Published online Nov 27, 2021. doi: 10.4240/wjgs.v13.i11.1448
Peer-review started: January 13, 2021
First decision: July 14, 2021
Revised: August 19, 2021
Accepted: October 31, 2021
Article in press: October 31, 2021
Published online: November 27, 2021
Processing time: 317 Days and 14.4 Hours
Budd-Chiari syndrome (BCS) is an uncommon but potentially life-threatening clinical syndrome of portal and/or inferior vena cava hypertension caused by obstruction of the hepatic and/or inferior vena cava. Liver injury in BCS is considered to be a specific form of liver injury with a mechanism different from that caused by common factors (e.g., viruses, poisoning, alcohol or biliary stasis). Until now, the exact mechanism underlying BCS-induced liver injury is not yet known. It has been shown that lipopolysaccharide (LPS) inactivation is diminished in all causes of liver injury, leading to intrahepatic LPS accumulation, as is the case in acute hepatic injury. LPS accumulation can bind to TLR4 in intrahepatic tissue cells to activate the TLR4/NF-κB pathway and thereby regulate NF-κB-dependent acute and chronic inflammatory liver injury. To date, it remains to be elucidated whether LPS and the TLR4/NF-κB signaling pathway could play a role in the inflammatory response to liver injury in BCS.
We anticipated that investigating the mechanism with involvement of NF-κB may advance our understanding of the pathogenesis of liver injury in BCS, and help to develop new therapeutic strategies for treatment of patients with BCS.
We performed this study, aiming to investigate the potential role of NF-κB-mediated inflammation in BCS-induced liver injury in humans and rats.
In this study, 180 rats were randomly assigned into nine groups: four BCS model groups (1, 3, 6 and 12 wk), four sham-operated groups (1, 3, 6 and 12 wk), and one control group. LPS levels in each group were detected by the Tachypleus amebocyte lysate test. The mRNA and protein levels of TLR4, NF-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-2 and interferon (IFN)-γ were quantified. In addition, 60 patients with BCS and 30 healthy controls were enrolled, and their blood samples were analyzed.
Hepatic and plasma LPS levels were significantly increased in rats. The mRNA and protein expression levels of TLR4, NF-κB and inflammatory cytokines (TNF-α, IL-2 and IFN-γ) in liver tissues were significantly higher in the BCS model groups compared with those in the other two groups. In addition, the model groups (1, 3, 6 and 12 wk after BCS induction) showed significant differences in the levels of LPS, TLR4, NF-κB, TNF-α, IL-2 and IFN-γ. Notably, there was a significant correlation between the LPS concentrations and mRNA and protein levels of TLR4, NF-κB and inflammatory cytokines. Importantly, it was revealed that the levels of LPS, TLR4, NF-κB and inflammatory cytokines were significantly greater in chronic BCS patients than healthy controls and acute BCS patients.
This study has demonstrated that LPS level is markedly elevated in BCS, in turn activating the TLR4/NF-κB signaling pathway, leading to induction of inflammatory cytokines (TNF-α, IL-2 and IFN-γ) in response to BCS-induced liver injury.
The findings of the present study implicated that the TLR4/NF-κB signaling pathway could serve as a potential target in the developing of new therapeutic strategies for BCS-induced liver injury, which may ultimately improve the care for patients with BCS.