1
|
Xie P. A model of tubulin removal and exchange caused by kinesin motor walking on microtubule lattices. J Theor Biol 2025; 605:112088. [PMID: 40097136 DOI: 10.1016/j.jtbi.2025.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
The kinesin motor walking on microtubule lattices can cause disassembly of GDP-tubulins, generating defects, and repair the defects by incorporating GTP-tubulins. To explore the underlying mechanism, a model is proposed here. On the basis of the model, the dynamics of the defect generation, defect repair and tubulin exchange induced by the kinesin motor is studied theoretically. The theoretical results explain well the available experimental data. Moreover, predicted results are provided.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
2
|
Nishide G, Wong RW. Unraveling dynamics of nuclear pore and chromatin via HS-AFM. Anat Sci Int 2025:10.1007/s12565-025-00849-y. [PMID: 40388005 DOI: 10.1007/s12565-025-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
High-speed atomic force microscopy (HS-AFM) enables real-time visualization of biological processes with nanometer-level resolution. This review highlights how HS-AFM has been instrumental in uncovering the dynamic interplay between nuclear pore complexes (NPCs)-which regulate nucleocytoplasmic transport-and genome guardians, including DNA repair proteins and chromatin regulators. Structurally, the NPCs resemble a multi-layered spider cobweb, serving as crucial molecular gatekeepers for maintaining cellular homeostasis, while genome guardians safeguard genomic integrity through DNA repair and chromatin organization. Through HS-AFM, the researchers have gained unprecedented insights into NPC dynamics, revealing their adaptability during nuclear transport, chromatin reorganization, and viral infection. It has also elucidated how genome guardians interact with NPCs, influencing chromatin organization at the nuclear periphery and regulating nucleocytoplasmic trafficking. These discoveries underscore the critical role of NPC-genome interactions in genome stability, gene expression, and nuclear transport, with broad implications for diseases such as cancer, viral infections, and neurodegenerative disorders. In conclusion, HS-AFM has transformed our ability to study the nuclear landscape at the nanoscale, bridging the gap between structural biology and functional genomics. By capturing the real-time molecular dynamics of NPCs and chromatin, HS-AFM provides an essential tool for unraveling the mechanisms that govern nuclear transport and genome regulation. Future advancements in HS-AFM technology, including higher temporal resolution, correlative imaging, and AI-driven analysis, will further expand its potential in biomedical research, paving the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Goro Nishide
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Richard W Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
- WPI Nano Life Science Institute (WPI-NanoLSI), and Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Khosravanizadeh A, Dmitrieff S. Dynamic clamping induces rotation-to-beating transition of pinned filaments in gliding assays. J R Soc Interface 2025; 22:20240859. [PMID: 40329836 PMCID: PMC12056559 DOI: 10.1098/rsif.2024.0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
We used numerical simulations to investigate how properties of motor proteins control the dynamical behaviour of driven flexible filaments. A filament on top of a patch of anchored motor proteins is pinned at one end, a setup referred to as a spiral gliding assay. There exists a variety of motor proteins with different properties. We found that when these properties are changed, this system generally can show three different regimes: (i) fluctuation, where the filament undergoes random fluctuations because the motors are unable to bend it, (ii) rotation, in which the filament bends and then moves continuously in one direction, and (iii) beating, where the filament rotation direction changes over time. We found that the transition between fluctuation and rotation occurs when motors exert a force sufficient to buckle the filament. The threshold force coincides with the second buckling mode of a filament undergoing a continuously distributed load. Moreover, we showed that when motors near the pinning point work close to their stall force, they cause dynamic clamping, leading to the beating regime. Rather than being imposed by experimental conditions, this clamping is transient and results from the coupling between filament mechanics and the collective behaviour of motors.
Collapse
Affiliation(s)
| | - Serge Dmitrieff
- Institut Jacques Monod, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Rueangkham N, Cabello MVI, Lautenschläger F, Hawkins RJ. Nuclear deformation by microtubule molecular motors. PLoS Comput Biol 2025; 21:e1012305. [PMID: 40341882 PMCID: PMC12101784 DOI: 10.1371/journal.pcbi.1012305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 05/23/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
We present a model to calculate the displacement and extension of deformable cellular cargo pulled by molecular motors stepping along cytoskeletal filaments. We consider the case of a single type of molecular motor and cytoskeletal filaments oriented in one dimension in opposite directions on either side of a cargo. We model a deformable cargo as a simple elastic spring. We simulate this tug-of-war simple exclusion process model using a Monte Carlo Gillespie algorithm and calculate the displacement and extension of the cargo for different configurations of motors and filaments. We apply our model to kinesin-1 motors on microtubules to investigate whether they are strong enough to translocate and deform the largest cellular cargo, the nucleus. We show that the extension caused by motors on a single microtubule saturates for larger numbers of motors but that the extension and displacement scales linearly with the number of microtubules. We also show how the binding and unbinding behaviors of molecular motors on microtubule filaments affect the nuclear deformation. Our modelling results correspond to experiments on cells treated with the drug kinesore, which is thought to increase rescue events resulting in more stable microtubules and more active kinesin-1 molecular motors bound to them. Both the experiments and our simulations result in nuclear deformation.
Collapse
Affiliation(s)
- Naruemon Rueangkham
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, United Kingdom
- Department of Physics, KOSEN-KMITL, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Franziska Lautenschläger
- Faculty of Natural Science, Saarland University, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Rhoda J. Hawkins
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, United Kingdom
- African Institute for Mathematical Sciences, Accra, Ghana
| |
Collapse
|
5
|
Chen Y, Hui S, Li H, Jiao G, Cao R, Zhou L, Wang J, Mawia AM, Yang L, Wu Y, Zhang Y, Sheng Z, Shao G, Zhao F, Wang L, Lyu Y, Tang S, Hu S, Hu P. A MYB61-SWB9-KOs module regulates grain chalkiness via gibberellin biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40299840 DOI: 10.1111/pbi.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Grain chalkiness leads to the deterioration of grain appearance quality, which affects grain processing quality and the market value of rice. Gibberellin plays a crucial role in seed germination and plant growth, but its mechanism on endosperm starch synthesis and rice grain chalkiness formation remains largely elusive. Here, we identified a grain white belly (chalkiness in the belly area of grain) gene, SWB9, which encodes a kinesin-4 protein with a conserved ATPase domain and a coiled-coil domain. The mutation of SWB9 affects the starch structure, resulting in a grain white belly. SWB9 regulates endogenous gibberellin synthesis and accumulation in endosperm by directly binding to the promoter of ent-kaurene oxidase genes (KO1, KO2 and KOL5) encoding gibberellin-biosynthetic enzymes, and negatively regulates their expression. The loss of SWB9 function resulted in higher gibberellin content in the endosperm of swb9 than that of the wild type. Besides, a MYB transcription factor, MYB61 binds to the promoter of SWB9 and activates its expression. The grain of myb61 showed the same white belly phenotype as swb9, while overexpression of SWB9 in myb61 inhibited the grain white belly phenotype. Furthermore, the exogenous GA3 treatment showed increased grain chalkiness, and high gibberellin treatment can induce the reduced expression of MYB61, and then weaken the inhibitory effect of SWB9 on the expression of KO1, KO2 and KOL5, so as to break the homeostasis of endogenous gibberellin in the endosperm. Meanwhile, MYB61 directly binds to the promoter of amylopectin synthesis-related genes, SSIIa, BEIIb, ISA1 and PUL, at the GAMYB element and activates their expression, further affecting the distribution of amylopectin chain length. Our findings uncover a new insight into the gibberellin dose-dependent feedback regulation loop in rice endosperm that determines grain chalkiness formation.
Collapse
Affiliation(s)
- Yujuan Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Huijuan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yu Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuanyaun Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Ling Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yusong Lyu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
6
|
Yoshida S, Yoshida K. Regulatory mechanisms governing GLI proteins in hedgehog signaling. Anat Sci Int 2025; 100:143-154. [PMID: 39576500 DOI: 10.1007/s12565-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 02/16/2025]
Abstract
The Hedgehog (Hh) signaling pathway is critical for regulating cell growth, survival, fate determination, and the overall patterning of both vertebrate and invertebrate body plans. Aberrations in Hh signaling are associated with congenital abnormalities and tumorigenesis. In vertebrates, Hh signaling depends uniquely on primary cilia, microtubule-based organelles that extend from the cell surface. Over the last 2 decades, studies have demonstrated that key molecules regulating Hh signaling dynamically accumulate in primary cilia via intraflagellar transport systems. Moreover, through the primary cilia, extracellular signals are converted to stabilize GLI2 and GLI3 that are transcription factors that play a central role in regulating Hh signaling at the post-translational modification level. Recent in vivo and anatomical studies have uncovered crucial molecules that facilitate the conversion of extracellular signals into the intracellular stabilization of GLI2/GLI3 via primary cilia, emphasizing their essential roles in tissue development and tumorigenesis. This review explores the regulatory mechanisms of GLI2/GLI3 with a focus on mammalian tissue development.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan.
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
7
|
Chang L, Xiang QM, Liao ZT, Zhu JQ, Mu CK, Wang CL, Hou CC. Pt-LIS1 participates nuclear deformation and acrosome formation via regulating Dynein-1 during spermatogenesis in Portunus trituberculatus. Sci Rep 2025; 15:6632. [PMID: 39994263 PMCID: PMC11850704 DOI: 10.1038/s41598-024-83566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/16/2024] [Indexed: 02/26/2025] Open
Abstract
Spermatogenesis involves complex dynamic mechanisms. Dynein-1 is a key carrier in cellular cargo transport, participating in nuclear deformation and acrosome formation during spermatogenesis. However, the regulatory mechanisms of Dynein-1 during cargo transport remain unknown. In this study, we explored the role of Lissencephaly 1 (LIS1) in spermatogenesis and its impact on Dynein-1 cargo transport in Portunus trituberculatus. LIS1 was known as a Dynein-1 regulator, which is a causative gene of anencephaly syndrome. Pt-Lis1 was cloned from the crab testis, and its highly expression was observed in the testis. Pt-LIS1 dynamically localized around the nucleus and acrosome during spermatogenesis, colocalizing with Dynein-1 subunits, microtubules, mitochondrial markers (PHB), and Acrosin. RNA interference reduced Pt-Lis1 expression, leading to decreased expression of Pt-dhc and Pt-dic. During spermatogenesis, the signals of Pt-LIS1, Pt-DHC, Pt-DIC, and α-Tubulin were weakened and showed disorganized distribution. The colocalization of Pt-LIS1 with Pt-DHC and Pt-DIC decreased, while abnormal colocalization significantly increased. In addition, caspase-3 and p53 expression significantly increased after Pt-Lis1 silencing, indicating association with apoptosis in spermatogenic cells. All these results suggest that LIS1 played a crucial role in crustacean spermatogenesis by regulating nuclear deformation and acrosome formation through modulating Dynein-1 transport cargoes along microtubules.
Collapse
Affiliation(s)
- Le Chang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Qiu Meng Xiang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Zai-Tian Liao
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Chang-Kao Mu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Chun-Lin Wang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
8
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Grieb M, Krishnan N, Ross JL. Multimotor cargo navigation in microtubule networks with various mesh sizes. Phys Rev E 2025; 111:024413. [PMID: 40103083 DOI: 10.1103/physreve.111.024413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 03/20/2025]
Abstract
The kinesin superfamily of motor proteins is a major driver of anterograde transport of vesicles and organelles within eukaryotic cells via microtubules. Numerous studies have elucidated the step size, velocities, forces, and navigation ability of kinesins both in reconstituted systems and in live cells. Outside of cells, the kinesin-based transport is physically regulated and can be controlled by obstacles or defects in the path or the interaction between several motors on the same cargo. To explore the physical control parameters on kinesin-driven transport, we created increasingly dense microtubule networks in vitro to test how kinesin cargoes made from quantum dots with one to 10 kinesin motors attached are able to navigate the network. We find that many motors on the quantum dot increase the distance walked by a factor of 2, association time increased by a factor of 4 to 5, and the average speed by a factor of 2. We quantified the tortuosity and the trajectory persistence length and found the persistence length increased by a factor of 5 to 8 when multiple motors are on the cargo. We also find that these transport parameters depend linearly on the mesh size of the dense network for cargoes with multiple motors. Thus, both motor number and network density are physical aspects that regulate where cargoes traverse in space and time.
Collapse
Affiliation(s)
- Mason Grieb
- Syracuse University, Physics department, Syracuse, New York 13244, USA
| | - Nimisha Krishnan
- Syracuse University, Physics department, Syracuse, New York 13244, USA
| | - Jennifer L Ross
- Syracuse University, Physics department, Syracuse, New York 13244, USA
| |
Collapse
|
10
|
Xie P. Effects of stalk orientation and size of trapped bead on force-velocity relation of kinesin motor determined using single molecule optical trapping methods. J Biol Phys 2025; 51:7. [PMID: 39870957 PMCID: PMC11772635 DOI: 10.1007/s10867-025-09671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load. Here, a theoretical explanation is provided of why different experiments give different dependencies of the velocity on the forward load. It is shown that both the stalk orientation and bead size play a critical role in the different dependencies. Additionally, the reason why the optical trapping experiments with the movable trap usually gave a sigmoid form of the velocity versus backward load whereas with the fixed trap gave a nearly linear form is also explained theoretically. The study is not only critical to the understanding of the response of the motor to the load but also provides strong insights into the coupling mechanism of the motor.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China.
| |
Collapse
|
11
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Zhao DG, Liu J, Su Z, Zou W, Zhou Q, Yin T, Jiyao T, Ma YY. Discovery of novel KSP-targeting PROTACs with potent antitumor effects in vitro and in vivo. Eur J Med Chem 2025; 282:117052. [PMID: 39580911 DOI: 10.1016/j.ejmech.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Kinesin spindle protein (KSP) plays a crucial role during mitosis, making it an attractive target for cancer treatment. Herein, we report the design, synthesis, and evaluation of the first series of KSP degraders by using the utilization of the proteolysis-targeting chimera (PROTAC) technology. Compound 21 was identified as a potent KSP degrader with a DC50 (concentration causing 50 % of protein degradation) value of 114.8 nM and a Dmax (maximum degradation) of 90 % in the HCT-116 cells. Compound 21 showed strong antiproliferative activity against HCT-116 cells with an IC50 values of 10 nM. Mechanistic investigations revealed that 21 causes the cell arrest at the G2/M phase and subsequent cell apoptosis. In addition, 21 demonstrated more significant inhibition of tumor growth in an HCT-116 xenograft model compared to its parent compound 1. Our findings suggest that 21 may become the promising leads for further development.
Collapse
Affiliation(s)
- Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| | - JieYing Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Zhengxi Su
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Wenbo Zou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Qianwei Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Ting Yin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Tan Jiyao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yan-Yan Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
13
|
Yurtsever A, Asakawa H, Katagiri Y, Takao K, Ikegami K, Tsukada M, Setou M, Fukuma T. Visualizing the Submolecular Organization of αβ-Tubulin Subunits on the Microtubule Inner Surface Using Atomic Force Microscopy. NANO LETTERS 2025; 25:98-105. [PMID: 39569635 DOI: 10.1021/acs.nanolett.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Microtubules (MTs) are dynamic cytoskeletal polymers essential for mediating fundamental cellular processes, including cell division, intracellular transport, and cell shape maintenance. Understanding the arrangement of tubulin heterodimers within MTs is key to their function. Using frequency modulation atomic force microscopy (FM-AFM) and simulations, we revealed the submolecular arrangement of α- and β-tubulin subunits on the inner MT surface. We observed an undulating molecular arrangement of protofilaments (PFs) with alternating height variations, attributed to different structural orientations and the confirmation of αβ-tubulin heterodimers in adjacent PFs, forming bimodal lateral contacts, as confirmed by AFM simulations. Structural defects resulting from missing tubulin units were directly identified. This detailed structural information provides critical insight into the MT functional properties. Our findings highlight the potential of FM-AFM in liquid as a powerful tool for elucidating the complex interactions among MTs, MT-associated proteins, and other molecules, which are essential for understanding MT dynamics in the cellular context.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hitoshi Asakawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yukitoshi Katagiri
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kazufumi Takao
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masaru Tsukada
- WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
14
|
Sun SY, Nie L, Zhang J, Fang X, Luo H, Fu C, Wei Z, Tang AH. The interaction between KIF21A and KANK1 regulates dendritic morphology and synapse plasticity in neurons. Neural Regen Res 2025; 20:209-223. [PMID: 38767486 PMCID: PMC11246154 DOI: 10.4103/1673-5374.391301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 11/07/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00029/figure1/v/2024-05-14T021156Z/r/image-tiff Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory. Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1; however, whether KIF21A modulates dendritic structure and function in neurons remains unknown. In this study, we found that KIF21A was distributed in a subset of dendritic spines, and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines. Furthermore, the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity. Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching, and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1, but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1. Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals' cognitive abilities. Taken together, our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| | - Lingyun Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- CAS Center for Excellence in Molecular Cell Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jing Zhang
- Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xue Fang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Hongmei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| | - Chuanhai Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- CAS Center for Excellence in Molecular Cell Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhiyi Wei
- Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Mohd Amin AS, Eastwood S, Pilcher C, Truong JQ, Foitzik R, Boag J, Gorringe KL, Holien JK. KIF18A inhibition: the next big player in the search for cancer therapeutics. Cancer Metastasis Rev 2024; 44:3. [PMID: 39580563 DOI: 10.1007/s10555-024-10225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024]
Abstract
Kinesin-like protein 18A (KIF18A) is a member of the kinesin family of molecular motor proteins, which utilise energy from the hydrolysis of adenosine triphosphate (ATP) to regulate critical cellular processes such as chromosome movement and microtubule dynamics. KIF18A plays a vital role in controlling microtubule length, which is crucial for maintaining proper cell function and division. Notably, increased expression levels of KIF18A have been observed in various types of cancer, indicating its potential involvement in tumour progression. Although preclinical studies have demonstrated that KIF18A is not essential for normal somatic cell division, it appears to be crucial for the survival and division of cancer cells, particularly those exhibiting chromosomal instability. This dependency makes KIF18A a promising target for developing new therapeutic strategies aimed at treating chromosomally unstable cancers. This review delves into the structural and functional aspects of KIF18A, and its role in cancer development, and evaluates current and emerging approaches to targeting KIF18A with innovative cancer treatments.
Collapse
Affiliation(s)
| | - Sarah Eastwood
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Courtney Pilcher
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Jia Q Truong
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Richard Foitzik
- Oncology One Pty Ltd, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Inosi Therapeutics Pty Ltd, 655 Elizabeth St, Melbourne, VIC, 3000, Australia
| | - Joanne Boag
- Oncology One Pty Ltd, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Walter and Eliza Hall Institute of Medical Research, 4 Research Avenue, Bundoora, VIC, 3083, Australia
- Ternarx Pty Ltd, 4 Research Avenue, Bundoora, VIC, 3083, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Department of Oncology, Sir Peter MacCallum, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia
| | - Jessica K Holien
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia.
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia.
- St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3052, Australia.
| |
Collapse
|
17
|
Luan T, Li Q, Huang Z, Feng Y, Xu D, Zhou Y, Hu Y, Wang T. Axonopathy Underlying Amyotrophic Lateral Sclerosis: Unraveling Complex Pathways and Therapeutic Insights. Neurosci Bull 2024; 40:1789-1810. [PMID: 39097850 PMCID: PMC11607281 DOI: 10.1007/s12264-024-01267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 08/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by progressive axonopathy, jointly leading to the dying back of the motor neuron, disrupting both nerve signaling and motor control. In this review, we highlight the roles of axonopathy in ALS progression, driven by the interplay of multiple factors including defective trafficking machinery, protein aggregation, and mitochondrial dysfunction. Dysfunctional intracellular transport, caused by disruptions in microtubules, molecular motors, and adaptors, has been identified as a key contributor to disease progression. Aberrant protein aggregation involving TDP-43, FUS, SOD1, and dipeptide repeat proteins further amplifies neuronal toxicity. Mitochondrial defects lead to ATP depletion, oxidative stress, and Ca2+ imbalance, which are regarded as key factors underlying the loss of neuromuscular junctions and axonopathy. Mitigating these defects through interventions including neurotrophic treatments offers therapeutic potential. Collaborative research efforts aim to unravel ALS complexities, opening avenues for holistic interventions that target diverse pathological mechanisms.
Collapse
Affiliation(s)
- Tongshu Luan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Huang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Duo Xu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yujie Zhou
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiqing Hu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
19
|
Kim MH, Jeong YJ, Urm SH, Seog DH. The heterotrimeric kinesin-2 family member KIF3A directly binds to disabled-1 (Dab1). BMB Rep 2024; 57:447-452. [PMID: 38919020 PMCID: PMC11524828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 06/27/2024] Open
Abstract
The heterotrimeric molecular motor kinesin-2 is involved in the microtubule-dependent transport of intracellular cargo. It consists of two distinct motor subunits (KIF3A, and KIF3B) and a non-motor subunit, kinesin-associated protein 3 (KAP3). The cargo-binding domain (CBD) at the carboxyl (C)-terminus of KIF3s plays an important role in the interaction with several different binding proteins. To identify the binding proteins for heterotrimeric kinesin-2, we performed a yeast two-hybrid screen and found a new interaction with Disables-1 (Dab1), the intracellular adaptor protein of reelin receptors. Dab1 bound to the CBD of KIF3A, but did not interact with the C-terminal domain of KIF3B, KIF5B, KIF17 or KAP3. The phosphotyrosine binding (PTB) domain-containing region of Dab1 is essential for the interaction with KIF3A. KIF3A interacted with GST-Dab1, and GST-CaMKIIα, but did not interact with GST-apolipoprotein E receptor 2 (ApoER2)-C or with GST alone. When co-expressed in HEK-293T cells, Dab1 co-precipitated with KIF3A, but not with KIF5B. Dab1 and KIF3A were co-localized in cultured cells. We also identified deduced cell surface expression of ApoER2 in KIF3A dominant-negative cells. These results suggest that the KIF3A plays a role in the intracellular trafficking of ApoER2 to the cell surface. [BMB Reports 2024; 57(10): 447-452].
Collapse
Affiliation(s)
- Myoung Hun Kim
- Department of Anesthesia and Pain Medicine, Busan Paik Hospital, Inje University, Busan 47392, Korea
| | - Young Joo Jeong
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea
| | - Sang-Hwa Urm
- Department of Preventive Medicine, College of Medicine, Inje University, Busan 47392, Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea
- Demetia and Neurodegenerative Disease Research Center, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
20
|
Chen Q, Le X, Li Q, Liu S, Chen Z. Exploration of inhibitors targeting KIF18A with ploidy-specific lethality. Drug Discov Today 2024; 29:104142. [PMID: 39168405 DOI: 10.1016/j.drudis.2024.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Currently, various antimitotic inhibitors applied in tumor therapy. However, these inhibitors exhibit targeted toxicity to some extent. As a motor protein, kinesin family member 18A (KIF18A) is crucial to spindle formation and is associated with tumors exhibiting ploidy-specific characteristics such as chromosomal aneuploidy, whole-genome doubling (WGD), and chromosomal instability (CIN). Differing from traditional antimitotic targets, KIF18A exhibits tumor-specific selectivity. The functional loss or attenuation of KIF18A results in vulnerability of tumor cells with ploidy-specific characteristics, with lesser effects on diploid cells. Research on inhibitors targeting KIF18A with ploidy-specific lethality holds significant importance. This review provides a brief overview of the regulatory mechanisms of the ploidy-specific lethality target KIF18A and the research advancements in its inhibitors, aiming to facilitate the development of KIF18A inhibitors.
Collapse
Affiliation(s)
- Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Suyou Liu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
21
|
Yin YX, Ding MQ, Yi Y, Zou YJ, Liao BY, Sun SC. Insufficient KIF15 during porcine oocyte ageing induces HDAC6-based microtubule instability. Theriogenology 2024; 226:49-56. [PMID: 38838614 DOI: 10.1016/j.theriogenology.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
During aging, oocytes display cytoskeleton dynamics defects and aneuploidy, leading to embryonic aneuploidy, which in turn causes miscarriages, implantation failures, and birth defects. KIF15 (also known as Hklp2), a member of the kinesin-12 superfamily, is a cytoplasmic motor protein reported to be involved in Golgi and vesicle-related transport during mitosis in somatic cells. However, the regulatory mechanisms of KIF15 during meiosis in porcine oocytes and the connection with postovulatory aging remain unclear. In present study, we found that KIF15 is expressed during porcine oocyte maturation, and its localization is dependent on microtubule dynamics. Furthermore, the level of KIF15 expression decreased in postovulatory aged oocytes. The decrease in KIF15 blocked polar body extrusion, thereby hindering oocyte maturation. We demonstrated that KIF15 defects contributed to abnormal spindle morphologies and chromosome misalignment, possibly due to microtubule instability, as evidenced by microtubule depolymerization after cold treatment. Additionally, our data indicated that KIF15 modulates HDAC6 to affect tubulin acetylation in oocytes. Taken together, these results suggest that KIF15 regulates HDAC6-related microtubule stability for spindle organization in porcine oocytes during meiosis, which may contribute to the decline in maturation competence in aged porcine oocytes.
Collapse
Affiliation(s)
- Yan-Xuan Yin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Qi Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bi-Yun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Robichaud JH, Zhang Y, Chen C, He K, Huang Y, Zhang X, Sun X, Ma X, Hardiman G, Morrison CG, Dong Z, LeBrasseur NK, Ling K, Hu J. Transiently formed nucleus-to-cilium microtubule arrays mediate senescence initiation in a KIFC3-dependent manner. Nat Commun 2024; 15:7977. [PMID: 39266565 PMCID: PMC11393428 DOI: 10.1038/s41467-024-52363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the importance of cellular senescence in human health, how damaged cells undergo senescence remains elusive. We have previously shown that promyelocytic leukemia nuclear body (PML-NBs) translocation of the ciliary FBF1 is essential for senescence induction in stressed cells. Here we discover that an early cellular event occurring in stressed cells is the transient assembly of stress-induced nucleus-to-cilium microtubule arrays (sinc-MTs). The sinc-MTs are distinguished by unusual polyglutamylation and unique polarity, with minus-ends nucleating near the nuclear envelope and plus-ends near the ciliary base. KIFC3, a minus-end-directed kinesin, is recruited to plus-ends of sinc-MTs and interacts with the centrosomal protein CENEXIN1. In damaged cells, CENEXIN1 co-translocates with FBF1 to PML-NBs. Deficiency of KIFC3 abolishes PML-NB translocation of FBF1 and CENEXIN1, as well as senescence initiation in damaged cells. Our study reveals that KIFC3-mediated nuclear transport of FBF1 along polyglutamylated sinc-MTs is a prerequisite for senescence induction in mammalian cells.
Collapse
Affiliation(s)
- Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xu Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Nathan K LeBrasseur
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
24
|
Wang W, Hassan MM, Kapoor-Kaushik N, Livni L, Musrie B, Tang J, Mahmud Z, Lai S, Wich PR, Ananthanarayanan V, Moalem-Taylor G, Mao G. Neural Tracing Protein-Functionalized Nanoparticles Capable of Fast Retrograde Axonal Transport in Live Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311921. [PMID: 38647340 PMCID: PMC11427170 DOI: 10.1002/smll.202311921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Neural tracing proteins like horseradish peroxidase-conjugated wheat germ agglutinin (WGA-HRP) can target the central nervous system (CNS) through anatomic retrograde transport without crossing the blood-brain barrier (BBB). Conjugating WGA-HRP to nanoparticles may enable the creation of BBB-bypassing nanomedicine. Microfluidics and two-photon confocal microscopy is applied to screen nanocarriers for transport efficacy and gain mechanistic insights into their interactions with neurons. Protein modification of gold nanoparticles alters their cellular uptake at the axonal terminal and activates fast retrograde transport. Trajectory analysis of individual endosomes carrying the nanoparticles reveals a run-and-pause pattern along the axon with endosomes carrying WGA-HRP-conjugated gold nanoparticles exhibiting longer run duration and faster instantaneous velocity than those carrying nonconjugated nanoparticles. The results offer a mechanistic explanation of the different axonal transport dynamics as well as a cell-based functional assay of neuron-targeted nanoparticles with the goal of developing BBB-bypassing nanomedicine for the treatment of nervous system disorders.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Lital Livni
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Benjamin Musrie
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Zaheri Mahmud
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Saluo Lai
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Peter Richard Wich
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
25
|
Zhu H, Li M, Li M, Li X, Ou G. Cryo-electron tomography elucidates annular intraluminal configurations in Caenorhabditis elegans microtubules. Biol Cell 2024; 116:e2400064. [PMID: 39031999 DOI: 10.1111/boc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND INFORMATION Microtubules serve as integral components in cellular operations such as cell division, intracellular trafficking, and cellular architecture. Composed of tubulin protein subunits, these hollow tubular structures have been increasingly elucidated through advanced cryo-electron microscopy (Cryo-EM), which has unveiled the presence of microtubule inner proteins (MIPs) within the microtubular lumen. RESULTS In the present investigation, we employ a synergistic approach incorporating high-pressure freezing, cryo-focused ion beam milling, and Cryo-electron tomography (Cryo-ET) to interrogate the in situ architecture of microtubules in Caenorhabditis elegans larvae. Our Cryo-ET assessments across neuronal cilia and diverse tissue types consistently demonstrate the formation of annular configurations within the microtubular lumen. CONCLUSIONS In concert with recently characterized MIPs, our in situ observations within a living organism corroborate the hypothesis that intricate luminal assemblages exist within microtubule scaffolds. These findings necessitate further exploration into the molecular constituents and functional ramifications of these internal microtubular configurations in both cellular physiology and pathophysiology.
Collapse
Affiliation(s)
- Hao Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Ming Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Meijing Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Xueming Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Moon DO. Advancing Cancer Therapy: The Role of KIF20A as a Target for Inhibitor Development and Immunotherapy. Cancers (Basel) 2024; 16:2958. [PMID: 39272816 PMCID: PMC11393963 DOI: 10.3390/cancers16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The analysis begins with a detailed examination of the gene expression and protein structure of KIF20A, highlighting its interaction with critical cellular components that influence key processes such as Golgi membrane transport and mitotic spindle assembly. The primary focus is on the development of specific KIF20A inhibitors, detailing their roles and the challenges encountered in enhancing their efficacy, such as achieving specificity, overcoming tumor resistance, and optimizing delivery systems. Additionally, it delves into the prognostic value of KIF20A across multiple cancer types, emphasizing its role as a novel tumor-associated antigen, which lays the groundwork for the development of targeted peptide vaccines. The therapeutic efficacy of these vaccines as demonstrated in recent clinical trials is discussed. Future directions are proposed, including the integration of precision medicine strategies to personalize treatments and the use of combination therapies to improve outcomes. By concentrating on the significant potential of KIF20A as both a direct target for inhibitors and an antigen in cancer vaccines, this review sets a foundation for future research aimed at harnessing KIF20A for effective cancer treatment.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
27
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
28
|
Xie P. Modeling study of kinesin-13 MCAK microtubule depolymerase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:339-354. [PMID: 39093405 DOI: 10.1007/s00249-024-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Mitotic centromere-associated kinesin (MCAK) motor protein is a typical member of the kinesin-13 family, which can depolymerize microtubules from both plus and minus ends. A critical issue for the MCAK motor is how it performs the depolymerase activity. To address the issue, the pathway of the MCAK motor moving on microtubules and depolymerizing the microtubules is presented here. On the basis of the pathway, the dynamics of both the wild-type and mutant MCAK motors is studied theoretically, which include the full-length MCAK, the full-length MCAK with mutations in the α4-helix of the motor domain, the mutant full-length MCAK with a neutralized neck, the monomeric MCAK and the mutant monomeric MCAK with a neutralized neck. The studies show that a single dimeric MCAK motor can depolymerize microtubules in a processive manner, with either one tubulin or two tubulins being removed per times. The theoretical results are in agreement with the available experimental data. Moreover, predicted results are provided.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
29
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Xu Z, Miao R, Han T, Liu Y, Zhou J, Guo J, Xing Y, Bai Y, Wu J, Hu D. KIF2C as a potential therapeutic target: insights from lung adenocarcinoma subtype classification and functional experiments. Mol Omics 2024; 20:417-429. [PMID: 38940931 DOI: 10.1039/d4mo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Objective: this study evaluates the prognostic relevance of gene subtypes and the role of kinesin family member 2C (KIF2C) in lung cancer progression. Methods: high-expression genes linked to overall survival (OS) and progression-free interval (PFI) were selected from the TCGA-LUAD dataset. Consensus clustering analysis categorized lung adenocarcinoma (LUAD) patients into two subtypes, C1 and C2, which were compared using clinical, drug sensitivity, and immunotherapy analyses. A random forest algorithm pinpointed KIF2C as a prognostic hub gene, and its functional impact was assessed through various assays and in vivo experiments. Results: The study identified 163 key genes and distinguished two LUAD subtypes with differing OS, PFI, pathological stages, drug sensitivity, and immunotherapy response. KIF2C, highly expressed in the C2 subtype, was associated with poor prognosis, promoting cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), with knockdown reducing tumor growth in mice. Conclusion: The research delineates distinct LUAD subtypes with significant clinical implications and highlights KIF2C as a potential therapeutic target for personalized treatment in LUAD.
Collapse
Affiliation(s)
- Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230041, P. R. China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| |
Collapse
|
31
|
Lamura A. Excluded volume effects on tangentially driven active ring polymers. Phys Rev E 2024; 109:054611. [PMID: 38907431 DOI: 10.1103/physreve.109.054611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 06/24/2024]
Abstract
The conformational and dynamical properties of active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain, driven by tangential forces, put in contact with a heat bath described by the Brownian multiparticle collision dynamics. Both phantom polymers and chains comprising excluded volume interactions are considered for different bending rigidities. The size and shape are found to be dependent on persistence length, driving force, and bead mutual exclusion. The lack of excluded volume interactions is responsible for a shrinkage of active rings when increasing driving force in the flexible limit, while the presence induces a moderate swelling of chains. The internal dynamics of flexible phantom active rings shows activity-enhanced diffusive behavior at large activity values while, in the case of self-avoiding active chains, it is characterized by active ballistic motion not depending on stiffness. The long-time dynamics of active rings is marked by rotational motion whose period scales as the inverse of the applied tangential force, irrespective of persistence length and beads' self-exclusion.
Collapse
Affiliation(s)
- A Lamura
- Istituto Applicazioni Calcolo, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
32
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
33
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
34
|
Xie P. ATP Concentration-Dependent Fractions of One-Head-Bound and Two-Head-Bound States of the Kinesin Motor during Its Chemomechanical Coupling Cycle. J Phys Chem Lett 2024; 15:3893-3899. [PMID: 38563569 DOI: 10.1021/acs.jpclett.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Kinesin is a typical motor protein that can use the chemical energy of ATP hydrolysis to step processively on microtubules, alternating between one-head-bound and two-head-bound states. Some published experimental results showed that the duration of the one-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the two-head-bound state is independent of ATP concentration, indicating that ATP binding occurs in the one-head-bound state. On the contrary, other experimental results showed that the duration of the two-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the one-head-bound state increases slightly with a decrease in ATP concentration, indicating that ATP binding occurs mainly in the two-head-bound state. Here, we explain consistently and quantitatively these contradictory experimental results, resolving the controversy that is critical to the chemomechanical coupling mechanism of the kinesin motor.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
35
|
Wang K, Ding Y, Liu Y, Ma M, Wang J, Kou Z, Liu S, Jiang B, Hou S. CPA4 as a biomarker promotes the proliferation, migration and metastasis of clear cell renal cell carcinoma cells. J Cell Mol Med 2024; 28:e18165. [PMID: 38494845 PMCID: PMC10945090 DOI: 10.1111/jcmm.18165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/19/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a commonly occurring and highly aggressive urological malignancy characterized by a significant mortality rate. Current therapeutic options for advanced ccRCC are limited, necessitating the discovery of novel biomarkers and therapeutic targets. Carboxypeptidase A4 (CPA4) is a zinc-containing metallocarboxypeptidase with implications in various cancer types, but its role in ccRCC remains unexplored. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized in order to investigate the differential expression patterns of CPA4. The expression of CPA4 in ccRCC patients was further verified using immunohistochemical (IHC) examination of 24 clinical specimens. A network of protein-protein interactions (PPI) was established, incorporating CPA4 and its genes that were expressed differentially. Functional enrichment analyses were conducted to anticipate the contribution of CPA4 in the development of ccRCC. To validate our earlier study, we conducted real-time PCR and cell functional tests on ccRCC cell lines. Our findings revealed that CPA4 is overexpressed in ccRCC, and the higher the expression of CPA4, the worse the clinical outcomes such as TNM stage, pathological stage, histological grade, etc. Moreover, patients with high CPA4 expression had worse overall survival, disease-specific survival and progress-free interval than patients with low expression. The PPI network analysis highlighted potential interactions contributing to ccRCC progression. Functional enrichment analysis indicated the involvement of CPA4 in the regulation of key pathways associated with ccRCC development. Additionally, immune infiltration analysis suggested a potential link between CPA4 expression and immune response in the tumour microenvironment. Finally, cell functional studies in ccRCC cell lines shed light on the molecular mechanisms underlying the role of CPA4 in promoting ccRCC formation. Overall, our study unveils CPA4 as a promising biomarker with prognostic potential in ccRCC. The identified interactions and pathways provide valuable insights into its implications in ccRCC development and offer a foundation for future research on targeted therapies. Further investigation of CPA4's involvement in immune responses may contribute to the development of immunotherapeutic strategies for ccRCC treatment.
Collapse
Affiliation(s)
- Kongjia Wang
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Yixin Ding
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yunbo Liu
- Department of UrologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mingyu Ma
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Ji Wang
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Zengshun Kou
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Shuo Liu
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Bo Jiang
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Sichuan Hou
- Department of UrologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| |
Collapse
|
36
|
Park H, Kaang BK. Memory allocation at the neuronal and synaptic levels. BMB Rep 2024; 57:176-181. [PMID: 37964638 PMCID: PMC11058361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Memory allocation, which determines where memories are stored in specific neurons or synapses, has consistently been demonstrated to occur via specific mechanisms. Neuronal allocation studies have focused on the activated population of neurons and have shown that increased excitability via cAMP response element-binding protein (CREB) induces a bias toward memoryencoding neurons. Synaptic allocation suggests that synaptic tagging enables memory to be mediated through different synaptic strengthening mechanisms, even within a single neuron. In this review, we summarize the fundamental concepts of memory allocation at the neuronal and synaptic levels and discuss their potential interrelationships. [BMB Reports 2024; 57(4): 176-181].
Collapse
Affiliation(s)
- HyoJin Park
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Department of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
37
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
38
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Zaferani M, Song R, Petry S, Stone HA. Building on-chip cytoskeletal circuits via branched microtubule networks. Proc Natl Acad Sci U S A 2024; 121:e2315992121. [PMID: 38232292 PMCID: PMC10823238 DOI: 10.1073/pnas.2315992121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Controllable platforms to engineer robust cytoskeletal scaffolds have the potential to create novel on-chip nanotechnologies. Inspired by axons, we combined the branching microtubule (MT) nucleation pathway with microfabrication to develop "cytoskeletal circuits." This active matter platform allows control over the adaptive self-organization of uniformly polarized MT arrays via geometric features of microstructures designed within a microfluidic confinement. We build and characterize basic elements, including turns and divisions, as well as complex regulatory elements, such as biased division and MT diodes, to construct various MT architectures on a chip. Our platform could be used in diverse applications, ranging from efficient on-chip molecular transport to mechanical nano-actuators. Further, cytoskeletal circuits can serve as a tool to study how the physical environment contributes to MT architecture in living cells.
Collapse
Affiliation(s)
- Meisam Zaferani
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ08544
| | - Ryungeun Song
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| |
Collapse
|
40
|
Bloom GS, Baas PW. A half-century of tau. Cytoskeleton (Hoboken) 2024; 81:7-9. [PMID: 37638689 PMCID: PMC10840720 DOI: 10.1002/cm.21783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Affiliation(s)
- George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Liu X, Gennerich A. Insect Cell-Based Expression of Cytoskeletal Motor Proteins for Single-Molecule Studies. Methods Mol Biol 2024; 2694:69-90. [PMID: 37824000 PMCID: PMC10880877 DOI: 10.1007/978-1-0716-3377-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Cytoskeletal motor proteins are essential molecular machines that hydrolyze ATP to generate force and motion along cytoskeletal filaments. Members of the dynein and kinesin superfamilies play critical roles in transporting biological payloads (such as proteins, organelles, and vesicles) along microtubule pathways, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes to progeny cells. Understanding the underlying mechanisms and behaviors of motor proteins is critical to provide better strategies for the treatment of motor protein-related diseases. Here, we provide detailed protocols for the recombinant expression of the Kinesin-1 motor KIF5C using a baculovirus/insect cell system and provide updated protocols for performing single-molecule studies using total internal reflection fluorescence microscopy and optical tweezers to study the motility and force generation of the purified motor.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
42
|
Queen KA, Cario A, Berger CL, Stumpff J. Modification of the neck-linker of KIF18A alters Microtubule subpopulation preference. Mol Biol Cell 2024; 35:ar3. [PMID: 37903223 PMCID: PMC10881168 DOI: 10.1091/mbc.e23-05-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, posttranslational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to nonkinetochore microtubules at the periphery of the spindle. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker-like state that decreases KIF18A accumulation at the plus-ends of kinetochore microtubules. These findings demonstrate that posttranslational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.
Collapse
Affiliation(s)
- Katelyn A. Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| |
Collapse
|
43
|
Krishnan N, Sarpangala N, Gamez M, Gopinathan A, Ross JL. Effects of cytoskeletal network mesh size on cargo transport. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:109. [PMID: 37947921 DOI: 10.1140/epje/s10189-023-00358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Intracellular transport of cargoes in the cell is essential for the organization and functioning cells, especially those that are large and elongated. The cytoskeletal networks inside large cells can be highly complex, and this cytoskeletal organization can have impacts on the distance and trajectories of travel. Here, we experimentally created microtubule networks with varying mesh sizes and examined the ability of kinesin-driven quantum dot cargoes to traverse the network. Using the experimental data, we deduced parameters for cargo detachment at intersections and away from intersections, allowing us to create an analytical theory for the run length as a function of mesh size. We also used these parameters to perform simulations of cargoes along paths extracted from the experimental networks. We find excellent agreement between the trends in run length, displacement, and trajectory persistence length comparing the experimental and simulated trajectories.
Collapse
Affiliation(s)
- Nimisha Krishnan
- Physics Department, Syracuse University, Crouse Drive, Syracuse, NY, 13104, USA
| | - Niranjan Sarpangala
- Department of Physics, University of California, Merced, 5200 North Lake Rd, Merced, CA, 95343, USA
| | - Maria Gamez
- Department of Physics, University of California, Merced, 5200 North Lake Rd, Merced, CA, 95343, USA
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, 5200 North Lake Rd, Merced, CA, 95343, USA
| | - Jennifer L Ross
- Physics Department, Syracuse University, Crouse Drive, Syracuse, NY, 13104, USA.
| |
Collapse
|
44
|
Pust S, Brech A, Wegner CS, Stenmark H, Haglund K. Vesicle-mediated transport of ALIX and ESCRT-III to the intercellular bridge during cytokinesis. Cell Mol Life Sci 2023; 80:235. [PMID: 37523003 PMCID: PMC10390626 DOI: 10.1007/s00018-023-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.
Collapse
Affiliation(s)
- Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Catherine Sem Wegner
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
45
|
Palicha KA, Loganathan P, Sudha V, Harinipriya S. Monte Carlo simulation and experimental validation of plant microtubules cathode in biodegradable battery. Sci Rep 2023; 13:10393. [PMID: 37369685 DOI: 10.1038/s41598-023-36902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For the first time, electrochemical methods are utilized to study the response of tubulin monomers (extracted from plant source such as Green Peas: Arachis Hypogea) towards charge perturbations in the form of conductivity, conformational changes via self-assembly and adsorption on Au surface. The obtained dimerization and surface adsorption energetics of the tubulins from Cyclic Voltammetry agree well with the literature value of 6.9 and 14.9 kCal/mol for lateral and longitudinal bond formation energy respectively. In addition to the effects of charge perturbations on change in structure, ionic and electronic conductivity of tubulin with increasing load are investigated and found to be 1.25 Sm-1 and 2.89 mSm-1 respectively. The electronic conductivity is 1.93 times higher than the literature value of 1.5 mSm-1, demonstrating the fact that the microtubules (dimer of tubulins, MTs) from plant source can be used as a semiconductor electrode material in energy conversion and storage applications. Thus, motivated by the Monte Carlo simulation and electrochemical results the MTs extracted from plant source are used as cathode material for energy storage device such as Bio-battery and the Galvanostatic Charge/Discharge studies are carried out in coin cell configuration. The configuration of the bio-battery cell is as follows: Al/CB//PP-1M KCl//MTs/SS; where SS and Al are used as current collectors for cathode and anode respectively, Polypropylene (PP) membrane soaked in 1M KCl as electrolyte and Carbon Black (CB) is the anode material. Another configuration of the cell would be replacement of CB by biopolymer such as ethyl cellulose anode (Al/EC/PP-1M KCl/MTs/SS).
Collapse
Affiliation(s)
- Kaushik A Palicha
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India
| | - Pavithra Loganathan
- Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India
| | - V Sudha
- Department of Chemistry, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India.
| | - S Harinipriya
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India.
| |
Collapse
|
46
|
Tabassum G, Singh P, Gurung R, Hakami MA, Alkhorayef N, Alsaiari AA, Alqahtani LS, Hasan MR, Rashid S, Kumar A, Dev K, Dohare R. Investigating the role of Kinesin family in lung adenocarcinoma via integrated bioinformatics approach. Sci Rep 2023; 13:9859. [PMID: 37330525 PMCID: PMC10276827 DOI: 10.1038/s41598-023-36842-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
Lung cancer is the leading cause of mortality from cancer worldwide. Lung adenocarcinoma (LUAD) is a type of non-small cell lung cancer (NSCLC) with highest prevalence. Kinesins a class of motor proteins are shown to be involved in carcinogenesis. We conducted expression, stage plot and survival analyses on kinesin superfamily (KIF) and scrutinized the key prognostic kinesins. Genomic alterations of these kinesins were studied thereafter via cBioPortal. A protein-protein interaction network (PPIN) of selected kinesins and 50 closest altering genes was constructed followed by gene ontology (GO) term and pathway enrichment analyses. Multivariate survival analysis based on CpG methylation of selected kinesins was performed. Lastly, we conducted tumor immune infiltration analysis. Our results found KIF11/15/18B/20A/2C/4A/C1 to be significantly upregulated and correlated with poor survival in LUAD patients. These genes also showed to be highly associated with cell cycle. Out of our seven selected kinesins, KIFC1 showed the highest genomic alteration with highest number of CpG methylation. Also, CpG island (CGI) cg24827036 was discovered to be linked to LUAD prognosis. Therefore, we deduced that reducing the expression of KIFC1 could be a feasible treatment strategy and that it can be a wonderful individual prognostic biomarker. CGI cg24827036 can also be used as a therapy site in addition to being a great prognostic biomarker.
Collapse
Affiliation(s)
- Gulnaz Tabassum
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Atul Kumar
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
47
|
Mahdavi R, Shams-Eldin H, Witt S, Latz A, Heinz D, Fresco-Taboada A, Aira C, Hübner MP, Sukyte D, Visekruna A, Teixeira HC, Abass E, Steinhoff U. Development of a Novel Enzyme-Linked Immunosorbent Assay and Lateral Flow Test System for Improved Serodiagnosis of Visceral Leishmaniasis in Different Areas of Endemicity. Microbiol Spectr 2023; 11:e0433822. [PMID: 37074181 PMCID: PMC10269724 DOI: 10.1128/spectrum.04338-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by protozoan parasites of the Leishmania donovani complex and is one of the most prominent vector-borne infectious diseases with epidemic and mortality potential if not correctly diagnosed and treated. East African countries suffer from a very high incidence of VL, and although several diagnostic tests are available for VL, diagnosis continues to represent a big challenge in these countries due to the lack of sensitivity and specificity of current serological tools. Based on bioinformatic analysis, a new recombinant kinesin antigen from Leishmania infantum (rKLi8.3) was developed. The diagnostic performance of rKLi8.3 was evaluated by enzyme-linked immunosorbent assay (ELISA) and lateral flow test (LFT) on a panel of sera from Sudanese, Indian, and South American patients diagnosed with VL or other diseases, including tuberculosis, malaria, and trypanosomiasis. The diagnostic accuracy of rKLi8.3 was compared with rK39 and rKLO8 antigens. The VL-specific sensitivity of rK39, rKLO8, and rKLi8.3 ranged from 91.2% over 92.4% to 97.1% and specificity ranged from 93.6% over 97.6% to 99.2%, respectively. In India, all tests showed a comparable specificity of 90.9%, while the sensitivity ranged from 94.7% to 100% (rKLi8.3). In contrast to commercial serodiagnostic tests, rKLi8.3-based ELISA and LFT showed improved sensitivity and no cross-reactivity with other parasitic diseases. Thus, rKLi8.3-based ELISA and LFT offer improved VL serodiagnostic efficiency in East Africa and other areas of endemicity. IMPORTANCE Reliable and field suitable serodiagnosis of visceral leishmaniasis (VL) in East Africa has until now been a big challenge due to low sensitivity and cross-reactivity with other pathogens. To improve VL serodiagnosis, a new recombinant kinesin antigen from Leishmania infantum (rKLi8.3) was developed and tested with a panel of sera from Sudanese, Indian, and South American patients diagnosed with VL or other infectious diseases. Both prototype rKLi8.3-based enzyme-linked immunosorbent assay (ELISA) and lateral flow test (LFT) showed improved sensitivity and no cross-reactivity with other parasitic diseases. Thus, rKLi8.3-based ELISA and LFT offer substantially increased diagnostic efficiency for VL in East Africa and other areas of endemicity, compared to currently commercially available serodiagnostic tests.
Collapse
Affiliation(s)
- Rouzbeh Mahdavi
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Hosam Shams-Eldin
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Sandra Witt
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Andreas Latz
- Novatec Immundiagnostica GmbH, part of Gold Standard Diagnostics Europe, Dietzenbach, Germany
| | - Daniela Heinz
- Novatec Immundiagnostica GmbH, part of Gold Standard Diagnostics Europe, Dietzenbach, Germany
| | - Alba Fresco-Taboada
- Eurofins-Immunologia y Genética Aplicada S.A. (Eurofins Ingenasa S.A.), Madrid, Spain
| | - Cristina Aira
- Eurofins-Immunologia y Genética Aplicada S.A. (Eurofins Ingenasa S.A.), Madrid, Spain
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Dalia Sukyte
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Henrique C. Teixeira
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Elfadil Abass
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ulrich Steinhoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
48
|
Cai W, Zhang Y, Chang T, Wang Z, Zhu B, Chen Y, Gao X, Xu L, Zhang L, Gao H, Song J, Li J. The eQTL colocalization and transcriptome-wide association study identify potentially causal genes responsible for economic traits in Simmental beef cattle. J Anim Sci Biotechnol 2023; 14:78. [PMID: 37165455 PMCID: PMC10173583 DOI: 10.1186/s40104-023-00876-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND A detailed understanding of genetic variants that affect beef merit helps maximize the efficiency of breeding for improved production merit in beef cattle. To prioritize the putative variants and genes, we ran a comprehensive genome-wide association studies (GWAS) analysis for 21 agronomic traits using imputed whole-genome variants in Simmental beef cattle. Then, we applied expression quantitative trait loci (eQTL) mapping between the genotype variants and transcriptome of three tissues (longissimus dorsi muscle, backfat, and liver) in 120 cattle. RESULTS We identified 1,580 association signals for 21 beef agronomic traits using GWAS. We then illuminated 854,498 cis-eQTLs for 6,017 genes and 46,970 trans-eQTLs for 1,903 genes in three tissues and built a synergistic network by integrating transcriptomics with agronomic traits. These cis-eQTLs were preferentially close to the transcription start site and enriched in functional regulatory regions. We observed an average of 43.5% improvement in cis-eQTL discovery using multi-tissue eQTL mapping. Fine-mapping analysis revealed that 111, 192, and 194 variants were most likely to be causative to regulate gene expression in backfat, liver, and muscle, respectively. The transcriptome-wide association studies identified 722 genes significantly associated with 11 agronomic traits. Via the colocalization and Mendelian randomization analyses, we found that eQTLs of several genes were associated with the GWAS signals of agronomic traits in three tissues, which included genes, such as NADSYN1, NDUFS3, LTF and KIFC2 in liver, GRAMD1C, TMTC2 and ZNF613 in backfat, as well as TIGAR, NDUFS3 and L3HYPDH in muscle that could serve as the candidate genes for economic traits. CONCLUSIONS The extensive atlas of GWAS, eQTL, fine-mapping, and transcriptome-wide association studies aid in the suggestion of potentially functional variants and genes in cattle agronomic traits and will be an invaluable source for genomics and breeding in beef cattle.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yapeng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, 20742, USA.
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
49
|
Queen KA, Cario A, Berger CL, Stumpff J. Modification of the Neck Linker of KIF18A Alters Microtubule Subpopulation Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539080. [PMID: 37205510 PMCID: PMC10187232 DOI: 10.1101/2023.05.02.539080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, post-translational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to peripheral microtubules. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker like state that prevents KIF18A from accumulating at the plus-ends of kinetochore microtubules. These findings demonstrate that post-translational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.
Collapse
Affiliation(s)
- Katelyn A. Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
- Current Institution: Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| |
Collapse
|
50
|
Wagle S, Kraynyukova N, Hafner AS, Tchumatchenko T. Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules. Mol Cell Neurosci 2023; 125:103846. [PMID: 36963534 DOI: 10.1016/j.mcn.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis could dynamically modulate the copy numbers of plasticity-related molecules in synapses. Subsequently, theoretical models were designed to understand the interaction of these processes better and to explain how local synaptic plasticity cues can up or down-regulate the molecular copy numbers across synapses. In this review, we discuss the recent advances in experimental techniques and computational models to highlight how these complementary approaches can provide insight into molecular cross-talk across synapses, ultimately allowing us to develop biologically-inspired neural network models to understand brain function.
Collapse
Affiliation(s)
- Surbhit Wagle
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany
| | - Nataliya Kraynyukova
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands; Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tatjana Tchumatchenko
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|