1
|
Manna OM, Caruso Bavisotto C, Gratie MI, Damiani P, Bonaventura G, Cappello F, Tomasello G, D’Andrea V. Targeting Helicobacter pylori Through the "Muco-Microbiotic Layer" Lens: The Challenge of Probiotics and Microbiota Nanovesicles. Nutrients 2025; 17:569. [PMID: 39940427 PMCID: PMC11819664 DOI: 10.3390/nu17030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The muco-microbiotic layer represents a critical biological frontier in gastroenterology, emphasizing the intricate interplay between the protective mucus, its resident microbiota, and extracellular vesicles. This review explores the functional morphology of the gastric mucosa, focusing on the gastric muco-microbiotic layer, its role as a protective barrier, and its dynamic interaction with some of the most insidious pathogens such as Helicobacter pylori (H. pylori). Highlighting the multifaceted mechanisms of H. pylori pathogenesis, we have delved into bacterial virulence factors, host immune responses, and the microbiota's regulatory effects. Novel therapeutic strategies for H. pylori eradication, including traditional antibiotic therapies and emerging adjuvant treatments like probiotics and probiotic-derived extracellular vesicles, are critically examined. These findings underscore the potential of targeting nanovesicular interactions in the gastric mucosa, proposing a paradigm shift in the management of H. pylori infections to improve patient outcomes while mitigating antibiotic resistance.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Sciences for Promotion of Health and Mother and Child Care, Surgical Pathology Unit, University of Palermo, 90133 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
| | - Celeste Caruso Bavisotto
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Melania Ionelia Gratie
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Provvidenza Damiani
- Risk Management and Quality Unit, Hospital University “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Giuseppe Bonaventura
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Giovanni Tomasello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
2
|
Wang M, Shu H, Cheng X, Xiao H, Jin Z, Yao N, Mao S, Zong Z. Exosome as a crucial communicator between tumor microenvironment and gastric cancer (Review). Int J Oncol 2024; 64:28. [PMID: 38240092 PMCID: PMC10836496 DOI: 10.3892/ijo.2024.5616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Gastric cancer is one of the most common malignancies and has relatively high morbidity and mortality rates. Exosomes are nanoscale extracellular vesicles that originate from a diverse array of cells and may be found throughout various bodily fluids. These vesicles are endogenous nanocarriers in their natural state with the unique ability to transport lipids, proteins, DNA and RNA. Exosomes contain DNA, RNA, proteins, lipids and other bioactive components that have crucial roles in the transmission of information and regulation of cell activities in gastric cancer. This paper begins with an exploration of the composition, formation and release mechanisms of exosomes. Subsequently, the role of exosomes in the tumor microenvironment is reviewed in terms of the immune cell population, nonimmune cell population and other factors. Finally, the current status and challenges of exosome‑based research on the progression, diagnosis and therapeutic methods of gastric cancer are summarized. This holistic review offers insight that may guide future research directions for exosomes and potentially pave the way for novel therapeutic interventions in the management of gastric cancer.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongxin Shu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Xiao
- Queen Marry College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Yao
- Queen Marry College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Ali A, AlHussaini KI. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024; 12:222. [PMID: 38276207 PMCID: PMC10818838 DOI: 10.3390/microorganisms12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and is associated with various gastrointestinal disorders. H. pylori is a pervasive pathogen, infecting nearly 50% of the world's population, and presents a substantial concern due to its link with gastric cancer, ranking as the third most common cause of global cancer-related mortality. This review article provides an updated and comprehensive overview of the current understanding of H. pylori infection, focusing on its pathogenesis, diagnosis, and treatment strategies. The intricate mechanisms underlying its pathogenesis, including the virulence factors and host interactions, are discussed in detail. The diagnostic methods, ranging from the traditional techniques to the advanced molecular approaches, are explored, highlighting their strengths and limitations. The evolving landscape of treatment strategies, including antibiotic regimens and emerging therapeutic approaches, is thoroughly examined. Through a critical synthesis of the recent research findings, this article offers valuable insights into the contemporary knowledge of Helicobacter pylori infection, guiding both clinicians and researchers toward effective management and future directions in combating this global health challenge.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid I. AlHussaini
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| |
Collapse
|
4
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
5
|
Kato S, Gold BD, Kato A. Helicobacter pylori-Associated Iron Deficiency Anemia in Childhood and Adolescence-Pathogenesis and Clinical Management Strategy. J Clin Med 2022; 11:7351. [PMID: 36555966 PMCID: PMC9781328 DOI: 10.3390/jcm11247351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Many epidemiological studies and meta-analyses show that persistent Helicobacter pylori infection in the gastric mucosa can lead to iron deficiency or iron deficiency anemia (IDA), particularly in certain populations of children and adolescents. Moreover, it has been demonstrated that H. pylori infection can lead to and be closely associated with recurrent and/or refractory iron deficiency and IDA. However, the pathogenesis and specific risk factors leading to this clinical outcome in H. pylori-infected children remain poorly understood. In general, most of pediatric patients with H. pylori-associated IDA do not show evidence of overt blood loss due to gastrointestinal hemorrhagic lesions. In adult populations, H. pylori atrophic gastritis is reported to cause impaired iron absorption due to impaired gastric acid secretion, which, subsequently, results in IDA. However, significant gastric atrophy, and the resultant substantial reduction in gastric acid secretion, has not been shown in H. pylori-infected children. Recently, it has been hypothesized that competition between H. pylori and humans for iron availability in the upper gastrointestinal tract could lead to IDA. Many genes, including those encoding major outer membrane proteins (OMPs), are known to be involved in iron-uptake mechanisms in H. pylori. Recent studies have been published that describe H. pylori virulence factors, including specific OMP genes that may be associated with the pathogenesis of IDA. Daily iron demand substantively increases in children as they begin pubertal development starting with the associated growth spurt, and this important physiological mechanism may play a synergistic role for the microorganisms as a host pathogenetic factor of IDA. Like in the most recent pediatric guidelines, a test-and-treat strategy in H. pylori infection should be considered, especially for children and adolescents in whom IDA is recurrent or refractory to iron supplementation and other definitive causes have not been identified. This review will focus on providing the evidence that supports a clear biological plausibility for H. pylori infection and iron deficiency, as well as IDA.
Collapse
Affiliation(s)
| | - Benjamin D. Gold
- Gi Care for Kids, Children’s Center for Digestive Healthcare, LLC, Atlanta, GA 30342, USA
| | - Ayumu Kato
- Department of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Sendai 989-3126, Japan
| |
Collapse
|
6
|
Guo GH, Xie YB, Zhang PJ, Jiang T. Blood index panel for gastric cancer detection. World J Gastrointest Surg 2022; 14:1026-1036. [PMID: 36185564 PMCID: PMC9521474 DOI: 10.4240/wjgs.v14.i9.1026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer is a common malignant tumor. Early detection and diagnosis are crucial for the prevention and treatment of gastric cancer.
AIM To develop a blood index panel that may improve the diagnostic value for discriminating gastric cancer and gastric polyps.
METHODS Thirteen tumor-related detection indices, 38 clinical biochemical indices and 10 cytokine indices were examined in 139 gastric cancer patients and 40 gastric polyp patients to build the model. An additional 68 gastric cancer patients and 22 gastric polyp patients were enrolled for validation. After area under the curve evaluation and univariate and multivariate analyses.
RESULTS Five tumor-related detection indices, 12 clinical biochemical indices and 1 cytokine index showed significant differences between the gastric cancer and gastric polyp groups. Carbohydrate antigen (CA) 724, phosphorus (P) and ischemia-modified albumin (IMA) were included in the blood index panel, and the area under the curve (AUC) of the index panel was 0.829 (0.754, 0.905). After validation, the AUC was 0.811 (0.700, 0.923). Compared to the conventional index CA724, the blood index panel showed significantly increased diagnostic value.
CONCLUSION We developed an index model that included CA724, P and IMA to discriminate the gastric cancer and gastric polyp groups, which may be a potential diagnostic method for clinical practice.
Collapse
Affiliation(s)
- Guang-Hong Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yi-Bin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Tao Jiang
- Medicine Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
AlRasheed MM. TSH-β gene polymorphism in Saudi patients with thyroid cancer; a case-control study. Saudi Pharm J 2022; 30:1538-1542. [DOI: 10.1016/j.jsps.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022] Open
|