1
|
Wang B, Zhou A, Wu Y, Pan Q, Wei X, Gao Y, Xiao W, Jin J, Zhou T, Luo Y, Zhan Z, Liu Y, Gao W, Liu Y, Xia Q. Establishment and validation of a predictive model of immune tolerance after pediatric liver transplantation: a multicenter cohort study. Int J Surg 2024; 110:5615-5626. [PMID: 38833360 PMCID: PMC11392161 DOI: 10.1097/js9.0000000000001671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Background: Side-effect of life-long immunosuppressants (IS) administration is a major obstacle for the long-term survival of pediatric liver transplantation (LT) recipients. Immunotolerance is the status that recipients discontinued IS with normal liver function and intrahepatic histology. So far, only a few clinical parameters were identified related with tolerance but failed to accurately discriminate tolerant recipients in clinical practice. Here, the authors aimed to provide a comprehensive view of pre-LT and post-LT risk factors associated with the achievement of tolerance after pediatric LT and established a tolerance predictive nomogram (ITPLT) with high accuracy and specificity. Methods: The authors enrolled 2228 pediatric recipients who received LT in Renji Hospital between October 2006 and December 2020. All participants survived over 3 years after transplantation with comprehensive and intact medical history and follow-up data. They were randomly assigned to training and validation cohorts in accordance with a ratio of 1:1. Univariate and multivariable Logistic regression were used to identify clinical factors associated with post-LT immune tolerance and establish a predictive model. The model was further validated in an independent external validation cohort from Tianjin First Central Hospital. Results: Among all participants, 6% recipients successfully tapered IS with intact allograft function. The most common reason for IS discontinuity was pneumonia. Univariate analysis identified 15 clinical factors associated with tolerance achievement, including age at LT, follow-up time, preoperative total bilirubin, creatinine, INR, CYP polymorphism, types of transplantation, massive postoperative ascites, episodes of acute rejection, and the severity of EBV and CMV infection. Using multivariable Logistic regression, the authors established the predictive ITPLT model for post-LT tolerance, which included seven easily accessible clinical factors (age at LT, CYP3A5 genotype, types of transplantation, post-LT massive ascites, preoperative INR, creatinine, and total bilirubin levels). Then, the authors visualized the model using nomogram. The c -statistics for predicting tolerance achievement in the training, internal validation, and external validation cohorts were 0.854, 0.787, and 0.746, respectively. Conclusion: Multiple pre-LT and post-LT clinical factors affected the process of immune remodeling after pediatric LT. The predictive ITPLT model, composed of seven easily accessible clinical factors, could comprehensively reveal the effect of these clinical parameters on immune remodeling and accurately identify tolerant recipients after pediatric LT. The application of ITPLT could facilitate the individualized IS strategy in the future.
Collapse
Affiliation(s)
- Bingran Wang
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Aiwei Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yichi Wu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qi Pan
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Xinzhe Wei
- Department of Pediatric Transplantation, Organ Transplantation Center, Tianjin First Central Hospital, Tianjin
| | - Yunmu Gao
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jing Jin
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Tao Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | | | - Yongbo Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Institute of Transplantation
| | - Wei Gao
- Department of Pediatric Transplantation, Organ Transplantation Center, Tianjin First Central Hospital, Tianjin
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Immune Therapy Institute
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Institute of Transplantation
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Sharma P, Arora A. Basic Understanding of Liver Transplant Immunology. J Clin Exp Hepatol 2023; 13:1091-1102. [PMID: 37975047 PMCID: PMC10643508 DOI: 10.1016/j.jceh.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/14/2023] [Indexed: 11/19/2023] Open
Abstract
The liver is a specialized organ and plays an important role in our immune system. The liver constitutes parenchymal cells which are hepatocytes and cholangiocytes (60-80%) and non-parenchymal cells like liver sinusoidal endothelial cells (LSECs), hepatic satellite/Ito cells, Kupffer cells, neutrophils, mononuclear cells, T and B lymphocytes (conventional and non-conventional), natural killer cells, and natural killer T (NKT) cells. The liver mounts a rapid and strong immune response, under unfavorable conditions and acts as an immune tolerance to a variety of non-pathogenic antigens. This delicate and dynamic interaction between different kinds of immune cells in the liver maintains a balance between immune screening and immune tolerance. The liver allografts are privileged immunologically; however, allograft rejection is not uncommon and is classified as cell or antibody-mediated. Advancements in transplant immunology help in the prevention of allografts rejection by immune reactions of the host thus leading to better graft and host survival. Fewer patients may not require immunosuppression due to systemic donor-specific T-cell tolerance. The liver tolerance mechanism is poorly studied, and LSEC and unconventional lymphocytes play an important role that dampens T cell response either by inducing apoptosis of cells or inhibiting co-stimulatory pathways. Newer cell-based therapy based on Treg, dendritic cells, and mesenchymal stromal cells will probably change the future of immunosuppression. Various invasive and non-invasive biomarkers and artificial intelligence have also been investigated to predict graft survival, post-transplant complications, and immunotolerance in the future.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Gastroenterology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
3
|
Berenguer M, de Martin E, Hessheimer AJ, Levitsky J, Maluf DG, Mas VR, Selzner N, Hernàndez-Èvole H, Lutu A, Wahid N, Zubair H. European Society for Organ Transplantation Consensus Statement on Biomarkers in Liver Transplantation. Transpl Int 2023; 36:11358. [PMID: 37711401 PMCID: PMC10498996 DOI: 10.3389/ti.2023.11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Currently, one-year survival following liver transplantation (LT) exceeds 90% in large international registries, and LT is considered definitive treatment for patients with end-stage liver disease and liver cancer. Recurrence of disease, including hepatocellular carcinoma (HCC), significantly hampers post-LT outcomes. An optimal approach to immunosuppression (IS), including safe weaning, may benefit patients by mitigating the effect on recurrent diseases, as well as reducing adverse events associated with over-/under-IS, including chronic kidney disease (CKD). Prediction of these outcome measures-disease recurrence, CKD, and immune status-has long been based on relatively inaccurate clinical models. To address the utility of new biomarkers in predicting these outcomes in the post-LT setting, the European Society of Organ Transplantation (ESOT) and International Liver Transplant Society (ILTS) convened a working group of experts to review literature pertaining to primary disease recurrence, development of CKD, and safe weaning of IS. Summaries of evidence were presented to the group of panelists and juries to develop guidelines, which were discussed and voted in-person at the Consensus Conference in Prague November 2022. The consensus findings and recommendations of the Liver Working Group on new biomarkers in LT, clinical applicability, and future needs are presented in this article.
Collapse
Affiliation(s)
- Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario la Fe - IIS La Fe Valencia, CiberEHD and University of Valencia, Valencia, Spain
| | - Eleonora de Martin
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Inserm UMR-S 1193, Université Paris-Saclay, Villejuif, France
| | - Amelia J. Hessheimer
- General & Digestive Surgery, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Department of Medicine, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel G. Maluf
- Program in Transplantation, Department of Surgery, University of Maryland Medical Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Valeria R. Mas
- Surgical Sciences Research in Transplantation, Chief Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nazia Selzner
- Ajmera Transplant Center, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Alina Lutu
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Inserm UMR-S 1193, Université Paris-Saclay, Villejuif, France
| | - Nabeel Wahid
- Division of Gastroenterology and Hepatology, Department of Medicine, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haseeb Zubair
- Surgical Sciences Division, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Jameson G, Harmon C, Santiago RM, Houlihan DD, Gallagher TK, Lynch L, Robinson MW, O’Farrelly C. Human Hepatic CD56bright NK Cells Display a Tissue-Resident Transcriptional Profile and Enhanced Ability to Kill Allogenic CD8+ T Cells. Front Immunol 2022; 13:921212. [PMID: 35865550 PMCID: PMC9295839 DOI: 10.3389/fimmu.2022.921212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Liver-resident CD56brightCD16- natural killer (NK) cells are enriched in the human liver and are phenotypically distinct from their blood counterparts. Although these cells are capable of rapid cytotoxic effector activity, their functional role remains unclear. We hypothesise that they may contribute to immune tolerance in the liver during transplantation. RNA sequencing was carried out on FACS sorted NK cell subpopulations from liver perfusates (n=5) and healthy blood controls (n=5). Liver-resident CD56brightCD16+/- NK cells upregulate genes associated with tissue residency. They also upregulate expression of CD160 and LY9, both of which encode immune receptors capable of activating NK cells. Co-expression of CD160 and Ly9 on liver-resident NK cells was validated using flow cytometry. Hepatic NK cell cytotoxicity against allogenic T cells was tested using an in vitro co-culture system of liver perfusate-derived NK cells and blood T cells (n=10-13). In co-culture experiments, hepatic NK cells but not blood NK cells induced significant allogenic T cell death (p=0.0306). Allogenic CD8+ T cells were more susceptible to hepatic NK cytotoxicity than CD4+ T cells (p<0.0001). Stimulation of hepatic CD56bright NK cells with an anti-CD160 agonist mAb enhanced this cytotoxic response (p=0.0382). Our results highlight a role for donor liver NK cells in regulating allogenic CD8+ T cell activation, which may be important in controlling recipient CD8+ T cell-mediated rejection post liver-transplant.
Collapse
Affiliation(s)
- Gráinne Jameson
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cathal Harmon
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rhyla Mae Santiago
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
| | | | - Tom K. Gallagher
- Hepatopancreaticobiliary Group, St. Vincent’s University Hospital, Dublin, Ireland
| | - Lydia Lynch
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark W. Robinson
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
- *Correspondence: Mark W. Robinson,
| | - Cliona O’Farrelly
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Ningappa M, Rahman SA, Higgs BW, Ashokkumar CS, Sahni N, Sindhi R, Das J. A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation. Cell Rep Med 2022; 3:100605. [PMID: 35492246 PMCID: PMC9044102 DOI: 10.1016/j.xcrm.2022.100605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/19/2021] [Accepted: 03/23/2022] [Indexed: 10/27/2022]
Abstract
Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pediatric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges. Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients before or after LT. Here, we discover and validate separate pre- and post-LT transcriptomic signatures of rejection. Using an integrative machine learning approach, we combine transcriptomics data with the reference high-quality human protein interactome to identify network module signatures, which underlie rejection. Unlike gene signatures, our approach is inherently multivariate and more robust to replication and captures the structure of the underlying network, encapsulating additive effects. We also identify, in an individual-specific manner, signatures that can be targeted by current anti-rejection drugs and other drugs that can be repurposed. Our approach can enable personalized adjustment of drug regimens for the dominant targetable pathways before and after LT in children.
Collapse
Affiliation(s)
- Mylarappa Ningappa
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed A Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon W Higgs
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chethan S Ashokkumar
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nidhi Sahni
- Department of Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.,Department of Molecular Carcinogenesis and Bioinformatics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.,Department of Computational Biology, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Rakesh Sindhi
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Duizendstra AA, van der Grift MV, Boor PP, Noordam L, de Knegt RJ, Peppelenbosch MP, Betjes MGH, Litjens NHR, Kwekkeboom J. Current Tolerance-Associated Peripheral Blood Gene Expression Profiles After Liver Transplantation Are Influenced by Immunosuppressive Drugs and Prior Cytomegalovirus Infection. Front Immunol 2022; 12:738837. [PMID: 35087511 PMCID: PMC8787265 DOI: 10.3389/fimmu.2021.738837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Spontaneous operational tolerance to the allograft develops in a proportion of liver transplant (LTx) recipients weaned off immunosuppressive drugs (IS). Several previous studies have investigated whether peripheral blood gene expression profiles could identify operational tolerance in LTx recipients. However, the reported gene expression profiles differed greatly amongst studies, which could be caused by inadequate matching of clinical parameters of study groups. Therefore, the purpose of this study was to validate differentially expressed immune system related genes described in previous studies that identified tolerant LTx recipients after IS weaning. Blood was collected of tolerant LTx recipients (TOL), a control group of LTx recipients with regular IS regimen (CTRL), a group of LTx recipients with minimal IS regimen (MIN) and healthy controls (HC), and groups were matched on age, sex, primary disease, time after LTx, and cytomegalovirus serostatus after LTx. Quantitative Polymerase Chain Reaction was used to determine expression of twenty selected genes and transcript variants in PBMCs. Several genes were differentially expressed between TOL and CTRL groups, but none of the selected genes were differentially expressed between HC and TOL. Principal component analysis revealed an IS drug dosage effect on the expression profile of these genes. These data suggest that use of IS profoundly affects gene expression in peripheral blood, and that these genes are not associated with operational tolerance. In addition, expression levels of SLAMF7 and NKG7 were affected by prior cytomegalovirus infection in LTx recipients. In conclusion, we found confounding effects of IS regimen and prior cytomegalovirus infection, on peripheral blood expression of several selected genes that were described as tolerance-associated genes by previous studies.
Collapse
Affiliation(s)
- Aafke A Duizendstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michelle V van der Grift
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Patrick P Boor
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Lisanne Noordam
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michiel G H Betjes
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Nicolle H R Litjens
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
8
|
Duizendstra AA, de Knegt RJ, Mancham S, Klepper M, Roelen DL, Brand‐Schaaf SH, Boor PP, Doukas M, de Man RA, Sprengers D, Peppelenbosch MP, Betjes MGH, Kwekkeboom J, Litjens NHR. Activated CD4 + T Cells and Highly Differentiated Alloreactive CD4 + T Cells Distinguish Operationally Tolerant Liver Transplantation Recipients. Liver Transpl 2022; 28:98-112. [PMID: 34081828 PMCID: PMC9291234 DOI: 10.1002/lt.26188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Spontaneous operational tolerance to the allograft develops in a proportion of liver transplantation (LT) recipients weaned off immunosuppressive (IS) drugs. Several studies have investigated whether peripheral blood circulating T cells could play a role in the development or identify operational tolerance, but never characterized alloreactive T cells in detail due to the lack of a marker for these T cells. In this study, we comprehensively investigated phenotypic and functional characteristics of alloreactive circulating T cell subsets in tolerant LT recipients (n = 15) using multiparameter flow cytometry and compared these with LT recipients on IS drugs (n = 23) and healthy individuals (n = 16). Activation-induced CD137 was used as a marker for alloreactive T cells upon allogenic stimulation. We found that central and effector memory CD4+ T cells were hyporesponsive against donor and third-party splenocyte stimulation in tolerant LT recipients, whereas an overall hyperresponsiveness was observed in alloreactive terminally differentiated effector memory CD4+ T cells. In addition, elevated percentages of circulating activated T helper cells were observed in these recipients. Lastly, tolerant and control LT recipients did not differ in donor-specific antibody formation. In conclusion, a combination of circulating hyperresponsive highly differentiated alloreactive CD4+ T cells and circulating activated T helper cells could discriminate tolerant recipients from a larger group of LT recipients.
Collapse
Affiliation(s)
- Aafke A. Duizendstra
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Robert J. de Knegt
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Shanta Mancham
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Mariska Klepper
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical CenterRotterdamthe Netherlands
| | - Dave L. Roelen
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Simone H. Brand‐Schaaf
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Patrick P. Boor
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Michail Doukas
- Department of PathologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Robert A. de Man
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Michiel G. H. Betjes
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical CenterRotterdamthe Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Nicolle H. R. Litjens
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
9
|
Au KP, Chok KSH. Immunotherapy after liver transplantation: Where are we now? World J Gastrointest Surg 2021; 13:1267-1278. [PMID: 34754394 PMCID: PMC8554723 DOI: 10.4240/wjgs.v13.i10.1267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is limited evidence on the safety of immunotherapy use after liver transplantation and its efficacy in treating post-liver transplant hepatocellular carcinoma (HCC) recurrence.
AIM To assess the safety of immunotherapy after liver transplant and its efficacy in treating post-liver transplant HCC recurrence.
METHODS A literature review was performed to identify patients with prior liver transplantation and subsequent immunotherapy. We reviewed the rejection rate and risk factors of rejection. In patients treated for HCC, the oncological outcomes were evaluated including objective response rate, progression-free survival (PFS), and overall survival (OS).
RESULTS We identified 25 patients from 16 publications and 3 patients from our institutional database (total n = 28). The rejection rate was 32% (n = 9). Early mortality occurred in 21% (n = 6) and was mostly related to acute rejection (18%, n = 5). Patients who developed acute rejection were given immunotherapy earlier after transplantation (median 2.9 years vs 5.3 years, P = 0.02) and their graft biopsies might be more frequently programmed death ligand-1-positive (100% vs 33%, P = 0.053). Their PFS (1.0 ± 0.1 mo vs 3.5 ± 1.1 mo, P = 0.02) and OS (1.0 ± 0.1 mo vs 19.2 ± 5.5 mo, P = 0.001) compared inferiorly to patients without rejection. Among the 19 patients treated for HCC, the rejection rate was 32% (n = 6) and the overall objective response rate was 11%. The median PFS and OS were 2.5 ± 1.0 mo and 7.3 ± 2.7 mo after immunotherapy.
CONCLUSION Rejection risk is the major obstacle to immunotherapy use in liver transplant recipients. Further studies on the potential risk factors of rejection are warranted.
Collapse
Affiliation(s)
- Kin Pan Au
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kenneth Siu Ho Chok
- Department of Surgery and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Au KP, Chok KSH. Immunotherapy after liver transplantation: Where are we now? World J Gastrointest Surg 2021. [DOI: 10.4240/wjgs.v13.i10.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
López-López V, Pérez-Sánz F, de Torre-Minguela C, Marco-Abenza J, Robles-Campos R, Sánchez-Bueno F, Pons JA, Ramírez P, Baroja-Mazo A. Proteomics in Liver Transplantation: A Systematic Review. Front Immunol 2021; 12:672829. [PMID: 34381445 PMCID: PMC8350337 DOI: 10.3389/fimmu.2021.672829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Background Although proteomics has been employed in the study of several models of liver injury, proteomic methods have only recently been applied not only to biomarker discovery and validation but also to improve understanding of the molecular mechanisms involved in transplantation. Methods The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and the guidelines for performing systematic literature reviews in bioinformatics (BiSLR). The PubMed, ScienceDirect, and Scopus databases were searched for publications through April 2020. Proteomics studies designed to understand liver transplant outcomes, including ischemia-reperfusion injury (IRI), rejection, or operational tolerance in human or rat samples that applied methodologies for differential expression analysis were considered. Results The analysis included 22 studies after application of the inclusion and exclusion criteria. Among the 497 proteins annotated, 68 were shared between species and 10 were shared between sample sources. Among the types of studies analyzed, IRI and rejection shared a higher number of proteins. The most enriched pathway for liver biopsy samples, IRI, and rejection was metabolism, compared to cytokine-cytokine receptor interactions for tolerance. Conclusions Proteomics is a promising technique to detect large numbers of proteins. However, our study shows that several technical issues such as the identification of proteoforms or the dynamic range of protein concentration in clinical samples hinder the successful identification of biomarkers in liver transplantation. In addition, there is a need to minimize the experimental variability between studies, increase the sample size and remove high-abundance plasma proteins.
Collapse
Affiliation(s)
- Victor López-López
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Fernando Pérez-Sánz
- Biomedical Informatic and Bioinformatic Platform, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Carlos de Torre-Minguela
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - Ricardo Robles-Campos
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Sánchez-Bueno
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - José A Pons
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Gastroenterology, Unit of Hepatology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Alberto Baroja-Mazo
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
12
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
14
|
McCaughan GW, Bowen DG, Bertolino PJ. Induction Phase of Spontaneous Liver Transplant Tolerance. Front Immunol 2020; 11:1908. [PMID: 33013840 PMCID: PMC7516030 DOI: 10.3389/fimmu.2020.01908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
The liver has long been known to possess tolerogenic properties. Early experiments in liver transplantation demonstrated that in animal models, hepatic allografts could be accepted across MHC-mismatch without the use of immunosuppression, and that transplantation of livers from the same donor was capable of inducing tolerance to other solid organs that would normally otherwise be rejected. Although this phenomenon is less pronounced in human liver transplantation, lower levels of immunosuppression are nevertheless required for graft acceptance than for other solid organs, and in a minority of individuals immunosuppression can be discontinued in the longer term. The mechanisms underlying this unique hepatic property have not yet been fully delineated, however it is clear that immunological events in the early period post-liver transplant are key to generation of hepatic allograft tolerance. Both the hepatic parenchyma and the large number of donor passenger leukocytes contained within the liver allograft have been demonstrated to contribute to the generation of donor-specific tolerance in the early post-transplant phase. In particular, the unique nature of hepatic-leukocyte interactions appears to play a crucial role in the ability of the liver to silence the recipient alloimmune response. In this review, we will summarize the evidence regarding the potential mechanisms that mediate the critical early phase in the generation of hepatic allograft tolerance.
Collapse
Affiliation(s)
- Geoffrey W McCaughan
- Liver Injury and Cancer Program, The Centenary Institute, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.,AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Liver Immunology Program, The Centenary Institute, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Patrick J Bertolino
- AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Liver Immunology Program, The Centenary Institute, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
15
|
Mengel M, Loupy A, Haas M, Roufosse C, Naesens M, Akalin E, Clahsen‐van Groningen MC, Dagobert J, Demetris AJ, Duong van Huyen J, Gueguen J, Issa F, Robin B, Rosales I, Von der Thüsen JH, Sanchez‐Fueyo A, Smith RN, Wood K, Adam B, Colvin RB. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation-Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am J Transplant 2020; 20:2305-2317. [PMID: 32428337 PMCID: PMC7496585 DOI: 10.1111/ajt.16059] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
This meeting report from the XV Banff conference describes the creation of a multiorgan transplant gene panel by the Banff Molecular Diagnostics Working Group (MDWG). This Banff Human Organ Transplant (B-HOT) panel is the culmination of previous work by the MDWG to identify a broadly useful gene panel based on whole transcriptome technology. A data-driven process distilled a gene list from peer-reviewed comprehensive microarray studies that discovered and validated their use in kidney, liver, heart, and lung transplant biopsies. These were supplemented by genes that define relevant cellular pathways and cell types plus 12 reference genes used for normalization. The 770 gene B-HOT panel includes the most pertinent genes related to rejection, tolerance, viral infections, and innate and adaptive immune responses. This commercially available panel uses the NanoString platform, which can quantitate transcripts from formalin-fixed paraffin-embedded samples. The B-HOT panel will facilitate multicenter collaborative clinical research using archival samples and permit the development of an open source large database of standardized analyses, thereby expediting clinical validation studies. The MDWG believes that a pathogenesis and pathway based molecular approach will be valuable for investigators and promote therapeutic decision-making and clinical trials.
Collapse
Affiliation(s)
- Michael Mengel
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
| | - Alexandre Loupy
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Mark Haas
- Department of Pathology and Laboratory MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Candice Roufosse
- Department of Immunology and InflammationImperial College London and North West London PathologyLondonUK
| | - Maarten Naesens
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium,Department of NephrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Enver Akalin
- Montefiore‐Einstein Center for TransplantationMontefiore Medical CenterBronxNew YorkUSA
| | | | - Jessy Dagobert
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Anthony J. Demetris
- Department of PathologyUniversity of Pittsburgh Medical CenterMontefiore, PittsburghPennsylvaniaUSA
| | - Jean‐Paul Duong van Huyen
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Juliette Gueguen
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Fadi Issa
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Blaise Robin
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Ivy Rosales
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Rex N. Smith
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kathryn Wood
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Benjamin Adam
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
| | - Robert B. Colvin
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
16
|
Tanimine N, Ohira M, Tahara H, Ide K, Tanaka Y, Onoe T, Ohdan H. Strategies for Deliberate Induction of Immune Tolerance in Liver Transplantation: From Preclinical Models to Clinical Application. Front Immunol 2020; 11:1615. [PMID: 32849546 PMCID: PMC7412931 DOI: 10.3389/fimmu.2020.01615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver exhibits intrinsic immune regulatory properties that maintain tolerance to endogenous and exogenous antigens, and provide protection against pathogens. Such an immune privilege contributes to susceptibility to spontaneous acceptance despite major histocompatibility complex mismatch when transplanted in animal models. Furthermore, the presence of a liver allograft can suppress the rejection of other solid tissue/organ grafts from the same donor. Despite this immune privilege of the livers, to control the undesired alloimmune responses in humans, most liver transplant recipients require long-term treatment with immune-suppressive drugs that predispose to cardiometabolic side effects and renal insufficiency. Understanding the mechanism of liver transplant tolerance and crosstalk between a variety of hepatic immune cells, such as dendritic cells, Kupffer cells, liver sinusoidas endothelial cells, hepatic stellate cells and so on, and alloreactive T cells would lead to the development of strategies for deliberate induction of more specific immune tolerance in a clinical setting. In this review article, we focus on results derived from basic studies that have attempted to elucidate the immune modulatory mechanisms of liver constituent cells and clinical trials that induced immune tolerance after liver transplantation by utilizing the immune-privilege potential of the liver.
Collapse
Affiliation(s)
- Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Onoe
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Levitsky J, Burrell BE, Kanaparthi S, Turka LA, Kurian S, Sanchez-Fueyo A, Lozano JJ, Demetris A, Lesniak A, Kirk AD, Stempora L, Yang GY, Mathew JM. Immunosuppression Withdrawal in Liver Transplant Recipients on Sirolimus. Hepatology 2020; 72:569-583. [PMID: 31721246 PMCID: PMC7217743 DOI: 10.1002/hep.31036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS As conversion from calcineurin inhibitor to sirolimus (SRL), a mechanistic target of rapamycin inhibitor (mTOR-I), has been shown to enhance immunoregulatory profiles in liver transplant (LT) recipients (LTRs), mTOR-I therapy might allow for increased success of immunosuppression (IS) withdrawal. Our aim was to determine if operational tolerance could be observed in LTRs withdrawn from SRL and if blood/graft tolerance biomarkers were predictive of successful withdrawal. APPROACH AND RESULTS We performed a prospective trial of SRL monotherapy withdrawal in nonimmune, nonviremic LTRs > 3 years post-LT. SRL was weaned over ~6 months, and biopsies were performed 12 months postweaning or at concern for acute rejection. Twenty-one LTRs consented; 6 were excluded due to subclinical acute rejection on baseline biopsy or other reasons, and 15 underwent weaning (age 61.3 ± 8.8 years; LT to SRL weaning 6.7 ± 3 years). Eight (53%) achieved operational tolerance (TOL). Of the 7 who were nontolerant (non-TOL), 6 had mild acute rejection on biopsy near the end of weaning or at study end; 1 was removed from the trial due to liver cancer recurrence. At baseline preweaning, there were statistically increased blood tolerogenic dendritic cells and cell phenotypes correlating with chronic antigen presentation in the TOL versus non-TOL groups. A previously identified biopsy gene signature accurately predicted TOL versus non-TOL in 12/14 LTRs before weaning. At study end, biopsy staining revealed statistically significant increases in antigen-presenting cell:leukocyte pairings, FOXP3+ /CD4+ T cells, Tbet+ /CD8+ T cells, and lobular dendritic cells in the non-TOL group. CONCLUSIONS This study evaluated IS withdrawal directly from mTOR-I therapy in LTRs and achieved > 50% operational tolerance. Preweaning gene expression and peripheral blood mononuclear cell profiling may be useful as predictors of successful mTOR-I therapy withdrawal. NCT02062944.
Collapse
Affiliation(s)
- Josh Levitsky
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Laurence A. Turka
- Immune Tolerance Network, Bethesda, MD; Massachusetts General Hospital, Boston, MA
| | - Sunil Kurian
- Scripps Clinic Bio-Repository and Transplantation Research, La Jolla, California, United States
| | | | - Juan J. Lozano
- Biomedical Research Center in Hepatic and Digestive Diseases, Carlos III Health Institute, Barcelona, Spain
| | | | | | | | | | - Guang-Yu Yang
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - James M. Mathew
- Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
18
|
Dai H, Zheng Y, Thomson AW, Rogers NM. Transplant Tolerance Induction: Insights From the Liver. Front Immunol 2020; 11:1044. [PMID: 32582167 PMCID: PMC7289953 DOI: 10.3389/fimmu.2020.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A comparison of pre-clinical transplant models and of solid organs transplanted in routine clinical practice demonstrates that the liver is most amenable to the development of immunological tolerance. This phenomenon arises in the absence of stringent conditioning regimens that accompany published tolerizing protocols for other organs, particularly the kidney. The unique immunologic properties of the liver have assisted our understanding of the alloimmune response and how it can be manipulated to improve graft function and survival. This review will address important findings following liver transplantation in both animals and humans, and how these have driven the understanding and development of therapeutic immunosuppressive options. We will discuss the liver's unique system of immune and non-immune cells that regulate immunity, yet maintain effective responses to pathogens, as well as mechanisms of liver transplant tolerance in pre-clinical models and humans, including current immunosuppressive drug withdrawal trials and biomarkers of tolerance. In addition, we will address innovative therapeutic strategies, including mesenchymal stem cell, regulatory T cell, and regulatory dendritic cell therapy to promote liver allograft tolerance or minimization of immunosuppression in the clinic.
Collapse
Affiliation(s)
- Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Yawen Zheng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China.,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal Division, Westmead Hospital, Westmead, NSW, Australia.,Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
19
|
Koenig A, Chen CC, Marçais A, Barba T, Mathias V, Sicard A, Rabeyrin M, Racapé M, Duong-Van-Huyen JP, Bruneval P, Loupy A, Dussurgey S, Ducreux S, Meas-Yedid V, Olivo-Marin JC, Paidassi H, Guillemain R, Taupin JL, Callemeyn J, Morelon E, Nicoletti A, Charreau B, Dubois V, Naesens M, Walzer T, Defrance T, Thaunat O. Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat Commun 2019; 10:5350. [PMID: 31767837 PMCID: PMC6877588 DOI: 10.1038/s41467-019-13113-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Current doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of β2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection. ‘Missing self’ is a mode of natural killer (NK) cell activation aimed to detect the lack of HLA-I molecules on infected or neoplastic cells. Here, the authors show that mismatch between donor HLA-I and cognate receptors on recipient NK cells mediates microvascular inflammation-associated graft rejection, a pathology that is preventable by mTOR inhibition.
Collapse
Affiliation(s)
- Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Chien-Chia Chen
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Antoine Marçais
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Thomas Barba
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Virginie Mathias
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,French National Blood Service (EFS), HLA Laboratory, 111, rue Elisée-Reclus, 69153, Décines-Charpieu, France
| | - Antoine Sicard
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Maud Rabeyrin
- Hospices Civils de Lyon, Department of Pathology, 59, boulevard Pinel, 69500, Bron, France
| | - Maud Racapé
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Jean-Paul Duong-Van-Huyen
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Patrick Bruneval
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Alexandre Loupy
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Sébastien Dussurgey
- SFR Biosciences (UMS3444/CNRS, US8/Inserm, ENS de Lyon, UCBL), 50, avenue Tony-Garnier, 69007, Lyon, France
| | - Stéphanie Ducreux
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,French National Blood Service (EFS), HLA Laboratory, 111, rue Elisée-Reclus, 69153, Décines-Charpieu, France
| | - Vannary Meas-Yedid
- Unité d'Analyse d'Images Biologiques, Pasteur Institut, 25-28, rue du Docteur-Roux, 75015, Paris, France
| | | | - Héléna Paidassi
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Romain Guillemain
- Assistance Publique - Hôpitaux de Paris, Georges Pompidou Hospital, Cardiology and Heart Transplant Department, 20, rue Leblanc, 75015, Paris, France
| | - Jean-Luc Taupin
- Assistance Publique - Hôpitaux de Paris, Immunology and HLA Laboratory, Saint-Louis Hospital, 1, avenue Claude-Vellefaux, 75010, Paris, France.,French National Institute of Health and Medical Research (Inserm) Unit 1160, 1, avenue Claude-Vellefaux, 75010, Paris, France.,Paris Diderot University, 5, rue Thomas-Mann, 75013, Paris, France
| | - Jasper Callemeyn
- Department of Microbiology and Immunology, KU Leuven, University of Leuven, Herestraat 49, Box 7003, 3000, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emmanuel Morelon
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Antonino Nicoletti
- Paris Diderot University, 5, rue Thomas-Mann, 75013, Paris, France.,French National Institute of Health and Medical Research (Inserm) Unit 1148, Laboratory of Vascular Translational Science, 46, rue Henri-Huchard, 75018, Paris, France
| | - Béatrice Charreau
- French National Institute of Health and Medical Research (Inserm) UMR1064, 30, boulevard Jean-Monnet, 44093, Nantes Cedex 01, France
| | - Valérie Dubois
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,French National Blood Service (EFS), HLA Laboratory, 111, rue Elisée-Reclus, 69153, Décines-Charpieu, France
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven, University of Leuven, Herestraat 49, Box 7003, 3000, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Thierry Walzer
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Thierry Defrance
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France. .,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France. .,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France.
| |
Collapse
|
20
|
Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer 2019; 7:267. [PMID: 31627733 PMCID: PMC6798343 DOI: 10.1186/s40425-019-0749-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and confers a poor prognosis. Beyond standard systemic therapy with multikinase inhibitors, recent studies demonstrate the potential for robust and durable responses from immune checkpoint inhibition in subsets of HCC patients across disease etiologies. The majority of HCC arises in the context of chronic inflammation and from within a fibrotic liver, with many cases associated with hepatitis virus infections, toxins, and fatty liver disease. Many patients also have concomitant cirrhosis which is associated with both local and systemic immune deficiency. Furthermore, the liver is an immunologic organ in itself, which may enhance or suppress the immune response to cancer arising within it. Here, we explore the immunobiology of the liver from its native state to chronic inflammation, fibrosis, cirrhosis and then to cancer, and summarize how this unique microenvironment may affect the response to immunotherapy.
Collapse
Affiliation(s)
- Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robin K Kelley
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Standardisation of flow cytometry for whole blood immunophenotyping of islet transplant and transplant clinical trial recipients. PLoS One 2019; 14:e0217163. [PMID: 31116766 PMCID: PMC6530858 DOI: 10.1371/journal.pone.0217163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023] Open
Abstract
Understanding the immunological phenotype of transplant recipients is important to improve outcomes and develop new therapies. Immunophenotyping of whole peripheral blood (WPB) by flow cytometry is a rapid method to obtain large amounts of data relating to the outcomes of different transplant treatments with limited patient impact. Healthy individuals and patients with type 1 diabetes (T1D) enrolled in islet transplantation were recruited and WPB was collected. 46 fluorochrome-conjugated mouse-anti-human antibodies were used (43 of 46 antibodies were titrated). BD cytometer setup and tracking beads were used to characterize and adjust for cytometer performance. Antibody cocktails were pre-mixed <60 minutes before staining. Multicolour panels were designed based on fluorochrome brightness, antigen density, co-expression, and fluorochrome spillover into non-primary detectors in each panel on a 5 laser flow cytometer. WPB sample staining used 50–300 μl WPB for each panel and was performed within 2 hours of blood sample collection. Samples were acquired on a BD-LSRFortessa. The operating procedures, including specimen collection, antibody cocktails, staining protocol, flow-cytometer setup and data analysis, were standardized. The staining index of 43 antibodies and the spillover spreading matrix for each panel was calculated. The final concentrations for the 46 antibodies used was determined for staining of WPB samples. Absolute cell-count and 7 leukocyte profiling panels consisting of subsets and/or status of granulocytes, monocytes, dendritic, B, NK, and T cells including regulatory T cells (Tregs) and NKT were designed and established on a 5 laser BD-LSR Fortessa. 13 T1D patients, including 4 islet transplant recipients and 8 healthy controls, were evaluated. The ability to reproducibly measure immune subsets and immune-profiles of islet transplant patients up to 18 months post transplantation has been established as a tool to measure immune cell reconstitution after transplantation.
Collapse
|
22
|
Litjens NHR, van der Wagen L, Kuball J, Kwekkeboom J. Potential Beneficial Effects of Cytomegalovirus Infection after Transplantation. Front Immunol 2018; 9:389. [PMID: 29545802 PMCID: PMC5838002 DOI: 10.3389/fimmu.2018.00389] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Cytomegalovirus (CMV) infection can cause significant complications after transplantation, but recent emerging data suggest that CMV may paradoxically also exert beneficial effects in two specific allogeneic transplant settings. These potential benefits have been underappreciated and are therefore highlighted in this review. First, after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) using T-cell and natural killer (NK) cell-replete grafts, CMV reactivation is associated with protection from leukemic relapse. This association was not observed for other hematologic malignancies. This anti-leukemic effect might be mediated by CMV-driven expansion of donor-derived memory-like NKG2C+ NK and Vδ2negγδ T-cells. Donor-derived NK cells probably recognize recipient leukemic blasts by engagement of NKG2C with HLA-E and/or by the lack of donor (self) HLA molecules. Vδ2negγδ T cells probably recognize as yet unidentified antigens on leukemic blasts via their TCR. Second, immunological imprints of CMV infection, such as expanded numbers of Vδ2negγδ T cells and terminally differentiated TCRαβ+ T cells, as well as enhanced NKG2C gene expression in peripheral blood of operationally tolerant liver transplant patients, suggest that CMV infection or reactivation may be associated with liver graft acceptance. Mechanistically, poor alloreactivity of CMV-induced terminally differentiated TCRαβ+ T cells and CMV-induced IFN-driven adaptive immune resistance mechanisms in liver grafts may be involved. In conclusion, direct associations indicate that CMV reactivation may protect against AML relapse after allogeneic HSCT, and indirect associations suggest that CMV infection may promote allograft acceptance after liver transplantation. The causative mechanisms need further investigations, but are probably related to the profound and sustained imprint of CMV infection on the immune system.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lotte van der Wagen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jurgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
23
|
Zhu L, Aly M, Wang H, Karakizlis H, Weimer R, Morath C, Kuon RJ, Toth B, Opelz G, Daniel V. Decreased NK cell immunity in kidney transplant recipients late post-transplant and increased NK-cell immunity in patients with recurrent miscarriage. PLoS One 2017; 12:e0186349. [PMID: 29040297 PMCID: PMC5645130 DOI: 10.1371/journal.pone.0186349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is evidence that NK-cell reactivity might affect graft outcome in transplant recipients and pregnancy in women. METHOD NK-cell subsets were determined in whole blood using eight-colour-fluorescence flow cytometry in patients before and after renal transplantation, patients with recurrent miscarriage (RM) and healthy controls (HC). RESULTS Patients late post-transplant (late-Tx) with functioning renal transplants showed abnormally low CD56dimCD16+ NK-cells containing both perforin and granzyme (vs HC p = 0.021) whereas RM patients exhibited abnormally high numbers of these cells (vs HC p = 0.043). CD56dimCD16+perforin+granzyme+ NK-cell counts were strikingly different between the two patient groups (p<0.001). In addition, recipients late-Tx showed abnormally low CD8+ NK-cells (vs HC p<0.001) in contrast to RM patients who showed an abnormal increase (vs HC p = 0.008). CD8+ NK-cell counts were strongly different between the two patient groups (p<0.001). Higher perforin+granzyme+CD56dimCD16+ and CD8+ NK-cells were associated with impaired graft function (p = 0.044, p = 0.032). After in-vitro stimulation, CD56dimCD16+ and CD56brightCD16dim/- NK-cells showed strong upregulation of CD107a and IFNy, whereas the content of perforin decreased dramatically as a consequence of perforin release. Recipients late post-Tx showed less in-vitro perforin release (= less cytotoxicity) than HC (p = 0.037) and lower perforin release was associated with good graft function (r = 0.738, p = 0.037). Notably, we observed strong in-vitro perforin release in 2 of 6 investigated RM patients. When circulating IL10+CD56bright NK-cells were analyzed, female recipients late post-Tx (n = 9) showed significantly higher relative and absolute cell numbers than RM patients (p = 0.002 and p = 0.018, respectively); and high relative and absolute IL10+CD56bright NK-cell numbers in transplant recipients were associated with low serum creatinine (p = 0.004 and p = 0.012) and high glomerular filtration rate (p = 0.011 and p = 0.002, respectively). Female recipients late post-Tx exhibited similar absolute but higher relative numbers of IL10+IFNy- NK-cells than RM patients (p>0.05 and p = 0.016, respectively). CONCLUSION NK-cells with lower cytotoxicity and immunoregulatory function might contribute to good long-term graft outcome, whereas circulating NK-cells with normal or even increased cytotoxicity and less immunoregulatory capacity are observed in patients with RM.
Collapse
Affiliation(s)
- Li Zhu
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
- Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mostafa Aly
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
- Nephrology unit, Internal Medicine Department, Assiut University, Âssiut, Egypt
| | - Haihao Wang
- Department of Cardiovascular Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hristos Karakizlis
- Department of Internal Medicine, University of Giessen, Klinikstraße 33, Giessen, Germany
| | - Rolf Weimer
- Department of Internal Medicine, University of Giessen, Klinikstraße 33, Giessen, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ruben Jeremias Kuon
- Department of Obstetrics and Gynecology, University Hospital Heidelberg, Im Neuenheimer Feld 440, Heidelberg, Germany
| | - Bettina Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Gerhard Opelz
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
| | - Volker Daniel
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
24
|
Asare A, Kanaparthi S, Lim N, Phippard D, Vincenti F, Friedewald J, Pavlakis M, Poggio E, Heeger P, Mannon R, Burrell BE, Morrison Y, Bridges N, Sanz I, Chandraker A, Newell KA, Turka LA. B Cell Receptor Genes Associated With Tolerance Identify a Cohort of Immunosuppressed Patients With Improved Renal Allograft Graft Function. Am J Transplant 2017; 17:2627-2639. [PMID: 28371372 PMCID: PMC5620117 DOI: 10.1111/ajt.14283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/16/2017] [Accepted: 03/15/2017] [Indexed: 01/25/2023]
Abstract
We previously reported that two B cell receptor genes, IGKV1D-13 and IGKV4-1, were associated with tolerance following kidney transplantation. To assess the potential utility of this "signature," we conducted a prospective, multicenter study to determine the frequency of patients predicted tolerant within a cohort of patients deemed to be candidates for immunosuppressive minimization. At any single time point, 25-30% of patients were predicted to be tolerant, while 13.7% consistently displayed the tolerance "signature" over the 2-year study. We also examined the relationship of the presence of the tolerance "signature" on drug use and graft function. Contrary to expectations, the frequency of predicted tolerance was increased in patients receiving tacrolimus and reduced in those receiving corticosteroids, mycophenolate mofetil, or Thymoglobulin as induction. Surprisingly, patients consistently predicted to be tolerant displayed a statistically and clinically significant improvement in estimated glomerular filtration rate that increased over time following transplantation. These findings indicate that the frequency of patients consistently predicted to be tolerant is sufficiently high to be clinically relevant and confirm recent findings by others that immunosuppressive agents impact putative biomarkers of tolerance. The association of a B cell-based "signature" with graft function suggests that B cells may contribute to the function/survival of transplanted kidneys.
Collapse
Affiliation(s)
- Adam Asare
- Immune Tolerance Network, Massachusetts General Hospital, Bethesda, MD 20814
| | - Sai Kanaparthi
- Immune Tolerance Network, Massachusetts General Hospital, Bethesda, MD 20814
| | - Noha Lim
- Immune Tolerance Network, Massachusetts General Hospital, Bethesda, MD 20814
| | - Deborah Phippard
- Immune Tolerance Network, Massachusetts General Hospital, Bethesda, MD 20814
| | - Flavio Vincenti
- Departments of Medicine and Surgery, University of California - San Francisco, CA 94143
| | - John Friedewald
- Northwestern Memorial Hospital, Northwestern University, Chicago, IL 60611
| | | | | | - Peter Heeger
- Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Roslyn Mannon
- University of Alabama School of Medicine, Birmingham, AL 35233
| | - Bryna E. Burrell
- Immune Tolerance Network, Massachusetts General Hospital, Bethesda, MD 20814
| | - Yvonne Morrison
- Division of Allergy, Immunology, and Transplantation (DAIT), NIAID, Rockville, MD 20852
| | - Nancy Bridges
- Division of Allergy, Immunology, and Transplantation (DAIT), NIAID, Rockville, MD 20852
| | - Inaki Sanz
- Department of Surgery, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | | | - Kenneth A. Newell
- Department of Surgery, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Laurence A. Turka
- Center for Transplantation Sciences and Immune Tolerance Network, Massachusetts General Hospital, Boston, MA 02129
| |
Collapse
|
25
|
Behnam Sani K, Sawitzki B. Immune monitoring as prerequisite for transplantation tolerance trials. Clin Exp Immunol 2017; 189:158-170. [PMID: 28518214 DOI: 10.1111/cei.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Ever since its first application in clinical medicine, scientists have been urged to induce tolerance towards foreign allogeneic transplants and thus avoid rejection by the recipient's immune system. This would circumvent chronic use of immunosuppressive drugs (IS) and thus avoid development of IS-induced side effects, which are contributing to the still unsatisfactory long-term graft and patient survival after solid organ transplantation. Although manifold strategies of tolerance induction have been described in preclinical models, only three therapeutic approaches have been utilized successfully in a still small number of patients. These approaches are based on (i) IS withdrawal in spontaneous operational tolerant (SOT) patients, (ii) induction of a mixed chimerism and (iii) adoptive transfer of regulatory cells. Results of clinical trials utilizing these approaches show that tolerance induction does not work in all patients. Thus, there is a need for reliable biomarkers, which can be used for patient selection and post-therapeutic immune monitoring of safety, success and failure. In this review, we summarize recent achievements in the identification and validation of such immunological assays and biomarkers, focusing mainly on kidney and liver transplantation. From the published findings so far, it has become clear that indicative biomarkers may vary between different therapeutic approaches applied and organs transplanted. Also, patient numbers studied so far are very small. This is the main reason why nearly all described parameters lack validation and reproducibility testing in large clinical trials, and are therefore not yet suitable for clinical practice.
Collapse
Affiliation(s)
- K Behnam Sani
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Massart A, Ghisdal L, Abramowicz M, Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol 2017; 189:138-157. [PMID: 28449211 DOI: 10.1111/cei.12981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
In the 1960s, our predecessors won a historical battle against acute rejection and ensured that transplantation became a common life-saving treatment. In parallel with this success, or perhaps because of it, we lost the battle for long-lived transplants, being overwhelmed with chronic immune insults and the toxicities of immunosuppression. It is likely that current powerful treatments block acute rejection, but at the same time condemn the few circulating donor cells that would have been able to elicit immunoregulatory host responses towards the allograft. Under these conditions, spontaneously tolerant kidney recipients - i.e. patients who maintain allograft function in the absence of immunosuppression - are merely accidents; they are scarce, mysterious and precious. Several teams pursue the goal of finding a biomarker that would guide us towards the 'just right' level of immunosuppression that avoids rejection while leaving some space for donor immune cells. Some cellular assays are attractive because they are antigen-specific, and provide a comprehensive view of immune responses toward the graft. These seem to closely follow patient regulatory capacities. However, these tests are cumbersome, and require abundant cellular material from both donor and recipient. The latest newcomers, non-antigen-specific recipient blood transcriptomic biomarkers, offer the promise that a practicable and simple signature may be found that overcomes the complexity of a system in which an infinite number of individual cell combinations can lead possibly to graft acceptance. Biomarker studies are as much an objective - identifying tolerant patients, enabling tolerance trials - as a means to deciphering the underlying mechanisms of one of the most important current issues in transplantation.
Collapse
Affiliation(s)
- A Massart
- Department of Nephrology, Dialysis, and Transplantation, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - L Ghisdal
- Department of Nephrology, Centre Hospitalier EpiCURA, Baudour, Belgium
| | - M Abramowicz
- Department of Human Genetics, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - D Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen and Antwerp University, Antwerp, Belgium
| |
Collapse
|
27
|
Abstract
Ever since the discovery of the major histocompatibility complex, scientific and clinical understanding in the field of transplantation has been advanced through genetic and genomic studies. Candidate-gene approaches and recent genome-wide association studies (GWAS) have enabled a deeper understanding of the complex interplay of the donor-recipient interactions that lead to transplant tolerance or rejection. Genetic analysis in transplantation, when linked to demographic and clinical outcomes, has the potential to drive personalized medicine by enabling individualized risk stratification and immunosuppression through the identification of variants associated with immune-mediated complications, post-transplant disease or alterations in drug-metabolizing genes.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| | - Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| |
Collapse
|
28
|
Speake C, Whalen E, Gersuk VH, Chaussabel D, Odegard JM, Greenbaum CJ. Longitudinal monitoring of gene expression in ultra-low-volume blood samples self-collected at home. Clin Exp Immunol 2017; 188:226-233. [PMID: 28009047 DOI: 10.1111/cei.12916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
Blood transcriptional profiles could serve as biomarkers of clinical changes in subjects at-risk for or diagnosed with diabetes. However, transcriptional variation over time is poorly understood due to the impracticality of frequent longitudinal phlebotomy in large patient cohorts. We have developed a novel transcriptome assessment method that could be applied to fingerstick blood samples self-collected by study volunteers. Fifteen μL of blood from a fingerstick yielded sufficient RNA to analyse > 176 transcripts by high-throughput quantitative polymerase chain reaction (PCR). We enrolled 13 subjects with type 1 diabetes and 14 controls to perform weekly collections at home for a period of 6 months. Subjects returned an average of 24 of 26 total weekly samples, and transcript data were obtained successfully for > 99% of samples returned. A high degree of correlation between fingerstick data and data from a standard 3 mL venipuncture sample was observed. Increases in interferon-stimulated gene expression were associated with self-reported respiratory infections, indicating that real-world transcriptional changes can be detected using this assay. In summary, we show that longitudinal monitoring of gene expression is feasible using ultra-low-volume blood samples self-collected by study participants at home, and can be used to monitor changes in gene expression frequently over extended periods.
Collapse
Affiliation(s)
- C Speake
- Benaroya Research Institute, Seattle, WA, USA
| | - E Whalen
- Benaroya Research Institute, Seattle, WA, USA
| | - V H Gersuk
- Benaroya Research Institute, Seattle, WA, USA
| | | | - J M Odegard
- Benaroya Research Institute, Seattle, WA, USA
| | | |
Collapse
|
29
|
Brait M, Izumchenko E, Kagohara LT, Long S, Wysocki PT, Faherty B, Fertig EJ, Khor TO, Bruckheimer E, Baia G, Ciznadija D, Sloma I, Ben-Zvi I, Paz K, Sidransky D. Comparative mutational landscape analysis of patient-derived tumour xenografts. Br J Cancer 2017; 116:515-523. [PMID: 28118322 PMCID: PMC5318980 DOI: 10.1038/bjc.2016.450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Screening of patients for cancer-driving mutations is now used for cancer prognosis, remission scoring and treatment selection. Although recently emerged targeted next-generation sequencing-based approaches offer promising diagnostic capabilities, there are still limitations. There is a pressing clinical need for a well-validated, rapid, cost-effective mutation profiling system in patient specimens. Given their speed and cost-effectiveness, quantitative PCR mutation detection techniques are well suited for the clinical environment. The qBiomarker mutation PCR array has high sensitivity and shorter turnaround times compared with other methods. However, a direct comparison with existing viable alternatives are required to assess its true potential and limitations. METHODS In this study, we evaluated a panel of 117 patient-derived tumour xenografts by the qBiomarker array and compared with other methods for mutation detection, including Ion AmpliSeq sequencing, whole-exome sequencing and droplet digital PCR. RESULTS Our broad analysis demonstrates that the qBiomarker's performance is on par with that of other labour-intensive and expensive methods of cancer mutation detection of frequently altered cancer-associated genes, and provides a foundation for supporting its consideration as an option for molecular diagnostics. CONCLUSIONS This large-scale direct comparison and validation of currently available mutation detection approaches is extremely relevant for the current scenario of precision medicine and will lead to informed choice of screening methodologies, especially in lower budget conditions or time frame limitations.
Collapse
Affiliation(s)
- Mariana Brait
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luciane T Kagohara
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Samuel Long
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Piotr T Wysocki
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Brian Faherty
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tin Oo Khor
- Champions Oncology, Baltimore, MD 21205, USA
| | | | - Gilson Baia
- Champions Oncology, Baltimore, MD 21205, USA
| | | | - Ido Sloma
- Champions Oncology, Baltimore, MD 21205, USA
| | - Ido Ben-Zvi
- Champions Oncology, Baltimore, MD 21205, USA
| | - Keren Paz
- Champions Oncology, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
30
|
Lau AH, Vitalone MJ, Haas K, Shawler T, Esquivel CO, Berquist WE, Martinez OM, Castillo RO, Krams SM. Mass cytometry reveals a distinct immunoprofile of operational tolerance in pediatric liver transplantation. Pediatr Transplant 2016; 20:1072-1080. [PMID: 27781378 PMCID: PMC5404744 DOI: 10.1111/petr.12795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 01/24/2023]
Abstract
Long-term IS in transplant patients has significant morbidity, poorer quality of life, and substantial economic costs. TOL, defined as graft acceptance without functional impairment in the absence of IS, has been achieved in some pediatric LT recipients. Using mass cytometry, peripheral blood immunotyping was performed to characterize differences between tolerant patients and patients who are stable on single-agent IS. Single-cell mass cytometry was performed using blood samples from a single-center pediatric LT population of operationally tolerant patients to comprehensively characterize the immune cell populations in the tolerant state compared with patients on chronic low-dose IS. Specific T-cell populations of interest were confirmed by flow cytometry. This high-dimensional phenotypic analysis revealed distinct immunoprofiles between transplant populations as well as a CD4+ TOT (CD4+ CD5+ CD25+ CD38-/lo CD45RA) that correlates with tolerance in pediatric LT recipients. In TOL patients, the TOT was significantly increased as compared to patients stable on low levels of IS. This TOT cell was confirmed by flow cytometry and is distinct from classic Treg cells. These results demonstrate the power of mass cytometry to discover significant immune cell signatures that have diagnostic potential.
Collapse
Affiliation(s)
- Audrey H. Lau
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford, CA, USA,Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew J. Vitalone
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Haas
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Todd Shawler
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - William E. Berquist
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Olivia M. Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA,Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo O. Castillo
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Sheri M. Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA,Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA,Correspondence should be addressed to: Dr. Sheri M. Krams, Transplant Immunobiology Lab, Stanford University School of Medicine, 1201 Welch Road, MSLS P313, Stanford, CA 94305-5492, 650-498-6246, 650-498-6250 (FAX),
| |
Collapse
|
31
|
Baroja-Mazo A, Revilla-Nuin B, Parrilla P, Martínez-Alarcón L, Ramírez P, Pons JA. Tolerance in liver transplantation: Biomarkers and clinical relevance. World J Gastroenterol 2016; 22:7676-91. [PMID: 27678350 PMCID: PMC5016367 DOI: 10.3748/wjg.v22.i34.7676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Transplantation is the optimal treatment for end-stage organ failure, and modern immunosuppression has allowed important progress in short-term outcomes. However, immunosuppression poorly influences chronic rejection and elicits chronic toxicity in current clinical practice. Thus, a major goal in transplantation is to understand and induce tolerance. It is well established that human regulatory T cells expressing the transcription factor FoxP3 play important roles in the maintenance of immunological self-tolerance and immune homeostasis. The major regulatory T cell subsets and mechanisms of expansion that are critical for induction and long-term maintenance of graft tolerance and survival are being actively investigated. Likewise, other immune cells, such as dendritic cells, monocyte/macrophages or natural killer cells, have been described as part of the process known as "operational tolerance". However, translation of these results towards clinical practice needs solid tools to identify accurately and reliably patients who are going to be tolerant. In this way, a plethora of genetic and cellular biomarkers is raising and being validated worldwide in large multi-center clinical trials. Few of the studies performed so far have provided a detailed analysis of the impact of immunosuppression withdrawal on pre-existing complications derived from the long-term administration of immunosuppressive drugs and the side effects associated with them. The future of liver transplantation is aimed to develop new therapies which increase the actual low tolerant vs non-tolerant recipients ratio.
Collapse
|
32
|
Lim TY, Heneghan M. Biomarkers of immunosuppression. Clin Liver Dis (Hoboken) 2016; 8:34-38. [PMID: 31041060 PMCID: PMC6490196 DOI: 10.1002/cld.570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Tiong Yeng Lim
- King's College HospitalInstitute of Liver StudiesLondonUnited Kingdom
| | - Michael Heneghan
- King's College HospitalInstitute of Liver StudiesLondonUnited Kingdom
| |
Collapse
|
33
|
Fahrner R, Dondorf F, Ardelt M, Settmacher U, Rauchfuss F. Role of NK, NKT cells and macrophages in liver transplantation. World J Gastroenterol 2016; 22:6135-6144. [PMID: 27468206 PMCID: PMC4945975 DOI: 10.3748/wjg.v22.i27.6135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has become the treatment of choice for acute or chronic liver disease. Because the liver acts as an innate immunity-dominant organ, there are immunological differences between the liver and other organs. The specific features of hepatic natural killer (NK), NKT and Kupffer cells and their role in the mechanism of liver transplant rejection, tolerance and hepatic ischemia-reperfusion injury are discussed in this review.
Collapse
|
34
|
Rinchai D, Anguiano E, Nguyen P, Chaussabel D. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes. F1000Res 2016; 5:1385. [PMID: 28357036 PMCID: PMC5357033 DOI: 10.12688/f1000research.8841.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 03/16/2025] Open
Abstract
With this report we aim to make available a standard operating procedure (SOP) developed for RNA stabilization of small blood volumes collected via a finger stick. The anticipation that this procedure may be improved through peer-review and/or readers public comments is another element motivating the publication of this SOP. Procuring blood samples from human subjects can, among other uses, enable assessment of the immune status of an individual subject via the profiling of RNA abundance using technologies such as real time PCR, NanoString, microarrays or RNA-sequencing. It is often desirable to minimize blood volumes and employ methods that are the least invasive and can be practically implemented outside of clinical settings. Finger stick blood samples are increasingly used for measurement of levels of pharmacological drugs and biological analytes. It is a simple and convenient procedure amenable for instance to field use or self-collection at home using a blood sample collection kit. Such methodologies should also enable the procurement of blood samples at high frequency for health or disease monitoring applications.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | | | | | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
35
|
Rinchai D, Anguiano E, Nguyen P, Chaussabel D. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes. F1000Res 2016; 5:1385. [PMID: 28357036 PMCID: PMC5357033 DOI: 10.12688/f1000research.8841.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
With this report we aim to make available a standard operating procedure (SOP) developed for RNA stabilization of small blood volumes collected via a finger stick. The anticipation that this procedure may be improved through peer-review and/or readers public comments is another element motivating the publication of this SOP. Procuring blood samples from human subjects can, among other uses, enable assessment of the immune status of an individual subject via the profiling of RNA abundance using technologies such as real time PCR, NanoString, microarrays or RNA-sequencing. It is often desirable to minimize blood volumes and employ methods that are the least invasive and can be practically implemented outside of clinical settings. Finger stick blood samples are increasingly used for measurement of levels of pharmacological drugs and biological analytes. It is a simple and convenient procedure amenable for instance to field use or self-collection at home using a blood sample collection kit. Such methodologies should also enable the procurement of blood samples at high frequency for health or disease monitoring applications.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | | | | | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
36
|
Bestard O, Cravedi P. Monitoring alloimmune response in kidney transplantation. J Nephrol 2016; 30:187-200. [PMID: 27245689 DOI: 10.1007/s40620-016-0320-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/15/2016] [Indexed: 01/22/2023]
Abstract
Currently, immunosuppressive therapy in kidney transplant recipients is generally performed by protocols and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients are likely to receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. Developing reliable biomarkers is crucial for individualizing therapy aimed at extending allograft survival. Emerging data indicate that many assays, likely used in panels rather than single assays, have potential to be diagnostic and predictive of short and also long-term outcome. While numerous cross-sectional studies have found associations between the results of these assays and the presence of clinically relevant post-transplantation outcomes, data from prospective studies are still scanty, thereby preventing widespread implementation in the clinic. Of note, some prospective, randomized, multicenter biomarker-driven studies are currently on-going aiming at confirming such preliminary data. These works as well as other future studies are highly warranted to test the hypothesis that tailoring immunosuppression on the basis of results offered by these biomarkers leads to better outcomes than current standard clinical practice.
Collapse
Affiliation(s)
- Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, IDIBELL, Barcelona, Spain
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg Building, New York, NY, 10029, USA.
| |
Collapse
|
37
|
Rinchai D, Boughorbel S, Presnell S, Quinn C, Chaussabel D. A compendium of monocyte transcriptome datasets to foster biomedical knowledge discovery. F1000Res 2016; 5:291. [PMID: 27158451 DOI: 10.12688/f1000research.8182.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 12/24/2022] Open
Abstract
Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB). This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at http://monocyte.gxbsidra.org/dm3/landing.gsp.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Sabri Boughorbel
- Biomedical informatics, Sidra Medical and Research Center, Doha, Qatar
| | - Scott Presnell
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Charlie Quinn
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
38
|
Rinchai D, Boughorbel S, Presnell S, Quinn C, Chaussabel D. A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research. F1000Res 2016; 5:291. [PMID: 27158452 PMCID: PMC4856112 DOI: 10.12688/f1000research.8182.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB). This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at
http://monocyte.gxbsidra.org/dm3/landing.gsp.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Sabri Boughorbel
- Biomedical Informatics Division, Sidra Medical and Research Center, Doha, Qatar
| | - Scott Presnell
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Charlie Quinn
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
39
|
Heidecker B, Kittleson MM, Kasper EK, Wittstein IS, Champion HC, Russell SD, Baughman KL, Hare JM. Transcriptomic Analysis Identifies the Effect of Beta-Blocking Agents on a Molecular Pathway of Contraction in the Heart and Predicts Response to Therapy. JACC Basic Transl Sci 2016; 1:107-121. [PMID: 30167508 PMCID: PMC6113163 DOI: 10.1016/j.jacbts.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
Over the last decades, beta-blockers have been a key component of heart failure therapy. However, currently there is no method to identify patients who will benefit from beta-blocking therapy versus those who will be unresponsive or worsen. Furthermore, there is an unmet need to better understand molecular mechanisms through which heart failure therapies, such as beta-blockers, improve cardiac function, in order to design novel targeted therapies. Solving these issues is an important step towards personalized medicine. Here, we present a comprehensive transcriptomic analysis of molecular pathways that are affected by beta-blocking agents and a transcriptomic biomarker to predict therapy response.
Collapse
Key Words
- AR, adrenergic receptor
- EF, ejection fraction
- EMB, endomyocardial biopsy
- GO, gene ontology
- HF, heart failure
- MYH, myosin heavy chain
- MiPP, Misclassified Penalized Posteriors
- SAM, significance analysis of microarrays
- SERCA, sarcoplasmic reticulum calcium-dependent ATPase
- TBB, transcriptomic-based biomarker
- beta-blocking agents
- biomarker
- gene expression
- heart failure
- transcriptomics
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joshua M. Hare
- University of Miami, Miami, Florida
- Reprint requests and correspondence: Dr. Joshua M. Hare, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Avenue, Room, 910 P.O. Box 016960 (R-125), Miami, Florida 33136.
| |
Collapse
|
40
|
Oldhafer F, Bock M, Falk CS, Vondran FWR. Immunological aspects of liver cell transplantation. World J Transplant 2016; 6:42-53. [PMID: 27011904 PMCID: PMC4801804 DOI: 10.5500/wjt.v6.i1.42] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/21/2015] [Accepted: 12/08/2015] [Indexed: 02/05/2023] Open
Abstract
Within the field of regenerative medicine, the liver is of major interest for adoption of regenerative strategies due to its well-known and unique regenerative capacity. Whereas therapeutic strategies such as liver resection and orthotopic liver transplantation (OLT) can be considered standards of care for the treatment of a variety of liver diseases, the concept of liver cell transplantation (LCTx) still awaits clinical breakthrough. Success of LCTx is hampered by insufficient engraftment/long-term acceptance of cellular allografts mainly due to rejection of transplanted cells. This is in contrast to the results achieved for OLT where long-term graft survival is observed on a regular basis and, hence, the liver has been deemed an immune-privileged organ. Immune responses induced by isolated hepatocytes apparently differ considerably from those observed following transplantation of solid organs and, thus, LCTx requires refined immunological strategies to improve its clinical outcome. In addition, clinical usage of LCTx but also related basic research efforts are hindered by the limited availability of high quality liver cells, strongly emphasizing the need for alternative cell sources. This review focuses on the various immunological aspects of LCTx summarizing data available not only for hepatocyte transplantation but also for transplantation of non-parenchymal liver cells and liver stem cells.
Collapse
|
41
|
Dumontet E, Danger R, Vagefi PA, Londoño MC, Pallier A, Lozano JJ, Giral M, Degauque N, Soulillou JP, Martínez-Llordella M, Lee H, Latournerie M, Boudjema K, Dulong J, Tarte K, Sanchez-Fueyo A, Feng S, Brouard S, Conchon S. Peripheral phenotype and gene expression profiles of combined liver-kidney transplant patients. Liver Int 2016; 36:401-9. [PMID: 26193627 PMCID: PMC5395096 DOI: 10.1111/liv.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The beneficial effect of one graft on another has been reported in combined transplantation but the associated mechanisms and biological influence of each graft have not yet been established. METHODS In multiple analyses, we explored the PBMC phenotype and signature of 45 immune-related messenger RNAs and 754 microRNAs from a total of 235 patients, including combined liver-kidney transplant recipients (CLK), patients with a liver (L-STA) or kidney (K-STA) graft only under classical immunosuppression and patients with tolerated liver (L-TOL) or kidney grafts (K-TOL). RESULTS CLK show an intermediary phenotype with a higher percentage of peripheral CD19(+) CD24(+) CD38(Low) memory B cells and Helios(+) Treg cells, two features associated with tolerance profiles, compared to L-STA and K-STA (P < 0.05, P < 0.01). Very few miRNA were significantly differentially expressed in CLK vs. K-STA and even fewer when compared to L-STA (35 and 8, P < 0.05). Finally, CLK are predicted to share common miRNA targets with K-TOL and even more with L-TOL (344 and 411, P = 0.005). Altogether CLK display an intermediary phenotype and gene profile, which is closer to that of liver transplant patients, with possible similarities with the profiles of tolerant patients. CONCLUSION These data suggest that CLK patients show the immunological influence of both allografts with liver having a greater influence.
Collapse
Affiliation(s)
- Erwan Dumontet
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France,Centre Hospitalier Universitaire Pontchaillou, Rennes,
France
| | - Richard Danger
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Department of Liver Studies, Medical Research Council (MRC)
Centre for Transplantation, School of Life Sciences & Medicine,
King’s College London University, London, UK
| | - Parsia A. Vagefi
- Division of Transplantation Surgery, Massachusetts General
Hospital, and Harvard medical school, Boston, MA, USA
| | | | - Annaïck Pallier
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France
| | - Juan José Lozano
- Liver Unit and Bioinformatic platform, Hospital Clinic
Barcelona, Barcelona, Spain
| | - Magali Giral
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France,CIC Biothérapie, Nantes, France
| | - Nicolas Degauque
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France
| | - Jean-Paul Soulillou
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France
| | - Marc Martínez-Llordella
- Department of Liver Studies, Medical Research Council (MRC)
Centre for Transplantation, School of Life Sciences & Medicine,
King’s College London University, London, UK,Liver Unit and Bioinformatic platform, Hospital Clinic
Barcelona, Barcelona, Spain
| | - Herman Lee
- Department of Surgery, Division of Transplantation,
University of California, San Francisco, CA, USA
| | | | - Karim Boudjema
- Centre Hospitalier Universitaire Pontchaillou, Rennes,
France
| | - Joelle Dulong
- Centre Hospitalier Universitaire Pontchaillou, Rennes,
France,EFS Bretagne, Rennes, France,INSERM UMR 917, Rennes, France
| | - Karin Tarte
- Centre Hospitalier Universitaire Pontchaillou, Rennes,
France,EFS Bretagne, Rennes, France,INSERM UMR 917, Rennes, France
| | - Alberto Sanchez-Fueyo
- Department of Liver Studies, Medical Research Council (MRC)
Centre for Transplantation, School of Life Sciences & Medicine,
King’s College London University, London, UK,Liver Unit and Bioinformatic platform, Hospital Clinic
Barcelona, Barcelona, Spain
| | - Sandy Feng
- Department of Surgery, Division of Transplantation,
University of California, San Francisco, CA, USA
| | - Sophie Brouard
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France,CIC Biothérapie, Nantes, France,CHU Nantes, CRB, Nantes, France
| | - Sophie Conchon
- INSERM UMR 1064, Nantes, France,Université de Nantes, Nantes, France
| |
Collapse
|
42
|
Durand J, Chiffoleau E. B cells with regulatory properties in transplantation tolerance. World J Transplant 2015; 5:196-208. [PMID: 26722647 PMCID: PMC4689930 DOI: 10.5500/wjt.v5.i4.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The intent of this review was to describe biomarkers that predict or identify individuals who exhibit tolerance to a transplanted organ. The identification of tolerance biomarkers would spare some individuals the toxicity of immunosuppressive agents, enhance the safety of studies to induce tolerance, and provide insights into mechanisms of tolerance that may aid in designing new regimens. RECENT FINDINGS Studies of tolerant kidney transplant recipients have revealed an association with B cells. More recent studies have suggested that these B cells may be less mature than from those in nontolerant recipients, and especially suited to suppress alloimmune responses. Biomarkers in tolerant liver transplant patients appear to be distinct from those associated renal tolerance. Most reports have identified an association with natural killer and/or γδ T cells rather than B cells. Recent data indicate biomarkers associated with iron homeostasis within the transplanted liver more accurately predict the tolerant state than do biomarkers expressed in the blood, suggesting that the renal allograft itself, which is infrequently sampled, would be informative. SUMMARY Given the encouraging progress in identifying tolerance biomarkers, it will be important to validate these markers in larger studies of transplant recipients undergoing prospective minimization or withdrawal of immunosuppression.
Collapse
|
44
|
Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Front Immunol 2015; 6:438. [PMID: 26379673 PMCID: PMC4553385 DOI: 10.3389/fimmu.2015.00438] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone-marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid-organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen-specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy. Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.
Collapse
Affiliation(s)
- Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Cristiano Scotta
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Trishan Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| |
Collapse
|
45
|
|
46
|
Mastoridis S, Martínez-Llordella M, Sanchez-Fueyo A. Emergent Transcriptomic Technologies and Their Role in the Discovery of Biomarkers of Liver Transplant Tolerance. Front Immunol 2015; 6:304. [PMID: 26157438 PMCID: PMC4476276 DOI: 10.3389/fimmu.2015.00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/27/2015] [Indexed: 01/20/2023] Open
Abstract
Liver transplantation offers a unique window into transplant immunology due, in part, to the considerable proportion of recipients who develop immunological tolerance to their allograft. Biomarkers are able to identify and predict such a state of tolerance, and thereby able to establish suitable candidates for the minimization of hazardous immunosuppressive therapies, are not only of great potential clinical benefit but might also shed light on the immunological mechanisms underlying tolerance and rejection. Here, we review the emergent transcriptomic technologies serving as drivers of biomarker discovery, we appraise efforts to identify a molecular signature of liver allograft tolerance, and we consider the implications of this work on the mechanistic understanding of immunological tolerance.
Collapse
|
47
|
Hackl C, Schlitt HJ, Melter M, Knoppke B, Loss M. Current developments in pediatric liver transplantation. World J Hepatol 2015; 7:1509-1520. [PMID: 26085910 PMCID: PMC4462689 DOI: 10.4254/wjh.v7.i11.1509] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/18/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
In 1953, the pioneer of human orthotopic liver transplantation (LT), Thomas E Starzl, was the first to attempt an orthotopic liver transplant into a 3 years old patient suffering from biliary atresia. Thus, the first LT in humans was attempted in a disease, which, up until today, remains the main indication for pediatric LT (pLT). During the last sixty years, refinements in diagnostics and surgical technique, the introduction of new immunosuppressive medications and improvements in perioperative pediatric care have established LT as routine procedure for childhood acute and chronic liver failure as well as inherited liver diseases. In contrast to adult recipients, pLT differs greatly in indications for LT, allocation practice, surgical technique, immunosuppression and post-operative life-long aftercare. Many aspects are focus of ongoing preclinical and clinical research. The present review gives an overview of current developments and the clinical outcome of pLT, with a focus on alternatives to full-size deceased-donor organ transplantation.
Collapse
|
48
|
Pidala J, Bloom GC, Eschrich S, Sarwal M, Enkemann S, Betts BC, Beato F, Yoder S, Anasetti C. Tolerance associated gene expression following allogeneic hematopoietic cell transplantation. PLoS One 2015; 10:e0117001. [PMID: 25774806 PMCID: PMC4361657 DOI: 10.1371/journal.pone.0117001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/07/2014] [Indexed: 12/25/2022] Open
Abstract
Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT). In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT) and non-tolerant (n = 17, median 39.5 post-HCT) HCT recipients and healthy control subjects (n = 10) for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL) group and 122 for non-tolerant (non-TOL). These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted.
Collapse
Affiliation(s)
- Joseph Pidala
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, FL, United States of America
- * E-mail:
| | - Gregory C. Bloom
- Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Steven Eschrich
- Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Minnie Sarwal
- Department of Surgery, UCSF School of Medicine, San Francisco, CA, United States of America
| | - Steve Enkemann
- Molecular Genomics, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Brian C. Betts
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Francisca Beato
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Sean Yoder
- Molecular Genomics, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Claudio Anasetti
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, FL, United States of America
| |
Collapse
|
49
|
Germani G, Rodriguez-Castro K, Russo FP, Senzolo M, Zanetto A, Ferrarese A, Burra P. Markers of acute rejection and graft acceptance in liver transplantation. World J Gastroenterol 2015; 21:1061-1068. [PMID: 25632178 PMCID: PMC4306149 DOI: 10.3748/wjg.v21.i4.1061] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
The evaluation of the immunosuppression state in liver transplanted patients is crucial for a correct post-transplant management and a major step towards the personalisation of the immunosuppressive therapy. However, current immunological monitoring after liver transplantation relies mainly on clinical judgment and on immunosuppressive drug levels, without a proper assessment of the real suppression of the immunological system. Various markers have been studied in an attempt to identify a specific indicator of graft rejection and graft acceptance after liver transplantation. Considering acute rejection, the most studied markers are pro-inflammatory and immunoregulatory cytokines and other proteins related to inflammation. However there is considerable overlap with other conditions, and only few of them have been validated. Standard liver tests cannot be used as markers of graft rejection due to their low sensitivity and specificity and the weak correlation with the severity of histopathological findings. Several studies have been performed to identify biomarkers of tolerance in liver transplanted patients. Most of them are based on the analysis of peripheral blood samples and on the use of transcriptional profiling techniques. Amongst these, NK cell-related molecules seem to be the most valid marker of graft acceptance, whereas the role CD4+CD25+Foxp3+ T cells has still to be properly defined.
Collapse
|
50
|
Couzi L, Pitard V, Moreau JF, Merville P, Déchanet-Merville J. Direct and Indirect Effects of Cytomegalovirus-Induced γδ T Cells after Kidney Transplantation. Front Immunol 2015; 6:3. [PMID: 25653652 PMCID: PMC4301015 DOI: 10.3389/fimmu.2015.00003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/04/2015] [Indexed: 01/30/2023] Open
Abstract
Despite effective anti-viral therapies, cytomegalovirus (CMV) is still associated with direct (CMV disease) and indirect effects (rejection and poor graft survival) in kidney transplant recipients. Recently, an unconventional T cell population (collectively designated as Vδ2neg γδ T cells) has been characterized during the anti-CMV immune response in all solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These CMV-induced Vδ2neg γδ T cells undergo a dramatic and stable expansion after CMV infection, in a conventional “adaptive” manner. Similarly, as CMV-specific CD8+ αβ T cells, they exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activation of Vδ2neg γδ T cells by CMV-infected cells involves the γδ T cell receptor (TCR) and still ill-defined co-stimulatory molecules such as LFA-1. A multiple of Vδ2neg γδ TCR ligands are apparently recognized on CMV-infected cells, the first one identified being the major histocompatibility complex-related molecule endothelial protein C receptor. A singularity of CMV-induced Vδ2neg γδ T cells is to acquire CD16 expression and to exert an antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect of Vδ2neg γδ T cells, unexpected indirect effects of these cells have been also observed in the context of kidney transplantation. CMV-induced Vδ2neg γδ T cells have been involved in surveillance of malignancy subsequent to long-term immunosuppression. Moreover, CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kidney transplants, and represent a new physiopathological contribution to the well-known association between CMV infection and poor graft survival. All these basic and clinical studies paved the road to the development of a future γδ T cell-based immunotherapy. In the meantime, γδ T cell monitoring should prove a valuable immunological biomarker in the management of CMV infection.
Collapse
Affiliation(s)
- Lionel Couzi
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Vincent Pitard
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| | - Jean-François Moreau
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Centre Hospitalier Universitaire de Bordeaux, Laboratoire d'immunologie , Bordeaux , France
| | - Pierre Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Julie Déchanet-Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| |
Collapse
|