Published online Aug 27, 2015. doi: 10.4240/wjgs.v7.i8.138
Peer-review started: April 24, 2015
First decision: May 13, 2015
Revised: June 2, 2015
Accepted: June 30, 2015
Article in press: July 2, 2015
Published online: August 27, 2015
Processing time: 133 Days and 15 Hours
Pancreatic adenocarcinoma continues to have a poor prognosis with 1 and 5 years survival rates of 27% and 6% respectively. The gold standard of treatment is resection, however, only approximately 10% of patients present with resectable disease. Approximately 40% of patients present with disease that is too locally advanced to resect. There is great interest in improving outcomes in this patient population and ablation techniques have been investigated as a potential solution. Unfortunately early investigations into thermal ablation techniques, particularly radiofrequency ablation, resulted in unacceptably high morbidity rates. Irreversible electroporation (IRE) has been introduced and is promising as it does not rely on thermal energy and has shown an ability to leave structural cells such as blood vessels and bile ducts intact during animal studies. IRE also does not suffer from heat sink effect, a concern given the large number of blood vessels surrounding the pancreas. IRE showed significant promise during preclinical animal trials and as such has moved on to clinical testing. There are as of yet only a few studies which look at the applications of IRE within humans in the setting of pancreatic adenocarcinoma. This paper reviews the basic principles, techniques, and current clinical data available on IRE.
Core tip: Pancreatic adenocarcinoma continues to have a poor prognosis and as such there is considerable interest in pioneering new techniques. Ablation holds promise in this area, however, the earliest studies looked at thermal ablation techniques which resulted in high morbidity rates. Irreversible electroporation, a relatively new technique, produces apoptosis instead of liquefactive necrosis and preclinical data shows it does not destroy scaffolding cells such as bile ducts and blood vessels. These characteristics have made it of interest in the setting of pancreatic adenocarcinoma. The available clinical data as well as the basic principles of this new technique are reviewed here.