibacterial response. Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed “effector-triggered immunity.” The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase–induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexandra DeLaney
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Meghan A Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kendra Asklof
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Falon Gray
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Ruth Choa
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elisabet Bjanes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA.,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elisabeth L Buza
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Baofeng Hu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | | | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Scott B Berger
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Collegeville, PA
| | - Peter J Gough
- Host Defense Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Collegeville, PA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA .,Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Philip NH, Zwack EE, Brodsky IE. Activation and Evasion of Inflammasomes by Yersinia. Curr Top Microbiol Immunol 2017; 397:69-90. [PMID: 27460805 DOI: 10.1007/978-3-319-41171-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed 'the inflammasome.' Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.
Collapse
Affiliation(s)
- Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Immunology Graduate Group, Philadelphia, PA, 19104, USA
| | - Erin E Zwack
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Cell and Molecular Biology Graduate Group, Philadelphia, PA, 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA. .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Adkins I, Sadilkova L, Hradilova N, Tomala J, Kovar M, Spisek R. Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells. Oncoimmunology 2017. [PMID: 28638734 DOI: 10.1080/2162402x.2017.1311433] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The mechanisms of immunogenicity underlying mild heat-shock (mHS) treatment < 42°C of tumor cells are largely attributed to the action of heat-shock proteins; however, little is known about the immunogenicity of tumor cells undergoing severe cytotoxic heat-shock treatment (sHS > 43°C). Here, we found that sHS, but not mHS (42°C), induces immunogenic cell death in human cancer cell lines as defined by the induction of ER stress response and ROS generation, cell surface exposure of calreticulin, HSP70 and HSP90, decrease of cell surface CD47, release of ATP and HMGB1. Only sHS-treated tumor cells were efficiently killed and phagocytosed by dendritic cells (DCs), which was partially dependent on cell surface calreticulin. DCs loaded with mHS or sHS-treated tumor cells displayed similar level of maturation and stimulated IFNγ-producing CD8+ T cells without any additional adjuvants in vitro. However, only DCs loaded with sHS-treated tumor cells stimulated antigen-specific CD4+ T cells and induced higher CD8+ T-cell activation and proliferation. sHS-treated murine cells also exposed calreticulin, HSP70 and HSP90 and activated higher DC maturation than mHS treated cells. Vaccination with sHS-treated tumor cells elicited protective immunity in mice. In this study, we defined specific conditions for the sHS treatment of human lung and ovarian tumor cells to arrive at optimal ratio between effective cell death, immunogenicity and content of tumor antigens for immunotherapeutic vaccine generation.
Collapse
Affiliation(s)
- Irena Adkins
- Sotio a.s, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | | | - Nada Hradilova
- Sotio a.s, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jakub Tomala
- Laboratory of Tumor Immunology, Institute of Microbiology of the ASCR v.v.i, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the ASCR v.v.i, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.s, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Philip NH, DeLaney A, Peterson LW, Santos-Marrero M, Grier JT, Sun Y, Wynosky-Dolfi MA, Zwack EE, Hu B, Olsen TM, Rongvaux A, Pope SD, López CB, Oberst A, Beiting DP, Henao-Mejia J, Brodsky IE. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death. PLoS Pathog 2016; 12:e1005910. [PMID: 27737018 PMCID: PMC5063320 DOI: 10.1371/journal.ppat.1005910] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. TLR signaling induces expression of key inflammatory cytokines and pro-survival factors that facilitate control of microbial infection. TLR signaling can also engage cell death pathways through activation of enzymes known as caspases. Caspase-8 activates apoptosis in response to infection by pathogens that interfere with NF-κB signaling, including Yersinia, but has also recently been linked to control of inflammatory gene expression. Pathogenic Yersinia can cause severe disease ranging from gastroenteritis to plague. While caspase-8 mediates cell death in response to Yersinia infection as well as other signals, its precise role in gene expression and host defense during in vivo infection is unknown. Here, we show that caspase-8 activity promotes cell-intrinsic cytokine expression, independent of its role in cell death in response to Yersinia infection. Our studies further demonstrate that caspase-8 enzymatic activity plays a previously undescribed role in ensuring optimal TLR-induced gene expression by innate cells during bacterial infection. This work sheds new light on mechanisms that regulate essential innate anti-bacterial immune defense.
Collapse
Affiliation(s)
- Naomi H. Philip
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Alexandra DeLaney
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Lance W. Peterson
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Melanie Santos-Marrero
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jennifer T. Grier
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Yan Sun
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Erin E. Zwack
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Baofeng Hu
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Tayla M. Olsen
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Anthony Rongvaux
- Fred Hutchinson Cancer Research Center, Clinical Research Division and Program in Immunology, Seattle, Washington, United States of America
| | - Scott D. Pope
- Yale University School of Medicine, Department of Immunobiology, New Haven, Connecticut, United States of America
| | - Carolina B. López
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Andrew Oberst
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Daniel P. Beiting
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Igor E. Brodsky
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Peterson LW, Philip NH, Dillon CP, Bertin J, Gough PJ, Green DR, Brodsky IE. Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote Yersinia-Induced Apoptosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4110-4117. [PMID: 27733552 DOI: 10.4049/jimmunol.1601294] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023]
Abstract
Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
11
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
12
|
Kubicka-Sierszen A, Grzegorczyk JŁ. The influence of infectious factors on dendritic cell apoptosis. Arch Med Sci 2015; 11:1044-51. [PMID: 26528349 PMCID: PMC4624750 DOI: 10.5114/aoms.2015.54860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 10/02/2013] [Indexed: 12/23/2022] Open
Abstract
Pathogens can have a negative influence on dendritic cells (DCs), causing their apoptosis, which prevents active presentation of foreign antigens. It results in a state of immunosuppression which makes the body susceptible to secondary infections. Infected immature DCs have lower expression of co-stimulatory and adhesion molecules, reduced ability to secrete cytokines and an inhibited maturation process and are incapable of effective antigen presentation and activation of T-lymphocytes. In some cases, the ability of DCs to undergo rapid apoptosis is important for the body defense, which is probably because of DCs' ability to cross-present and cooperate with other cells. Apoptotic bodies released from the infected DCs are phagocytosed by other DCs, which then stimulate the effector cells and present antigens more efficiently than infected cells. The aim of this article is to review how the DCs respond to viral and bacterial factors and which biochemical mechanisms are responsible for their apoptosis.
Collapse
Affiliation(s)
- Agata Kubicka-Sierszen
- Department of Microbiology and Laboratory Medical Immunology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Janina Ł Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 2015; 16:689-97. [DOI: 10.1038/ni.3206] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
|
14
|
Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci U S A 2014; 111:7385-90. [PMID: 24799700 DOI: 10.1073/pnas.1403252111] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor signaling and subsequent activation of NF-κB- and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.
Collapse
|
15
|
Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci U S A 2014; 111:7391-6. [PMID: 24799678 DOI: 10.1073/pnas.1403477111] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the "Black Death" in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-β (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1β, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-κB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1β and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis infection.
Collapse
|
16
|
Sridharan H, Upton JW. Programmed necrosis in microbial pathogenesis. Trends Microbiol 2014; 22:199-207. [DOI: 10.1016/j.tim.2014.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/14/2023]
|
17
|
Zhang H, Li X, Zhang Y, Luan X. Luteolin induces apoptosis by activating Fas signaling pathway at the receptor level in laryngeal squamous cell line Hep-2 cells. Eur Arch Otorhinolaryngol 2014; 271:1653-9. [DOI: 10.1007/s00405-014-2903-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022]
|
18
|
Cunha LD, Zamboni DS. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:76. [PMID: 24324933 PMCID: PMC3840304 DOI: 10.3389/fcimb.2013.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP) Ribeirão Preto, Brazil
| | | |
Collapse
|
19
|
Peters KN, Dhariwala MO, Hughes Hanks JM, Brown CR, Anderson DM. Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague. PLoS Pathog 2013; 9:e1003324. [PMID: 23633954 PMCID: PMC3636031 DOI: 10.1371/journal.ppat.1003324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/08/2013] [Indexed: 12/24/2022] Open
Abstract
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells. In this work, we studied the mechanism whereby bacteria manipulate innate immune responses by controlling host cell death. Yersinia pestis, the causative agent of plague, requires effector Yops of the Type III Secretion System (T3SS) to evade the innate immune system during infection. We show that Yersinia induces apoptosis of macrophages through two distinct mechanisms, each through the activity of the well-characterized T3SS effector YopJ, yet regulated in an opposing manner through the activity of a second effector protein YopK. In a murine pneumonic plague model, we found evidence that YopK regulates apoptosis of macrophages during the early stage of infection, leading to uncontrolled inflammation and disease. In contrast, the absence of YopK-regulated apoptosis allowed recruitment of lymphocytes and CCR2+ immune cells which led to bacterial clearance and resolution of inflammation. Together the data suggest that Yersinia YopK modulates apoptosis of immune cells to control the inflammatory response during plague.
Collapse
Affiliation(s)
- Kristen N. Peters
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Miqdad O. Dhariwala
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer M. Hughes Hanks
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Charles R. Brown
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Philip NH, Brodsky IE. Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol 2012; 2:149. [PMID: 23226685 PMCID: PMC3510641 DOI: 10.3389/fcimb.2012.00149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/13/2012] [Indexed: 01/31/2023] Open
Abstract
Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogen's replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection.
Collapse
Affiliation(s)
- Naomi H Philip
- Immunology Graduate Group, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA ; Department of Pathobiology, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
21
|
Madrigal AG, Barth K, Papadopoulos G, Genco CA. Pathogen-mediated proteolysis of the cell death regulator RIPK1 and the host defense modulator RIPK2 in human aortic endothelial cells. PLoS Pathog 2012; 8:e1002723. [PMID: 22685397 PMCID: PMC3369954 DOI: 10.1371/journal.ppat.1002723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/13/2012] [Indexed: 01/07/2023] Open
Abstract
Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders.
Collapse
Affiliation(s)
- Andrés G. Madrigal
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kenneth Barth
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - George Papadopoulos
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline Attardo Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Höring S, Schütz M, Autenrieth IB, Gröbner S. Lysozyme facilitates adherence of Enterococcus faecium to host cells and induction of necrotic cell death. Microbes Infect 2012; 14:554-62. [DOI: 10.1016/j.micinf.2012.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/07/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
|
23
|
Zheng Y, Lilo S, Mena P, Bliska JB. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense. PLoS One 2012; 7:e36019. [PMID: 22563435 PMCID: PMC3338577 DOI: 10.1371/journal.pone.0036019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic caspase 1 knockout C57BL/6 mice were equally susceptible to lethal infection with Y. pseudotuberculosis ectopically expressing YopP. These data suggest that YopJ-induced caspase-1 activation in Yersinia-infected macrophages is a downstream consequence of necrotic cell death and is dispensable for innate host resistance to a strain with enhanced cytotoxicity.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Molecular Genetics and Microbiology, and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Sarit Lilo
- Department of Molecular Genetics and Microbiology, and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Patricio Mena
- Department of Molecular Genetics and Microbiology, and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Molecular Genetics and Microbiology, and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J Pathog 2011; 2011:182051. [PMID: 22567322 PMCID: PMC3335670 DOI: 10.4061/2011/182051] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
Yersiniosis is a food-borne illness that has become more prevalent in recent years due to human transmission via the fecal-oral route and prevalence in farm animals. Yersiniosis is primarily caused by Yersinia enterocolitica and less frequently by Yersinia pseudotuberculosis. Infection is usually characterized by a self-limiting acute infection beginning in the intestine and spreading to the mesenteric lymph nodes. However, more serious infections and chronic conditions can also occur, particularly in immunocompromised individuals. Y. enterocolitica and Y. pseudotuberculosis are both heterogeneous organisms that vary considerably in their degrees of pathogenicity, although some generalizations can be ascribed to pathogenic variants. Adhesion molecules and a type III secretion system are critical for the establishment and progression of infection. Additionally, host innate and adaptive immune responses are both required for yersiniae clearance. Despite the ubiquity of enteric Yersinia species and their association as important causes of food poisoning world-wide, few national enteric pathogen surveillance programs include the yersiniae as notifiable pathogens. Moreover, no standard exists whereby identification and reporting systems can be effectively compared and global trends developed. This review discusses yersinial virulence factors, mechanisms of infection, and host responses in addition to the current state of surveillance, detection, and prevention of yersiniosis.
Collapse
Affiliation(s)
- Cristi L Galindo
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, Institute of Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
25
|
von Haefen C, Wendt J, Semini G, Sifringer M, Belka C, Radetzki S, Reutter W, Daniel PT, Danker K. Synthetic glycosidated phospholipids induce apoptosis through activation of FADD, caspase-8 and the mitochondrial death pathway. Apoptosis 2011; 16:636-51. [DOI: 10.1007/s10495-011-0592-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Autenrieth SE, Linzer TR, Hiller C, Keller B, Warnke P, Köberle M, Bohn E, Biedermann T, Bühring HJ, Hämmerling GJ, Rammensee HG, Autenrieth IB. Immune evasion by Yersinia enterocolitica: differential targeting of dendritic cell subpopulations in vivo. PLoS Pathog 2010; 6:e1001212. [PMID: 21124820 PMCID: PMC2991265 DOI: 10.1371/journal.ppat.1001212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
CD4(+) T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4(+) T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4(+) T cells was markedly reduced when cultured with splenic CD8α(+) DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4(+) or CD4(-)CD8α(-) DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α(+) DCs, but not in CD4(+) and CD4(-)CD8α(-) DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α(+) DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α(+) DCs. Three days post infection with Ye the number of splenic CD8α(+) and CD4(+) DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4(+) and CD8α(+) DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye.
Collapse
Affiliation(s)
- Stella E Autenrieth
- Interfakultäres Institut für Zellbiologie, Universität Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kushwah R, Hu J. Dendritic cell apoptosis: regulation of tolerance versus immunity. THE JOURNAL OF IMMUNOLOGY 2010; 185:795-802. [PMID: 20601611 DOI: 10.4049/jimmunol.1000325] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) apoptosis is an important event that regulates the balance between tolerance and immunity through multiple pathways, and defects in DC apoptosis can trigger autoimmunity. DC apoptosis is also associated with immunosuppression and has been observed under several pathologies and infections. Recent studies indicate that apoptotic DCs can also play an active role in induction of tolerance. This review discusses the regulatory pathways of DC apoptosis, stimuli inducing DC apoptosis, and the implications of DC apoptosis in the induction of immunosuppression and/or tolerance.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells. Cell Death Differ 2010; 17:1335-44. [PMID: 20203689 DOI: 10.1038/cdd.2010.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apoptosis induced by most stimuli proceeds through the mitochondrial pathway. One such stimulus is nutrient deprivation. In this study we studied death induced by glucose deprivation in cells deficient in Bax and Bak. These cells cannot undergo mitochondrial outer membrane permeabilization (MOMP) during apoptosis, but they undergo necrosis when treated with MOMP-dependent apoptotic stimuli. We find in these cells that glucose deprivation, rather than inducing necrosis, triggered apoptosis. Cell death required caspase activation as inhibition of caspases with peptidic inhibitors prevented death. Glucose deprivation-induced death displayed many hallmarks of apoptosis, such as caspase cleavage and activity, phosphatidyl-serine exposure and cleavage of caspase substrates. Neither overexpression of Bcl-xL nor knockdown of caspase-9 prevented death. However, transient or stable knockdown of caspase-8 or overexpression of CrmA inhibited apoptosis. Cell death was not inhibited by preventing death receptor-ligand interactions, by overexpression of c-FLIP or by knockdown of RIPK1. Glucose deprivation induced apoptosis in the human tumor cell line HeLa, which was prevented by knockdown of caspase-8. Thus, we have found that glucose deprivation can induce a death receptor-independent, caspase-8-driven apoptosis, which is engaged to kill cells that cannot undergo MOMP.
Collapse
|
29
|
Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system. PLoS One 2010; 5:e9279. [PMID: 20174624 PMCID: PMC2823771 DOI: 10.1371/journal.pone.0009279] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/30/2010] [Indexed: 12/18/2022] Open
Abstract
Background The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs) for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans. In particular, the Yersinia outer protein YopJ (Y. pestis and Y. pseudotuberculosis) and YopP (Y. enterocolitica) rapidly induce apoptosis in murine macrophages and dendritic cells. However, the effects of Yersinia Yop J/P on neutrophil fate are not clearly defined. Methodology/Principal Findings In this study, we utilized wild-type and mutant strains of Yersinia to test the contribution of YopJ and YopP on induction of apoptosis in human monocyte-derived macrophages (HMDM) and neutrophils. Whereas YopJ and YopP similarly induced apoptosis in HMDMs, interaction of human neutrophils with virulence plasmid-containing Yersinia did not result in PMN caspase activation, release of LDH, or loss of membrane integrity greater than PMN controls. In contrast, interaction of human PMNs with the virulence plasmid-deficient Y. pestis strain KIM6 resulted in increased surface exposure of phosphatidylserine (PS) and cell death. PMN reactive oxygen species (ROS) production was inhibited in a virulence plasmid-dependent but YopJ/YopP-independent manner. Following phagocytic interaction with Y. pestis strain KIM6, inhibition of PMN ROS production with diphenyleneiodonium chloride resulted in a reduction of PMN cell death similar to that induced by the virulence plasmid-containing strain Y. pestis KIM5. Conclusions Our findings showed that Yersinia YopJ and/or YopP did not induce pronounced apoptosis in human neutrophils. Furthermore, robust PMN ROS production in response to virulence plasmid-deficient Yersinia was associated with increased PMN cell death, suggesting that Yersinia inhibition of PMN ROS production plays a role in evasion of the human innate immune response in part by limiting PMN apoptosis.
Collapse
|
30
|
Adkins I, Schulz S, Borgmann S, Autenrieth IB, Gröbner S. Differential roles of Yersinia outer protein P-mediated inhibition of nuclear factor-kappa B in the induction of cell death in dendritic cells and macrophages. J Med Microbiol 2008; 57:139-144. [PMID: 18201977 DOI: 10.1099/jmm.0.47437-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Yersinia outer protein P (YopP) induces cell death in macrophages and dendritic cells (DC). In DC this YopP-dependent cell death coincides with the inhibition of nuclear factor-kappa B (NF-kappaB) activation. However, as shown by measurement of propidium iodide uptake via disrupted cellular membranes, the preincubation of DC with several NF-kappaB inhibitors prior to infection with Yersinia did not restore the death-inducing capacity of a YopP-deficient Yersinia mutant. These results suggest that in contrast to macrophages, in DC the YopP-dependent inhibition of NF-kappaB activation is not causative for the induction of cell death. Instead, in DC, the inhibition of mitogen-activated protein kinases (MAPKs), in particular, p38 and c-Jun N-terminal kinase, prior to infection with a YopP-deficient Yersinia mutant substituted the death-inducing capacity of the Yersinia wild-type strain, indicating that the YopP-dependent inhibition of MAPKs mediates Yersinia-induced DC death. The differences between DC and macrophages in the mechanisms of cell death induction by YopP presented herein might be crucial for the function of these antigen-presenting cells.
Collapse
Affiliation(s)
- Irena Adkins
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, CZ-14220 Prague 4, Czech Republic.,Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Straße 6, D-72076 Tübingen, Germany
| | - Sebastian Schulz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Straße 6, D-72076 Tübingen, Germany
| | - Stefan Borgmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Straße 6, D-72076 Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Straße 6, D-72076 Tübingen, Germany
| | - Sabine Gröbner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Straße 6, D-72076 Tübingen, Germany
| |
Collapse
|